
Chapter 2

From Hodge theory to Hermitian

symmetric domains

2.1 Basic background knowledge on reductive groups

Let k be a field. Let G be a connected linear group defined over k. Let k be an algebraic closure
of k.

Denote by Ga,k the group defined by: for any k-algebra R, we have Ga(R) = R. When k is
clear in the context, we simply write Ga.

Definition 2.1.1. G is called a reductive group if Gk does not contain a normal subgroup
isomorphic to Ga.

A notion closely related to reductive groups is the unipotent radical. Let us briefly recall the
definition. Recall that G can be embedded as a closed subgroup scheme of GLN for some N .
An element g → G is said to be unipotent if (IN ↑ g)N = 0 (as matrix). A subgroup of G is
said to be unipotent if all its elements are unipotent. As an example, UN (consisting of upper
triangular matrices whose diagonal entries are 1) is a unipotent subgroup of GLN . Moreover, it
is known that any unipotent subgroup of GLN is a subgroup of gUNg→1 for some g → GLN .

Definition 2.1.2. The unipotent radical of G, denoted by Ru(G), is the identity component
of its maximal normal unipotent subgroup.

As an example, Ru(GLN ) = 1. Moreover, any algebraic torus has trivial unipotent radical.

Since Ga is a unipotent subgroup of GLN via x ↓↔





1 0 · · · 0 x
0 1 0 · · · 0
...

...
...

...
...

0 0 · · · 1 0
0 · · · · · · 0 1




, we have:

Lemma 2.1.3. G is a reductive group if and only if Ru(Gk) = 1.

For any reductive groupG, its connected center Z(G)↑ is an algebraic torus. Among reductive
groups, those with trivial connected center are of particular importance.

Definition 2.1.4. A reductive group G is called semi-simple if its connected center Z(G)↑ is
trivial. It is called simple if its only connected normal subgroups are 1 and G.
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Clearly, simple groups are semi-simple because Z(G) is a normal subgroup of G. Given a
reductive group G, one can naturally construct two semi-simple subgroups:

(i) the derived subgroup Gder := [G,G] which is a normal subgroup of G,

(ii) the adjoint Gad := G/Z(G) which is a quotient of G.

The composite Gder
↔ G ↔ Gad is a central isogeny, i.e. it is surjective and has finite kernel

contained in Z(G). As an example, GLder
N = SLN and GLad

N = PGLN , and the kernel of
SLN ↔ PGLN is {±IN}.

Next we recall the following structural theorem of reductive groups.

Theorem 2.1.5 (Structural theorem of reductive groups). Let G be a reductive group. Then
there are only finitely many non-trivial simple normal subgroups G1, . . . , Gn of G, and

G = Z(G)G1 · · ·Gn

with the intersections Gi ↗Gj < Z(G).

We end this revision by a characterization of a C-group to be reductive.

Proposition 2.1.6. Assume chark = 0. Then the followings are equivalent:

(i) G is a reductive group;

(ii) Any representation V of G can be decomposed into the direct sum of irreducible ones.

Corollary 2.1.7. Let G be a connected linear algebraic group defined over C. Then G is
reductive if and only if G has a real form GR (i.e. GR ↘ C ≃ G) such that GR(R) is compact.

Proof. We only sketch for ⇐. By definition it is enough to prove that GR is reductive. For any repre-
sentation V of GR, define an inner product on V induced by ⇒v⇒ :=

∫
GR(R) gv with respect to a Haar

measure on GR(R). Then this inner product is GR-invariant. Thus V can be decomposed into the direct
sum of irreducible sub-representations of GR.

Example 2.1.8. Let G = GLN,C. Then GLN,R and (write Jp,q = diag{Ip,↑Iq} and denote for
simplicity by J = Jp,q)

U(p, q) :=
{
g → GLN,C : gtJg = J

}

are R-forms of G, with all p + q = N . The associated complex conjugation for U(p, q) is
ω : g ↓↔ J(gt)→1J . A compact R-form is U(N).

