
Chapter 3

Shimura data and Shimura varieties

3.1 Basic definitions

3.1.1 Shimura data

Definition 3.1.1. A Shimura datum is a pair (G, X) where

- G is a reductive group defined over Q,

- X is a G(R)-orbit in Hom(S,GR)

such that for one (and hence all) h → X, we have

(SV1) the Hodge structure Ad ↑ h on LieG has type (↓1, 1) + (0, 0) + (1,↓1),

(SV2) Int(h(
↔
↓1)) is a Cartan involution of Gad

R
,

(SV3) for every Q-simple factor H of Gad, the morphism S
h
↓↗ GR ↗ HR is non-trivial.

A (Shimura) morphism between two Shimura data ω : (G→, X →) ↗ (G, X) is a morphism ω on
the underlying groups such that ω ↑ h → X for all h → X →. In particular, we call the image of
such a Shimura morphism to be a sub-Shimura datum of (G, X).

The main di!erence of a Shimura datum and the pair (G,X+) from §2.3 is the definition
field of the group (over Q or over R). A similar assumption to (SV3) for (G,X+) has been
discussed in Remark 2.3.3. By Theorem 2.3.1, each connected componentX+ ofX is a Hermitian
symmetric domain (and the complex structure on X is G(R)-invariant). By Proposition 1.3.5,
each representation V of G gives rise to a Q-VHS on X+ by (SV1), which furthermore carries
R-polarization by Proposition 2.2.6 and (SV2).[1]

The following two further assumptions guarantee that this Q-VHS carries a Q-polarization.
Notice that they may not be satisfied by an arbitrary Shimura datum.

(SV4) the morphism wh : Gm,R ↗ Z(G)R is defined over Q,

(SV2’) Int(h(
↔
↓1)) is a Cartan involution of GR/wh(Gm,R).

Example 3.1.2 (0-dimensional Shimura datum). The set X is a finite set if and only if G is
abelian (and hence an algebraic torus). This case shows up when we study CM abelian varieties.

[1](SV1) implies that wh : Gm
w→↑ S

h→↑ GR factors through Z(G)R, so we can apply Proposition 2.2.6.
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Example 3.1.3 (Siegel Shimura datum). Let us take the example of the Siegel case from Ex-
ample 2.3.1, except that the vector space and the groups are defined over Q. More precisely,

V = Q
2d and ε : V ↘ V ↗ Q is (x, y) ≃↗ xtJy with J =

[
0 Id

↓Id 0

]
. The Q-group is

GSp(ε) = GSp2d :=
{
g → GL(V ) : ε(gx, gy) = cε(x, y) for some c → Q

↑
}

=
{
g → GL2d,Q : gJgt = cJ for some c → Q

↑
}
,

and h0 : S ↗ GSp2d,R maps a+ b
↔
↓1 ≃↗ aI2d + bJ . The derived subgroup is Sp(ε) = Sp2d by

requesting the c → Q
↑ in the definition to be 1.

The G(R)-orbit is GSp2d(R)h0 ⇐ Hom(S,GSp2d,R). Under the identification similar to
(2.3.1), we have

GSp2d(R)h0
↓
↓↗ H

±

d :=
{
ϑ → Matd↑d(C) : ϑ = ϑ t, either Imϑ > 0 or Imϑ < 0

}
. (3.1.1)

Then (GSp2d,H
±

d ) is a Shimura datum by Example 2.3.1 (see Remark 2.3.3 for (SV3)). It
is called the Siegel Shimura datum. Moreover, (SV4) and (SV2’) are easily seen to be also
satisfied. In fact, V is a representation of GSp2d, and ε is the desired Q-polarization on the
induced Q-VHS.

Next we present an example where (SV4) and (SV2’) are not satisfied. We also see in this
example that two Shimura data may have the same underlying R-group and the same underlying
space, but the Q-groups are di!erent.

