Chapter 4

Boundary components

Starting from this chapter, we will discuss compactifications of Shimura varieties Shi (G, X),
or locally Hermitian symmetric spaces I'\X . This chapter introduces boundary components
of XT.

4.1 Example: modular curves

Consider the modular curves Shx(GLg, H7%), t.e. the Siegel modular variety from 43.3] with
d = 1. In the particular case where K = GLy(Z), we are working with

Y(1) = SLo(Z)\ 9.

It is a well-known result that Y (1) ~ C via the j-function j: $ — C. Hence a compactification
of Y(1) is P*(C). This is the Baily-Borel compactification or the toroidal compactification of
Y (1) (but not the Borel-Serre compactification). In this section, we explain how to view this
compactification as the Baily—Borel compactification of Y (1). A large part is to study the
boundary components, which is important for other compactifications we will discuss (toroidal
compactification and Borel-Serre compactification).

4.1.1 Boundary components of $)

The boundary of $ in C U {oo} is the union of the real axis and {oo}; in other words, the
boundary of $ in P!(C) is P!(R). This is better seen via the Cayley transformation (2.3.4)
HS5D={2eC:|z| <1}, T (1 —V=1)(7++vV-1)"1

and the boundary of D is the unit circle. Denote by D the closure of D in C, i.e. D = {2z € C:
|z] <1}, and 9D := D\ D. Then oo corresponds to 1 € D.

Call each point in 9D a boundary component of D. It is justified by the following fact: Any
holomorphic map D — D either has image in D or is constant@

4.1.2 Extension of the group action to D

The group GLa(R)™ acts on D, via its action on §) and the Cayley transformation above, by the
[a b] L (a—+v-1le)(z+ 1)+ (b— V—-1d)V—1(z — 1)
c d (a++v=1c)(z+ 1) + (b+v/—1d)vV—-1(z — 1)’

W This is a consequence of the Open Mapping Theorem in complex analysis, which asserts that any holomorphic
function on a connected set in the complex plane is open.

formula

Vz € D.
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Lemma 4.1.1. The action of GLy(R)" on D extends to D. Moreover, the action of GLa(R)™
on 0D is transitive.

Proof. Take z € D, and set
ur = (atv-1le)(z+1)+ (bt vV—-1d)v—-1(z — 1).
For the first part of the lemma, we need to show that u4 # 0 and u_u:Ll € D.
Then
u_| | 1 —v—=1|la b 1 1 z
uy | [V/-1 1 c d| |v-1 —v/-1| 1|’

and one can compute that
Uty —u_tu— = 4(1 — 2z).

So us iy > u_u_ because z € D. If uy = 0, then uy = u_ = 0, contradiction to rank [Z_] =
+
rank [ﬂ =1. So ut # 0, and (u_uf)u_uj_l = Z;ZJ < 1. Hence u_ujrl € D. We are done.

Let us prove the “Moreover” part. We have

2 2
— -2
|:(I b:| 1 a C ac /—1

c d a?+c?  a?2+c?

The right hand side is easily checked to be in 9D = {z € C : |z| = 1}. Conversely any z € 0D
can be written as the right hand side for some 2 x 2-matrix in GL2(R)™". Hence we are done. [

4.1.3 Compactifying at each boundary component

To see how to compactify D ~ §) at each boundary component, we need to study the stabilizer
of each z € D. Since Z(GL3)(R) acts trivially on D, it suffices to consider the stabilizer in
SLy(R). By Lemma m it suffices to study this for 1 € D. For this purpose, it is easier to use
the upper half plan. Define

P = {[g aﬁ] :beR, a;é()} (4.1.1)

Then it is easy to check that Stabgr,r)(g - 00) = gP(R)*g~! for any g € SLy(R). Indeed, it
suffices to check this with g = I3, and then it suffices to notice that elements on the right hand
side of (4.1.1) correspond to translations along the real axis.

Lemma 4.1.2. The followings hold true:
(i) SL2(C)/P(C) is a projective space.
(ii) For any g € SLa(R), the group gPg~! is defined over Q if and only if g € SLa(Q).

(iii) Let 7 € PYR) (the boundary of § in P1(C)). Then 7 € PYQ) & 7 = g- o< for some
g €SLy(Q) & 7 =g - o0 for some g € SLo(Z).

Proof. (ii) and (iii) are simple computations. For (i), it suffices to notice that the homogeneous

space SLy(C)/P(C) ~ GL2(C)/ { [g Z

ing 1-dimensional C-subspaces in C2. O

] ta,b,d e C, ad # O} is the Grassmannian parametriz-
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Let us go further. We have:
Lemma 4.1.3. For each g € SL2(R), the group gP(R)Tg~! acts transitively on $.

The proof itself is important. As a preparation, the group P has the following subgroups:

10

- The unipotent radical Np := { [0 1

] b e R}, where elements act on $ as 7 +— 7+ b.

afl

0

2

- the split torus Ap := { [ a} ta > 0} 2l where elements act on $ as 7 — a~27.

- Mp := {£I>}, which acts trivially on §.

such that

and the map Np x Ap x Mp — P, (n,a, m) — nam, is a diffeomorphism.

Proof. We only need to prove this lemma for P. For any 7 = x + v/—1y € $), we have

S

Hence we are done. O

Now we are ready to explain how the point co is added to $) via the group P (in other words,
how compactify $ at co). The decomposition induces, by Lemma

$H~P/(PNSO(2)) = P/Mp ~ Np x Ap ~ R x Rxy, T=z+V—1y— (z,y ). (4.1.3)

The Ap-factor is isomorphic to R, and a natural way to add a boundary to R~ is to add 0
and make it into R>¢. In doing this, we are adding the point = + V—1072 = 00 to §.

This process can be carried out for g-oo € P!(R) for any g € SL2(R), by replacing Np and Ap
by gNpg~! and gApg~!. In this way, the point g-co € P}(R) is added to $ by “compactifying”
gAPg_l ~ R+ into Rxo.

4.1.4 Rational vs real boundaries, and Siegel sets

We wish to compactify the quotient SLo(Z)\$ ~ SL2(Z)\D. The idea is to do the quotient
SL2(Z)\D, for the extended action of SLy(R) on D defined in Lemma However, 0D =
D\ D ~ P(R) contains infinitely many SLg(Z)-orbits.

A solution to this is to consider the rational boundary components, which are precisely the
points in P1(Q) C P!(R). Equivalently by (ii) and (iii) of Lemma @, a boundary component
z € 9D is called a rational boundary component if its stabilizer in SLy(R) is defined over Q.
Now part (iii) of Lemma asserts that there is only one SLa(Z)-class of rational boundary
components.

Another important notion is the Siegel sets associated with P = Stabgy,, ) (00) defined as fol-
lows; one needs this for example to pass from (partial) compactification of £ to compactification
of SLa(Z)\$. For each ¢ > 0 and any compact bounded set U C Np ~ R, define

Ypur=Ux{aceRsg:a<t}x{r=c+V-1ly:2€U, yzt_Q}gﬁ.

