
Chapter 4

Boundary components

Starting from this chapter, we will discuss compactifications of Shimura varieties ShK(G, X),
or locally Hermitian symmetric spaces !\X+. This chapter introduces boundary components
of X+.

4.1 Example: modular curves

Consider the modular curves ShK(GL2,H±), i.e. the Siegel modular variety from §3.3 with
d = 1. In the particular case where K = GL2(Ẑ), we are working with

Y (1) = SL2(Z)\H.

It is a well-known result that Y (1) → C via the j-function j : H ↑ C. Hence a compactification
of Y (1) is P

1(C). This is the Baily–Borel compactification or the toroidal compactification of
Y (1) (but not the Borel–Serre compactification). In this section, we explain how to view this
compactification as the Baily–Borel compactification of Y (1). A large part is to study the
boundary components, which is important for other compactifications we will discuss (toroidal
compactification and Borel–Serre compactification).

4.1.1 Boundary components of H

The boundary of H in C ↓ {↔} is the union of the real axis and {↔}; in other words, the
boundary of H in P

1(C) is P1(R). This is better seen via the Cayley transformation (2.3.4)

H
→
↗↑ D := {z ↘ C : |z| < 1}, ω ≃↑ (ω ↗

⇐
↗1)(ω +

⇐
↗1)↑1,

and the boundary of D is the unit circle. Denote by D the closure of D in C, i.e. D = {z ↘ C :
|z| ⇒ 1}, and εD := D \ D. Then ↔ corresponds to 1 ↘ D.

Call each point in εD a boundary component of D. It is justified by the following fact: Any
holomorphic map D ↑ D either has image in D or is constant.[1]

4.1.2 Extension of the group action to D

The group GL2(R)+ acts on D, via its action on H and the Cayley transformation above, by the
formula [

a b
c d

]
z =

(a↗
⇐
↗1c)(z + 1) + (b↗

⇐
↗1d)

⇐
↗1(z ↗ 1)

(a+
⇐
↗1c)(z + 1) + (b+

⇐
↗1d)

⇐
↗1(z ↗ 1)

, ⇑z ↘ D.

[1]This is a consequence of the Open Mapping Theorem in complex analysis, which asserts that any holomorphic
function on a connected set in the complex plane is open.
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38 CHAPTER 4. BOUNDARY COMPONENTS

Lemma 4.1.1. The action of GL2(R)+ on D extends to D. Moreover, the action of GL2(R)+

on εD is transitive.

Proof. Take z ↘ D, and set

u± := (a±
⇐
↗1c)(z + 1) + (b±

⇐
↗1d)

⇐
↗1(z ↗ 1).

For the first part of the lemma, we need to show that u+ ⇓= 0 and u↑u
↑1
+ ↘ D.

Then [
u↑
u+

]
=

[
1 ↗

⇐
↗1

⇐
↗1 1

] [
a b
c d

] [
1 1

⇐
↗1 ↗

⇐
↗1

] [
z
1

]
,

and one can compute that
u+u+ ↗ u↑u↑ = 4(1↗ zz).

So u+u+ ⇔ u↑u↑ because z ↘ D. If u+ = 0, then u+ = u↑ = 0, contradiction to rank

[
u↑
u+

]
=

rank

[
z
1

]
= 1. So u+ ⇓= 0, and (u↑u

↑1
+ )u↑u

↑1
+ = u→u→

u+u+
⇒ 1. Hence u↑u

↑1
+ ↘ D. We are done.

Let us prove the “Moreover” part. We have

[
a b
c d

]
· 1 =

a2 ↗ c2

a2 + c2
+

↗2ac

a2 + c2
⇐
↗1.

The right hand side is easily checked to be in εD = {z ↘ C : |z| = 1}. Conversely any z ↘ εD
can be written as the right hand side for some 2↖2-matrix in GL2(R)+. Hence we are done.

4.1.3 Compactifying at each boundary component

To see how to compactify D → H at each boundary component, we need to study the stabilizer
of each z ↘ D. Since Z(GL2)(R) acts trivially on D, it su”ces to consider the stabilizer in
SL2(R). By Lemma 4.1.1, it su”ces to study this for 1 ↘ D. For this purpose, it is easier to use
the upper half plan. Define

P :=

{[
a b
0 a↑1

]
: b ↘ R, a ⇓= 0

}
(4.1.1)

Then it is easy to check that StabSL2(R)(g · ↔) = gP (R)+g↑1 for any g ↘ SL2(R). Indeed, it
su”ces to check this with g = I2, and then it su”ces to notice that elements on the right hand
side of (4.1.1) correspond to translations along the real axis.

Lemma 4.1.2. The followings hold true:

(i) SL2(C)/P (C) is a projective space.

(ii) For any g ↘ SL2(R), the group gPg↑1 is defined over Q if and only if g ↘ SL2(Q).

(iii) Let ω ↘ P
1(R) (the boundary of H in P

1(C)). Then ω ↘ P
1(Q) ↙ ω = g · ↔ for some

g ↘ SL2(Q) ↙ ω = g ·↔ for some g ↘ SL2(Z).

Proof. (ii) and (iii) are simple computations. For (i), it su”ces to notice that the homogeneous

space SL2(C)/P (C) → GL2(C)/

{[
a b
0 d

]
: a, b, d ↘ C, ad ⇓= 0

}
is the Grassmannian parametriz-

ing 1-dimensional C-subspaces in C
2.
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Let us go further. We have:

Lemma 4.1.3. For each g ↘ SL2(R), the group gP (R)+g↑1 acts transitively on H.

The proof itself is important. As a preparation, the group P has the following subgroups:

- The unipotent radical NP :=

{[
1 b
0 1

]
: b ↘ R

}
, where elements act on H as ω ≃↑ ω + b.

- the split torus AP :=

{[
a↑1 0
0 a

]
: a > 0

}
,[2] where elements act on H as ω ≃↑ a↑2ω .

- MP := {±I2}, which acts trivially on H.

such that
P = NPAPMP (4.1.2)

and the map NP ↖AP ↖MP ↑ P , (n, a,m) ≃↑ nam, is a di#eomorphism.

Proof. We only need to prove this lemma for P . For any ω = x+
⇐
↗1y ↘ H, we have

ω =

[
1 x
0 1

] [⇐
y 0
0

⇐
y↑1

]
⇐
↗1.

Hence we are done.

Now we are ready to explain how the point ↔ is added to H via the group P (in other words,
how compactify H at ↔). The decomposition 4.1.2 induces, by Lemma 4.1.3,

H → P/(P ∝ SO(2)) = P/MP → NP ↖AP → R↖R>0, ω = x+
⇐
↗1y ≃↑ (x,

⇐
y↑1). (4.1.3)

The AP -factor is isomorphic to R>0, and a natural way to add a boundary to R>0 is to add 0
and make it into R↓0. In doing this, we are adding the point x+

⇐
↗10↑2 = ↔ to H.

This process can be carried out for g ·↔ ↘ P
1(R) for any g ↘ SL2(R), by replacing NP and AP

by gNP g↑1 and gAP g↑1. In this way, the point g ·↔ ↘ P
1(R) is added to H by “compactifying”

gAP g↑1
→ R>0 into R↓0.

4.1.4 Rational vs real boundaries, and Siegel sets

We wish to compactify the quotient SL2(Z)\H → SL2(Z)\D. The idea is to do the quotient
SL2(Z)\D, for the extended action of SL2(R) on D defined in Lemma 4.1.1. However, εD =
D \ D → P

1(R) contains infinitely many SL2(Z)-orbits.
A solution to this is to consider the rational boundary components, which are precisely the

points in P
1(Q) ′ P

1(R). Equivalently by (ii) and (iii) of Lemma 4.1.2, a boundary component
z ↘ εD is called a rational boundary component if its stabilizer in SL2(R) is defined over Q.
Now part (iii) of Lemma 4.1.2 asserts that there is only one SL2(Z)-class of rational boundary
components.

Another important notion is the Siegel sets associated with P = StabSL2(R)(↔) defined as fol-
lows; one needs this for example to pass from (partial) compactification of H to compactification
of SL2(Z)\H. For each t > 0 and any compact bounded set U ′ NP → R, define

$P,U,t := U ↖ {a ↘ R>0 : a ⇒ t} → {ω = x+
⇐
↗1y : x ↘ U, y ⇔ t↑2

} ′ H.