2.2 Polarization on families and reductive groups

Recall the setting of §1.3.2: V is a finite-dimensional R-vector space, n → Z, G < GL(V ) and
X+

⇑ Hom(S, G) is a G+-orbit. We know that X+ parametrizes certain Hodge structures on V
of weight n, and hence has carries a family of Hodge structures. By Proposition 1.3.5, X+ has
a unique complex structure such that this family of Hodge structures varies holomorphically.

Better, we have fixed a (↑1)n-symmetric pairing Q : V ⇓V ↔ R which induces a polarization
for the Hodge structure on V given by each h → X+. In this section, we prove that this extra
information forces G to be a reductive group.
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2.2.1 Cartan involution

We need some background knowledge on Cartan involutions.
Let GR be a linear algebraic group defined over R. Let ω : GC ↔ GC be the associated

conjugation.

Definition 2.2.1. A Cartan involution is a morphism ε : GR ↔ GR such that ε2 = 1 and
that (GC)ω := {g → GC : ϑ(g) = g} is a compact real form of GC, where ϑ = εC ⇔ ω = ω ⇔ εC.

Example 2.2.2. Let us look at the following examples with GC = GLN,C.

(a) GR = U(N), with ε = 1.

(b) GR = U(p, q), with ε(g) = JgJ where J = Jp,q.

(c) GR = GLN,R, with ε(g) = (gt)→1.

Proposition 2.2.3. GR is reductive if and only if GR admits a Cartan involution. And any
two Cartan involutions of GR are conjugate.

In Example 2.2.2, the Cartan involutions in (a) and (b) are induced by an element of G(R),
while in (c) it is not. The first kind is called inner Cartan involution and is of particular
importance because of its relation with polarizations explained by the following lemma.

Lemma 2.2.4 (Deligne). Let C → G(R) with C2 = 1. Then the followings are equivalent:

(i) Int(C) is a Cartan involution of GR,

(ii) any GR-representation V is C-polarizable, i.e. there exists a GR-invariant bi-linear map
ϖ : V ⇓ V ↔ R such that (x, y) ↓↔ ϖC(x,Cy) is Hermitian and positive-definite (equiva-
lently, (x, y) ↓↔ ϖ(x,Cy) is symmetric and positive-definite),

(iii) GR admits one faithful representation which is C-polarizable.

Proof. Let ϖ be a bi-linear map. Observe that the followings are equivalent:

• ϖ is G-invariant;

• ϖC(gx,ω(g)y) = ϖC(x, y) for all g → GC and x, y → VC;

• ϖC(gx,ω(g)Cy) = ϖC(x,Cy) for all g → GC and x, y → VC;

• (x, y) ↓↔ ϖC(x,Cy) is U -invariant, where U = (GC)ω with ϑ = Int(C) ⇔ ω.

The last equivalence follows from ϖC(gx,ω(g)Cy) = ϖC(gx, Cϑ(g)y).
Now let us go back to the proof of the lemma. (ii) implying (iii) is trivial. (iii) implies that

U is compact, and hence implies (i). It remains to show that (i) implies (ii).
Assume (i). Then GC has a compact real form U , which is the set of fixed points of ϑ =

Int(C) ⇔ ω. There exists a U -invariant positive-definite symmetric bi-linear map ϖ : V ⇓ V ↔ R

since U is compact. Hence ϖC is GC-invariant, and so ϖC(gx, ϑ(g)y) = ϖC(x, y) for all g → GC.
But ϑ(g) = Cω(g)C→1 = Cω(g)C, hence ϖC(gx,ω(g)Cy) = ϖC(x,Cy) for all g → GC. Thus ϖ is
also GR-invariant. This establishes (ii).

Here is a corollary on the Mumford–Tate group.

Corollary 2.2.5. Let (V, h) be a Q-Hodge structure of weight n with a polarization ϱ. Then
MT(h) is a reductive group.

