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1. Étale cohomology

1.1. The étale morphism. A morphism of finite type between schemes f : X → Y is called étale if
it is flat and the diagonal morphism ∆ : X → X ×Y X is open and closed. This is understood as an
analogue of local homeomorphism in topology.

Fact 1.1. Suppose f : X → Y is a morphism of finite type. The followings are equivalent:

(1) f is étale;
(2) f is smooth of relative dimension 0;
(3) f is flat and unramified.

Example 1.2. Open immersion is étale.

A finite étale morphism is an étale morphism which is also a finite morphism. This is understood as
an analogue of finite covering map in topology.

Example 1.3. Suppose Y = SpecK, where K is a field. Then X → Y is étale if and only if X ∼= SpecR,
where R is a finite direct product of finite separable field extensions of K. In particular, if K = K is
algebraically closed, then R is a finite direct product of K.

Example 1.4. Suppose L/K is a finite extension of number fields, X = SpecOL, Y = SpecOK , then
X → Y is étale if and only if L/K is unramified at all finite places.

Fact 1.5. Étale morphism has the following properties:

(1) Composition of étale morphisms is étale;

(2) Étale morphism is stable under base change, i.e. if X → Y is étale, Z → Y is any morphism,
then the fiber product X ×Y Z → Z is étale;

(3) If g and g ◦ f are étale, then f is étale.

1.2. The étale fundamental group.

1.2.1. First let’s recall the fundamental group in topology. Let X be a topological space which is
path-connected, locally path-connected, and semi-locally simply connected. Fix a point x ∈ X, then
there is the topological fundamental group πtop

1 (X,x) with respect to the base point x, which consists
of the paths on X starting and ending at x modulo homotopic equivalence. Since X is path-connected,
different choices of x yield (non-canonically) isomorphic πtop

1 (X,x), hence sometimes we simply write

πtop
1 (X) instead.

On the other hand, we may define the fundamental group in terms of deck transformation groups.
For a connected topological space X ′ and a covering map f : X ′ → X, the deck transformation group
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Aut(X ′/X) which consists of homeomorphisms σ : X ′ → X ′ such that f ◦ σ = f . The f is called a
Galois cover, if the Aut(X ′/X)-action on f−1(x) is transitive for some (⇔ for all) x ∈ X. If f is a finite
covering map, it is equivalent to # Aut(X ′/X) = deg f .

Suppose fi : X ′i → X, i = 1, 2 are two Galois covers, and g : X ′1 → X ′2 is such that f1 = f2 ◦ g. Then
g is also a Galois cover, induces a surjective group homomorphism Aut(X ′1/X) � Aut(X ′2/X) whose
kernel is Aut(X ′1/X

′
2), which maps an element σ1 ∈ Aut(X ′1/X) to the unique element σ2 ∈ Aut(X ′2/X)

such that σ2(g(x′1)) = g(σ1(x′1)) for some (⇔ for all) x′1 ∈ X ′1.
If f : X ′ → X is a Galois cover, fix a point x ∈ X and its preimage x′ ∈ X ′, it induces a group

homomorphism πtop
1 (X,x)→ Aut(X ′/X) given by [γ] 7→ σ where σ ∈ Aut(X ′/X) is the unique element

which sends γ′(0) = x′ to γ′(1), here γ′ is the unique lifting of γ to X ′ such that γ′(0) = x′.

There is the universal cover f̃ : X̃ → X, in the sense that for any covering map f : X ′ → X, any point

x ∈ X and its preimages x′ ∈ X ′, x̃ ∈ X̃, there exists a unique map g : X̃ → X ′ such that f̃ = f ◦ g and

such that g(x̃) = x′. It is a Galois cover, and the induced group homomorphism πtop
1 (X,x)

∼−→ Aut(X̃/X)
is in fact an isomorphism.

Without introducing the universal cover of X, we may consider the category of finite Galois covers
of X. It is cofiltered, but there are too many morphisms in it; to restrict the number of morphisms, we
need to introduce base points.