[2]Notice that AP is not an algebraic subgroup of P , but only a Lie subgroup. This is a minor issue: Indeed, if
we replace GL2 by PGL2 = SL2/{±I2}, then the quotient of AP becomes an algebraic subgroup.
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Then we have the following classical result on the j-function:[3] for a suitable U and suitable
t ∞ 1, $P,U,t is a fundamental set for the uniformization j : H ↑ SL2(Z)\H → C (i.e. j|!P,U,t is
surjective and has finite fibers). Then one can define the Siegel sets associated with gPg↑1 =
StabSL2(R)(g ·↔) (for any g ↘ SL2(R)) to be g · $P,U,t.

We can also compactify !\H to be, as a set, !\(H ↓ P
1(Q)) for any finite-indexed subgroup

! < SL2(Z), by the following lemma which is a direct consequence of the discussion above.

Lemma 4.1.4. (i) There are finitely many rational boundary components ϑ1, . . . ,ϑn of H

such that P1(Q) =
⋃

j ! · ϑj.

(ii) Let Pj := StabSL2(R)(ϑj). Then there are suitable Siegel sets $j associated with Pj for
j ↘ {1, . . . , n} such that

⋃
j $j is a fundamental set for the uniformization u : H ↑ !\H.

4.1.5 Satake topology on D

This subsection is for the Baily–Borel compactification of !\H. We will revisit the materials later in more
generality.

Our desired compactification is !\(H ↓ P
1(Q)). We yet to explain the topology on this set, so that

it is Hausdor# and compact. Notice that we cannot take the one induced by the usual topology on C

because x ↘ P
1(Q) there are infinitely many ϖ ↘ ! which fixed x, and hence the quotient !\(H ↓ P

1(Q))
is not Hausdor# under this topology.

The topology which we consider is the Satake topology, induced from the Satake topology on H↓P
1(Q)

defined as follows. On H, the Satake topology is the usual topology, induced from C. Next, an open
neighborhood basis of ↔ consists of the open sets Ut := {z ↘ H : Im(z) > t} for all t ⇔ 2; equivalently
a sequence ωj = xj +

⇐
↗1yj ↘ H converges to ↔ if and only if yj ↑ ↔. Finally, an open neighborhood

basis of g · ↔ ↘ P
1(Q) (with g ↘ SL2(Q)) consists of g · Ut for all t ⇔ 2. We state without proof the

following assertions (whose proof needs to use Siegel sets):

(i) For any x ↘ H ↓ P
1(Q), there exists a fundamental system of neighborhoods {U} of x such that

ϖU = U, ⇑ϖ ↘ !x; ϖU ∝ U = ∈, ⇑ϖ ⇓↘ !x

where !x = {ϖ ↘ ! : ϖx = x}.

(ii) If x, x→
↘ H↓P

1(Q) are not in one !-orbit, then there exist neighborhoods U of x and U → of x→ such
that

!U ∝ U → = ∈.

These properties guarantee that !\(H↓P
1(Q)) is Hausdor# under the Satake topology. The compactness

follows easily from part (ii) of Lemma 4.1.4.

4.2 Parabolic subgroups and Levi subgroups: definitions and

statements

For the simplest Siegel Shimura datum (GL2,H±), Lemma 4.1.2.(i) suggests that parabolic
subgroups of SL2 (i.e. subgroups of SL2 such that the homogeneous space SL2(C)/P (C) is a
projective variety) are closely related to the boundary components of H. This is true for an
arbitrary Shimura datum (G, X).

In this section, we review background knowledge on parabolic subgroups of reductive groups
over algebraically closed fields. In the next section, we do it over an arbitrary field.

Let k be a field, and let G be a reductive group defined over k. Let k be an algebraic closed
field containing k. For our purpose, we will take k = Q,R,C and k = C.

[3]A well-known fundamental domain of the j-function is {z → C : |z| ↑ 1, ↓1 ↔ Re(z) < 1}.
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Definition 4.2.1. A subgroup P of G is called a parabolic subgroup if the homogeneous
space G(k)/P (k) is a projective variety.

It is a theorem of Chevalley that parabolic subgroups are always connected. We are more
interested in the proper parabolic subgroups.

Example 4.2.2. For G = GLN . Let P be the subgroup of upper triangular matrices in blocks
(with the length of the ϱ-th diagonal block being nω). Then if we write G = GL(V ) with V → kN ,
then P is the stabilizer of a flag F • = (0 = V0 ⊋ V1 ⊋ · · · ⊋ Vm↑1 ⊋ Vm = V ) of subspaces of
V , with dimVω ↗ dimVω↑1 = nω for each ϱ. Hence G/P is a flag variety and hence is projective.
So P is a parabolic subgroup of GLN .

Let P be a parabolic subgroup of G. The unipotent radical Ru(P ) is a closed normal
subgroup of P , and hence P acts on Ru(P ) via conjugation. This induces an action of any
subgroup of H on Ru(H).

Definition 4.2.3. A Levi subgroup of P is a closed subgroup L of P such that H = Ru(P )⫅̸L.

A Levi subgroup, if exists, is then isomorphic to P/Ru(P ) and hence is a reductive group
(in particular is connected).

Theorem 4.2.4. P has Levi subgroups, and any two Levi subgroups of P are conjugate by a
unique element in Ru(P ).

We are more interested in more concrete constructions of Levi subgroups of P . This will be
given in combinatorial data in the next two sections.

The following construction of parabolic subgroups of G is useful, although we will not use it in our
course. Let ς be a cocharacter of G, i.e. a morphism of algebraic groups Gm ↑ G.

Theorem 4.2.5. (i) The set

P (ς) := {x ↘ G : lim
t↑0

ς(t)xς(t)↓1 exists}

is a parabolic subgroup of G, and the centralizer of ς(Gm) is a Levi subgroup of P (ς). Moreover
Ru(P (ς)) = {x ↘ G : limt↑0 ς(t)xς(t)↓1 = 1}.

(ii) Any parabolic subgroup of G is P (ς) for some ς.

If ς(Gm) < Z(G), then P (ς) = G. In fact, this theorem will serve as a bridge from the theory over

algebraically closed fields to the theory over an arbitrary field.

4.3 Parabolic subgroups via root systems: over algebraically

closed fields

In this section, we take k = k to be an algebraically closed field, and G a reductive group
defined over k. For our purpose, it is harmless to take k = C. We will explain the combinatorial
construction of parabolic subgroups of G, and Example 4.2.2 will be revisited in this language
as Example 4.3.15.

Let g := LieG. Then we have the adjoint representation Ad: G ↑ GL(g) whose kernel is
Z(G). Notice that Z(G)↔ is an algebraic torus since G is reductive.
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4.3.1 Root system for G

Let T be a maximal torus of G, i.e. an algebraic torus contained in G and maximal under
the inclusion. For example if G = GLN , we can take T = DN to be the subgroup of diagonal
matrices with non-zero diagonal entries. We have the standard properties:

Lemma 4.3.1. (i) Any maximal torus of G equals gTg↑1 for some g ↘ G(k).

(ii) T = ZG(T ) = {g ↘ G(k) : gtg↑1 = t for all t ↘ T (k)}.

(iii) W (T,G) := NG(T )/T is finite and is called the Weyl group.

Thus T ∋ Z(G)↔.
Now consider the action of T on g via T < G and the adjoint action. Let X↗(T ) =

Hom(T,Gm) be the group of characters of T . For each ϑ ↘ X↗(T ), define gε := {x ↘ g :
t · x = ϑ(t)x for all t ↘ T} to be the eigenspace for ϑ. Then we have a decomposition as in
(1.2.2)

g = g
T
△

⊕

ε↘”(T,G)

gε (4.3.1)

where g
T := {x ↘ g : T · x = x} is the eigenspace for the trivial character, and %(T,G) ′

X↗(T ) \ {trivial character} is the subset of non-trivial characters ϑ of T such that gε ⇓= 0. By
Lemma 4.3.1.(ii), we have g

T = t := LieT .
Denote for simplicity by % = %(T,G). Elements in % are called roots of T . The following

theorem, which gives combinatorial data associated with G and T , is extremely important in
the theory of reductive groups.

Theorem 4.3.2. (1) % generates a subgroup of finite index in X↗(T/Z(G)↔) ′ X↗(T ).