[ZINotice that Ap is not an algebraic subgroup of P, but only a Lie subgroup. This is a minor issue: Indeed, if
we replace GLy by PGLy = SLa/{=£1I>}, then the quotient of Ap becomes an algebraic subgroup.
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Then we have the following classical result on the j—function for a suitable U and suitable
t>1, Xpy, is a fundamental set for the uniformization j: $§ — SLa(Z)\$ ~ C (i.e. jls,,,, is
surjective and has finite fibers). Then one can define the Siegel sets associated with gPg~! =
Stabgr,,r)(g - 00) (for any g € SL2(R)) to be g - Xpy,.

We can also compactify T'\$ to be, as a set, I'\($ UP!(Q)) for any finite-indexed subgroup
I' < SLy(Z), by the following lemma which is a direct consequence of the discussion above.

Lemma 4.1.4. (i) There are finitely many rational boundary components a,...,c, of $
such that P*(Q) = U; T oy

(ii) Let Pj := Stabgp,mg)(;). Then there are suitable Siegel sets ¥ associated with P; for
J€{L,...,n} such that |J; Z; is a fundamental set for the uniformization u: § — I'\§).

4.1.5 Satake topology on D

This subsection is for the Baily—Borel compactification of I'\$). We will revisit the materials later in more
generality.

Our desired compactification is T'\($ U P*(Q)). We yet to explain the topology on this set, so that
it is Hausdorff and compact. Notice that we cannot take the one induced by the usual topology on C
because z € P}(Q) there are infinitely many v € I which fixed z, and hence the quotient T'\($ UP(Q))
is not Hausdorff under this topology.

The topology which we consider is the Satake topology, induced from the Satake topology on HUP!(Q)
defined as follows. On $), the Satake topology is the usual topology, induced from C. Next, an open
neighborhood basis of co consists of the open sets U; := {z € $ : Im(z) > t} for all ¢ > 2; equivalently
a sequence T; = z; + /—1y; € ) converges to oo if and only if y; — co. Finally, an open neighborhood
basis of g - 00 € PY(Q) (with g € SLy(Q)) consists of g - U, for all ¢ > 2. We state without proof the
following assertions (whose proof needs to use Siegel sets):

(i) For any x € UP(Q), there exists a fundamental system of neighborhoods {U} of = such that
YU =U,VyeTl,y; vUNU =0, Vy &1,

where I'y, = {y € ' : yo = x}.

(ii) If z,2’ € HUPL(Q) are not in one I-orbit, then there exist neighborhoods U of z and U’ of z’ such
that
ronu’ =9.

These properties guarantee that T'\ ($ UP!(Q)) is Hausdorff under the Satake topology. The compactness
follows easily from part (ii) of Lemma [1.1.4]

4.2 Parabolic subgroups and Levi subgroups: definitions and
statements

For the simplest Siegel Shimura datum (GLso,$H¥), Lemma M(l) suggests that parabolic
subgroups of SLg (i.e. subgroups of SLy such that the homogeneous space SL2(C)/P(C) is a
projective variety) are closely related to the boundary components of §). This is true for an
arbitrary Shimura datum (G, X).

In this section, we review background knowledge on parabolic subgroups of reductive groups
over algebraically closed fields. In the next section, we do it over an arbitrary field.

Let k be a field, and let G be a reductive group defined over k. Let k be an algebraic closed
field containing k. For our purpose, we will take k = Q,R,C and k = C.

BIA well-known fundamental domain of the j-function is {z € C: |z| > 1, —1 < Re(z) < 1}.
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Definition 4.2.1. A subgroup P of G is called a parabolic subgroup if the homogeneous
space G(k)/P(k) is a projective variety.

It is a theorem of Chevalley that parabolic subgroups are always connected. We are more
interested in the proper parabolic subgroups.

Example 4.2.2. For G = GLy. Let P be the subgroup of upper triangular matrices in blocks
(with the length of the £-th diagonal block being ng). Then if we write G = GL(V) with V ~ k¥,
then P is the stabilizer of a flag F* = (0=Vy C V1 C -+ C Vi1 C Vi, = V) of subspaces of
V', with dim Vy — dim Vy;_1 = ny for each ¢. Hence G/P is a flag variety and hence is projective.
So P is a parabolic subgroup of GLy.

Let P be a parabolic subgroup of G. The unipotent radical R, (P) is a closed normal
subgroup of P, and hence P acts on R, (P) via conjugation. This induces an action of any
subgroup of H on R, (H).

Definition 4.2.3. A Levi subgroup of P is a closed subgroup L of P such that H = R, (P)x L.

A Levi subgroup, if exists, is then isomorphic to P/R,(P) and hence is a reductive group
(in particular is connected).

Theorem 4.2.4. P has Levi subgroups, and any two Levi subgroups of P are conjugate by a
unique element in Ry (P).

We are more interested in more concrete constructions of Levi subgroups of P. This will be
given in combinatorial data in the next two sections.

The following construction of parabolic subgroups of G is useful, although we will not use it in our
course. Let A\ be a cocharacter of G, i.e. a morphism of algebraic groups G, — G.

Theorem 4.2.5. (i) The set

PN\ ={ze€G: }111(1) AB)xA(t) ™" exists}
—

is a parabolic subgroup of G, and the centralizer of N(Gy,) is a Levi subgroup of P()\). Moreover
Ru(P(N) = {z € G : limy_o A(t)zA(t) " =1},

(i) Any parabolic subgroup of G is P(X\) for some .

If A(Gw) < Z(G), then P(A\) = G. In fact, this theorem will serve as a bridge from the theory over
algebraically closed fields to the theory over an arbitrary field.

4.3 Parabolic subgroups via root systems: over algebraically
closed fields

In this section, we take k = k to be an algebraically closed field, and G a reductive group
defined over k. For our purpose, it is harmless to take k = C. We will explain the combinatorial
construction of parabolic subgroups of GG, and Example will be revisited in this language
as Example 4.3.15

Let g := LieG. Then we have the adjoint representation Ad: G — GL(g) whose kernel is
Z(@G). Notice that Z(G)° is an algebraic torus since G is reductive.
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4.3.1 Root system for G

Let T be a maximal torus of G, i.e. an algebraic torus contained in G and maximal under
the inclusion. For example if G = GLy, we can take 7' = Dy to be the subgroup of diagonal
matrices with non-zero diagonal entries. We have the standard properties:

Lemma 4.3.1. (i) Any mazimal torus of G equals gTg~* for some g € G(k).
(ii) T = Zq(T) = {g € G(k) : gtg~" =t for all t € T(k)}.
(iii) W(T,G) := Ng(T')/T is finite and is called the Weyl group.

Thus T O Z(G)°.

Now consider the action of T" on g via T' < G and the adjoint action. Let X*(T) =
Hom(T, Gy,) be the group of characters of T. For each a € X*(T), define g, := {z € g :
t-x = a(t)x for all t € T} to be the eigenspace for a. Then we have a decomposition as in
[T2.2)

s=g'e P g (4.3.1)
ae®(T,G)

where g7 := {zx € g: T -2 = 2} is the eigenspace for the trivial character, and ®(T,G) C
X*(T) \ {trivial character} is the subset of non-trivial characters «a of T such that g, # 0. By
Lemma (ii), we have g7 = t := LieT.

Denote for simplicity by ® = ®(T,G). Elements in ® are called roots of T. The following
theorem, which gives combinatorial data associated with G and T, is extremely important in
the theory of reductive groups.