Suppose fi : X ′i → X, i = 1, 2 are two finite covering maps, such that there exist maps g : X ′1 → X ′2
such that f1 = f2 ◦ g. The number of such g may be ≥ 2, but if we fix a point x ∈ X as well as its
preimages x′i ∈ X ′i, i = 1, 2, and require moreover that g(x′1) = x′2, then the number of such g is ≤ 1,
moreover, if f1 is Galois, then the number of such g is exactly = 1. Therefore, if we fix a point x ∈ X
and consider the category of finite Galois covers of X endowed with a preimage of x, then for any two
objects in it, there are at most one morphism between them, which allows us to define the algebraic
fundamental group to be

πalg
1 (X,x) := lim←−

(X′,x′)/(X,x) finite Galois cover

Aut(X ′/X).

For each (X ′, x′) appeared in the above inverse limit, there is a map πtop
1 (X,x) → Aut(X ′/X), also,

the map g : (X̃, x̃) → (X ′, x′) induces Aut(X̃/X) → Aut(X ′/X). These maps are compatible with the
inverse system, hence we obtain group homomorphisms

πtop
1 (X,x)→ πalg

1 (X,x) and Aut(X̃/X)→ πalg
1 (X,x),

these maps are compatible with the isomorphism πtop
1 (X,x)

∼−→ Aut(X̃/X), and that πalg
1 (X,x) is in

fact the profinite completion of them.
It’s clear that πtop

1 is a functor, namely, the ϕ : (X,x) → (Y, y) induces πtop
1 (X,x) → πtop

1 (Y, y) by
[γ] 7→ [ϕ ◦ γ].

1.2.2. Now back to the algebraic geometry setting. Let X be a connected scheme. A morphism f :
X ′ → X is called a Galois cover if X ′ is connected, f is finite étale, and # Aut(X ′/X) = deg f , where
the automorphism group Aut(X ′/X) consists of isomorphisms σ : X ′ → X ′ such that f ◦ σ = f . If
x : Spec k → X is a geometric point of X, by abuse of notation, denote by f−1(x) the geometric points
x′ : Spec k → X ′ of X ′ such that x = f ◦x′. If f : X ′ → X is a Galois cover, then the Aut(X ′/X)-action
on f−1(x) is transitive for all geometric points x of X.

Similar to topology setting, if fi : X ′i → X, i = 1, 2 are two Galois covers, such that there exist
morphisms g : X ′1 → X ′2 such that f1 = f2 ◦ g, fix a geometry point x of X as well as its preimages x′i in
X ′i, i = 1, 2, and require moreover that g ◦x′1 = x′2, then the number of such g is exactly = 1. Therefore,
if we fix a geometry point x of X, we can define the étale fundamental group to be

πét
1 (X,x) := lim←−

(X′,x′)/(X,x) Galois cover

Aut(X ′/X).

Since X is connected, different choices of x yield (non-canonically) isomorphic πét
1 (X,x) (see [Mil80],

Chapter I, Remark 5.1, and [FK88], Appendix A I.2), hence sometimes we simply write πét
1 (X) instead.

The πét
1 is a functor (see [FK88] Appendix A I.3), namely, a morphism ϕ : (X,x) → (Y, y) induces

πét
1 (X,x) → πét

1 (Y, y), which is defined as follows. For any Galois cover f : (Y ′, y′) → (Y, y), the
X×Y Y ′ → X is a finite étale morphism, as well as (X×Y Y ′)0 → X, where (X×Y Y ′)0 is the connected
component of X×Y Y ′ containing the geometric point x×y y′ : Spec k → X×Y Y ′. There exists a Galois
cover g : (X ′, x′) → (X,x) such that it factors through (X ×Y Y ′)0 → X and such that x ×y y′ factors
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through x′, therefore we may define group homomorphism πét
1 (X,x) � Aut(X ′/X) → Aut(Y ′/Y ).

Taking inverse limit we obtain πét
1 (X,x)→ πét

1 (Y, y).

Example 1.6. If X = SpecK where K is a field, then X ′/X is a Galois cover if and only if X ′ = SpecK ′

where K ′ is a finite Galois extension of K, and Aut(X ′/X) = Gal(K ′/K). Therefore πét
1 (SpecK) =

Gal(K/K) is the absolute Galois group of K.