(2) Let ϑ ↘ % and φ ↘ X↗(T ) which is a multiple of ϑ. Then φ ↘ % ↙ φ = ±ϑ.

(3) Let ϑ ↘ %, and set Gε := ZG((Kerϑ)↔). Then

(a) dim gε = 1, and there is a unique connected T -stable (unipotent) subgroup Uε of G
such that LieUε = gε,[4]

(b) Gε is a reductive group and LieGε = t△ gε △ g↑ε,[5] and Gad
ε → PGL2,[6]

(c) the subgroup W (T,Gε) is W (T,G) is generated by a reflection rε such that rε(ϑ) =
↗ϑ.

(4) Let ϑ ↘ % and rε ↘ W (T,G) be as in (3.c). Then for any φ ↘ %, we have

rε(φ) = φ ↗ nϑ,εϑ

with nϑ,ε ↘ Z. Moreover, nε,ε = 2.
Thus % is a reduced root system in the vector space E := X↗(T/Z(G)↔)R with Weyl group

W (T,G) in the sense below.

Definition 4.3.3. Let E be a finite-dimensional real vector space with a Euclidean inner product
▽, ̸. A root system % in E is a finite set of non-zero vectors (called roots) such that:

[4]Thus Uω is isomorphic to Ga since it is a unipotent group of dimension 1.
[5]In other words, Gω is generated by T , Uω and U→ω.
[6]Indeed, we can choose a generator Xω of gω for each ω → ! such that Xω, X→ω, [Xω, X→ω] is an sl2-triple for

all ω → !.
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(1) % spans E,

(2) If ϑ, cϑ ↘ % for some c ⇓= 0, then c ↘ {1,↗1, 1/2,↗1/2},

(3) For any ϑ ↘ %, the set % is closed under the reflection through the hyperplane perpendicular
to ϑ (which we denote by rε),

(4) For any ϑ,φ ↘ %, we have rε(φ) = φ ↗ nϑ,εϑ with nϑ,ε ↘ Z.

A root system is called reduced if furthermore it satisfies:

(2’) The only scalar multiples of a root ϑ ↘ % that belong to % are ±ϑ.

We call dimE the rank of %.
The Weyl group of %, denoted by W (%), is the group of Aut(%) generated by rε for all

ϑ ↘ %.

Conversely, given a root datum (root system and “coroot system”) one can associate a unique
reductive group. We shall not go into details for this, but restrict our discussion to root systems.
In practice, we often take G to be semi-simple, so that %(T,G) is a reduced root system in
X↗(T )R.

Example 4.3.4. Let G = GLN and T = DN . The Weyl group is isomorphic to the permutation
group SN . For each j ↘ {1, . . . , N}, define ej ↘ X↗(DN ) to be diag(t1, . . . , tN ) ≃↑ tj. Then we

have an isomorphism X↗(DN ) →
⊕N

j=1 Zej. One can check that %(DN ,GLN ) = {ei↗ej : i ⇓= j}.

Highly related to this example is G = SLN and T = DN∝SLN . Then X↗(T ) →
⊕N

j=1 Zej/Z(e1+
. . . + eN ). And %(T,G) in this case is precisely the image of %(DN ,GLN ) under the natural
projection X↗(DN ) ↑ X↗(T ).

Example 4.3.5. Let G = Sp2d and T = Sp2d ∝D2d = {diag(t1, . . . , td, t
↑1
1 , . . . , t↑1

d ) : t1 · · · td ⇓=
0}. The Weyl group is isomorphic to {±1}d ⫅̸ Sd. For each j ↘ {1, . . . , d}, define ej ↘

X↗(T ) to be diag(t1, . . . , td, t
↑1
1 , . . . , t↑1

d ) ≃↑ tj. Then X↗(T ) →
⊕d

j=1 Zej. One can check that
%(T, Sp2d) = {±2ei,±ei ± ej : 1 ⇒ i, j ⇒ d, i ⇓= j}.

Root systems in Example 4.3.4 are called of type AN↓1, and root systems in Example 4.3.5 are called
of type Cd. We also have root systems of type Bn (dual to Cn; coming from SO2n+1) and Dn (coming
from SO2n), and exceptional types E6, E7, E8, F4, G2). We will not go into details for this, but only point
out that the last 3 types do not show up in the theory of Shimura varieties and that a Shimura variety
is of abelian type unless the underlying group has Q-factors of mixed type D or of exceptional types.

4.3.2 Positive roots and Borel subgroups

We start with the abstract theory of root systems % ′ E.

Definition 4.3.6. A basis of % is a subset & of % which is a basis of E such that each root
φ ↘ % is a linear combination φ =

∑
ε↘#mεϑ with mε ↘ Z of the same sign.

Given a basis & of %, a root φ ↘ % is said to be positive (with respect to &) if mε ⇔ 0
for the decomposition above. Denote by %+ the set of positive roots, and %↑ := ↗%+. Then
% = %+

7 %↑.
A root ϑ ↘ %+ is said to be simple if it is not the sum of two other positive roots.

Lemma 4.3.7. & is precisely the set of simple roots in %+.
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In practice, one can start from a subset %+ of % such that % = %+
7 (↗%+) and that

ϑ ↘ %+
∀ ↗2ϑ ⇓↘ %+, and call these roots positive. Then we get a basis & consisting of simple

roots in %+, with respect to which %+ is the set of positive roots. See Lemma 4.3.7.

Back to the theory of reductive groups, choosing %+ is equivalently to taking a Borel group.

Definition 4.3.8. A Borel group B is G is a closed connected solvable subgroup G, which is
maximal for these properties.

Example 4.3.9. If G = GLN , then the subgroup TN of upper triangular matrices is a Borel
subgroup. Notice that TN is a parabolic subgroup; see Example 4.2.2.

Here are some basic properties of Borel subgroups. Part (iv) asserts that Borel subgroups
are precisely the minimal parabolic subgroups (as we are working over k).

Theorem 4.3.10. (i) Any two Borel subgroups of G are conjugate.

(ii) Every element of G lies in a Borel subgroup. And the intersection of all Borel subgroups
of G is Z(G).

(iii) (Lie–Kolchin) Assume G < GLN . Then there exists x ↘ GLN (k) such that xGx↑1 is
contained in the subgroup of upper triangular matrices.

(iv) A closed subgroup of G is parabolic if and only if it contains a Borel subgroup.

Back to our root system %(T,G) constructed from a maximal torus T of G. Let B be a
Borel subgroup containing T . For each ϑ ↘ %(T,G), Theorem 4.3.2.(3) constructs a reductive
group Gε with LieGε = t△ gε △ g↑ε.

Theorem 4.3.11. For each ϑ ↘ %(T,G), the intersection B ∝ Gε is a Borel subgroup of Gε,
and Lie(B ∝Gε) is either t△ gε or t△ g↑ε.

Now define

%+(B) := {ϑ ↘ %(T,G) : Lie(B ∝Gε) = t△ gε}. (4.3.2)

Then %(T,G) = %+(B) 7 (↗%+(B)) by Theorem 4.3.11. Thus we obtain the subset of positive
roots determined by B, and the basis &(B) of %(T,G) consisting of simple (positive) roots in
%+(B) as below Lemma 4.3.7.

Conversely given any subset of positive roots %+ of %, we can construct a subgroup B of G
such that LieB = t △

⊕
ε↘”+ gε (so that B is generated by T and Uε for all ϑ ↘ %+, with Uε

from Theorem 4.3.2.(3a)).

Example 4.3.12. In Example 4.3.4 with (G, T ) = (GLN , DN ), a set of positive roots is %+ =
{ei ↗ ej : 1 ⇒ i < j ⇒ N}, and the corresponding basis is & = {ei ↗ ei+1 : 1 ⇒ i ⇒ N ↗ 1}. The
corresponding Borel subgroup is the subgroup of upper triangular matrices TN .

Example 4.3.13. In Example 4.3.5 with G = Sp2d, a set of positive roots is %+ = {2ei, ei±ej :
1 ⇒ i < j ⇒ d}, and the corresponding basis is {ei ↗ ei+1 : 1 ⇒ i ⇒ d ↗ 1} ↓ {2ed}. The
corresponding Borel subgroup consists of upper triangular matrices.