Theorem 4.3.2. (1) ® generates a subgroup of finite index in X*(T/Z(G)°) C X*(T).
(2) Let « € ® and € X*(T) which is a multiple of a. Then 8 € ® < = +a.
(3) Let a € @, and set G, := Zg((Kera)®). Then

(a) dimg, = 1, and there is a unique connected T-stable (unipotent) subgroup U, of G
such that LieU, = ga

(b) G is a reductive group and LieG, =t @ go B g,a and G2 ~ PGL2

(c¢) the subgroup W(T,G,) is W(T,G) is generated by a reflection ro such that ro(a) =

— Q.

(4) Let a € ® and ro € W(T,G) be as in (3.c). Then for any 5 € ®, we have

ro(B) = B —ngaa

with ng o € Z. Moreover, ng o = 2.
Thus ® is a reduced root system in the vector space E = X*(T/Z(G)°)r with Weyl group
W (T, Q) in the sense below.

Definition 4.3.3. Let E be a finite-dimensional real vector space with a Fuclidean inner product
(,). A root system ® in E is a finite set of non-zero vectors (called roots) such that:

M Thus U, is isomorphic to G, since it is a unipotent group of dimension 1.

BITn other words, Go is generated by T, Us and U—q.
(6] Indeed, we can choose a generator X, of g, for each o € ® such that X,, X_,, [Xa, X,a} is an sla-triple for
all a € .
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(1) ® spans E,
(2) If a,ca € @ for some ¢ # 0, then c € {1,—1,1/2,—1/2},

(3) For any o € ®, the set ® is closed under the reflection through the hyperplane perpendicular
to a (which we denote by ry,),

(4) For any o, B € ®, we have ro(f) = f — ng oo with ng o € Z.
A root system is called reduced if furthermore it satisfies:
(2°) The only scalar multiples of a root o € ® that belong to ® are ta.

We call dim E the rank of .
The Weyl group of ®, denoted by W(®), is the group of Aut(®) generated by ro for all
ac d.

Conversely, given a root datum (root system and “coroot system”) one can associate a unique
reductive group. We shall not go into details for this, but restrict our discussion to root systems.
In practice, we often take G to be semi-simple, so that ®(7,G) is a reduced root system in
X*(T)g.

Example 4.3.4. Let G = GLy andT = Dy. The Weyl group is isomorphic to the permutation
group Sy. For each j € {1,...,N}, define e; € X*(Dn) to be diag(ti,...,tn) — tj. Then we
have an isomorphism X*(Dy) ~ Eijzl Zej. One can check that ®(Dy,GLy) = {e;—ej 11 # j}.

Highly related to this example is G = SLy and T = DyNSLy. Then X*(T) ~ @évzl Zej|Z(e1+
...+en). And ®(T,G) in this case is precisely the image of ®(Dy,GLy) under the natural
projection X*(Dy) — X*(T).

Example 4.3.5. Let G = Spyy and T = Spyy N Dag = {diag(t1, ..., ta, 17", ... t;1) ity tq #
0}. The Weyl group is isomorphic to {£1}% x &,. For each j € {1,...,d}, define e; €
X*(T) to be diag(t1,... ta,t7 ", ..., t;") = t;. Then X*(T) ~ @?:1 Zej. One can check that
®(T,Spyq) = {£2€;, te; +ej: 1 <i,5 <d, i#j}.

Root systems in Example[4.3.4] are called of type Ay_1, and root systems in Example [4.3.5]are called
of type Cq. We also have root systems of type B,, (dual to Cy; coming from SOs, 1) and D,, (coming
from SOs,,), and exceptional types Eg, E7, Fs, Fy, G2). We will not go into details for this, but only point
out that the last 3 types do not show up in the theory of Shimura varieties and that a Shimura variety
is of abelian type unless the underlying group has Q-factors of mixed type D or of exceptional types.

4.3.2 Positive roots and Borel subgroups

We start with the abstract theory of root systems ® C F.

Definition 4.3.6. A basis of ® is a subset A of ® which is a basis of E such that each root
B € ® is a linear combination B =Y A Mo with mq € Z of the same sign.

Given a basis A of ®, a root f € ® is said to be positive (with respect to A) if my >0
for the decomposition above. Denote by ®T the set of positive roots, and ®~ := —®T. Then
S=dT LD

A root oo € T is said to be simple if it is not the sum of two other positive roots.

Lemma 4.3.7. A is precisely the set of simple roots in ®%.
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In practice, one can start from a subset ®* of ® such that ® = ®* U (—=®") and that
a € dt = —2a ¢ ®T, and call these roots positive. Then we get a basis A consisting of simple
roots in ®1, with respect to which ® is the set of positive roots. See Lemma m

Back to the theory of reductive groups, choosing ®* is equivalently to taking a Borel group.

Definition 4.3.8. A Borel group B is G is a closed connected solvable subgroup G, which is
mazximal for these properties.

Example 4.3.9. If G = GLy, then the subgroup T of upper triangular matrices is a Borel
subgroup. Notice that T is a parabolic subgroup; see Example [4.2.2,

Here are some basic properties of Borel subgroups. Part (iv) asserts that Borel subgroups
are precisely the minimal parabolic subgroups (as we are working over k).

Theorem 4.3.10. (i) Any two Borel subgroups of G are conjugate.

(ii) Every element of G lies in a Borel subgroup. And the intersection of all Borel subgroups
of G is Z(G).

(iii) (Lie-Kolchin) Assume G < GLy. Then there evists * € GLy(k) such that Gz~ is
contained in the subgroup of upper triangular matrices.

(iv) A closed subgroup of G is parabolic if and only if it contains a Borel subgroup.

Back to our root system ®(7,G) constructed from a maximal torus 7 of G. Let B be a
Borel subgroup containing 7. For each a € ®(T,G), Theorem (3) constructs a reductive
group G, with LieGy, =t P go B g—a-

Theorem 4.3.11. For each a € ®(T,G), the intersection BN Gy is a Borel subgroup of G,
and Lie(BN G,) is either t & go or t D g_q-

Now define
T (B) :={a c ®(T,G) : Lie(BNGy) =t D ga}. (4.3.2)

Then ®(T,G) = ®*(B) U (—®"(B)) by Theorem Thus we obtain the subset of positive
roots determined by B, and the basis A(B) of ®(7',G) consisting of simple (positive) roots in
®*(B) as below Lemmal[4.3.7|

Conversely given any subset of positive roots @1 of ®, we can construct a subgroup B of G
such that LieB = t® @aeqﬁ ga (so that B is generated by T and U, for all « € &1, with U,
from Theorem [1.3.2}(3a)).

Example 4.3.12. In Ezample with (G, T) = (GLy, Dy), a set of positive roots is ®T =
{e; —ej:1<i<j <N}, and the corresponding basis is A = {e; —ej41: 1 <1 < N —1}. The
corresponding Borel subgroup is the subgroup of upper triangular matrices Ty .