Proof. Let GR := MT(h)R and C := h(
↖
↑1). Then C2 = 1, and VR is a faithful representation

of GR which is C-polarization. Hence Int(C) is a Cartan involution of GR by Lemma 2.2.4. So
GR is reductive by Proposition 2.2.3. Hence MT(h) is a reductive group.
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2.2.2 Polarization on parametrizing space

Now let us go back to our setting at the beginning of this section.
Let h → X+. Let G1 be the subgroup of G generated by h(S) for all h → X+. In other words,

G1 is the smallest subgroup of G which contains h(S) for all h → X+. It is easy to check that
G1 is a normal subgroup of G, and that X+ is a G+

1 -orbit, where G+
1 is the identity component

of the real Lie group G1(R).
Recall the weight cocharacter w : Gm ↔ S induced by R

↓
⇑ C

↓.

Proposition 2.2.6. Assume h ⇔w factors through Z(G) for one (and hence all) h → X+. Then
the followings are equivalent:

(1) There exists ϱ : V ↘V ↔ R(↑n) which is a polarization for the Hodge structure determined
by each h → X+;

(2) G1 is a reductive group for one (and hence all) h → X+, and Int(h(
↖
↑1)) is a Cartan

involution of Gad
1 .

In (2), Int(h(
↖
↑1)) is an automorphism of G1 which acts trivially on Z(G1), and so can be

seen as an automorphism of Gad
1 .

In our setting, ϱ is induced by Q. But this proposition also gives an abstract way of showing
the existence of a polarization on a family of Hodge structures, which will be useful in §2.3.

Proof. By assumption, the subgroup (h ⇔w)(Gm) of G1 is independent of the choice of h → X+,
and we denote it by W . Then W < Z(G1).

Recall the short exact sequence of group over R

1 ↔ U(1) ↔ S
Nm
↑↑↔ Gm ↔ 1.

Let G2 be the subgroup of G1 generated by h(U(1)) for all h → X+. Then G1 = W · G2.
Moreover since W < Z(G1), the inclusion G2 < G1 induces Gad

2 ≃ Gad
1 . So (2) is equivalent to:

(*) G2 is a reductive group for h → X+, and Int(h(
↖
↑1)) is a Cartan involution of Gad

2 .
Take a map ϱ : V ↘ V ↔ R. Then

ϱ : V ↘ V ↔ R(↑n) is a morphism of Hodge structures for all h → X+

↙ϱ is h(S)-equivariant for all h → X+

↙ϱ is h(U(1))-invariant for all h → X+ because S = w(Gm) · U(1)

↙ϱ is G2-invariant.

Thus ϱ : V↘V ↔ R(↑n) is a polarization for all h → X+ if and only if the G2-equivariant map (x, y) ↓↔
ϱ(x, h(

↖
↑1)y) is Hermitian and positive-definite. Hence by Lemma 2.2.4, (1) is equivalent to

Int(h(
↖
↑1)) being a Cartan involution ofG2. Hence by (*), it su!ces to prove that Int(h(

↖
↑1))

is a Cartan involution of G2 if and only if it is a Cartan involution of Gad
2 . So it remains to

prove that Z(G2) is compact. This is true because G2 is generated by compact subgroups (since
U(1) is compact).

2.3 Hermitian symmetric domains

Motivated by Proposition 1.3.5 and 2.2.6, we shall study pairs (G,X+) where

• G is a reductive group defined over R,
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• X+ is a G+-orbit contained in Hom(S, G), with G acting on Hom(S, G) via conjugation
(with G+ the identity component of the real Lie group G(R))

satisfying the following properties:

(i) For any h → X+, the Hodge structure (LieG, h) has type (↑1, 1) + (0, 0) + (1,↑1),

(ii) For any h → X+, Int(h(
↖
↑1)) is a Cartan involution for Gad.

In fact, it is enough to require (i) and (ii) for one h → X+. And condition (i) implies that
h ⇔ w : Gm ↔ G factors through Z(G). Indeed by (i), Ad ⇔ h ⇔ w : Gm ↔ GL(LieG) sends z to
the multiplication by z0 = 1, and hence is trivial. So im(h ⇔ w) ⇑ Ker(Ad) = Z(G).