Fact 1.7. The category Xfét of finite étale morphisms over X is equivalent to the category of finite
πét

1 (X,x)-sets, given by (f : X ′ → X) 7→ f−1(x).

Fact 1.8. If X is a geometrically connected variety over a field K, then there is an exact sequence of
groups:

0 // πét
1 (XK) // πét

1 (X) // πét
1 (SpecK) // 0.

Gal(K/K)

Moreover, if K is a subfield of C, then a geometric point x : SpecC→ X induces a natural isomorphism

πét
1 (XK , x)

∼−→ πalg
1 (X(C), x).

1.3. The étale sheaf.

1.3.1. Étale topology. Suppose X is a scheme. Define Xét to be the category of étale morphisms over X,
more precisely, it has:

• Objects: U → X étale morphism,
• Morphisms: U → V such that

U //

  

V

~~
X

commutes,

with the étale topology

• For U ∈ Xét, {φi : Ui → U} is a cover of U if each φi is a morphism inXét such that U =
⋃
i φi(Ui)

as topological spaces,

which satisfies the axioms of so-called Grothendieck topology:

(1) If V → U is an isomorphism, then {V → U} is a cover of U ;
(2) Pullback of cover is cover, i.e. if {Ui → U} is a cover of U , and V → U is a morphism in Xét,

then {Ui ×U V → V } is a cover of V ;
(3) Composition of covers is cover, i.e. if {Ui → U} is a cover of U , and for each i, {Uij → Ui} is a

cover of Ui, then {Uij → Ui → U} is a cover of U .

1.3.2. Presheaf and sheaf. A presheaf F ∈ Psh(Xét,Set) is just a contravariant functor F : Xop
ét → Set,

called an étale presheaf. If V → U is a morphism in Xét, the induced morphism F(U)→ F(V ) is usually
denoted by |V . If U = {Ui → U} is a cover, define the zeroth Čech cohomology

Ȟ0(U ,F) := Eq

(∏
i

F(Ui) ⇒
∏
i,j

F(Ui ×U Uj)
)
,

(si)i 7→ (si|Ui×UUj
)i,j ,

(si)i 7→ (sj |Ui×UUj )i,j ,

in other words,

Ȟ0(U ,F) :=

{
(si) ∈

∏
i

F(Ui)

∣∣∣∣∣ si|Ui×UUj = sj |Ui×UUj ,∀i, j

}
.

An étale presheaf F is a sheaf, denoted by F ∈ Sh(Xét,Set), called an étale sheaf, if for any U ∈ Xét

and any cover {Ui → U}, the natural map F(U) →
∏
i F(Ui) induces a natural isomorphism F(U)

∼−→
Ȟ0(U ,F).
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1.3.3. Sheafification. Suppose F is a presheaf. The sheafification of F , denoted by F+, is a sheaf with a
morphism F → F+ such that for any sheaf G and any morphism F → G, there exists a unique morphism
F+ → G such that the following diagram commutes:

F //

��

G.

F+

==

In other words, it is the left adjoint functor of the forgetful functor from the category of sheaves to
the category of presheaves: HomSh(F+,G) = HomPsh(F ,G). The sheafification of F is unique up to
isomorphism. It have several constructions, for example, if define

Ȟ0(U,F) := lim−→
U cover of U

Ȟ0(U ,F),

then

F+(U) = Ȟ0
(
U, V 7→ Ȟ0

(
V,F)

)
,

and an abstract nonsense construction:

F+ = lim←−
G étale sheaf

with morphism F→G

G.

1.3.4. There are some examples of étale sheaves:

Example 1.9 (The representable (pre)sheaf). Consider the representable presheaf F = hY = Y (−) =
HomSch/X(−, Y ) on Xét, where Y is any scheme over X. It is easy to check that F is already a sheaf,
using the adjoint property of global section functor.

There is an important class of étale sheaves, called locally constant and constructible (lcc for short)
sheaves, one of the equivalent definition is that represented by a finite étale scheme Y over X.

Fact 1.10. Conversely, every sheaf F ∈ Sh(Xét,Set) is representable by a (possibly non-separable and
of infinite type) scheme over X.