Example 4.3.13. In Example with G = Spyy, a set of positive roots is @ = {2e;,e; te; :
1 <i < j <d}, and the corresponding basis is {e; —eiy1 + 1 < i < d— 1} U {2eq}. The
corresponding Borel subgroup consists of upper triangular matrices.
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4.3.3 Standard parabolic subgroups

Consider the root system ® = ®(7T,G) C X*(T') constructed from a maximal torus 7" in G.
Let B be a Borel subgroup of G which contains T'. Then B defines the set of positive roots
¢t = dT(B)asin and hence the basis A = A(B) of ®. Recall that LieB = t&@ cp+ Ja-

A parabolic subgroup of G is said to be standard (with respect to B) if it contains B. By
parts (i) and (iv) of Theorem every parabolic subgroup of GG is conjugate to a standard
one.

For any subset I C A, denote by ®; C & the set of roots which are linear combinations of
roots in I. Let @T := ®T N 1. Then ®; is a root system in which CI>}r is the set of positive roots
and I is the corresponding basis. The Weyl group of ®; is the subgroup Wy of W = W(T,G) =
Ng(T)/T generated by the reflections r,, for all « € I.

We will use w to denote either an element in W or its representative in Ng(T"), whenever it
is clear from the context. Then C'(w) := BwB is a subset of G, which by Bruhat decomposition
satisfies: (a) C(w) is a locally closed subvariety of G, (b) G = | |,,cyr C(w), (c) the closure C(w)
is a union of certain C'(w').

Theorem 4.3.14. (i) P; := UwEWI BwB is a parabolic subgroup of G which contains B,
with LiePr = t® ®ae¢+u<b1 go- In other words, P; is generated by T and U, for all
a € &t U Py, with U, from Theorem |4.3.2.(3a,).

(ii) If P is a parabolic subgroup of G which contains B, then P = Pr for a unique subset
ICA.

(iii) LieRu(Pr) = Dpecar\a, fa-

(i) Let Ly be the subgroup of G such that LieL; =t ® D cq, 9a- Then Ly is a Levi subgroup
of Pr, i.e. is a reductive group contained in P; such that Pr = R, (Pr) x Lj.

This theorem gives a combinatorial construction of all the standard parabolic subgroups
of G: we add to ®T the roots in ®;, and there is an inclusion-preserving bijection I — Py
between subsets of A and standard parabolic subgroups. We have Py = B, Pn = G, and the
maximal proper standard parabolic subgroups P\ for all & € A. Moreover, if we define

T =: (ﬂae‘bz Kera) , then Ly = Zg(Tr). This is a more precise version of Theorem 4.2.4| for

parabolic subgroups of reductive groups, when k = k.

We can say more about the pieces C'(w) := BwB in Theorem To ease notation, for any root
a € ® we shall write « > 0if « € ®+ and a < 0 if o & ®T.

For any w € W, we can define a subset of ®

O(w) = {a>0:wa <0} ={aecd: —waecd}
and define U,, to be the subgroup of U := R,(B) such that LieU;, = @,cp(,) o Then the map
U/, x B — G, (u,b) — uwb is an isomorphism of varieties.
Example 4.3.15. In the Example with (G,T) = (GLy, Dn) and the Borel group being

the subgroup of upper triangular matrices, the basis is A = {e; —e;11 : 1 < i < N — 1} which
identify with {1,..., N —1} (with e; — ej+1 <> i). Take a subset I C A and write its complement

A\I:{a17a1+a2,...,a1+...+as_l}

with a; > 0. Then Py consists of upper triangular block matrices, with diagonal blocks of lengths
AlyeeyUg_1,05 ‘= N—E;;i aj. And Ly ~ GLg, x---x GLg, consists of diagonal block matrices,
and R, (Pr) consists of those matrices in Pr where the diagonal blocks are identity.

This is the combinatorial construction of Example [{.2.2.
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The result for the Siegel case G = Spyy (corresponding to Example |4.3.13]) will be given in
later sections.

Remark 4.3.16. Now, Theorem in the case k =k follows easily from Theorem .

4.4 Parabolic subgroups via root systems: over arbitrary fields

In this section, we take k to be a field, and G a reductive group defined over k. Then Z(G)° is
an algebraic torus defined over k. Let g := LieG.

Let k be an algebraically closed field which contains k. For our purpose, it is harmless to
take k = Q,R and k = C.

By a subgroup of G, we mean a closed algebraic subgroup of GG defined over k. In this section,
we will discuss the combinatorial construction of parabolic subgroups of G, similar to the case
k=k.

4.4.1 Relative root systems

The first thing to do is to take a maximal torus 7' of G which is defined over k. It is known
that such maximal tori always exist. But this is not enough, since characters of T" may not be

defined over k. We need:

Definition 4.4.1. Let k'/k be an extension of fields. An algebraic torus A defined over k is
said to be k'-split if Ay ~ an’k,. Equivalently, A is k'-split if all characters of A are defined
over k.

Theorem 4.4.2. (i) G contains a proper parabolic subgroup if and only if G contains a k-split
torus which is not contained in Z(Q).

(ii) Two mazimal k-split tori contained in G are conjugate by an element of G(k).

Here is a brief explanation to (i). Indeed, all parabolic subgroups of G are described by Theoremm
using cocharacters, and having a parabolic subgroup of G (which by our convention means a parabolic
subgroup defined over k) amounts to having a cocharacter of G which is defined over k.

Now take A to be a mawimal k-split torus contained in G. Then Ay is contained in some
maximal torus T of Gy defined over k. For each o € X*(A), define g :={r € g:a-z =
o/(a)x for all s € A} to be the eigenspace for o/. Then the adjoint action of A < G on g induces

a decomposition of g similar to (4.3.1)

s=g"'® > oo (4.4.1)
U ¥e)

where ®(A,G) C X*(A) )\ {trivial character} is the subset of non-trivial characters o’ of A such
that go # 0. The decomposition (4.4.1) is defined over k since all characters of A are defined

over k.

Denote by @ := ®(A4, G).
Theorem 4.4.3. ;P is a root system, whose Weyl group is isomorphic to

W =W(A,G) = Ng(A)/Za(A).
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Unlike the case k = k, this root system may not be reduced. We call ,® the relative root
system and W the relative Weyl group.

Let us explain the analogue of G, from Theorem [4.3.2](3) in this relative setting. For any
o € ®(A,G), the torus S, = (Kera/)° is defined over k, and denote by (/) C ®(A,G) the
subset consisting of rational multiples of o’/. Then

Proposition 4.4.4. There exists a unique closed connected unipotent k-subgroup Uy normal-
ized by Zg(A) such that LieU(yy = g(r) := Zﬁe(a') 93-

The subgroup Go := Zg(Ay) is a reductive group defined over k, has S as a mazimal k-split
torus, and is generated by Zg(A) and Uy .

4.4.2 Standard parabolic subgroups

Over k, we have seen in §4.3.2 that choosing a basis of a root system (equivalently assigning the
positive roots) amounts to fixing a Borel subgroup, and that Borel subgroups are precisely the
minimal parabolic subgroups (Theorem [£.3.10}(iv)). Now over arbitrary k, we shall work with
minimal parabolic subgroups.

Assign a subset @+ = &+ (4, G) of positive roots in ;& = ®(A, G), as below Lemma [4.3.7]
Define

ni= ) g (4.4.2)
a'edt+

It is a Lie subalgebra of g, and the corresponding subgroup N is unipotent and normalized
by Zg(A). It is known that Py := NZg(A) is a minimal parabolic subgroup of G, and every
minimal parabolic subgroup of G which contains A is obtained in this way.