Example 3.1.4 (Shimura curves). Let B be a simple quaternion algebra over a totally real
number field F . Assume that B is split at exactly one real place of F , i.e. there exists a real
embedding ϖ : K ↗ R such that

Bω ⇒

{
M2(R) if ϖ = ϖ0

H otherwise

for all read embeddings ϖ : K ↗ R, where H is the Hamilton quaternion algebra over R.
Define the Q-group G

G(R) := (B ⇑Q R)↑ for all Q-algebra R,

and let

h0 : S ↗ GR ⇒ GL2,R ↘H
↑
↘ · · ·↘H

↑, a+ b
↔
↓1 ≃↗

([
a b
↓b a

]
, 1, . . . , 1

)
.

Thus all but the first components of G(R)h0 are the identity map, and so G(R)h0 ⇐ Hom(S,GR)
is isomorphic to H

±

1 , via an isomorphism similar to (3.1.1) (with d = 1). Both (SV1) and (SV2)
hold true for the pair (G,H±

1 ) similarly to the Siegel case. To see (SV3), it su!ces to observe
that Gad is a simple group because B is a simple quaternion algebra over F .

So (G,H±

1 ) is a Shimura datum. However, if [F : Q] > 1, then (SV4) and (SV2’) do not
hold true, by looking at the action of Aut(R/Q).

And even in the case F = Q, the group G is not necessarily GL2. So (G,H±

1 ) needs not be
the Siegel Shimura datum in this case.
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3.1.2 Shimura varieties

Denote by Af ⇐
∏

p↔MQ,f
Qp the ring of finite adèles over Q, and by Ẑ :=

∏
Zp. Then Ẑ is a

(maximal) compact open subgroup of Af , and Q is dense in Af .
Let (G, X) be a Shimura datum. Then G(Q) acts on X by definition of Shimura data, and

consider the action of G(Q) on G(Af) by multiplication on the left.

Definition 3.1.5. Let (G, X) be a Shimura datum. A Shimura variety is a double coset

ShK(G, X) := G(Q)\X ↘G(Af)/K

where K ⇐ G(Af) is a compact open subset. Here G(Q) acts on both X and G(Af) on the left
as above, and K acts on G(Af) by the multiplication on the right; i.e. q(x, g)k = (q · x, qgk) for
all q → G(Q), (x, g) → X ↘G(Af) and k → K.

We will prove in this course that the double coset ShK(G, X) is the set of C-points of an
algebraic variety. This justifies the name of Shimura variety.

Example 3.1.6. In the Siegel example above, the group GSp2d is defined over Z; indeed we
can take V to be Z

2d and ε maps V ↘ V to Z. Then GSp2d(Ẑ) is a compact open subgroup
of GSp2d(Af). Other compact open subgroups include gKg↗1 for any g → GSp2d(Af) and any
finite-indexed subgroup K of GSp2d(Ẑ). We will come back to this example in §3.3 and prove
that the Siegel Shimura varieties are moduli spaces of abelian varieties.

Definition 3.1.7. A (Shimura) morphism [ω] : ShK→(G→, X →) ↗ ShK(G, X) between two
Shimura varieties is a morphism of Shimura data ω : (G→, X →) ↗ (G, X) such that ω(K →) ⇐ K.

Example 3.1.8. Let ShK(G, X) be a Shimura variety.
Let K →

⇐ K be another compact open subgroup of G(Af). Then the identity map on (G, X)
induces a Shimura morphism ShK→(G, X) ↗ ShK(G, X), with finite fibers since K → must have
finite index in K. In fact, this is finite morphism in the category of algebraic varieties.

Let g → G(Af). Then gKg↗1 is a compact open subgroup of G(Af), and we have a Shimura
morphism [g·] : ShgKg↑1(G, X) ↗ ShK(G, X), sending [x, g→] ≃↗ [x, gg→]. More generally, if K →

is a compact open subgroup of G(Af) such that K →
⇐ gKg↗1, then we have a Shimura morphism

[g·] : ShK→(G, X) ↗ ShK(G, X) which is a finite morphism.

Example 3.1.9 (Hecke operator). Let ShK(G, X) be a Shimura variety.
Any g → G(Af) induces a correspondence on ShK(G, X) as follows. Write K → := K⇓gKg↗1

for simplicity; it is a compact open subgroup of G(Af) and K →
⇐ gKg↗1. We have Shimura

morphisms
ShK→(G, X)

[g·]

!!