Example 1.11 (The constant sheaf). Suppose S is a set, the constant sheaf S on Xét is the sheafification

of the presheaf U 7→ S. In fact, we have S(U) = Sπ
ét
0 (U), and S is represented by S ×X.

Example 1.12. Suppose F is a sheaf of OX -module on X, define

Fét : Xét → Ab,

(f : U → X) 7→ (f∗F)(U),

recall that f∗F := f−1F ⊗f−1OX
OU . Then Fét is an étale sheaf on Xét.

Example 1.13. If X = SpecK, where K is a algebraically closed field, then we have an equivalence of
categories Xét

∼= {finite sets}, and any étale sheaf F is determined by F(X). Therefore

Sh(Xét,Set) ∼= Set,

F 7→ F(X).

1.4. Direct and inverse image, stalks.

1.4.1. Direct image. Suppose f : X → Y is a morphism of schemes, then we can define the direct image
functor f∗ to be

f∗ : Sh(Xét,Set)→ Sh(Yét,Set),

F 7→ f∗F : (U → Y ) 7→ F(f−1(U → Y )),

where f−1(U → Y ) := (X ×Y U → X) is the pullback of U → Y under f : X → Y .
4



1.4.2. Inverse image. The direct image functor f∗ has a left adjoint, called the inverse image functor,
denoted by f∗:

f∗ : Sh(Yét,Set)→ Sh(Xét,Set),

which satisfies

Hom(f∗G,F) = Hom(G, f∗F).

The following result is easy to see by using Yoneda lemma.

Fact 1.14. Suppose G ∈ Sh(Yét,Set) is represented by a scheme G étale over Y , then f∗G ∈ Sh(Xét,Set)
is represented by f−1(G) = X ×Y G.

In the general case, f∗G is the sheafification of the following presheaf on Xét:

(U → X) 7→ lim−→
U→V→Y

G(V ),

where the direct limit is taken over the inverse system (note that G is contravariant) of (U → V, V → Y )
such that V → Y is étale, and the following diagram commutes:

U //

��

V

��
X

f // Y.

This can be understood as an étale open V of Y such that “U ⊂ f−1(V )”, or we say “f(U) ⊂ V ”.

1.4.3. Stalks. For a geometric point u : ξ → X (i.e. ξ = SpecK for some algebraically closed field K),
we define the stalk of F at ξ to be Fξ := (u∗F)(ξ) (note that u∗F is an étale sheaf over an algebraically
closed field, it is determined by its global section).

Fact 1.15. Fξ = lim−→
U étale neighborhood of ξ

F(U).

By an étale neighborhood of ξ, we mean an étale morphism U → X with an inclusion ξ → U such that
the following diagram commutes:

ξ //

u
��

U

��
X

Fact 1.16. If f : X → Y is a morphism of schemes and G is an étale sheaf on Y , then for any geometric
point ξ of X, (f∗G)ξ = Gf(ξ).

Proposition 1.17. Suppose F → G is a morphism between étale sheaves over X. Then it is injective
(resp. surjective, isomorphism) if and only if for any geometric point ξ → X, Fξ → Gξ is injective (resp.
surjective, isomorphism).

Example 1.18. If Y → Z is a smooth surjective morphism of X-schemes, then the induced morphism
hY → hZ of étale sheaves on X is surjective.

1.5. Abelian sheaf. Suppose X is a scheme. From now on, we consider the category Sh(Xét,Ab).

Fact 1.19. Sh(Xét,Ab) is an abelian category.

For example, if f : F → G is a morphism of abelian sheaves on Xét, then

ker f = (U 7→ ker(f(U) : F(U)→ G(U))),

coker f = (U 7→ coker(f(U) : F(U)→ G(U)))+,

note that in coker f , sheafification is required.

Example 1.20 (The constant sheaf). SupposeA is an abelian group, the constant sheafA ∈ Sh(Xét,Ab)
is the sheafification of the presheaf U 7→ A. It is represented by A×X.