Now fix a minimal parabolic subgroup Py which contains A. A parabolic subgroup of G is
said to be standard (with respect to Fy) if it contains Py. As in the case k = k, we have:

Theorem 4.4.5. Every parabolic subgroup of G is conjugate, by an element in G(k), to a unique
standard parabolic subgroup.

Let us construct the standard parabolic subgroups in combinatorial terms. Let ,® be the
set of positive roots determined by Py. Then we obtain a basis A of ;® as below Lemma [4.3.7

For any subset I C 1A, denote by ®; C 1P the set of roots which are linear combinations
of roots in 1.

Let Ar := (ﬂa/€k<1>1 Kero/) < A. Then the group Lj := Zg(Ar) satisfies

LieL[ = gA —+ Z g(o/)'

a'€LPy

ny = Z 9(a)

/€, @\ Py

The Lie subalgebra of g

defines a unipotent subgroup N; of G which is normalized by Lj, and we have:

Theorem 4.4.6. The product P; := Ny- Ly is a standard parabolic subgroup, with Ny = R (Pr)
and Ly a Levi subgroup of Pr.
Any standard parabolic subgroup of G equals Py for some I C pA.

Moreover, observe that A a k-split torus, which is not contained in Z(Pr). But As is the
maximal k-split torus in Z(Ly).

We close this subsection by the following immediate consequence of the construction above.

Lemma 4.4.7. Assume I CI' C 1 A. Then A; > Ap and Py < Py
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4.5 Horospherical decompositions and Siegel sets

Let (G, X) be a Shimura datum, and X a connected component of X. We will use the following
notation:

G =G g:=LieG%* gp = LieG. (4.5.1)

To ease notation, we will also use X to denote X .
We need to use maximal Q-split (resp. R-split) torus contained in G4, for which we make
the following definition.

Definition 4.5.1. The Q-rank (resp. R-rank) of an algebraic group H defined over Q is the
dimension of the mazimal Q-split torus in H (resp. of the mazimal R-split torus in H ), and is
denoted by rkoH (resp. by rkpH ).

Theorem 4.5.2. The followings are equivalent:
(i) T\X is compact for any arithmetic subgroup T' of GI°*;
(ii) tkoGdr = 0;

(i) Gaer does not contain proper parabolic subgroups.

The equivalence of (ii) and (iii) follows immediately from Theorem and can be read off from
the relative root system construction of parabolic subgroups.

Thus to discuss on compactifications of I'\ X, we may assume erGder > 1 and that Gde*
contains proper parabolic subgroups. In this section, we discuss about the horospherical decom-
position and Siegel sets associated with each proper parabolic subgroup P.

4.5.1 Horospherical decompositions over R

Let P be a parabolic subgroup of G. We start with the discussion for standard parabolic
subgroups, for which we need to fix a maximal R-split torus and a minimal parabolic subgroup
of G. The general case will be reduced to the standard case by Theorem [4.4.5]

Fix z9p € X. Then (SV3) gives a Cartan involution 6 of G which induces the Cartan

decomposition (4.6.2)
gr = O m.

Let Ko := exp() which is a maximal compact subgroup of G(R)"; see Lemma Let a to
be a maximal Lie subalgebra contained in m.

Theorem 4.5.3. There exists a mazrimal R-split torus A in G such that LieA = a.

Proof. First a is abelian since [a,a] CaN[m,m] CmN¢=0. Hence exp: a — exp(a) is an isomorphism
as Lie groups, and thus exp(a) ~ (Rso)" x R® (as Lie groups) for some r,s > 0. This gives rise to an
R-algebraic subgroup A of G with Ay(R)* = exp(a); indeed, Ap(R) ~ (R*)" x R®.

We claim that s = 0. Indeed, for gr . := €& /—1m, we know that exp(gr ) is a compact Lie group,
and hence exp(y/—1a) ~ (T!)" x R® (with T = R/Z) is compact, and hence s = 0.

Thus Ag is an R-split torus in G. It is contained in a maximal torus T" of G defined over R, and
hence T = A - A’ for some algebraic torus A’ defined over R. Then LieA’ N"m = 0 by the maximality of
a in m. One can choose A’ such that LieA’ C ¢, and then A'(R) < Ko which is compact. Hence A’ has
no R-split factor; otherwise R* is a closed subset in A’(R), contradiction to A’(R) being compact. This
finishes the proof. 0
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Thus we have the relative root system r® := ®(A,G) as below (4.4.1). Assign a subset
r®T of positive roots in g® as below Lemma It defines a basis gA of g® (as below

Lemma [4.3.7) and a minimal parabolic subgroup Py of G (as below (4.4.2))).

Remark 4.5.4. An alternative approach to study the theory over R is to use Cartan’s theory
of symmetric spaces and the restricted root system (to R). We shall not take this point of view
in our course to have a uniform treatment over R and over C, but only point out that these two
points of view are equivalent for our study by the the following easy observation: g Nm = a.

Standard parabolic subgroups. Any parabolic subgroup P of G which contains Py is of the
form Py for some subset I C gA, where Py is defined in Theorem [4.4.6. Now Py has unipotent
radical Ny and a Levi subgroup L; = Zg(As). Moreover, A < Z(Lj) since Ay < A. It is not
hard to construct a #-stable subgroup My of L; such that L; = A x M (inner direct product) (7]
Then we have the following real Langlands decomposition based at xo € X

Pr(R)" = N/ (R)A;(R)T M (R) ~ N7 (R) x A7(R)" x My(R) (4.5.2)

where the first equality is as groups, and the second isomorphism is in the category of real
algebraic manifolds (the inverse map is (n,a, m) — nam).

We have more. The reductive subgroup My is #-stable, and thus Ky := M; N K is
maximal compact in M;(R)*. So

X1 :=Mi(R)" /K1 = Pr(R)" /K100 A1(R)* N (R) (4.5.3)
is a symmetric space, called the boundary symmetric space associated with P;. Notice however
X7 may not admit an Mj(R)T-invariant complex structure.

Lemma 4.5.5. P;(R)" acts transitively on X.

Proof. Tt is not hard to check that gg = n @ a @ € with n from (4.4.2). Thus G = NAK,, which is
called the Twasawa decomposition of G. On the other hand, n @& a C LieP; by construction of P;. Hence
NA C P; and we are done. O

Thus X = P;(R)"xg, and by (4.5.2) and (4.5.3) (and n; N € = 0) we then have the following
real horospherical decomposition based at xo € X

X ~ Ni(R) x A;(R)" x X7 (4.5.4)
where the isomorphism is in the category of real algebraic manifolds.

General parabolic subgroups. Now let P be an arbitrary parabolic subgroup of G. By
Theorem [4.4.5] P is conjugate to a unique standard parabolic subgroup P; for some I C pA.
But G = NAK,, and NA C P;. So there exists k € K, such that P = kP;k~!. Define

Np:=kNik™' =R, (P), Ap:=kAk™', Mp:=kMk™ "

Then both Ap and Mp are #-stable, and Lp := ApMp is a Levi subgroup of P, and Ap is an
R-split torus in P. We have the real Langlands decomposition (based at xo € X )

P(R)" = Np(R)Ap(R)" Mp(R) =~ Np(R) x Ap(R)" x Mp(R) (4.5.5)
which induces real horospherical decomposition (based at ¢ € X )
X ~ Np(R) x Ap(R)" x Xp (4.5.6)
with Xp := Mp(R)/(Mp N K) called the boundary symmetric space associated with P.