[1]

""
ShK(G, X) ShK(G, X)

where the right one is induces by identity on (G, X). Both are finite morphisms, so we have
a correspondence on ShK(G, X), which is called the Hecke correspondence/operator and
denoted by Tg.

Definition 3.1.10. Let ShK(G, X) be a Shimura variety. We call any irreducible component
of (Tg ↑ [ω])(ShK→(G→, X →)), where [ω] is a Shimura morphism and g → G(Af), to be a special

subvariety of ShK(G, X). A special subvariety of dimension 0 is called a special point.

Of course in the definition of special subvarieties, it su”ces to consider the Shimura mor-
phisms arising from sub-Shimura data of (G, X). Thus special points arise from sub-Shimura
data (T, XT) of (G, X) where T is an algebraic torus.
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3.2 Decomposition of Shimura varieties into Hermitian locally

symmetric domains

Let (G, X) be a Shimura datum. Then any connected component X is a Hermitian symmetric
domain. Fix one such X+.

Let K be a compact open subgroup of G(Af). Then we have a Shimura variety ShK(G, X)
defined as the double coset G(Q)\X↘G(Af)/K. We wish to prove that this double coset is the
C-points of an algebraic variety.

In this section, we start with the first step, by endowing ShK(G, X) with a structure of
complex varieties.

Theorem 3.2.1. There exists a finite-indexed subgroup K → of K such that

ShK→(G, X) ⇒
⊔

g↔C

#g\X
+, (3.2.1)

for a finite set C ⇐ G(Af), with each #g a torsion-free discrete group acting on X+.

The actual decomposition will be given later on (3.2.3), where the definitions of C and
#g are given. At this stage, let us make the following observation: since #g is torsion-free
discrete, the quotient #g\X+ has a natural structure of complex manifolds and even more is
a Hermitian locally symmetric domain. So ShK→(G, X) is a finite disjoint union of Hermitian
locally symmetric domains. As for ShK(G, X), the finite-to-1 map ShK→(G, X) ↗ ShK(G, X)
then makes ShK(G, X) into a finite union of complex orbifolds.

3.2.1 Two approximation theorems for algebraic groups

Let H be an algebraic group defined over Q. We will use the following approximation theorems.

- (Real Approximation) H(Q) is dense in H(R).

- (Strong Approximation) If H is semi-simple and simply-connected, then H(Q) is dense in
H(Af).

The definition of “simply-connected” will be recalled later in §3.2.5.

3.2.2 Preparation and adjoint Shimura data

Now let us introduce the adjoint Shimura datum (Gad, X) of (G, X). Take h → X+. Then h
induces a morphism

h : S
h
↓↗ GR ↗ G

ad
R
.

Hence we obtain a G
ad(R)-orbit X := G

ad(R)h in Hom(S,Gad
R
), with a natural map X ↗ X.

The image of X+ in X is connected, and the following lemma (applied to G = G(R))[2] easily
implies that this image is again a connected component of X. So by abuse of notation, we will
also use X+ to denote a connected component of X.

Lemma 3.2.2. For any algebraic group G over R, the adjoint quotient G+
↗ (Gad)+ is surjec-

tive when restricted to the identity component.

[2]Here is a background for this lemma. Let ω : H ↑ H
→ be a morphism of algebraic groups defined over k.

Assume char(k) = 0. Then ω is called surjective if ω(H(k)) = H
→(k). If ω is surjective, it may happen that

ω(H(k)) ↓= H
→(k)!
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We omit the proof of this lemma. Define

G(R)+ := inverse image of Gad(R)+ in G(R)

G(Q)+ := G(Q) ⇓G(R)+. (3.2.2)

Lemma 3.2.3. G(R)+ is the stabilizer of X+, i.e. G(R)+ = {g → G(R) : gX+ = X+
}.

