Chapter 3

Shimura data and Shimura varieties

3.1 Basic definitions

3.1.1 Shimura data
Definition 3.1.1. A Shimura datum is a pair (G, X) where

- G is a reductive group defined over Q,
- X is a G(R)-orbit in Hom(S, Gr)
such that for one (and hence all) h € X, we have
(SV1) the Hodge structure Ad o h on LieG has type (—1,1) + (0,0) + (1,—1),

(SV2) Int(h(v/—1)) is a Cartan involution of G&J,

(SV3) for every Q-simple factor H of G4, the morphism S LN Gr — Hg is non-trivial.

A (Shimura) morphism between two Shimura data p: (G', X') — (G, X) is a morphism p on
the underlying groups such that poh € X for all h € X'. In particular, we call the image of
such a Shimura morphism to be a sub-Shimura datum of (G, X).

The main difference of a Shimura datum and the pair (G, X™) from is the definition
field of the group (over @ or over R). A similar assumption to (SV3) for (G, X*) has been
discussed in Remark[2.3.3, By Theorem|[2.3.1} each connected component X+ of X is a Hermitian
symmetric domain (and the complex structure on X is G(R)-invariant). By Proposition [1.3.5]
each representation V of G gives rise to a Q-VHS on X by (SV1), which furthermore carries
R-polarization by Proposition m and (SV2)/!

The following two further assumptions guarantee that this Q-VHS carries a Q-polarization.
Notice that they may not be satisfied by an arbitrary Shimura datum.

(SV4) the morphism wyp: Gy r — Z(G)r is defined over Q,
(SV2’) Int(h(v/—1)) is a Cartan involution of Gr/wy(GmR).

Example 3.1.2 (0-dimensional Shimura datum). The set X is a finite set if and only if G is
abelian (and hence an algebraic torus). This case shows up when we study CM abelian varieties.

[1(SV1) implies that wp: Gm — S 2y Gg factors through Z(G)gr, so we can apply Proposition m
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Example 3.1.3 (Siegel Shimura datum). Let us take the example of the Siegel case from FEu-
ample except that the vector space and the groups are defined over Q. More precisely,

V=0Qand : V xV = Q is (x,y) — 2t Ty with J = [ OI Iod] The Q-group is
—1d

GSp(¢) = GSpyy := {g € GL(V) : ¥(gz, gy) = c(x,y) for some c € Q*}
={g € GLaag : gJg" = ¢J for some c € Q*},

and ho: S — GSpygr maps a + by/—1 + alag + bJ. The derived subgroup is Sp(v)) = Spay by
requesting the ¢ € Q* in the definition to be 1.
The G(R)-orbit is GSpyy(R)ho € Hom(S, GSpyyr). Under the identification similar to

(2.3.1), we have

GSp,y(R)hg = 9 = {7 € Mataxq(C) : 7 = 7*, either ImT > 0 or Imr < 0}. (3.1.1)

Then (GSde,ﬁdi) is a Shimura datum by Example (see Remark;for (SV3)). It
is called the Siegel Shimura datum. Moreover, (SV/) and (SV2’) are easily seen to be also

satisfied. In fact, V is a representation of GSpyy, and ¢ is the desired Q-polarization on the
induced Q-VHS.

Next we present an example where (SV4) and (SV2’) are not satisfied. We also see in this
example that two Shimura data may have the same underlying R-group and the same underlying
space, but the Q-groups are different.

Example 3.1.4 (Shimura curves). Let B be a simple quaternion algebra over a totally real
number field F'. Assume that B is split at exactly one real place of F, i.e. there exists a real
embedding o: K — R such that

BU ~ {MQ(R) z'fo* = 00

H otherwise

for all read embeddings o: K — R, where H is the Hamilton quaternion algebra over R.
Define the Q-group G

G(R) := (B®g R)*  for all Q-algebra R,

and let
ho: S — Gr ~ GLog x H* x -+ x H*, a+bv—1— ([_ab Z],l,...,l).

Thus all but the first components of G(R)hg are the identity map, and so G(R)hg C Hom(S, Gg)
is isomorphic to T, via an isomorphism similar to (with d = 1). Both (SV1) and (SV2)
hold true for the pair (G,Jﬁli) similarly to the Siegel case. To see (SV3), it suffices to observe
that G* is a simple group because B is a simple quaternion algebra over F.