[ One can construct using Lie algebras: LieM; is the direct sum of LieZg(A) N ¢, Zo/ekqn 9(a’) and the
(orthogonal) complement of LieA; in a.
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4.5.2 Horospherical decompositions over QQ

Before the discussion over Q, let us state the following result.

Let A be a maximal Q-split torus in G9°*. Then we obtain a relative root system o® =
®(A, G as below 1 Assign a subset g®7 of positive roots and thus get a basis A
of g® as below Lemma {4.3.7. Then we get a minimal parabolic subgroup Py of Gder Al
standard parabolic subgroups (i.e. those containing Py) are of the form P; for some I C
04, and every parabolic subgroup P of Gder is conjugate to a unique P; by some element in
Gd°r(Q). We have the unipotent radical N; of P; and a Levi subgroup L; = Zgaer (A7) with
A= (ﬂa,e(@@] Kero/)O < A. Moreover, Ay is the maximal Q-split torus in Z(L;). Notice
that for P = Py, our Arp is a subgroup of the A; constructed in the real case (which is
the maximal R-split torus in Z(L;r)) and is proper if rkgP; < rkgP;. So we need to further
decompose Aj into the product of A;r and an R-algebraic torus A}- whose Q-rank is 0@ For
this purpose, define M; := ﬂx Kery? where y runs over all non-trivial L; — G,,. Then My is
a reductive group with rkgZ(M;) = 0. Then we have Ly = A;M; and A; = A[,RA}-. Denote
by A(Ar,Pr) :==A\ 1.

For an arbitrary parabolic subgroup P of G4¢*, we can conjugate P to be a unique standard
parabolic subgroup P;. Then we obtain the unipotent radical Np of P, the Levi subgroup Lp of
P, the maximal Q-split torus Ap in Z(Lp), and the subgroup Mp = ﬂX Kery? of Lp. Denote
by P :=Pgr, Np := NpR, Lp := LpR,

Ap = AP,R, Mp = MPJR- (4.5.7)

Then we are in conformity with the notation in the real case, while Ap is a subgroup of Ap
which is proper if rtkgP < rkgP. Denote by

A(Ap, P) C X*(Ap) (4.5.8)

to be the conjugate of gA \ 1.
Now we have the rational Langlands decomposition of P

P(R)+ = NP(R)AP<R)+MP(R) ~ NP(R) X AP(R)+ X MP<R) (459)

where the second isomorphism is in the category of real algebraic manifolds.

To get the rational horospherical decomposition, we need to fix a point g € X and the
associated Cartan involution # on G, and require Ap and Mp to be #-stable. To achieve this,
we can work with the Levi quotient P/Np instead of working with the Levi subgroup Lp of P,
and then lift the resulting Ap and Mp to the R-Levi subgroup Lp of P (the one constructed
in the real case) which is #-stable. The resulting groups may not be Q-subgroups of P, but this
is enough for our purpose.

Remark 4.5.6. In fact, it is known that for any P, there exists a base point x1 € X such that
they are still defined over Q.

Let Ko := Stabgg)+ (70). Then MpN Ky, is maximal compact in Mp(R)* by the 6-stability
of Mp. Now (4.5.5) induces the rational horospherical decomposition of X = P(R)"zq

X ~ Np(R) x Ap(R)" x Xp (4.5.10)

[BIThat is, there is no non-trivial subgroup of A7 < G = G which is defined over Q.
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with Xp = Mp(R)"/(Mp N K ) called the boundary symmetric space associated with P.
Moreover, let Aﬁ be the orthogonal complement of Apgr in Ap, i.e. Al% is f-stable with
Ap(R)* = Ap(R)" x A5(R)T. Then

Xp~XpxA5(R)T,  Ap(R)T = Ap(R)" x 45(R)™. (4.5.11)
While A# has Q-rank 0, taking the quotient by I' will roll up the fact Aﬁ(R)‘*‘ into circles and
hence does not interfere with the compactification of I'\ X.

4.5.3 Siegel sets

Let P be a parabolic subgroup of G4¢*. Continue to use the notation in the previous subsections.
For t > 0, define

Ap;:={a€ Ap(R)" : d/(a) > t for all &' € A(Ap, P)} (4.5.12)

with A(Ap, P) defined by (4.5.8).
Definition 4.5.7. For any bounded sets U C Np(R) and V C Xp, the subset

Spuvi:=UxAp; x V C Np(R) x Ap(R)" x Xp ~ X

1s called a Siegel set in X associated with P.

4.6 Analytic boundary components

Let (G, X) be a Shimura datum, and X T a connected component of X. We will use the following
notation:
G =G, g:=LieG%* gp = LieG. (4.6.1)
To ease notation, we will also use X to denote X*. We have shown that X is a Hermitian
symmetric domain; see Theorem [2.3.1.
It is known that under holomorphic isometry, X is isomorphic to an open bounded subset
D in the affine space CN where N = dim¢ X; we shall review this Harish-Chandra realization
later on at the end of Let D be the closure of D in CV under the usual topology (we

sometimes denote it by YBB).
Definition 4.6.1. An analytic boundary component of X is an equivalence class in D

under the equivalence relation generated by x ~ y if there exists a holomorphic map p: {z € C:
|z| <1} — CV such that x,y € Im(p) C D.

Notice that D is a boundary component of X by definition. This definition generalizes the
case where X is the upper half plane, in view of the last sentence of §4.1.1]
It is clear that D is the disjoint union of its analytic boundary components. We shall prove:

Theorem 4.6.2. The action of G(R)* on X ~ D extends to D. For any analytic boundary
component F' of X, its normalizer

N(F):={9€ G(R):gF =F}
is a mazimal proper parabolic subgroup of the Lie group G(R)Y, which means that it equals
P(R) NG(R)™ for a maximal proper parabolic subgroup P of G.

In fact, we will prove a more precise version describing how P is constructed in terms of the
root systems. Moreover, we will prove that the analytic boundary component F' can be identified
with the boundary symmetric space (defined below the real horospherical decomposition )
associated with some parabolic subgroup P’, and explain the relation of P and P’.
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4.6.1 Complex structure on X and the Harish—Chandra realization

Take xg € X which corresponds to hy: S — Gg, and let § = hy(1/—1) be the Cartan involution
on G given by (SV3). We thus have the Cartan decomposition (2.3.2))

g=tdOm (4.6.2)

with € (resp. m) be the eigenspace for 1 (resp. for —1). Notice that [¢, €] C ¢, [¢,m] C m, and
[m, m] C ¢ by looking at the eigenvalues.
Then K := exp(£) is a maximal compact subgroup of G(R)* by Lemma and the real
tangent space of X at zq, denoted by Tr X, can be identified as m.
The element J := ho(e”ﬁ/ 1) satisfies J2 = 1. The action of J on X induces a decomposition
of mg =TrX ®r C
mc=m" om"” (4.6.3)

where J acts by multiplication by v/—1 on m*™ and by —/—1 on m~. Thus the holomorphic
tangent space of X at x can be identified with m*. Moreover, as J acts on Tk X = m, we have
J € exp(t) = Ko, and thus J € Z(K).