Note that A can be viewed as a constant group scheme over Z. If A is a finite group, then the
associated group scheme is finite flat. This partially explains why in étale cohomology, A = Z/nZ is
interesting, but A = Z is less interesting. Based on this observation, we have a generalized example:
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Example 1.21. Suppose A is a commutative group scheme over Z, then it induces an abelian sheaf
A ∈ Sh(Xét,Ab), which is represented by A×X.

In particular, if A = Gm = SpecZ[t, t−1], then Gm is U 7→ OU (U)×. Denote this sheaf by O×.
Suppose n ∈ Z. Consider the morphism

n : O× → O×, a 7→ an.

Denote its kernel by µn. Then it is

U 7→ {a ∈ OU (U) | an = 1},
and it is the étale sheaf associated to the group scheme µn := SpecZ[t]/(tn − 1) over Z.

Fact 1.22. If n is invertible at x ∈ X (which means n is invertible in the residue field of x), then µn is
locally isomorphic (under the étale topology) to Z/nZ at x.

In particular, if n is invertible on X, then µn is locally isomorphic to Z/nZ everywhere.

Proposition 1.23. If n is invertible on X, then

0→ µn → O×
n−→ O× → 0

is an exact sequence of étale sheaves on X, which is called the Kummer sequence.

This is because the morphism n : Gm,X → Gm,X is étale. Note that this sequence is not exact under
Zariski topology in general.

There are some important classes of abelian étale sheaves:

• An abelian sheaf F is called torsion sheaf if it is the sheafification of a presheaf whose sections
are all torsion. Equivalently, all of its stalks are torsion. If S is a scheme, the F is called with
torsion orders invertible on S, if there is an integer n 6= 0 invertible on S, such that nF = 0.

• An abelian sheaf F is called locally constant sheaf if there exists a cover {Ui → X} of X such
that F|Ui

is a constant sheaf for all i.
• We omit the original definition of constructible sheaf, but only states that it is equivalent to a

quotient of a sheaf representable by an étale commutative group scheme over X.
• An abelian sheaf F is called locally constant and constructible (lcc for short) if it is locally constant

and is also constructible. It is equivalent to that representable by a finite étale commutative group
scheme over X.

Clearly, lcc sheaves are automatically torsion. Concerning the Fact 1.7, assume that X is connected, we
have an equivalence of categories:

{lcc abelian sheaves over Xét} oo
1:1 //

{
finite abelian groups with continuous πét

1 (X)-action
}
.

1.6. The étale cohomology.

1.6.1. Étale cohomology. Consider the global section functor

Γ(X,−) : Sh(Xét,Ab)→ Ab, F 7→ F(X).

It is left exact, because the kernel of a morphism f : F → G between two sheaves is just U 7→ ker(f(U) :
F(U)→ G(U)).

Fact 1.24. Sh(Xét,Ab) has enough injective objects.

Therefore Γ(X,−) has right derived functors RiΓ(X,−).

Definition 1.25. The étale cohomology is Hi
ét(X,F) := RiΓ(X,F).

1.6.2. Higher direct image. For a morphism f : X → Y between two schemes, the direct image functor
f∗ : Sh(Xét,Ab) → Sh(Yét,Ab) is left exact, so it has right derived functors Rif∗, called the higher
direct image functor. The inverse image functor f∗ : Sh(Yét,Ab)→ Sh(Xét,Ab) is an exact functor.

Fact 1.26. For an abelian sheaf F on Xét, R
if∗F is the sheafification of the presheaf U 7→ Hi

ét(f
−1(U),F)

on Yét, where f−1(U) := U ×Y X.

In particular, if f : X → SpecK is the structure morphism, then Rif∗F = Hi
ét(X,F).

Fact 1.27. If f is quasi-compact and quasi-separated (qcqs for short), then Rif∗ preserves torsion
sheaves.
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Theorem 1.28. Suppose F is a quasi-coherent sheaf on a scheme X, and Fét is the étale sheaf associated
to F . Then there is a canonical isomorphism H1(X,F)

∼−→ Hi
ét(X,Fét).

Therefore étale cohomology of quasi-coherent sheaf doesn’t give any new information.

1.6.3. We consider the étale cohomology of the étale sheaf O×, which is the étale sheaf associated to
Gm, and maps U to OU (U)×.