So (G, 9T) is a Shimura datum. However, if [F : Q] > 1, then (SV4) and (SV2’) do not
hold true, by looking at the action of Aut(R/Q).

And even in the case F = Q, the group G is not necessarily GLa. So (G,ﬁf) needs not be
the Siegel Shimura datum in this case.
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3.1.2 Shimura varieties

Denote by Ay C HpeMQ,f Qp the ring of finite adeles over QQ, and by 7 = [1Z,. Then Zis a
(maximal) compact open subgroup of Af, and Q is dense in Ag.

Let (G, X) be a Shimura datum. Then G(Q) acts on X by definition of Shimura data, and
consider the action of G(Q) on G(A¢) by multiplication on the left.

Definition 3.1.5. Let (G, X) be a Shimura datum. A Shimura variety is a double coset
Shr (G, X) = G(Q)\X x G(Ay)/K

where K C G(A¢) is a compact open subset. Here G(Q) acts on both X and G(A¢) on the left
as above, and K acts on G(Ag) by the multiplication on the right; i.e. q(x,g)k = (q- x,qgk) for
all g € G(Q), (z,9) € X x G(A¢) and k € K.

We will prove in this course that the double coset Shx (G, X) is the set of C-points of an
algebraic variety. This justifies the name of Shimura variety.

Example 3.1.6. In the Siegel example above, the group GSpyy is defined over Z; indeed we
can take V to be Z2% and 1 maps V x V to Z. Then GSpyy(Z) is a compact open subgroup
of GSpyy(Af). Other compact open subgroups include gKg=' for any g € GSpyy(A¢) and any
finite-indexed subgroup K of GSde(z). We will come back to this example in and prove
that the Siegel Shimura varieties are moduli spaces of abelian varieties.

Definition 3.1.7. A (Shimura) morphism [p|: Shg/(G', X’) — Shg (G, X) between two
Shimura varieties is a morphism of Shimura data p: (G', X') — (G, X) such that p(K') C K.

Example 3.1.8. Let Shi (G, X) be a Shimura variety.

Let K' C K be another compact open subgroup of G(Ag). Then the identity map on (G, X)
induces a Shimura morphism Shi/ (G, X) — Shi (G, X), with finite fibers since K' must have
finite index in K. In fact, this is finite morphism in the category of algebraic varieties.

Let g € G(Af). Then gKg~' is a compact open subgroup of G(A¢), and we have a Shimura
morphism [g-]: Shypg-1(G, X) — Shx (G, X), sending [z,9'] = [x,9g']. More generally, if K'
is a compact open subgroup of G(As) such that K' C gKg~ !, then we have a Shimura morphism
[9:]: Shg/ (G, X) — Shi (G, X) which is a finite morphism.

Example 3.1.9 (Hecke operator). Let Shi (G, X) be a Shimura variety.

Any g € G(Ay) induces a correspondence on Shi (G, X) as follows. Write K' := KNgKg™*
for simplicity; it is a compact open subgroup of G(A¢) and K' C gKg~'. We have Shimura
morphisms

Shi/ (G, X)
o] (1]

Shi (G, X) Sh (G, X)

where the right one is induces by identity on (G, X). Both are finite morphisms, so we have
a correspondence on Shi (G, X), which is called the Hecke correspondence/operator and
denoted by T,.

Definition 3.1.10. Let Shg (G, X) be a Shimura variety. We call any irreducible component
of (Ty o [p])(Shg/(G', X")), where [p] is a Shimura morphism and g € G(Ag), to be a special
subvariety of Shx (G, X). A special subvariety of dimension 0 is called a special point.

Of course in the definition of special subvarieties, it suffices to consider the Shimura mor-
phisms arising from sub-Shimura data of (G, X). Thus special points arise from sub-Shimura
data (T, Xt) of (G, X) where T is an algebraic torus.
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3.2 Decomposition of Shimura varieties into Hermitian locally
symmetric domains

Let (G, X) be a Shimura datum. Then any connected component X is a Hermitian symmetric
domain. Fix one such X .