Let us recall the Harish—Chandra realization/embedding D of X in Theorem We only
need a brief version: We can identify X with an open bounded subset D of m™. The identification
X ~ D is called the Harish—Chandra realization and the inclusion D C mT is called the Harish—
Chandra embedding. Moreover, it is known that there exists an open holomorphic map m* — XV
which embeds m* as an open subset (in the usual topology) of the complex algebraic variety
XV. So we can summarize into:

X~DCm" C XY, (4.6.4)

Example 4.6.3. In the Siegel case (GSde,Y)di) and the base point xg = \/—11lq, we have
Ko = U(d) = O(2d) N Spyy (and G = Spyy). In this case, m* ~ {1 € Matyxq(C) : 7 = 7'},
and the Harish—Chandra realization is Dy := {Z € Matyxq(C): Z = Z' and I;— ZZ > 0} as in
Ezample [2.5.6]

4.6.2 Complex roots and the Polydisc Theorem

Let T be a maximal torus of G contained in K. Consider the root system ® := ®(7,Gc). We
have the root decomposition

g(C:t(C@®ga

acd

with each g, having dimension 1.

We say that a root « is compact (resp. non-compact) if go C tc (resp. if go C mg). Let
® i be the set of compact roots and ®,; be the set of non-compact roots. One can check that
D=0 UD,,.

Lemma 4.6.4. There exists a choice of positive roots ® such that

=D
m = .
a€@+ﬂ¢h1 ga

The proof uses the complex structure on X, or more precisely the action of J on mg. One
can show that Jg, = go for any non-compact root a.

Definition 4.6.5. Two roots o, 5 € ® are called strongly orthogonal if o + 3 are not roots.
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From now on, we fix a maximal subset of strongly orthogonal root in ®* N ®;;, maximal
under inclusions
U={ag,...,o}. (4.6.5)

This can be done be choosing successively the lowest positive root.
For each a € W, choose a non-zero e, € g, and set e_, to be the complex conjugation on
gc = g®r C of ey. Then e_y, € g_q, and hy :=v/—1[eq, 6—q) € t C £ and is non-zero. Set

gcla] :=Chg + ga + 9—a = Chy + Ceq + Ce_y,. (4.6.6)

Then gcla] ~ slyc, since [ha,eq] = a(exp(ha))eq and [ha,e_o] = —a(exp(hqa))e—q are both
non-zero. Hence
gla] :=gcla) Ng = Rhq + Rz + Ry, >~ slo g

where o = €4 + €_o and yo := vV—1(eq — €_4). Notice that Jz, = yo and Jy, = —x4 by
Lemma and {Zqa, Yo : @ € DT NPy} is an R-basis of m.

For each o € W, let GJa] be the subgroup of G such that LieG[a] = gla]. Let G[¥] be the
subgroup of G with LieG[¥] = > ¢ gla].

Theorem 4.6.6 (Polydisc Theorem). The orbit G[¥|(R)"zg C X is a totally geodesic subman-
ifold which is isomorphic to a Poincaré polydisc D", and X = UkeKoo k- Dol

Recall that gla] ~ sly g for all & € U. Hence the inclusion G[¥](R)"z( C X is induced by a
morphism

¢: SLa(R)" — G(R). (4.6.7)

By general theory on holomorphic maps between bounded symmetric domains, ¢ is the second

factor of a morphism U (1) xSL2(R)" — G(R) satisfying: (e\/jl97 { cos Sine} e [ cos§ SineDH

—sinf  cos@ —sinf cosf

hg(e\/jw).
The Polydisc Theorem is a key step in the proof of the Harish—-Chandra embedding. To
study boundary components, we need to have a finer statement. Let S C {1,...,r} be a subset,

and let G[S] be the subgroup of G with LieG[S] = }_,cg0qa;; in particular G[S] = G[¥] for
S ={1,...,7}. Then the orbit G[S](R)*zo C X is still totally geodesic in X and is isomorphic
to DIS|. We have the following compatibility:

Theorem 4.6.7. For each j € {1,...,r}, the image of G[j](R) zg C X under the Harish-

Chandra embedding is the open unit disc Dj in Ceaj Cmt (with 1€ Dj corresponding to ea].).

The image of G[S](R)Tzg C X under the Harish—Chandra embedding is the open unit polydisc
We finish this subsection by the example of the Siegel case.

Example 4.6.8. In the Siegel case (GSde,Y)iIE) and the base point xg = /—11lsq, we have
Ko =U(d) = O(2d) N Spyy (and G = Spy,). Our mazimal torus is not the usual one, but is

[ costy sinty

. costy sinty
T = bdlag(tl,...,td) = _sinty costy it tg €R

—sinty costy

PlThe Poincaré unit disc D is {z € C: |z| < 1} endowed with the hyperbolic metric, and D" is the r-copy of D.
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Let \j € X*(T) be bdiag(ti,...,tq) — t;. Then ® = {£v/—-1(M+ ;) : 1 <i < j < d}uU
{£V-1i— X)) 1 <i<j<d}and Py N®T ={/—-1(\i + ;) : 1 <i<j<d}. The basis
for this choice of @1 is {/=1(N\i — Nig1) : 1 <i < d—1}U{2v/=1)s}.

The set W is {aj := 2¢/—1X; : 1 < j < d} (sor =d). Then the corresponding normalized
a5 haj, Tays Yo, OTE:
1 1y v—1d+j,j] [ 0 —v —1d+j,j] [1j,j 0 } [ 0 —lawjy
2 [V—Lias; —lgtigril " V144 0 L0 lgwgsi] T [Fhias 0
Here for a number s, we use s;j to denote the matriz with the (i, j)-entry being s and all the
rest being 0.

The extension U(1) x SLa(R)? — G(R) of the morphism ¢ from ([£.6.7) is:

ai b1

aqg bq aq ba
: —
’ |:Cd Sd] ) C1 S1

Cd Sd

4.6.3 Real roots and Cayley transformation

Next we need to study a relative root system over R, for which we need to take a maximal
R-split torus A in G. Our construction is as follows. By definition of strong orthogonality, the

sum
a:= Z Rz,
acV¥
is commutative, and hence is a Lie subalgebra. In fact we have more:

Proposition 4.6.9. a is a mazimal abelian subalgebra of g contained in m.

Thus by Theorem there exists a maximal R-split tours A in G with LieA = a, and
hence we have the relative root system g® := ®(A, G).

Example 4.6.10. In the Siegel case, A is the standard torus {diag(ti,...,tq,—t1,...,—tq) :
t1,...,tq ERX}.

We wish to use the root system ® constructed in to study r®. For this purpose, we
need to conjugate the maximal torus 7' in which is contained in K, to a maximal torus
which contains A. For this purpose, it suffices to find an abelian Lie subalgebra a’ in t C € which
is a conjugate of a. This is the Cayley transformation which we introduce now.