4.3. ROOT SYSTEM: ALGEBRAICALLY CLOSED FIELDS 45

4.3.3 Standard parabolic subgroups

Consider the root system % = %(T,G) ′ X↗(T ) constructed from a maximal torus T in G.
Let B be a Borel subgroup of G which contains T . Then B defines the set of positive roots
%+ = %+(B) as in (4.3.2) and hence the basis& = &(B) of %. Recall that LieB = t△

⊕
ε↘”+ gε.

A parabolic subgroup of G is said to be standard (with respect to B) if it contains B. By
parts (i) and (iv) of Theorem 4.3.10, every parabolic subgroup of G is conjugate to a standard
one.

For any subset I ′ &, denote by %I ′ % the set of roots which are linear combinations of
roots in I. Let %+

I := %+
∝ I. Then %I is a root system in which %+

I is the set of positive roots
and I is the corresponding basis. The Weyl group of %I is the subgroup WI of W = W (T,G) =
NG(T )/T generated by the reflections rε for all ϑ ↘ I.

We will use w to denote either an element in W or its representative in NG(T ), whenever it
is clear from the context. Then C(w) := BwB is a subset of G, which by Bruhat decomposition
satisfies: (a) C(w) is a locally closed subvariety of G, (b) G =

⊔
w↘W C(w), (c) the closure C(w)

is a union of certain C(w≃).

Theorem 4.3.14. (i) PI :=
⋃

w↘WI
BwB is a parabolic subgroup of G which contains B,

with LiePI = t △
⊕

ε↘”+⇐”I
gε. In other words, PI is generated by T and Uε for all

ϑ ↘ %+
↓ %I , with Uε from Theorem 4.3.2.(3a).

(ii) If P is a parabolic subgroup of G which contains B, then P = PI for a unique subset
I ′ &.

(iii) LieRu(PI) =
⊕

ε↘”+\”I
gε.

(iv) Let LI be the subgroup of G such that LieLI = t△
⊕

ε↘”I
gε. Then LI is a Levi subgroup

of PI , i.e. is a reductive group contained in PI such that PI = Ru(PI)⫅̸ LI .

This theorem gives a combinatorial construction of all the standard parabolic subgroups
of G: we add to %+ the roots in %I , and there is an inclusion-preserving bijection I ≃↑ PI

between subsets of & and standard parabolic subgroups. We have P⇒ = B, P# = G, and the
maximal proper standard parabolic subgroups P#\{ε} for all ϑ ↘ &. Moreover, if we define

TI =:
(⋂

ε↘”I
Kerϑ

)↔

, then LI = ZG(TI). This is a more precise version of Theorem 4.2.4 for

parabolic subgroups of reductive groups, when k = k.
We can say more about the pieces C(w) := BwB in Theorem 4.3.14. To ease notation, for any root

ϑ ↘ % we shall write ϑ > 0 if ϑ ↘ %+ and ϑ < 0 if ϑ ⇓↘ %+.
For any w ↘ W , we can define a subset of %

%(w)→ := {ϑ > 0 : wϑ < 0} = {ϑ ↘ %+ : ↗wϑ ↘ %+
}.

and define U →
w to be the subgroup of U := Ru(B) such that LieU →

w =
⊕

ω↔!(w)→ gω. Then the map
U →
w ↖B ↑ G, (u, b) ≃↑ uwb is an isomorphism of varieties.

Example 4.3.15. In the Example 4.3.12 with (G, T ) = (GLN , DN ) and the Borel group being
the subgroup of upper triangular matrices, the basis is & = {ei ↗ ei+1 : 1 ⇒ i ⇒ N ↗ 1} which
identify with {1, . . . , N ↗1} (with ei↗ ei+1 ∃ i). Take a subset I ′ & and write its complement

& \ I = {a1, a1 + a2, . . . , a1 + · · ·+ as↑1}

with aj > 0. Then PI consists of upper triangular block matrices, with diagonal blocks of lengths
a1, . . . , as↑1, as := N↗

∑s↑1
j=1 aj. And LI → GLa1↖· · ·↖GLas consists of diagonal block matrices,

and Ru(PI) consists of those matrices in PI where the diagonal blocks are identity.
This is the combinatorial construction of Example 4.2.2.
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The result for the Siegel case G = Sp2d (corresponding to Example 4.3.13) will be given in
later sections.

Remark 4.3.16. Now, Theorem 4.2.5 in the case k = k follows easily from Theorem 4.3.14.

4.4 Parabolic subgroups via root systems: over arbitrary fields

In this section, we take k to be a field, and G a reductive group defined over k. Then Z(G)↔ is
an algebraic torus defined over k. Let g := LieG.

Let k be an algebraically closed field which contains k. For our purpose, it is harmless to
take k = Q,R and k = C.

By a subgroup of G, we mean a closed algebraic subgroup of G defined over k. In this section,
we will discuss the combinatorial construction of parabolic subgroups of G, similar to the case
k = k.

4.4.1 Relative root systems

The first thing to do is to take a maximal torus T of Gk which is defined over k. It is known
that such maximal tori always exist. But this is not enough, since characters of T may not be
defined over k. We need:

Definition 4.4.1. Let k≃/k be an extension of fields. An algebraic torus A defined over k is
said to be k≃-split if Ak↑ → G

r
m,k↑. Equivalently, A is k≃-split if all characters of A are defined

over k.

Theorem 4.4.2. (i) G contains a proper parabolic subgroup if and only if G contains a k-split
torus which is not contained in Z(G).

(ii) Two maximal k-split tori contained in G are conjugate by an element of G(k).

Here is a brief explanation to (i). Indeed, all parabolic subgroups ofGk are described by Theorem 4.2.5

using cocharacters, and having a parabolic subgroup of G (which by our convention means a parabolic

subgroup defined over k) amounts to having a cocharacter of G which is defined over k.

Now take A to be a maximal k-split torus contained in G. Then Ak is contained in some
maximal torus T of Gk defined over k. For each ϑ≃

↘ X↗(A), define gε↑ := {x ↘ g : a · x =
ϑ≃(a)x for all s ↘ A} to be the eigenspace for ϑ≃. Then the adjoint action of A < G on g induces
a decomposition of g similar to (4.3.1)

g = g
A
△

∑

ε↑↘”(A,G)

gε↑ (4.4.1)

where %(A,G) ′ X↗(A) \ {trivial character} is the subset of non-trivial characters ϑ≃ of A such
that gε↑ ⇓= 0. The decomposition (4.4.1) is defined over k since all characters of A are defined
over k.

Denote by k% := %(A,G).

Theorem 4.4.3. k% is a root system, whose Weyl group is isomorphic to

kW = W (A,G) := NG(A)/ZG(A).
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Unlike the case k = k, this root system may not be reduced. We call k% the relative root
system and kW the relative Weyl group.

Let us explain the analogue of Gε from Theorem 4.3.2.(3) in this relative setting. For any
ϑ≃

↘ %(A,G), the torus Sε↑ := (Kerϑ≃)↔ is defined over k, and denote by (ϑ≃) ′ %(A,G) the
subset consisting of rational multiples of ϑ≃. Then

Proposition 4.4.4. There exists a unique closed connected unipotent k-subgroup U(ε↑) normal-
ized by ZG(A) such that LieU(ε↑) = g(ε↑) :=

∑
ϑ↘(ε↑) gϑ.

The subgroup Gε↑ := ZG(Aε↑) is a reductive group defined over k, has S as a maximal k-split
torus, and is generated by ZG(A) and U(ε↑).

4.4.2 Standard parabolic subgroups

Over k, we have seen in §4.3.2 that choosing a basis of a root system (equivalently assigning the
positive roots) amounts to fixing a Borel subgroup, and that Borel subgroups are precisely the
minimal parabolic subgroups (Theorem 4.3.10.(iv)). Now over arbitrary k, we shall work with
minimal parabolic subgroups.

Assign a subset k%+ = %+(A,G) of positive roots in k% = %(A,G), as below Lemma 4.3.7.
Define

n :=
∑

ε↑↘k”+

g(ε↑). (4.4.2)

It is a Lie subalgebra of g, and the corresponding subgroup N is unipotent and normalized
by ZG(A). It is known that P0 := NZG(A) is a minimal parabolic subgroup of G, and every
minimal parabolic subgroup of G which contains A is obtained in this way.