With Lemma 3.2.3, we can complete our more precise version of (3.2.1):

ShK(G, X) ⇒
⊔

[g]↔G(Q)+\G(Af)/K

#g\X
+, (3.2.3)

with #g := gKg↗1
⇓G(Q)+; replacing K by a suitable finite-indexed subgroup K → guarantees

that #g is torsion-free, see §3.2.4. The finiteness of the double coset G(Q)+\G(Af)/K will be
proved in §3.2.5; the proof uses the Strong Approximation Theorem.

Proof of Lemma 3.2.3. Consider the action ofGad(R) onX, and recall thatX+ is a connected component
of X. It su”ces to prove that Gad(R)+ = {g → G

ad(R) : gX+ = X+
}. This follows from general theory

of Hermitian symmetric domains (and some knowledge on R-algebraic groups v.s. real Lie groups) which
we will not cover in this course.

3.2.3 Proof of (3.2.3)

We start by showing that there is a bijection

G(Q)+\X
+
↘G(Af)

↓
↓↗ G(Q)\X ↘G(Af), [x, g] ≃↗ [x, g]. (3.2.4)

Injectivity: Assume (x, g), (x→, g→) → X+
↘ G(Af) are mapped to the same point on the right

hand side. Then there exists q → G(Q) such that (x→, g→) = q(x, g) = (qx, qg). Hence qX+
⇓X+

is non-empty as it contains qx = x→. So qX+ = X+. So q → G(R)+ ⇓ G(Q) = G(Q)+. This
proves the injectivity of the map above.

Surjectivity: Assume (x, g) → X ↘ G(Af). By the Real Approximation in §3.2.1, G(Q)x
is dense in G(R)x = X. So G(Q)x ⇓ X+

⇔= ↖, and hence there exists q → G(Q) such that
qx → X+. Then (qx, qg) → X+

↘G(Af), and its image under (3.2.4) is [x, g]. We are done for
the surjectivity of (3.2.3).

Now let us prove the bijectivity of the map

⊔

[g]↔G(Q)+\G(Af)/K

#g\X
+
↗ G(Q)+\X

+
↘G(Af)/K, #gx ≃↗ [x, g]. (3.2.5)

Injectivity: If [x→, g→] = [x, g], then (qx, qgk) = (x→, g→) for some q → G(Q)+ and k → K. So [g] =
[g→] in G(Q)+\G(Af)/K. Hence it su”ces to prove the injectivity of #g\X+

↗ G(Q)+\X+
↘

G(Af)/K. Now if [x→, g] = [x, g], then (qx, qgk) = (x→, g) for some q → G(Q)+ and k → K. So
q = gk↗1g↗1

→ gKg↗1. So q → #g = gKg↗1
⇓G(Q)+. Thus we have proved the injectivity of

(3.2.5).

Surjectivitity: Let [x, g] be an element of the right hand side. Then it is the image of #gx.

We have thus proved (3.2.3).
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3.2.4 Torsion-free subgroup

Here is a choice of K → so that gK →g↗1
⇓G(Q)+ is torsion-free for all g → G(Af). Take a faithful

representation V of G. Then there exists a lattice L in V such that L̂ := L ⇑Z Ẑ is fixed by
K. Equivalently, we are embedding G as a closed subgroup of GLN over Q such that K is a
subgroup of GLN (Ẑ). Let ϱ ↙ 3 be an integer. Take K → to be the subgroup of K which acts
trivially on L̂/ϱL̂, or equivalently

K → := {g → K < GLN (Ẑ) : g ∝ IN mod ϱ}.

Then any element ς → #g := gK →g↗1
⇓ G(Q)+ < GL(V ) acts trivially on ĝL/ϱĝL, so all the

eigenvalues of ς are 1 (as they are 1 modulo ϱ ↙ 3). So ς = 1 if ς is torsion. So #g is torsion-free.

3.2.5 The group of connected components of a Shimura variety

In this subsection, we prove the finiteness of the double coset G(Q)+\G(Af)/K. This finishes
the proof of Theorem 3.2.1, and shows that φ0(ShK(G, X)) ⇒ G(Q)+\G(Af)/K.

Case: simply-connected derived subgroup

The result in this case is better, with a clear understanding of the group φ0(ShK(G, X)). Con-
sider the short exact sequence of Q-groups

1 ↗ G
der

↗ G ↗ T := G/Gder
↗ 1

with T an algebraic torus defined over Q.