Let K be a compact open subgroup of G(A¢). Then we have a Shimura variety Shi (G, X)
defined as the double coset G(Q)\X x G(A¢)/K. We wish to prove that this double coset is the
C-points of an algebraic variety.

In this section, we start with the first step, by endowing Shg (G, X) with a structure of
complex varieties.

Theorem 3.2.1. There exists a finite-indexed subgroup K' of K such that

Shi (G, X) ~ | |To\X T, (3.2.1)
geC

for a finite set C C G(Ay), with each Ty a torsion-free discrete group acting on X .

The actual decomposition will be given later on ([3.2.3), where the definitions of C and
I'y are given. At this stage, let us make the following observation: since I'; is torsion-free
discrete, the quotient I';\X ™ has a natural structure of complex manifolds and even more is
a Hermitian locally symmetric domain. So Shg/(G, X) is a finite disjoint union of Hermitian
locally symmetric domains. As for Shx (G, X), the finite-to-1 map Shg/ (G, X) — Shg (G, X)
then makes Shi (G, X) into a finite union of complex orbifolds.

3.2.1 Two approximation theorems for algebraic groups
Let H be an algebraic group defined over Q. We will use the following approximation theorems.
- (Real Approzimation) H(Q) is dense in H(R).
- (Strong Approzimation) If H is semi-simple and simply-connected, then H(Q) is dense in
H(As).
The definition of “simply-connected” will be recalled later in

3.2.2 Preparation and adjoint Shimura data

Now let us introduce the adjoint Shimura datum (G*4,X) of (G, X). Take h € XT. Then h
induces a morphism

7S Gr - G,
Hence we obtain a Gf(R)—orbit X := G*(R)h in Hom(S, G&%), with a natural map X — X.
The image of X' in X is connected, and the following lemma (applied to G = G(R)) easily

implies that this image is again a connected component of X. So by abuse of notation, we will
also use X' to denote a connected component of X.

Lemma 3.2.2. For any algebraic group G over R, the adjoint quotient Gt — (G is surjec-
tive when restricted to the identity component.

PlHere is a background for this lemma. Let p: H — HL be a morphism of algebraic groups defined over k.
Assume char(k) = 0. Then ¢ is called surjective if p(H(k)) = H'(k). If o is surjective, it may happen that
G(H(K)) # H' (k)!
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We omit the proof of this lemma. Define

G(R) := inverse image of G*(R)" in G(R)
G(Q); = G(Q) N G(R);. (3.2.2)

Lemma 3.2.3. G(R), is the stabilizer of X+, i.e. G(R)y = {g€ G(R) : gXT = XT}.
With Lemma [3.2.3] we can complete our more precise version of (3.2.1):

Shx (G, X) ~ | ] rA\XT, (3.2.3)
[91€G(Q)+\G (41) /K

with I'y := gK g ' N G(Q)4; replacing K by a suitable finite-indexed subgroup K’ guarantees
that T'y is torsion-free, see The finiteness of the double coset G(Q)+\G(Af)/K will be
proved in §3.2.5; the proof uses the Strong Approzimation Theorem.

Proof of Lemma[3.2.3. Consider the action of G*(R) on X, and recall that X is a connected component
of X. It suffices to prove that G*(R)* = {g € G*(R) : gXT = X*}. This follows from general theory
of Hermitian symmetric domains (and some knowledge on R-algebraic groups v.s. real Lie groups) which
we will not cover in this course. O

3.2.3 Proof of (3.2.3

We start by showing that there is a bijection
G(Q) \XT x G(A;) = G(Q)\X x G(Ay), [z, g] — [z, g]. (3.2.4)

Injectivity: Assume (z,9), (z',¢') € X+ x G(Af) are mapped to the same point on the right
hand side. Then there exists ¢ € G(Q) such that (2, ¢') = q(x,g) = (¢z,qg). Hence ¢XT N X+t
is non-empty as it contains gz = 2’. So ¢X* = X*. So ¢ € G(R);+ N G(Q) = G(Q)4. This
proves the injectivity of the map above.

Surjectivity: Assume (z,9) € X x G(Af). By the Real Approzimation in G(Q)x
is dense in G(R)z = X. So G(Q)z N X+ # 0, and hence there exists ¢ € G(Q) such that
qr € X*. Then (qz,q9) € X x G(A¢), and its image under is [z, g]. We are done for
the surjectivity of .