Now fix a minimal parabolic subgroup P0 which contains A. A parabolic subgroup of G is
said to be standard (with respect to P0) if it contains P0. As in the case k = k, we have:

Theorem 4.4.5. Every parabolic subgroup of G is conjugate, by an element in G(k), to a unique
standard parabolic subgroup.

Let us construct the standard parabolic subgroups in combinatorial terms. Let k%+ be the
set of positive roots determined by P0. Then we obtain a basis k& of k% as below Lemma 4.3.7.

For any subset I ′ k&, denote by k%I ′ k% the set of roots which are linear combinations
of roots in I.

Let AI :=
(⋂

ε↑↘k”I
Kerϑ≃

)↔

< A. Then the group LI := ZG(AI) satisfies

LieLI = g
A +

∑

ε↑↘k”I

g(ε↑).

The Lie subalgebra of g

nI :=
∑

ε↑↘k”+\k”I

g(ε↑)

defines a unipotent subgroup NI of G which is normalized by LI , and we have:

Theorem 4.4.6. The product PI := NI ·LI is a standard parabolic subgroup, with NI = Ru(PI)
and LI a Levi subgroup of PI .

Any standard parabolic subgroup of G equals PI for some I ′ k&.

Moreover, observe that AI a k-split torus, which is not contained in Z(PI). But AI is the
maximal k-split torus in Z(LI).

We close this subsection by the following immediate consequence of the construction above.

Lemma 4.4.7. Assume I ′ I ≃ ′ k&. Then AI > AI↑ and PI < PI↑.
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4.5 Horospherical decompositions and Siegel sets

Let (G, X) be a Shimura datum, and X+ a connected component of X. We will use the following
notation:

G = G
der
R

, g := LieGder, gR = LieG. (4.5.1)

To ease notation, we will also use X to denote X+.
We need to use maximal Q-split (resp. R-split) torus contained in G

der, for which we make
the following definition.

Definition 4.5.1. The Q-rank (resp. R-rank) of an algebraic group H defined over Q is the
dimension of the maximal Q-split torus in H (resp. of the maximal R-split torus in H), and is
denoted by rkQH (resp. by rkRH).

Theorem 4.5.2. The followings are equivalent:

(i) !\X is compact for any arithmetic subgroup ! of Gder;

(ii) rkQGder = 0;

(iii) G
der does not contain proper parabolic subgroups.

The equivalence of (ii) and (iii) follows immediately from Theorem 4.2.5, and can be read o# from

the relative root system construction of parabolic subgroups.

Thus to discuss on compactifications of !\X, we may assume rkQGder
⇔ 1 and that G

der

contains proper parabolic subgroups. In this section, we discuss about the horospherical decom-
position and Siegel sets associated with each proper parabolic subgroup P.

4.5.1 Horospherical decompositions over R

Let P be a parabolic subgroup of G. We start with the discussion for standard parabolic
subgroups, for which we need to fix a maximal R-split torus and a minimal parabolic subgroup
of G. The general case will be reduced to the standard case by Theorem 4.4.5.

Fix x0 ↘ X. Then (SV3) gives a Cartan involution ↼ of G which induces the Cartan
decomposition (4.6.2)

gR = k△m.

Let K⇑ := exp(k) which is a maximal compact subgroup of G(R)+; see Lemma 2.3.2. Let a to
be a maximal Lie subalgebra contained in m.

Theorem 4.5.3. There exists a maximal R-split torus A in G such that LieA = a.

Proof. First a is abelian since [a, a] ′ a ∝ [m,m] ′ m ∝ k = 0. Hence exp: a ↑ exp(a) is an isomorphism
as Lie groups, and thus exp(a) → (R>0)r ↖ R

s (as Lie groups) for some r, s ⇔ 0. This gives rise to an
R-algebraic subgroup A0 of G with A0(R)+ = exp(a); indeed, A0(R) → (R↗)r ↖ R

s.
We claim that s = 0. Indeed, for gR,c := k△

⇐
↗1m, we know that exp(gR,c) is a compact Lie group,

and hence exp(
⇐
↗1a) → (T1)r ↖ R

s (with T = R/Z) is compact, and hence s = 0.
Thus A0 is an R-split torus in G. It is contained in a maximal torus T of G defined over R, and

hence T = A · A→ for some algebraic torus A→ defined over R. Then LieA→
∝ m = 0 by the maximality of

a in m. One can choose A→ such that LieA→
′ k, and then A→(R) < K↘ which is compact. Hence A→ has

no R-split factor; otherwise R
↗ is a closed subset in A→(R), contradiction to A→(R) being compact. This

finishes the proof.
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Thus we have the relative root system R% := %(A,G) as below (4.4.1). Assign a subset

R%+ of positive roots in R% as below Lemma 4.3.7. It defines a basis R& of R% (as below
Lemma 4.3.7) and a minimal parabolic subgroup P0 of G (as below (4.4.2)).

Remark 4.5.4. An alternative approach to study the theory over R is to use Cartan’s theory
of symmetric spaces and the restricted root system (to R). We shall not take this point of view
in our course to have a uniform treatment over R and over C, but only point out that these two
points of view are equivalent for our study by the the following easy observation: g

A
∝m = a.

Standard parabolic subgroups. Any parabolic subgroup P of G which contains P0 is of the
form PI for some subset I ′ R&, where PI is defined in Theorem 4.4.6. Now PI has unipotent
radical NI and a Levi subgroup LI = ZG(AI). Moreover, A < Z(LI) since AI < A. It is not
hard to construct a ↼-stable subgroup MI of LI such that LI = A↖MI (inner direct product).[7]

Then we have the following real Langlands decomposition based at x0 ↘ X+

PI(R)
+ = NI(R)AI(R)

+MI(R) → NI(R)↖AI(R)
+
↖MI(R) (4.5.2)

where the first equality is as groups, and the second isomorphism is in the category of real
algebraic manifolds (the inverse map is (n, a,m) ≃↑ nam).

We have more. The reductive subgroup MI is ↼-stable, and thus KI,⇑ := MI ∝ K⇑ is
maximal compact in MI(R)+. So

XI := MI(R)
+/KI,⇑ = PI(R)

+/KI,⇑AI(R)
+NI(R) (4.5.3)

is a symmetric space, called the boundary symmetric space associated with PI . Notice however
XI may not admit an MI(R)+-invariant complex structure.

Lemma 4.5.5. PI(R)+ acts transitively on X.

Proof. It is not hard to check that gR = n △ a △ k with n from (4.4.2). Thus G = NAK↘, which is
called the Iwasawa decomposition of G. On the other hand, n△ a ′ LiePI by construction of PI . Hence
NA ′ PI and we are done.

Thus X = PI(R)+x0, and by (4.5.2) and (4.5.3) (and nI ∝ k = 0) we then have the following
real horospherical decomposition based at x0 ↘ X

X → NI(R)↖AI(R)
+
↖XI (4.5.4)

where the isomorphism is in the category of real algebraic manifolds.

General parabolic subgroups. Now let P be an arbitrary parabolic subgroup of G. By
Theorem 4.4.5, P is conjugate to a unique standard parabolic subgroup PI for some I ′ R&.
But G = NAK⇑ and NA ′ PI . So there exists k ↘ K⇑ such that P = kPIk↑1. Define

NP := kNIk
↑1 = Ru(P ), AP := kAIk

↑1, MP := kMIk
↑1.

Then both AP and MP are ↼-stable, and LP := APMP is a Levi subgroup of P , and AP is an
R-split torus in P . We have the real Langlands decomposition (based at x0 ↘ X)

P (R)+ = NP (R)AP (R)
+MP (R) → NP (R)↖AP (R)

+
↖MP (R) (4.5.5)

which induces real horospherical decomposition (based at x0 ↘ X)

X → NP (R)↖AP (R)
+
↖XP (4.5.6)

with XP := MP (R)/(MP ∝K⇑) called the boundary symmetric space associated with P .