Now take any representation V of G. Then X+
⇓V ↔ X+ is a family of R-Hodge structures,

with the Hodge structure on h → X+ determined by S
h
↑↔ G ↔ GL(V ). By Proposition 1.3.5

and 2.2.6, this family is an R-variation of Hodge structures endowed with a polarization.

Theorem 2.3.1. X+ is a Hermitian symmetric domain. More precisely, this means:

(1) X+
≃ X+

1 ⇓ · · ·⇓X+
k ;

(2) Each X+
i is a Riemannian symmetric space of non-compact type, i.e. X+

i ≃ G+
i /Ki,↔

where Gi is a simple group defined over R and Ki,↔ is a maximal compact subgroup of
G+

i ;

(3) For each i → {1, . . . , k}, X+
i has a Gi-invariant complex structure.

Conversely, any Hermitian symmetric domain can be obtained as X+ for a pair (G,X+) as
above. But we will not prove this in this course.

2.3.1 The example of Siegel case

Let V = R
2d. Let ϱ : V ⇓ V ↔ R be (x, y) ↓↔ xtJy with J =

[
0 Id

↑Id 0

]
.

Define the R-group

GR = GSp(ϱ) = GSp2d :=
{
g → GL(V ) : ϱ(gx, gy) = cϱ(x, y) for some c → R

↓
}

=
{
g → GL2d,R : gJgt = cJ for some c → R

↓
}
.

The derived subgroupGder
R

= Sp2d = {g → GL(V ) : ϱ(gx, gy) = ϱ(x, y)} =
{
g → GL2d,R : gJgt = J

}
.

Define
h0 : S ↔ GSp2d, a+ b

↖
↑1 ↓↔ aI2d + bJ.

Indeed, this map is well-defined since (aI2d + bJ)J(aI2d + bJ)t = (a2 + b2)J . Notice that
h0 ⇔ w : Gm ↔ GSp2d sends r → R

↓ to multiplication on V by r. Hence the Hodge structure
(V, h0) has weight ↑1.

The eigenvalues for J are ±
↖
↑1. Let V →1,0 (resp. V 0,→1) be the eigenspace of

↖
↑1 (resp.

of ↑
↖
↑1). Then one can check that each z → S(R) = C

↓ acts on V →1,0 as multiplication by z
and on V 0,→1 as multiplication by z. Thus (V, h0) is a Hodge structure of type (↑1, 0)+ (0,↑1),
and ϱ is a polarization.

Now that LieGR ⇑ End(V ) = V ↘V ↗, we know that the Hodge structure (LieG, h) has type
(↑1, 1) + (0, 0) + (1,↑1). So condition (i) holds true.

For condition (ii), apply Lemma 2.2.4 to the group (GSp2d)
ad = GSp2d/Z, where Z is the

subgroup of scalar matrices, and the element C → (GSp2d)
ad(R) being the image of h0(

↖
↑1) =
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J → GSp2d(R). Since ϱ is a J-polarization of the Hodge structure (V, h0), by Lemma 2.2.4
Int(h0(

↖
↑1)) is a Cartan involution for (GSp2d)

ad.
Let X+

⇑ Hom(S, GR) be the GSp+2d-orbit of h0. Then Sp2d acts transitively on X+, and
StabSp2d(h0) = U(d) = O(2d) ↗ Sp2d is a maximal compact subgroup of Sp2d. So

X+
≃ Sp2d/(O(2d) ↗ Sp2d)

with Sp2d a simple group defined over R which is not compact. To see the complex structure in
a more concrete way, let us make the identification

X+ = Sp2n/(O(2d) ↗ Sp2d)
↘
↑↔ Hd :=

{
ϑ → Matd↓d(C) : ϑ = ϑ t and Imϑ > 0

}
(2.3.1)

which sends

g · h0 ↓↔ g ·
↖
↑1Id := (

↖
↑1A+B)(

↖
↑1C +D)→1 with g =

[
A B
C D

]
.

The Sp2d-invariant complex structure onX+ is the same as the complex structure on Hd inherited
from the open inclusion Hd ⇑

{
ϑ → Matd↓d(C) : ϑ = ϑ t

}
≃ C

d(d+1)/2.