Now let us prove the bijectivity of the map

| ] TAXT = GQ)\X' x G(A)/K, Ty [z,g] (3.2.5)
[91€G(Q)+\G(Ar) /K

Injectivity: If [2/, ¢'] = [z, g], then (qz, qgk) = (2/,¢’) for some g € G(Q)+ and k € K. So [¢g] =
[¢'] in G(Q)+\G(Af)/K. Hence it suffices to prove the injectivity of [\ X — G(Q)4+\ X x
G(A¢)/K. Now if [2/,g] = [z, g], then (qz,qgk) = (', g) for some ¢ € G(Q)4+ and k € K. So
q=gk g7l € gKg~'. Soqe Ty =gKg'NG(Q);+. Thus we have proved the injectivity of
B25).

Surjectivitity: Let [z, g] be an element of the right hand side. Then it is the image of T'y.

We have thus proved (3.2.3). O
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3.2.4 Torsion-free subgroup

Here is a choice of K’ so that gK’¢g~! N G(Q) is torsion-free for all g € G(A¢). Take a faithful
representation V of G. Then there exists a lattice L in V' such that L:=1 Rz Z is fixed by
K. Equivalently, we are embedding G as a closed subgroup of GLy over QQ such that K is a
subgroup of GLN(z). Let £ > 3 be an integer. Take K’ to be the subgroup of K which acts
trivially on L /EE, or equivalently

K':={ge K <GLN(Z): g= Iy mod (}.

Then any element v € T'y := gK'¢g7' N G(Q); < GL(V) acts trivially on ﬁ/fﬁ, so all the
eigenvalues of y are 1 (as they are 1 modulo £ > 3). So v = 1 if v is torsion. So Iy is torsion-free.
3.2.5 The group of connected components of a Shimura variety

In this subsection, we prove the finiteness of the double coset G(Q)4+\G(A¢)/K. This finishes
the proof of Theorem and shows that mo(Shx (G, X)) ~ G(Q)+\G(Ar)/K.

Case: simply-connected derived subgroup

The result in this case is better, with a clear understanding of the group mo(Shx (G, X)). Con-
sider the short exact sequence of QQ-groups

1G5 G-T:=G/G¥ > 1
with T an algebraic torus defined over Q.

Definition 3.2.4. An algebraic group H defined over a field k of characteristic 0 is said to be
simply-connected if any central isogeny H' — H (i.e. a surjective morphism whose kernel is
finite and contained in the center of H') is an isomorphism.

Theorem 3.2.5. Assume G is simply-connected. Then v(G(Q)y) has finite index in G(Q),
v(K) is a compact open subgroup of T(At), and v(G(Q)+)\T(As)/v(K) is a finite abelian group.
Moreover, v induces a natural isomorphism of groups

7o(Shic(G, X)) = v(G(Q)+)\ T (A7) /v(K).
Before proving this theorem, we point out without proof that
v(G(Q)+) = T(Q) Nv(Z(G)(R)) = T(Q)". (3.2.6)

Proof. General theory of semi-simple simply-connected Q-groups asserts that G4°"(R) is con-
nected. Therefore GI'(R) stabilizes X+ and hence is contained in G(R); by Lemma
So G'(Q) € G(Q),. By the Strong Approximation Theorem from §3.2.1L G4°r(Q) is dense in
Gder(A¢). Hence

GT(Ap) = GI(Q) - (K NG (Af)) € G(Q)4 - (K N GIT(Ag)). (3.2.7)

Because G is simply-connected, the short exact sequence of groups above Theorem
induces a short exact sequence

1 — G (Af) = G(Af) 5 T(Af) — 1.
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Here we use the knowledge on semi-simple simply-connected Q-groups that H 1(Qp, Gder) =0
for any prime p.
Now v induces a map

G(Q)+\G(Ar)/K = v(G(Q))\T(Ar) /v (K), (3.2.8)

which, by (3.2.7), is a bijection. The right hand side is an abelian group because T is an algebraic
torus (hence abelian).
Now to prove the theorem, it remains to prove:

(i) »(G(Q)) has finite index in T(Q).
(ii) v(K) is a compact open subgroup of T(Ay).
(iii) The right hand side of (3.2.8)) is finite.