[7]One can construct using Lie algebras: LieMI is the direct sum of LieZG(A) ↗ k,
∑

ω→↓k!I
g(ω→) and the

(orthogonal) complement of LieAI in a.
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4.5.2 Horospherical decompositions over Q

Before the discussion over Q, let us state the following result.
Let A be a maximal Q-split torus in G

der. Then we obtain a relative root system Q% :=
%(A,Gder) as below (4.4.1). Assign a subset Q%+ of positive roots and thus get a basis Q&
of Q% as below Lemma 4.3.7. Then we get a minimal parabolic subgroup P0 of G

der. All
standard parabolic subgroups (i.e. those containing P0) are of the form PI for some I ′

Q&, and every parabolic subgroup P of Gder is conjugate to a unique PI by some element in
G

der(Q). We have the unipotent radical NI of PI and a Levi subgroup LI = ZGder(AI) with

AI :=
(⋂

ε↑↘Q”I
Kerϑ≃

)↔

< A. Moreover, AI is the maximal Q-split torus in Z(LI). Notice

that for PI = PI,R, our AI,R is a subgroup of the AI constructed in the real case (which is
the maximal R-split torus in Z(LI,R)) and is proper if rkQPI < rkRPI . So we need to further
decompose AI into the product of AI,R and an R-algebraic torus A⇓

I whose Q-rank is 0.[8] For
this purpose, define MI :=

⋂
ϖKer↽2 where ↽ runs over all non-trivial LI ↑ Gm. Then MI is

a reductive group with rkQZ(MI) = 0. Then we have LI = AIMI and AI = AI,RA⇓

I . Denote
by &(AI ,PI) := Q& \ I.

For an arbitrary parabolic subgroup P of Gder, we can conjugate P to be a unique standard
parabolic subgroup PI . Then we obtain the unipotent radical NP of P, the Levi subgroup LP of
P, the maximal Q-split torus AP in Z(LP), and the subgroup MP =

⋂
ϖKer↽2 of LP. Denote

by P := PR, NP := NP,R, LP := LP,R,

AP := AP,R, MP := MP,R. (4.5.7)

Then we are in conformity with the notation in the real case, while AP is a subgroup of AP

which is proper if rkQP < rkRP. Denote by

&(AP, P ) ′ X↗(AP) (4.5.8)

to be the conjugate of Q& \ I.
Now we have the rational Langlands decomposition of P

P (R)+ = NP (R)AP(R)
+MP(R) → NP (R)↖AP(R)

+
↖MP(R) (4.5.9)

where the second isomorphism is in the category of real algebraic manifolds.
To get the rational horospherical decomposition, we need to fix a point x0 ↘ X and the

associated Cartan involution ↼ on G, and require AP and MP to be ↼-stable. To achieve this,
we can work with the Levi quotient P/NP instead of working with the Levi subgroup LP of P,
and then lift the resulting AP and MP to the R-Levi subgroup LP of P (the one constructed
in the real case) which is ↼-stable. The resulting groups may not be Q-subgroups of P, but this
is enough for our purpose.

Remark 4.5.6. In fact, it is known that for any P, there exists a base point x1 ↘ X such that
they are still defined over Q.

Let K⇑ := StabG(R)+(x0). Then MP∝K⇑ is maximal compact in MP(R)+ by the ↼-stability
of MP. Now (4.5.5) induces the rational horospherical decomposition of X = P (R)+x0

X → NP (R)↖AP(R)
+
↖XP (4.5.10)

[8]That is, there is no non-trivial subgroup of A↔
I < G = Gder

R which is defined over Q.
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with XP = MP(R)+/(MP ∝ K⇑) called the boundary symmetric space associated with P.
Moreover, let A⇓

P be the orthogonal complement of AP,R in AP , i.e. A⇓

P is ↼-stable with
AP (R)+ = AP(R)+ ↖A⇓

P(R)
+. Then

XP → XP ↖A⇓

P(R)
+, AP (R)

+ = AP(R)
+
↖A⇓

P(R)
+. (4.5.11)

While A⇓

P has Q-rank 0, taking the quotient by ! will roll up the fact A⇓

P(R)
+ into circles and

hence does not interfere with the compactification of !\X.

4.5.3 Siegel sets

Let P be a parabolic subgroup of Gder. Continue to use the notation in the previous subsections.
For t > 0, define

AP,t := {a ↘ AP(R)
+ : ϑ≃(a) > t for all ϑ≃

↘ &(AP, P )} (4.5.12)

with &(AP, P ) defined by (4.5.8).

Definition 4.5.7. For any bounded sets U ′ NP (R) and V ′ XP, the subset

SP,U,V,t := U ↖AP,t ↖ V ′ NP (R)↖AP(R)
+
↖XP → X

is called a Siegel set in X associated with P.

4.6 Analytic boundary components

Let (G, X) be a Shimura datum, and X+ a connected component of X. We will use the following
notation:

G = G
der
R

, g := LieGder, gR = LieG. (4.6.1)

To ease notation, we will also use X to denote X+. We have shown that X is a Hermitian
symmetric domain; see Theorem 2.3.1.

It is known that under holomorphic isometry, X is isomorphic to an open bounded subset
D in the a”ne space C

N where N = dimCX; we shall review this Harish–Chandra realization
later on at the end of §4.6.1. Let D be the closure of D in C

N under the usual topology (we

sometimes denote it by X
BB

).

Definition 4.6.1. An analytic boundary component of X is an equivalence class in D

under the equivalence relation generated by x ¬ y if there exists a holomorphic map ⇀ : {z ↘ C :
|z| < 1} ↑ C

N such that x, y ↘ Im(⇀) ′ D.

Notice that D is a boundary component of X by definition. This definition generalizes the
case where X is the upper half plane, in view of the last sentence of §4.1.1.

It is clear that D is the disjoint union of its analytic boundary components. We shall prove:

Theorem 4.6.2. The action of G(R)+ on X → D extends to D. For any analytic boundary
component F of X, its normalizer

N(F ) := {g ↘ G(R) : gF = F}

is a maximal proper parabolic subgroup of the Lie group G(R)+, which means that it equals
P (R) ∝G(R)+ for a maximal proper parabolic subgroup P of G.

In fact, we will prove a more precise version describing how P is constructed in terms of the
root systems. Moreover, we will prove that the analytic boundary component F can be identified
with the boundary symmetric space (defined below the real horospherical decomposition (4.5.6))
associated with some parabolic subgroup P ≃, and explain the relation of P and P ≃.
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4.6.1 Complex structure on X and the Harish–Chandra realization

Take x0 ↘ X which corresponds to h0 : S ↑ GR, and let ↼ = h0(
⇐
↗1) be the Cartan involution

on G given by (SV3). We thus have the Cartan decomposition (2.3.2)

g = k△m (4.6.2)

with k (resp. m) be the eigenspace for 1 (resp. for ↗1). Notice that [k, k] ′ k, [k,m] ′ m, and
[m,m] ′ k by looking at the eigenvalues.

Then K⇑ := exp(k) is a maximal compact subgroup of G(R)+ by Lemma 2.3.2, and the real
tangent space of X at x0, denoted by TRX, can be identified as m.

The element J := h0(eϱ
⇔
↑1/4) satisfies J2 = 1. The action of J onX induces a decomposition

of mC = TRX ∅R C

mC = m
+
△m

↑ (4.6.3)

where J acts by multiplication by
⇐
↗1 on m

+ and by ↗
⇐
↗1 on m

↑. Thus the holomorphic
tangent space of X at x0 can be identified with m

+. Moreover, as J acts on TRX = m, we have
J ↘ exp(k) = K⇑, and thus J ↘ Z(K⇑).

Let us recall the Harish–Chandra realization/embedding D of X in Theorem 2.3.5. We only
need a brief version: We can identifyX with an open bounded subset D of m+. The identification
X → D is called the Harish–Chandra realization and the inclusion D ′ m

+ is called the Harish–
Chandra embedding. Moreover, it is known that there exists an open holomorphic map m

+
↑ X↖

which embeds m
+ as an open subset (in the usual topology) of the complex algebraic variety

X↖. So we can summarize into:
X → D ′ m

+
′ X↖. (4.6.4)

Example 4.6.3. In the Siegel case (GSp2d,H
±

d ) and the base point x0 =
⇐
↗1I2d, we have

K⇑ = U(d) = O(2d) ∝ Sp2d (and G = Sp2d). In this case, m+
→ {ω ↘ Matd↙d(C) : ω = ω t},

and the Harish–Chandra realization is Dd := {Z ↘ Matd↙d(C) : Z = Zt and Id ↗ZZ > 0} as in
Example 2.3.6.