Recall ¥ = {ay, ..., } from is the maximal subset of strongly orthogonal roots in
Ot N®yy, and let h, € t C € be as above (4.6.6). Define

a = Z Rh,, C t.
acV
For each a € U, set Cy 1= exp(mv/—1ya/4) € G(C)[1%] Then Ad(Co)ha = [1V—1ya/4, ha) €
Rzs C a. The Cayley transformation is defined to be:

Ad(Cy): d = q, with Oy = Ha@ Ch. (4.6.8)

(19 Notice that our Yo is well-defined up to scalar. We usually take a normalization in the definition of e, and
ha, and hence z, and yo. Then the resulting C'y will be as in (4.6.9).
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In terms of the morphism ¢: SLa(R)" — G(R) from (4.6.7),

C@zgo(--',\}i[\/l_—l ﬂ) (4.6.9)

Now, a’ gives rise to an R-split torus A’ with LieA’ = d/, and the relative root system ®(A’, Q)
is exactly Int(Cy)*g®. Since A’ < T for the maximal torus T in we can directly compare
® = O(T,G) and Int(Cy)*r® = P'(A,G). More precisely, we can regroup the eigenspace
decomposition gc = tc ® P, cp Ja to be:

dgc = gé/ &) Z Ja/ (4610)
a'€d'(A,G)

with gé’ =a-® Zﬂwo gp and g, = Zﬂe@, grar 98- Here, the equivalence ~ on @ is defined by:
B1 ~ B2 if and only if $1]| 4 = B2|as. This decomposition is defined over R because A’ is R-split.
Applying the Cayley transformation to (4.6.10]), we get the eigenspace decomposition

g=9¢"® > o, (4.6.11)
perd

with each g, being a suitable Ad-conjugate of a suitable g, above.
Finally each o; € ¥ defines a character |4 € X*(A’), and hence a character v; € X*(A)
via the Cayley transformation. We thus have the following set

RY = {1, ..., %} (4.6.12)
Since ¥ C &, we have g0 C r®. In general, we have the following proposition, which is a
consequence of the classification of (real) representations of U(1) x SLy(R)" by analyzing the
action of Weyl groups.
Proposition 4.6.11. Assume X is irreducible as a Hermitian symmetric space, i.e. X cannot be

written as the product of two non-trivial Hermitian symmetric spaces. Then one of the following
possibilities occurs:

- (Type C,) r® = {i%(% + ;) fori>j, j:%(% — ;) fori> j}.

- (Type BC,) r® = {:I:%(’yi + ;) fori>j, :I:%(’yi — ;) fori > j, :l:%’yi}.
If we order the roots such that v1 > ... > 7., then the set of simple roots is:

- (Type Cp) A = {p1:=5(v1 = 72)s - s tr—1 = 5 (V1 — V)5 pir 7=}

- (Type BC,) rA ={u1 := %(’Yl =2y 1 = %(%—1 — W)y b = %%}-

In each case, the simple root u, is called the distinguished root, and is the longest (resp.
shortest) simple root in Type C; (resp. Type BC,).

Example 4.6.12. In the Siegel case, v;j: A — R* is diag(t1,...,tq, —t1,...,—tq) — 2t;, and
we are of Type Cy.
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4.6.4 Standard form of analytic boundary components

Recall the maximal subset of strongly orthogonal roots ¥ = {ay,...,a;} of ®, and the induced
subset g¥ = {v1,...,7%} of r®.
For any S C {1,...,r}, define the Lie subalgebra

lg := Z (Qcp + [9@9—90]) (4.6.13)

per®
¢ is a linear combination of v; with j&S

of g, with each g, the eigenspace of ¢ for the adjoint action of A on g; see (4.6.11]).
Let Lg be the subgroup of G with LieLg = [g. Denote by mJSr =mTNlg.

Proposition 4.6.13. Lg is a semi-simple subgroup of G without compact factors, and
Xg:=Ls(R)Tzg~ Ls(R)"/(Ls(R) N Kw)

18 a sub-Hermitian symmetric domain in X.
Moreover, for the Harish—Chandra realizations D of X and Dg of Xg (see (4.6.4]) ), we have
the following equivariant diagram of symmetric holomorphic maps

DSl xDg— T p (4.6.14)

f
CI¥l x mf —2>m*

(PHIS! % xy —s xv

where D = {z € C: |z| < 1} is the Poincaré unit disc.

Proof. We have the following decomposition of [g ¢ in terms of the complex roots in ® by (|4.6.10))

and (4.6.11)):
[S,(C = Z (Ga + [gou g—a]);

aed, a0
anligs a5

see below (4.6.10) for the definition of ~. Hence [g ¢ is stable under Adhg(e‘/jw), and so
(a) Is=(ENls) & (mNlg),
(b) mc N lsc = m; S mg with mg :=m Nlgc.

Hence Lg is a reductive group and Xg is a sub-Hermitian symmetric domain of X. Better,
Lg is semi-simple without compact factors because it is generated by unipotent elements; see
Theorem (3.a).

For the “Moreover” part, notice that Lg commutes with (modulo center) the subgroup
@([ ;e SL2(R)) for the morphism ¢ from (4.6.7); this is an immediate consequence of the

construction of [g. Hence we are done. O

We state the following theorem without proof. The proof needs the Hermann convexity
theorem.
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Theorem 4.6.14. The boundary components onBB (i.e. the analytic components of X defined
in Definition are precisely the sets the form k- Fs, where k € Ko, S C{1,...,7}, and

Fg :f2(<1771) XDS) gm+
with fa from (4.6.14).

Moreover, for every analytic boundary component F, there are holomorphic symmetric maps

P! gX\/

such that fr(v/—1) = zo and fr(co) € F.

Example 4.6.15. In the Siegel case, r = d. Take the subset S = {d' +1,...,d} C {1,...,d};
then |S| =d —d'. In this case we have

A’ 0 B’ 0
0 I,y O 0 A B
Ls= ' dO D 0 : |:C/ D € Sp2d',R = szd’,Ra
0 0 0 Iy
and Xg ~ Hg with Harish—Chandra realization being Dy . Under the natural identifications
m* >~ {7 € Matgxq: 7 =7} and m} ~ {7’ € Matywq : 7/ = (7')'}, the holomorphic map f is

((ad’—i-l’ ceeyGq), T’) s diag(7’, agry1s - - -5 aq)-

™ 0 ,
([0 e}

Before moving on, let us see a corollary of Theorem [4.6.14] The proof presents an application
of the construction of Fg in Theorem [4.6.14] and given another way (4.6.15)) to write F.

Hence in this case, we have

Corollary 4.6.16. An analytic component of an analytic component of X is an analytic com-
ponent of X.

Proof. Let Dy be an analytic component of X. Theorem [4.6.14] implies that D; = k - Fg for
some k € Ko, and S C {1,...,r}. By Theorem we have

Fs =) Ceq,; + Ds. (4.6.15)
jES

Let Dy be an analytic component of Dy. Then Dy = k - (Zje g Cea]. + D’Q) for some analytic

component D) of Dg. Theorem {.6.14| implies that D) = k' - (ZieS’ Ceq; + DSUS/) for some
KFeLsNKygand S"C{1,...,r}\S. So

Dy=kk | Y Ceqo, +Dsug | =kK - fo((1,...,1) x Dgug) = kK- Fsusr
jeSUS’

which by Theorem [4.6.14]is an analytic component of X. O
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