Let us prove (i). The Hasse Principle for simply-connected Q-groups says that the natural map
HY(Q,Gd) = T] HY(Q,, GY") = HY(R,G9) is injective; here we used again the fact
that H!(Q,, GI) = 0 for any prime number p (as G4 is furthermore semi-simple). So by the
diagram

p<o0

I @ (Q) — G(Q) — T(Q) — H'(Q, &™)
1 — G (R) — G(R) T(R) H'(R, Gdr)

we get that T(Q)/v(G(Q)) — T(R)/v(G(R)) is injective. But v(G(R)*) = T(R)". So
T(R)/v(G(R)) is finite, and hence T(Q)/v(G(Q)) is finite. This establishes the claim.

For (ii), we extend G — T to a morphism of group schemes over Z[1/N] for some integer
N, and prove that G(Z,) — T(Z,) is surjective for almost all prime p. We first work on F,, and
then list using an argument similar to Newton’s Lemma. We omit this proof.

Now we prove (iii). It suffices to prove that T(Q)\T(A¢)/v(K) is finite, and up to replacing
v(K) by a smaller compact open subgroup we may assume v(K) C T(Z) As [T(Z) :v(K)] is
finite (since T(Z) is compact and v(K) is open), it suffices to prove that

T(Q)\T(Ar)/T(Z)

is finite. This is exactly the class group of the algebraic torus T which is known to be finite
by classical theory (and this number is called the class number of T). In the case where T =
Resg/gGm for a number field K, this is exactly the class group of K. O

General case

Let G be the universal cover of Gaer e G is simply-connected with a central isogeny (surjective
with finite kernel contained in the center) u: G — G%. Then we have a surjective morphism
of Q-groups

0: G :=Z(G)x G = G, (z,9) — zu(g)
which is a central isogeny. Thus to prove the finiteness of G(Q)\G(A¢)/K, it suffices to prove
the finiteness of

G/(Q)\G'(Ar) /K"
for K’ a compact open subgroup of G/(Ag). But the derived subgroup of G’ is G which is

simply-connected. So we are back to the previous case, and hence G'(Q)\G'(Af)/K’ is finite.
So G(Q)\G(A¢)/K is finite.
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3.2.6 An upshot of Theorem [3.2.1] on special subvarieties

Special subvarieties of Shi (G, X) can be better understood via Theorem as follows. Let
S be a special subvariety of Shy (G, X), arising from the sub-Shimura datum (G’, X') C (G, X)
and the Hecke operator given by g € G(Ay). Then under the decomposition , S is
the image of u((X’)") under the uniformization u: X* — T',)\X™ for the suitable connected
component (X’)* of X’. Moreover, the sub-Shimura data can be constructed as follows. Take
h € X, and let MT(h) be the smallest Q-subgroup of G such that h: S — Gpg factors through
MT(h)g. Then take G’ := MT(h) and X' := G'(R)h.

3.3 Siegel modular variety

Take the example of Siegel case in Example and Example [3.1.6. In particular V = Q%¢,

v VxV =Qis (z,y) — 2" Jy with J = [ (} {)d . Thus there is a lattice L in V' such that
—14q

1 restricts to L x L — Z. To simplify notation, denote by L = V(Z).
The Siegel Shimura datum is (GSde,ﬁf). For each N, set

K(N) := {g € GSpyy(As) : gV(Z) C V(Z) and acts trivially on V(z)/NV(z)}

= {g € GSde(Z) :g=1Iyy (mod N)}
Then we have the Shimura variety ShK(N)(Gszd,ﬁéc).

Theorem 3.3.1. Assume N > 3. Then ShK(N)(GSde,YJg) is the fine moduli space of princi-
pally polarized abelian varieties of dimension d with a level-N -structure, i.e. there is a canonical
bijection between

- the C-points of ShK(N)(GSde,Y)f),

- and the isomorphism classes of the triples (A, \,nn) where A is a complex abelian variety
of dimension d, X\ is a principal polarization on A, and ny is a level-N -structure on A.

When N = 1,2, the Shimura variety is a coarse moduli space.
Let us explain the meaning of this theorem. Let A be an abelian variety defined over C.