4.6.2 Complex roots and the Polydisc Theorem

Let T be a maximal torus of G contained in K⇑. Consider the root system % := %(T,GC). We
have the root decomposition

gC = tC △

⊕

ε↘”

gε

with each gε having dimension 1.
We say that a root ϑ is compact (resp. non-compact) if gε ′ kC (resp. if gε ′ mC). Let

%K be the set of compact roots and %M be the set of non-compact roots. One can check that
% = %K ↓ %M .

Lemma 4.6.4. There exists a choice of positive roots %+ such that

m
+ =

⊕
ε↘”+∝”M

gε.

The proof uses the complex structure on X, or more precisely the action of J on mC. One
can show that Jgε = gε for any non-compact root ϑ.

Definition 4.6.5. Two roots ϑ,φ ↘ % are called strongly orthogonal if ϑ± φ are not roots.
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From now on, we fix a maximal subset of strongly orthogonal root in %+
∝ %M , maximal

under inclusions
’ = {ϑ1, . . . ,ϑr}. (4.6.5)

This can be done be choosing successively the lowest positive root.
For each ϑ ↘ ’, choose a non-zero eε ↘ gε and set e↑ε to be the complex conjugation on

gC = g∅R C of eε. Then e↑ε ↘ g↑ε, and hε :=
⇐
↗1[eε, e↑ε] ↘ t ′ k and is non-zero. Set

gC[ϑ] := Chε + gε + g↑ε = Chε + Ceε + Ce↑ε. (4.6.6)

Then gC[ϑ] → sl2,C, since [hε, eε] = ϑ(exp(hε))eε and [hε, e↑ε] = ↗ϑ(exp(hε))e↑ε are both
non-zero. Hence

g[ϑ] := gC[ϑ] ∝ g = Rhε + Rxε + Ryε → sl2,R

where xε := eε + e↑ε and yε :=
⇐
↗1(eε ↗ e↑ε). Notice that Jxε = yε and Jyε = ↗xε by

Lemma 4.6.4, and {xε, yε : ϑ ↘ %+
∝ %M} is an R-basis of m.

For each ϑ ↘ ’, let G[ϑ] be the subgroup of G such that LieG[ϑ] = g[ϑ]. Let G[’] be the
subgroup of G with LieG[’] =

∑
ε↘$ g[ϑ].

Theorem 4.6.6 (Polydisc Theorem). The orbit G[’](R)+x0 ′ X is a totally geodesic subman-
ifold which is isomorphic to a Poincaré polydisc Dr, and X =

⋃
k↘K↗

k ·Dr.[9]

Recall that g[ϑ] → sl2,R for all ϑ ↘ ’. Hence the inclusion G[’](R)+x0 ′ X is induced by a
morphism

⇁ : SL2(R)
r
↑ G(R). (4.6.7)

By general theory on holomorphic maps between bounded symmetric domains, ⇁ is the second

factor of a morphism U(1)↖SL2(R)r ↑ G(R) satisfying:
(
e
↘
→1ε,

[
cos ς sin ς
↑ sin ς cos ς

]
, · · · ,

[
cos ς sin ς
↑ sin ς cos ς

])
≃↑

h0(e
⇔
↑1ς).

The Polydisc Theorem is a key step in the proof of the Harish–Chandra embedding. To
study boundary components, we need to have a finer statement. Let S ′ {1, . . . , r} be a subset,
and let G[S] be the subgroup of G with LieG[S] =

∑
j↘S gεj ; in particular G[S] = G[’] for

S = {1, . . . , r}. Then the orbit G[S](R)+x0 ′ X is still totally geodesic in X and is isomorphic
to D|S|. We have the following compatibility:

Theorem 4.6.7. For each j ↘ {1, . . . , r}, the image of G[j](R)+x0 ′ X under the Harish–
Chandra embedding is the open unit disc Dj in Ceεj ′ m

+ (with 1 ↘ Dj corresponding to eεj ).
The image of G[S](R)+x0 ′ X under the Harish–Chandra embedding is the open unit polydisc∏

j↘S Dj in
∏

j↘S Ceεj ′ m
+.

We finish this subsection by the example of the Siegel case.

Example 4.6.8. In the Siegel case (GSp2d,H
±

d ) and the base point x0 =
⇐
↗1I2d, we have

K⇑ = U(d) = O(2d) ∝ Sp2d (and G = Sp2d). Our maximal torus is not the usual one, but is

T =






bdiag(t1, . . . , td) :=





cos t1 sin t1
. . .

. . .

cos td sin td
↗ sin t1 cos t1

. . .
. . .

↗ sin td cos td





: t1, . . . , td ↘ R






.

[9]The Poincaré unit disc D is {z → C : |z| < 1} endowed with the hyperbolic metric, and D
r is the r-copy of D.
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Let ςj ↘ X↗(T ) be bdiag(t1, . . . , td) ≃↑ tj. Then % = {±
⇐
↗1(ςi + ςj) : 1 ⇒ i ⇒ j ⇒ d} ↓

{±
⇐
↗1(ςi ↗ ςj) : 1 ⇒ i < j ⇒ d} and %M ∝ %+ = {

⇐
↗1(ςi + ςj) : 1 ⇒ i ⇒ j ⇒ d}. The basis

for this choice of %+ is {
⇐
↗1(ςi ↗ ςi+1) : 1 ⇒ i ⇒ d↗ 1} ↓ {2

⇐
↗1ςd}.

The set ’ is {ϑj := 2
⇐
↗1ςj : 1 ⇒ j ⇒ d} (so r = d). Then the corresponding normalized

eεj , hεj , xεj , yεj are:

1

2

[
1j,j

⇐
↗1d+j,j⇐

↗1j,d+j ↗1g+j,g+j

]
,

[
0 ↗

⇐
↗1d+j,j⇐

↗1j,d+j 0

]
,

[
1j,j 0
0 ↗1g+j,g+j

]
,

[
0 ↗1d+j,j

↗1j,d+j 0

]
.

Here for a number s, we use si,j to denote the matrix with the (i, j)-entry being s and all the
rest being 0.

The extension U(1)↖ SL2(R)d ↑ G(R) of the morphism ⇁ from (4.6.7) is:


u,

[
a1 b1
c1 s1

]
, · · · ,

[
ad bd
cd sd

]
≃↑





a1 b1
. . .

. . .

ad bd
c1 s1

. . .
. . .

cd sd





.

4.6.3 Real roots and Cayley transformation

Next we need to study a relative root system over R, for which we need to take a maximal
R-split torus A in G. Our construction is as follows. By definition of strong orthogonality, the
sum

a :=
∑

ε↘$

Rxε

is commutative, and hence is a Lie subalgebra. In fact we have more:

Proposition 4.6.9. a is a maximal abelian subalgebra of g contained in m.

Thus by Theorem 4.5.3, there exists a maximal R-split tours A in G with LieA = a, and
hence we have the relative root system R% := %(A,G).

Example 4.6.10. In the Siegel case, A is the standard torus {diag(t1, . . . , td,↗t1, . . . ,↗td) :
t1, . . . , td ↘ R

↙
}.

We wish to use the root system % constructed in §4.6.2 to study R%. For this purpose, we
need to conjugate the maximal torus T in §4.6.2, which is contained in K⇑, to a maximal torus
which contains A. For this purpose, it su”ces to find an abelian Lie subalgebra a

≃ in t ′ k which
is a conjugate of a. This is the Cayley transformation which we introduce now.

Recall ’ = {ϑ1, . . . ,ϑr} from (4.6.5) is the maximal subset of strongly orthogonal roots in
%+

∝ %M , and let hε ↘ t ′ k be as above (4.6.6). Define

a
≃ :=

∑

ε↘$

Rhε ′ t.