Definition 3.2.4. An algebraic group H defined over a field k of characteristic 0 is said to be
simply-connected if any central isogeny H →

↗ H (i.e. a surjective morphism whose kernel is
finite and contained in the center of H →) is an isomorphism.

Theorem 3.2.5. Assume G
der is simply-connected. Then ↼(G(Q)+) has finite index in G(Q),

↼(K) is a compact open subgroup of T(Af), and ↼(G(Q)+)\T(Af)/↼(K) is a finite abelian group.
Moreover, ↼ induces a natural isomorphism of groups

φ0(ShK(G, X)) ⇒ ↼(G(Q)+)\T(Af)/↼(K).

Before proving this theorem, we point out without proof that

↼(G(Q)+) = T(Q) ⇓ ↼(Z(G)(R)) =: T(Q)†. (3.2.6)

Proof. General theory of semi-simple simply-connected Q-groups asserts that G
der(R) is con-

nected. Therefore G
der(R) stabilizes X+ and hence is contained in G(R)+ by Lemma 3.2.3.

So G
der(Q) ⇐ G(Q)+. By the Strong Approximation Theorem from §3.2.1, Gder(Q) is dense in

G
der(Af). Hence

G
der(Af) = G

der(Q) · (K ⇓G
der(Af)) ⇐ G(Q)+ · (K ⇓G

der(Af)). (3.2.7)

Because G
der is simply-connected, the short exact sequence of groups above Theorem 3.2.5

induces a short exact sequence

1 ↗ G
der(Af) ↗ G(Af)

ε
↓↗ T(Af) ↗ 1.
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Here we use the knowledge on semi-simple simply-connected Q-groups that H1(Qp,Gder) = 0
for any prime p.

Now ↼ induces a map

G(Q)+\G(Af)/K ↗ ↼(G(Q)+)\T(Af)/↼(K), (3.2.8)

which, by (3.2.7), is a bijection. The right hand side is an abelian group because T is an algebraic
torus (hence abelian).

Now to prove the theorem, it remains to prove:

(i) ↼(G(Q)) has finite index in T(Q).

(ii) ↼(K) is a compact open subgroup of T(Af).

(iii) The right hand side of (3.2.8) is finite.

Let us prove (i). The Hasse Principle for simply-connected Q-groups says that the natural map
H1(Q,Gder) ↗

∏
p↘≃

H1(Qp,Gder) = H1(R,Gder) is injective; here we used again the fact

that H1(Qp,Gder) = 0 for any prime number p (as Gder is furthermore semi-simple). So by the
diagram

1 ## Gder(Q) ##

$$

G(Q) ##

$$

T(Q) ##

$$

H1(Q,Gder)! "

$$

1 ## Gder(R) ## G(R) ## T(R) ## H1(R,Gder)

we get that T(Q)/↼(G(Q)) ↗ T(R)/↼(G(R)) is injective. But ↼(G(R)+) = T(R)+. So
T(R)/↼(G(R)) is finite, and hence T(Q)/↼(G(Q)) is finite. This establishes the claim.

For (ii), we extend G ↗ T to a morphism of group schemes over Z[1/N ] for some integer
N , and prove that G(Zp) ↗ T(Zp) is surjective for almost all prime p. We first work on Fp and
then list using an argument similar to Newton’s Lemma. We omit this proof.

Now we prove (iii). It su”ces to prove that T(Q)\T(Af)/↼(K) is finite, and up to replacing
↼(K) by a smaller compact open subgroup we may assume ↼(K) ⇐ T(Ẑ). As [T(Ẑ) : ↼(K)] is
finite (since T(Ẑ) is compact and ↼(K) is open), it su”ces to prove that

T(Q)\T(Af)/T(Ẑ)

is finite. This is exactly the class group of the algebraic torus T which is known to be finite
by classical theory (and this number is called the class number of T). In the case where T =
ResK/QGm for a number field K, this is exactly the class group of K.