(i) A principal polarization on A is a polarization on the Hodge structure H;(A,Z) with
determinant 1, i.e. an alternating pairing \: Hy(A,Z) x H1(A,Z) — Z, which under

suitable Z-basis of H1(A,Z) is [ 0 la

7 0]. In more geometric terms, it is an isomorphism
—1d

A A S AV

(ii) A (symplectic) level-N -structure on A is a basis of Hy(A,Z/NZ) which is symplectic with
respect to A. In more geometric terms, it is a basis of the Z/NZ-module A[N] which is

symplectic under ey : A[N] x A[N] LGN A[N] x AVIN] — pn where last map is the Weil

pairing. Or more concretely, it is an isomorphism

nv: AN] = Hy(A,Z/NZ)
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such that the two composites

A[N] x A[N] "N b (A, Z/NT) x Hy(A,Z/NZ) 2 7/NZ
en ez’f\/jl“/NH[a]
and  A[N] x A[N] % py 720 7 N7,

differ from the multiplication by an element in [¢] € (Z/NZ)*, and we say that this
level-N-structure has twist [(].

Proof. Recall that each point in ﬁdi parametrizes a Q-Hodge structure on V' of type (—1,0) +

(0,—1); see
We shall use Theorem and the more precise version (3.2.3)), and better, Theorem
because Spy, is simply-connected. One can compute that GSpy,(R)y = GSpyy(R)T = {g €

GSpyy(R) : det(g) > 0}. So GSpyy(Q)+ = {g € GSpy,(Q) : det(g) > 0}. Thus for the quotient
1 — Spyy — GSpyy = Gy — 1,

1

we have v(GSp,q(Q)+) = Q>0 It is not hard to compute that v(K(N)) = {z € Z: 2
(mod N)} =1+ NZ. Thus

7o (Shyc(n)(GSPag: 7)) ~ Qs0\AF /(1 + NZ) ~ (Z/NZ)*.

Write T'j\$7 for the connected component of ShK(N)(GSde,ﬁj) indexed by [¢] € (Z/NZ)*.
Below we only give the constructions of the two directions, without proving that they are inverse
to each other.

Given a triple (A, A\, 7y). Assume that the level-N-structure has twist [¢(] € (Z/NZ)*. First
H,(A,Z) is a Z-Hodge structure of type (—1,0)+ (0, —1), and hence under suitable isomorphism
(H1(A,Z),\) =~ (V(Z),1) we obtain a point 7 € $}. Then we get a point in Fm\f); as the
image of 7 under ﬁj — Ty \55:{.

Conversely let z € Fm\ﬁ:{. Let 7 be a pre-image of z under the quotient 55:{ — Ty \Y)j.
Recall that 7 parametrizes a Q-Hodge structure on V of type (—1,0) + (0,—1), and thus we
can endow V(R) with a complex structure by the bijection V(R) C V(C) — V(C)/V> . This
makes A, := V(R)/V(Z) into a compact complex torus of dimension d, with Hy(A,,Z) = V(Z).
Thus v induces a principle polarization via Hi(A;,Z). Hence A, is an abelian variety with a
principal polarization which by abuse of notation we still use 1 to denote. The level- N-structure
on A, is given as follows. We have A.[N] = XV (Z)/V(Z) = V(Z)/NV(Z) = V(Z/NZ). Take
g € GSpyy(Z) such that v(g) € Z* is congruent to £ modulo 1 + NZ. Then g induces an
isomorphism g: V(Z/NZ) = V(Z/NZ). But V(Z/NZ) = V(Z/NZ) = Hy(A,,Z/NZ). Thus
we have A.[N] = V(Z/NZ) = V(Z/NZ) % V(Z/NZ) = Hi(A,,Z/NZ). This is the desired
level-N-structure because ¥ (gx, gy) = v(g)¥(x,y) by definition of GSpy,. O

More generally, we can take any symplectic pairing ¥ on V, ie. ¥:V xV — Q is
non-degenerate bilinear anti-symmetric. Then we have the symplectic group GSp()) which
is the subgroup of GL(V') preserving ¢ (up to a number in Q*) and a GSp(¢)(R)-orbit
in Hom(S, GSp(¢))r) which can still be identified with Jﬁj This gives a Shimura datum
(GSp(w),ﬁf). The associated Shimura varieties are then moduli spaces of abelian varieties
polarized by 1 of dimension d with suitable level structures.