For each ϑ ↘ ’, set Cε := exp(π
⇐
↗1yε/4) ↘ G(C).[10] Then Ad(Cε)hε = [π

⇐
↗1yε/4, hε] ↘

Rxε ′ a. The Cayley transformation is defined to be:

Ad(C$) : a
≃ →
↗↑ a, with C$ =


ε↘$

Cε. (4.6.8)

[10]Notice that our yω is well-defined up to scalar. We usually take a normalization in the definition of eω and
hω, and hence xω and yω. Then the resulting C” will be as in (4.6.9).
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In terms of the morphism ⇁ : SL2(R)r ↑ G(R) from (4.6.7),

C$ = ⇁


· · · ,

1
⇐
2

[
1

⇐
↗1

⇐
↗1 1

]
, · · ·


. (4.6.9)

Now, a≃ gives rise to an R-split torus A≃ with LieA≃ = a
≃, and the relative root system %(A≃, G)

is exactly Int(C$)↗R%. Since A≃ < T for the maximal torus T in §4.6.2, we can directly compare
% = %(T,G) and Int(C$)↗R% = %≃(A,G). More precisely, we can regroup the eigenspace
decomposition gC = tC △

⊕
ε↘” gε to be:

gC = g
A↑
C

△

∑

ε↑↘”↑(A,G)

gε↑ (4.6.10)

with g
A↑
C

= a
≃

C
△
∑

ϑ→0 gϑ and gε↑ =
∑

ϑ↘”, ϑ→ε↑ gϑ . Here, the equivalence ¬ on % is defined by:
φ1 ¬ φ2 if and only if φ1|A↑ = φ2|A↑ . This decomposition is defined over R because A≃ is R-split.
Applying the Cayley transformation to (4.6.10), we get the eigenspace decomposition

g = g
A
△

∑

φ↘R”

gφ (4.6.11)

with each gφ being a suitable Ad-conjugate of a suitable gε↑ above.
Finally each ϑj ↘ ’ defines a character ϑj |A↑ ↘ X↗(A≃), and hence a character ϖj ↘ X↗(A)

via the Cayley transformation. We thus have the following set

R’ := {ϖ1, . . . , ϖr}. (4.6.12)

Since ’ ′ %, we have R’ ′ R%. In general, we have the following proposition, which is a
consequence of the classification of (real) representations of U(1) ↖ SL2(R)r by analyzing the
action of Weyl groups.

Proposition 4.6.11. Assume X is irreducible as a Hermitian symmetric space, i.e. X cannot be
written as the product of two non-trivial Hermitian symmetric spaces. Then one of the following
possibilities occurs:

- (Type Cr) R% = {±
1
2(ϖi + ϖj) for i ⇔ j, ±

1
2(ϖi ↗ ϖj) for i > j}.

- (Type BCr) R% = {±
1
2(ϖi + ϖj) for i ⇔ j, ±

1
2(ϖi ↗ ϖj) for i > j, ±

1
2ϖi}.

If we order the roots such that ϖ1 > . . . > ϖr, then the set of simple roots is:

- (Type Cr) R& = {µ1 :=
1
2(ϖ1 ↗ ϖ2), . . . , µr↑1 :=

1
2(ϖr↑1 ↗ ϖr), µr := ϖr}.

- (Type BCr) R& = {µ1 :=
1
2(ϖ1 ↗ ϖ2), . . . , µr↑1 :=

1
2(ϖr↑1 ↗ ϖr), µr :=

1
2ϖr}.

In each case, the simple root µr is called the distinguished root, and is the longest (resp.
shortest) simple root in Type Cr (resp. Type BCr).

Example 4.6.12. In the Siegel case, ϖj : A ↑ R
↙ is diag(t1, . . . , td,↗t1, . . . ,↗td) ≃↑ 2tj, and

we are of Type Cd.
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4.6.4 Standard form of analytic boundary components

Recall the maximal subset of strongly orthogonal roots ’ = {ϑ1, . . . ,ϑr} of %, and the induced
subset R’ = {ϖ1, . . . , ϖr} of R%.

For any S ′ {1, . . . , r}, define the Lie subalgebra

lS :=
∑

φ↘R”
φ is a linear combination of ↼j with j ′↘S

(gφ + [gφ, g↑φ]) (4.6.13)

of g, with each gφ the eigenspace of ⇁ for the adjoint action of A on g; see (4.6.11).
Let LS be the subgroup of G with LieLS = lS . Denote by m

+
S := m

+
∝ lS .

Proposition 4.6.13. LS is a semi-simple subgroup of G without compact factors, and

XS := LS(R)
+x0 → LS(R)

+/(LS(R) ∝K⇑)

is a sub-Hermitian symmetric domain in X.
Moreover, for the Harish–Chandra realizations D of X and DS of XS (see (4.6.4)), we have

the following equivariant diagram of symmetric holomorphic maps

D|S|
↖DS

f1 !!

∞

""

D

∞

""
C
|S|

↖m
+
S

f2 !!

∞

""

m
+

∞

""
(P1)|S| ↖X↖

S
f3 !! X↖

(4.6.14)

where D = {z ↘ C : |z| < 1} is the Poincaré unit disc.

Proof. We have the following decomposition of lS,C in terms of the complex roots in % by (4.6.10)
and (4.6.11):

lS,C :=
∑

ε↘”, ε ′→0
ε→

∑
j ≃↓S ajεj

(gε + [gε, g↑ε]);

see below (4.6.10) for the definition of ¬. Hence lS,C is stable under Adh0(e
⇔
↑1ς), and so

(a) lS = (k ∝ lS)△ (m ∝ lS),

(b) mC ∝ lS,C = m
+
S △m

↑

S with m
↑

S := m
↑
∝ lS,C.

Hence LS is a reductive group and XS is a sub-Hermitian symmetric domain of X. Better,
LS is semi-simple without compact factors because it is generated by unipotent elements; see
Theorem 4.3.2.(3.a).

For the “Moreover” part, notice that LS commutes with (modulo center) the subgroup
⇁(

∏
j↘S SL2(R)) for the morphism ⇁ from (4.6.7); this is an immediate consequence of the

construction of lS . Hence we are done.

We state the following theorem without proof. The proof needs the Hermann convexity
theorem.
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Theorem 4.6.14. The boundary components of X
BB

(i.e. the analytic components of X defined
in Definition 4.6.1) are precisely the sets the form k · FS, where k ↘ K⇑, S ′ {1, . . . , r}, and

FS := f2 ((1, . . . , 1)↖DS) ′ m
+

with f2 from (4.6.14).
Moreover, for every analytic boundary component F , there are holomorphic symmetric maps

H
fF !!

∞

""

D

∞

""
P
1 fF !! X↖

such that fF (
⇐
↗1) = x0 and fF (↔) ↘ F .

Example 4.6.15. In the Siegel case, r = d. Take the subset S = {d≃ + 1, . . . , d} ′ {1, . . . , d};
then |S| = d↗ d≃. In this case we have

LS =










A≃ 0 B≃ 0
0 Id↑d↑ 0 0
C ≃ 0 D≃ 0
0 0 0 Id↑d↑



 :

[
A≃ B≃

C ≃ D≃

]
↘ Sp2d↑,R





→ Sp2d↑,R,

and XS → Hd↑ with Harish–Chandra realization being Dd↑. Under the natural identifications
m

+
→ {ω ↘ Matd↙d : ω = ω t} and m

+
S → {ω ≃ ↘ Matd↑↙d↑ : ω ≃ = (ω ≃)t}, the holomorphic map f2 is


(ad↑+1, . . . , ad), ω

≃

≃↑ diag(ω ≃, ad↑+1, . . . , ad).

Hence in this case, we have

FS =

{[
ω ≃ 0
0 Id↑d↑

]
: ω ≃ ↘ Dd↑

}
.

Before moving on, let us see a corollary of Theorem 4.6.14. The proof presents an application
of the construction of FS in Theorem 4.6.14, and given another way (4.6.15) to write FS .

Corollary 4.6.16. An analytic component of an analytic component of X is an analytic com-
ponent of X.

Proof. Let D1 be an analytic component of X. Theorem 4.6.14 implies that D1 = k · FS for
some k ↘ K⇑ and S ′ {1, . . . , r}. By Theorem 4.6.7, we have

FS =
∑

j↘S

Ceεj +DS . (4.6.15)

Let D2 be an analytic component of D1. Then D2 = k ·

(∑
j↘S Ceεj +D

≃
2

)
for some analytic

component D
≃
2 of DS . Theorem 4.6.14 implies that D

≃
2 = k≃ ·

∑
i↘S↑ Ceεj +DS⇐S↑


for some

k≃ ↘ LS ∝K⇑ and S≃
′ {1, . . . , r} \ S. So

D2 = kk≃




∑

j↘S⇐S↑

Ceεj +DS⇐S↑



 = kk≃ · f2 ((1, . . . , 1)↖DS⇐S↑) = kk≃ · FS⇐S↑

which by Theorem 4.6.14 is an analytic component of X.
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