General case

Let G̃ be the universal cover ofGder, i.e. G̃ is simply-connected with a central isogeny (surjective
with finite kernel contained in the center) u : G̃ ↗ G

der. Then we have a surjective morphism
of Q-groups

↽ : G→ := Z(G)↘ G̃ ↗ G, (z, g) ≃↗ zu(g)

which is a central isogeny. Thus to prove the finiteness of G(Q)\G(Af)/K, it su”ces to prove
the finiteness of

G
→(Q)\G→(Af)/K

→

for K → a compact open subgroup of G
→(Af). But the derived subgroup of G

→ is G̃ which is
simply-connected. So we are back to the previous case, and hence G

→(Q)\G→(Af)/K → is finite.
So G(Q)\G(Af)/K is finite.
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3.2.6 An upshot of Theorem 3.2.1 on special subvarieties

Special subvarieties of ShK(G, X) can be better understood via Theorem 3.2.1 as follows. Let
S be a special subvariety of ShK(G, X), arising from the sub-Shimura datum (G→, X →) ⇐ (G, X)
and the Hecke operator given by g → G(Af ). Then under the decomposition (3.2.1), S is
the image of u((X →)+) under the uniformization u : X+

↗ #g\X+ for the suitable connected
component (X →)+ of X →. Moreover, the sub-Shimura data can be constructed as follows. Take
h → X, and let MT(h) be the smallest Q-subgroup of G such that h : S ↗ GR factors through
MT(h)R. Then take G

→ := MT(h) and X → := G
→(R)h.

3.3 Siegel modular variety

Take the example of Siegel case in Example 3.1.3 and Example 3.1.6. In particular V = Q
2d,

ε : V ↘ V ↗ Q is (x, y) ≃↗ xtJy with J =

[
0 Id

↓Id 0

]
. Thus there is a lattice L in V such that

ε restricts to L↘ L ↗ Z. To simplify notation, denote by L = V (Z).
The Siegel Shimura datum is (GSp2d,H

±

d ). For each N , set

K(N) :=
{
g → GSp2d(Af) : gV (Ẑ) ⇐ V (Ẑ) and acts trivially on V (Ẑ)/NV (Ẑ)

}

=
{
g → GSp2d(Ẑ) : g ∝ I2d (mod N)

}
.

Then we have the Shimura variety ShK(N)(GSp2d,H
±

d ).

Theorem 3.3.1. Assume N ↙ 3. Then ShK(N)(GSp2d,H
±

d ) is the fine moduli space of princi-
pally polarized abelian varieties of dimension d with a level-N -structure, i.e. there is a canonical
bijection between

- the C-points of ShK(N)(GSp2d,H
±

d ),

- and the isomorphism classes of the triples (A,⇀, ⇁N ) where A is a complex abelian variety
of dimension d, ⇀ is a principal polarization on A, and ⇁N is a level-N -structure on A.

When N = 1, 2, the Shimura variety is a coarse moduli space.
Let us explain the meaning of this theorem. Let A be an abelian variety defined over C.

(i) A principal polarization on A is a polarization on the Hodge structure H1(A,Z) with
determinant 1, i.e. an alternating pairing ⇀ : H1(A,Z) ↘ H1(A,Z) ↗ Z, which under

suitable Z-basis of H1(A,Z) is

[
0 Id

↓Id 0

]
. In more geometric terms, it is an isomorphism

⇀ : A
↓
↓↗ A⇐.

(ii) A (symplectic) level-N -structure on A is a basis of H1(A,Z/NZ) which is symplectic with
respect to ⇀. In more geometric terms, it is a basis of the Z/NZ-module A[N ] which is

symplectic under eN : A[N ]↘A[N ]
(1,ϑ)
↓↓↓↗ A[N ]↘A⇐[N ] ↗ µN where last map is the Weil

pairing. Or more concretely, it is an isomorphism

⇁N : A[N ]
↓
↓↗ H1(A,Z/NZ)
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such that the two composites

A[N ]↘A[N ]
(ϖN ,ϖN )
↓↓↓↓↓↗ H1(A,Z/NZ)↘H1(A,Z/NZ)

ϑ
↓↗ Z/NZ

and A[N ]↘A[N ]
eN
↓↓↗ µN

e2ω
↓
↑1a/N

⇒⇑[a]
↓↓↓↓↓↓↓↓↓↓↗ Z/NZ

di!er from the multiplication by an element in [ϱ] → (Z/NZ)↑, and we say that this
level-N -structure has twist [ϱ].