Bln fact v(g) = (det g)'/<.
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Definition 3.3.2. A Shimura variety is called a Siegel modular space if the associated
Shimura datum is isomorphic to (GSp(w),,ﬁf) for some v and d as above.

A Shimura variety Shi (G, X) is called of Hodge type if there exists an injective Shimura
morphism (G, X ) — (GSp(lﬁ),f)flE).

A Shimura variety is called of abelian type if it admits a finite covering (as an algebraic
variety) by a Shimura variety variety of Hodge type.

By the construction in §3.2.6] and Proposition Shimura varieties of Hodge type are
moduli spaces of abelian varieties A with some prescribed Hodge tensors of H;(A, Q).

Shimura varieties of abelian type can be detected purely on the underlying group G, and
they may not parametrize abelian varieties. As an example, all Shimura varieties associated
with the Shimura data from Example are of abelian type, but they do not parametrize
abelian varieties unless F' = Q.

3.4 CM abelian varieties and special points

Let Shi (G, X) be a Shimura variety. In Definition[3.1.10]we defined special points on Shx (G, X).
They are of particular importance. For example, there exists a natural number field E(G, X),
called the reflex field of (G, X), on which Shx (G, X) is “naturally” defined (or in more vigorous
terms, has a canonical model), characterized by the action of the Galois group of E(G, X). This
action is explicitly defined for special points on Shx (G, X) via the class field theory, and is
uniquely determined in this way by the following theorem whose proof we omit:

Theorem 3.4.1. The set of special points is dense in Shg (G, X).

Here “dense” is true even for the usual topology. The hard part of this theorem is to prove
the existence of one special point. Indeed, assume Shg (G, X) ~ | [T,\X* has a special point
[]. Then its inverse image x in X gives rise to a morphism z: S — Gg which factors through
Tg for an algebraic torus T < G. But then the morphism given by ¢ -z for any g € G(Q)
factors through (¢Tg~!)r, with gTg~! clearly an algebraic torus in G (since it is abelian), and
hence defines a Shimura datum (¢gTg~ !, g T(R)z). But T(R)x is a finite set of points since T
is abelian. So the image of G(Q)z under the quotient X — T')\ X consists of special points
of Shg (G, X). Notice that XT = G(R)"z. Now it suffice to use the Real Approximation that
G(Q) is dense in G(R) to conclude.

For the existence of special points, we shall focus on the Siegel modular variety, for which
we have:

Theorem 3.4.2. Take [z] € ShK(GSde,ﬁf)(C). Then [x] is a special point if and only if
the abelian variety A, parametrized by [z] is CM, i.e. End(A,) ®z Q contains a commutative
Q-subalgebra of dimension 2d. Equivalently, an abelian variety A defined over C is CM if and
only if the Mumford—Tate group of the Q-Hodge structure Hy(A, Q) is an algebraic torus.

We will not give a full proof of this theorem, but only recall the definition of CM abelian
varieties and give a brief explanation why the associated Mumford—Tate group (which we call
the Mumford-Tate group of A) is an algebraic torus.

Assume A is a simple abelian variety. Then A is CM if and only if F := End(A4) ®z Q is a
CM field, i.e. there exists a totally real field F' such that E/F is a totally imaginary quadratic
extension. Write U for the complex conjugation with respect to E/F. Then there exists an
element « € E such that 7 = —¢ (totally imaginary element). Then F can be endowed with the
Q-symplectic form

(z,y) := Trgp(Twy).
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This makes (E, (,)) ~ (Q%*, (} {]d]) into a symplectic space. Set GUpg to be the subgroup
—4d

of GSpy, generated by Gy, = Z(GSpy,) and
Up:={z € Resg/qGm @ 2T = 1}.

Then one can check that GUF is an algebraic torus which contains the Mumford—Tate group
of A. Thus the Mumford—Tate group of A is abelian, and hence must be an algebraic torus. In
fact, one can check that GUpg is a maximal torus of GSp,,.
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