Fact 1.29. H1
ét(X,O×) = Pic(X).

In particular, if X = SpecK, then we get Hilbert’s theorem 90: H1(K,K
×

) = 0.

1.6.4. Leray spectral sequence. Suppose f : X → Y is a morphism of schemes and F is an abelian sheaf
on Xét. Then we have the Leray spectral sequence

Epq2 = Hp
ét(Y,R

qf∗F)⇒ Hp+q
ét (X,F),

which is just the special case of Grothendieck spectral sequence. Similarly, if g : Y → Z is another
morphism of schemes, then we have

Epq2 = Rpg∗(R
qf∗F)⇒ Rp+q(gf)∗F .

The above spectral sequence induces edge morphisms

(1.1) Rpg∗(f∗F)→ Rp(gf)∗F ,

and

(1.2) Rp(gf)∗F → g∗(R
pf∗F).

1.7. Base change theorems. Consider the following cartesian diagram:

X ′
f ′ //

g′

��

Y ′

g

��
X

f // Y,

namely, X ′ = X ×Y Y ′ is the pullback of f and g. The goal is to study the behavior of Rpf∗ under the
base change g. In the following we will construct a natural morphism

(1.3) g∗(Rpf∗F)→ Rpf ′∗((g
′)∗F),

where F is an étale sheaf on X, called the base change morphism. If it is an isomorphism, we say that
Rpf∗ commutes with the base change g.

We have the composition of a series of morphisms

Rpf∗F → Rpf∗g
′
∗(g
′)∗F (1.1)−−−→ Rp(fg′)∗(g

′)∗F = Rp(gf ′)∗(g
′)∗F (1.2)−−−→ g∗R

pf ′∗(g
′)∗F ,

where the first morphism is Rpf∗ apply to the natural morphism F → g′∗(g
′)∗F given by the adjoint

property of (g′)∗ and g′∗. Now by the adjoint property of g∗ and g∗, we obtain a morphism g∗(Rpf∗F)→
Rpf ′∗((g

′)∗F), which is the base change morphism (1.3).
The base change morphism can also be defined in an explicit way as follows. Firstly, in p = 0 case we

obtain a morphism g∗f∗F → f ′∗(g
′)∗F by the above method, without introducing Rp or the map (1.1)

or (1.2). In the general case, let F
qis
↪→ I• be an injective resolution of F , and let (g′)∗I•

qis
↪→ J • be an

injective resolution of (g′)∗I•. Since (g′)∗ is exact, we have (g′)∗F
qis
↪→ (g′)∗I•

qis
↪→ J • which means that

J • is an injective resolution of (g′)∗F . Combine with p = 0 case we obtain the composition of a series
of morphisms

g∗f∗I• → f ′∗(g
′)∗I• → f ′∗J •,

taking p-th cohomology we obtain the morphism (1.3).

Theorem 1.30 (Proper base change theorem). If f is proper and F is torsion, then (1.3) is an isomor-
phism.

Theorem 1.31 (Smooth base change theorem). If g is smooth, f is qcqs, F is torsion with torsion
orders invertible on Y , then (1.3) is an isomorphism.
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The following result is an important consequence of the above base change theorems, which said
that smooth and proper morphism preserves lcc torsion sheaves with orders invertible on base scheme,
hence induces a functor between torsion representations (whose orders invertible on base scheme) of étale
fundamental groups.

Corollary 1.32. Suppose f is smooth and proper, F is torsion with torsion orders invertible on Y . If
F is lcc, then so is Rpf∗F for any p ≥ 0.

Another consequence of proper base change theorem is as follows. Suppose f : X → Y is a morphism
of schemes which is compactifiable, namely, there exist morphisms j : X → X and f : X → Y satisfying
f = f ◦ j, such that j is an open immersion and f is a proper morphism. Then we define the higher
direct image with proper support Rpf! : Sh(Xét,Ab) → Sh(Yét,Ab) to be Rpf!F := Rpf∗(j!F), where
for an open immersion (more generally, for an étale morphism) j : X → X, the j!F ∈ Sh(X ét,Ab) is
defined to be the sheafification of the following presheaf on X ét:

(V → X) 7→
⊕

V→X étale such that
(V→X→X)=(V→X)

G(V → X).