Proof. Recall that each point in H
±

d parametrizes a Q-Hodge structure on V of type (↓1, 0) +
(0,↓1); see §2.3.1.

We shall use Theorem 3.2.1 and the more precise version (3.2.3), and better, Theorem 3.2.5
because Sp2d is simply-connected. One can compute that GSp2d(R)+ = GSp2d(R)

+ = {g →

GSp2d(R) : det(g) > 0}. So GSp2d(Q)+ = {g → GSp2d(Q) : det(g) > 0}. Thus for the quotient

1 ↗ Sp2d ↗ GSp2d
ε
↓↗ Gm ↗ 1,

we have ↼(GSp2d(Q)+) = Q>0.[3] It is not hard to compute that ↼(K(N)) = {z → Ẑ : z ∝ 1
(mod N)} = 1 +N Ẑ. Thus

φ0
(
ShK(N)(GSp2d,H

±

d )

⇒ Q>0\A

↑

f /(1 +N Ẑ) ⇒ (Z/NZ)↑.

Write #[ϱ]\H
+
d for the connected component of ShK(N)(GSp2d,H

±

d ) indexed by [ϱ] → (Z/NZ)↑.
Below we only give the constructions of the two directions, without proving that they are inverse
to each other.

Given a triple (A,⇀, ⇁N ). Assume that the level-N -structure has twist [ϱ] → (Z/NZ)↑. First
H1(A,Z) is a Z-Hodge structure of type (↓1, 0)+(0,↓1), and hence under suitable isomorphism
(H1(A,Z),⇀) ⇒ (V (Z),ε) we obtain a point ϑ → H

+
d . Then we get a point in #[ϱ]\H

+
d as the

image of ϑ under H+
d ↗ #[ϱ]\H

+
d .

Conversely let x → #[ϱ]\H
+
d . Let ϑ be a pre-image of x under the quotient H

+
d ↗ #[ϱ]\H

+
d .

Recall that ϑ parametrizes a Q-Hodge structure on V of type (↓1, 0) + (0,↓1), and thus we
can endow V (R) with a complex structure by the bijection V (R) ⇐ V (C) ↗ V (C)/V 0,↗1

ς . This
makes Aς := V (R)/V (Z) into a compact complex torus of dimension d, with H1(Aς ,Z) = V (Z).
Thus ε induces a principle polarization via H1(Aς ,Z). Hence Aς is an abelian variety with a
principal polarization which by abuse of notation we still use ε to denote. The level-N -structure
on Aς is given as follows. We have Aς [N ] = 1

N V (Z)/V (Z) = V (Z)/NV (Z) = V (Z/NZ). Take

g → GSp2d(Ẑ) such that ↼(g) → Ẑ
↑ is congruent to ϱ modulo 1 + N Ẑ. Then g induces an

isomorphism g : V (Ẑ/N Ẑ)
↓
↓↗ V (Ẑ/N Ẑ). But V (Ẑ/N Ẑ) = V (Z/NZ) = H1(Aς ,Z/NZ). Thus

we have Aς [N ] = V (Z/NZ) = V (Ẑ/N Ẑ)
g
↓↗ V (Ẑ/N Ẑ) = H1(Aς ,Z/NZ). This is the desired

level-N -structure because ε(gx, gy) = ↼(g)ε(x, y) by definition of GSp2d.

More generally, we can take any symplectic pairing ε on V , i.e. ε : V ↘ V ↗ Q is
non-degenerate bilinear anti-symmetric. Then we have the symplectic group GSp(ε) which
is the subgroup of GL(V ) preserving ε (up to a number in Q

↑) and a GSp(ε)(R)-orbit
in Hom(S,GSp(ε)R) which can still be identified with H

±

d . This gives a Shimura datum
(GSp(ε),H±

d ). The associated Shimura varieties are then moduli spaces of abelian varieties
polarized by ε of dimension d with suitable level structures.

[3]In fact ε(g) = (det g)1/d.
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Definition 3.3.2. A Shimura variety is called a Siegel modular space if the associated
Shimura datum is isomorphic to (GSp(ε),H±

d ) for some ε and d as above.
A Shimura variety ShK(G, X) is called of Hodge type if there exists an injective Shimura

morphism (G, X) ↪↗ (GSp(ε),H±

d ).
A Shimura variety is called of abelian type if it admits a finite covering (as an algebraic

variety) by a Shimura variety variety of Hodge type.

By the construction in §3.2.6 and Proposition 1.2.12, Shimura varieties of Hodge type are
moduli spaces of abelian varieties A with some prescribed Hodge tensors of H1(A,Q).

Shimura varieties of abelian type can be detected purely on the underlying group G, and
they may not parametrize abelian varieties. As an example, all Shimura varieties associated
with the Shimura data from Example 3.1.4 are of abelian type, but they do not parametrize
abelian varieties unless F = Q.

3.4 CM abelian varieties and special points

Let ShK(G, X) be a Shimura variety. In Definition 3.1.10 we defined special points on ShK(G, X).
They are of particular importance. For example, there exists a natural number field E(G, X),
called the reflex field of (G, X), on which ShK(G, X) is “naturally” defined (or in more vigorous
terms, has a canonical model), characterized by the action of the Galois group of E(G, X). This
action is explicitly defined for special points on ShK(G, X) via the class field theory, and is
uniquely determined in this way by the following theorem whose proof we omit:

Theorem 3.4.1. The set of special points is dense in ShK(G, X).

Here “dense” is true even for the usual topology. The hard part of this theorem is to prove
the existence of one special point. Indeed, assume ShK(G, X) ⇒


#g\X+ has a special point

[x]. Then its inverse image x in X+ gives rise to a morphism x : S ↗ GR which factors through
TR for an algebraic torus T < G. But then the morphism given by g · x for any g → G(Q)
factors through (gTg↗1)R, with gTg↗1 clearly an algebraic torus in G (since it is abelian), and
hence defines a Shimura datum (gTg↗1, g ·T(R)x). But T(R)x is a finite set of points since T

is abelian. So the image of G(Q)x under the quotient X+
↗ #g\X+ consists of special points

of ShK(G, X). Notice that X+ = G(R)+x. Now it su”ce to use the Real Approximation that
G(Q) is dense in G(R) to conclude.

For the existence of special points, we shall focus on the Siegel modular variety, for which
we have:

Theorem 3.4.2. Take [x] → ShK(GSp2d,H
±

d )(C). Then [x] is a special point if and only if
the abelian variety Ax parametrized by [x] is CM, i.e. End(Ax) ⇑Z Q contains a commutative
Q-subalgebra of dimension 2d. Equivalently, an abelian variety A defined over C is CM if and
only if the Mumford–Tate group of the Q-Hodge structure H1(A,Q) is an algebraic torus.

We will not give a full proof of this theorem, but only recall the definition of CM abelian
varieties and give a brief explanation why the associated Mumford–Tate group (which we call
the Mumford–Tate group of A) is an algebraic torus.

Assume A is a simple abelian variety. Then A is CM if and only if E := End(A) ⇑Z Q is a
CM field, i.e. there exists a totally real field F such that E/F is a totally imaginary quadratic
extension. Write (·) for the complex conjugation with respect to E/F . Then there exists an
element ι → E such that ι = ↓ι (totally imaginary element). Then E can be endowed with the
Q-symplectic form

′x, y∞ := TrE/Q(xιy).
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This makes (E, ′, ∞) ⇒ (Q2d,

[
0 Id

↓Id 0

]
) into a symplectic space. Set GUE to be the subgroup

of GSp2d generated by Gm = Z(GSp2d) and

UE := {x → ResE/QGm : xx = 1}.

Then one can check that GUE is an algebraic torus which contains the Mumford–Tate group
of A. Thus the Mumford–Tate group of A is abelian, and hence must be an algebraic torus. In
fact, one can check that GUE is a maximal torus of GSp2d.
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