The proper base change theorem implies that Rpf! is well-defined, namely, its definition is independent
of the choice of j and f .

1.8. The `-adic cohomology. Let X be a scheme and ` be a prime invertible on X.

1.8.1. `-adic sheaf. A Z`-sheaf F on X is an inverse system F = (Fn)n≥1 of abelian étale sheaves on X

such that `nFn = 0 for all n, and each transition map Fn+1 → Fn induces isomorphism Fn+1/`
nFn+1

∼−→
Fn. A Q`-sheaf is just understood as a formal symbol F ⊗Z`

Q` where F is a Z`-sheaf.
Obvious examples of `-adic sheaves are Z`, Q`, Z`(1) = (µ`n)n≥1, Q`(1), etc.
A Z`-sheaf or Q`-sheaf is called locally constant and constructible (lcc for short), or called lisse (=

smooth), if each Fn is locally constant and constructible.
Assume that X is connected, we have the following equivalences of categories:

{lcc Z`-sheaves over Xét} oo
1:1 //

{
finite generated Z`-modules with continuous πét

1 (X)-action
}
,

and

{lcc Q`-sheaves over Xét} oo
1:1 //

{
finite dimensional Q`-vector spaces with continuous πét

1 (X)-action
}
.

1.8.2. The `-adic cohomology. If F = (Fn)n≥1 is a Z`-sheaf, define its `-adic cohomology Hi
ét(X,F) :=

lim←−
n

Hi
ét(X,Fn), where the Hi

ét(X,Fn) is the étale cohomology for torsion abelian sheaves. Define

Hi
ét(X,F ⊗Z`

Q`) := Hi
ét(X,F) ⊗Z`

Q`. Similarly, if f is a morphism of schemes, define Rif∗F :=

lim←−
n

Rif∗Fn and Rif∗(F ⊗Z`
Q`) := (Rif∗F)⊗Z`

Q`.

The Corollary 1.32 tells us that if f : X → Y is smooth and proper, then Rpf∗ preserves lcc `-adic
sheaves, hence induces a functor from the category of the `-adic representations of πét

1 (X) to the category
of the `-adic representations of πét

1 (Y ).

Example 1.33. Consider the natural morphism π : E → X where X = P1
Q \{∞, 0, 1728} is the modular

curve of level 1 over Q with some points removed, and E is the universal elliptic curve. Then π is proper
and smooth, and F = R1π∗Q` is a lisse Q`-sheaf over X. At each geometry point x of X, we have
Fx = H1

ét(Ex,Q`) = V`(Ex)∗ where Ex is the elliptic curve with j-invariant corresponding to x.

1.9. The comparison theorem.

Theorem 1.34 (Comparison theorem). Suppose X is a smooth connected variety over Q, F is a con-

structible sheaf over Xét, then there exists a canonical isomorphism Hi
ét(X,F)

∼−→ Hi(X(C),F), where
the latter Hi is the singular cohomology.
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1.10. Semisimplicity theorem. The first one is the semisimplicity theorem for complex analytic ge-
ometry.

Theorem 1.35 (Deligne). Let S be a smooth connected separated scheme over C, and let s : SpecC→ S
be a base point. Let f : X → S be a morphism such that Rif∗Q is a local system on S. Let G be the
Zariski closure of the image of πtop

1 (S, s) in AutC
(
(Rif∗C)s

)
and G0 be the connected component of G

containing 1.
(i) If f is proper and smooth, then G0 is semisimple.
(ii) In the general case, G0 does not have any quotients of multiplicative type (namely, the radical of

G0 is unipotent).

The following is the `-adic analogue.

Theorem 1.36 (Weil). Let S be a smooth connected separated scheme over K = Q or Fp with p 6= `,
and let s : SpecK → S be a base point. Let f : X → S be a smooth and proper morphism. Let G be the
Zariski closure of the image of πét

1 (S, s) in AutQ`

(
(Rif∗Q`)s

)
and G0 be the connected component of G

containing 1. Then G0 is semisimple.
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