2.3.2 Cartan decomposition of semi-simple groups

In this subsection, we review background knowledge (without proof) on the Cartan decompo-
sition of semi-simple groups G defined over R. This is closely related to the Cartan involution
from §2.2.1.

Let ε be a Cartan involution of a semi-simple group G defined over R. Composing with the
adjoint representation Ad: G ↔ GL(LieG), we get an involution on g := LieG which we still
call a Cartan involution and denote by ε. Then ε has eigenvalues ±1, and let k (resp. m) be the
eigenspace for 1 (resp. for ↑1). Then

g = k∝m. (2.3.2)

Moreover, [k, k] ⇑ k, [k,m] ⇑ m, and [m,m] ⇑ k by looking at the eigenvalues. So k is a Lie
subalgebra of g, while any Lie subalgebra contained in m is commutative.

Lemma 2.3.2. K↔ := exp(k) is a maximal compact subgroup of G+.

We can also recover the compact real form of G as follows. The Cartan involution ε extends
to gC and we have a corresponding gC = kC ∝mC. Let gc := k∝

↖
↑1m. Then Gc := exp(gc) is

a compact real Lie group and which is a real form of G. Notice that K↔ = G ↗Gc.

2.3.3 Proof of Theorem 2.3.1

By definition of X+, the center Z(G) acts trivially on X+. Hence the action of G+ factors
through Gad(R)+. By Theorem 2.1.5, Gad can be decomposed into a direct product Gad =
G1 ⇓ · · · ⇓ Gk with each Gi a simple group. Fix h → X+, and let X+

i := G+
i · h. Then the

decomposition of the group induces

X+
≃ X+

1 ⇓ · · ·⇓X+
k .

This establishes (1).
In the rest of proof, to ease notation, use G to denote Gi and X+ to denote X+

i . Then G is
a simple group with trivial center.
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Denote by g := LieG. Consider the action of h(
↖
↑1) on g via the adjoint representation.

Then h(
↖
↑1) acts on g

0,0 as identity and on g
1,→1

∝ g
→1,1 as multiplication by ↑1. Thus

X+
≃ G+/K↔ for the subgroup K↔ := exp(g0,0) of G+. Condition (ii) says that the action of

h(
↖
↑1) on g is a Cartan involution, and hence we have a Cartan decomposition g = k∝m as in

(2.3.2). Then condition (i) says that k = g
0,0 (and mC = g

1,→1
∝ g

→1,1). Hence K↔ := exp(g0,0)
is maximal compact in G+ by Lemma 2.3.2. This establishes (2).

Remark 2.3.3. Assume G is simple with trivial center. If G is compact, we claim that X+ =
{trivial map}. Indeed, Int(h(

↖
↑1)) is identity because it is a Cartan involution for G. Thus

Ad ⇔h : S ↔ GL(g) sends
↖
↑1 to identity, and hence (g, h) has Hodge type (0, 0) by assumption

(i) (since
↖
↑1 acts on the complement of g0,0 by multiplication by ↑1). But then Ad ⇔ h is

trivial since z → S(R) = C
↓ acts on g as multiplication by z0z0 = 1. Thus h(S) ⇑ Ker(Ad) =

Z(G) = {1}.

For part (3), notice that [g1,→1, g1,→1] ⇑ g
2,→2 = 0. Hence g

1,→1 is an abelian Lie subalgebra
of gC. Same is true for g

→1,1. Thus F 0
gC = g

0,0
∝ g

1,→1 is a Lie subalgebra of gC. Therefore
PC := exp(F 0

gC) is a subgroup of G(C), with PC ↗ G = K↔. Thus the inclusion G ⇑ G(C)
induces an injective morphism of real smooth manifolds

X+ = G+/K↔ ↔ X↗ := G(C)/PC. (2.3.3)

The tangent of this map is an isomorphism as real vector spaces. Hence this map realizes X+

as an open subset of X↗. This establishes (3). We are done.

2.3.4 Borel embedding theorem and Harish–Chandra realization

Replacing G by Gder does not change X+. Hence we may assume that G is semi-simple. Fix h → X+,
and take the inner Cartan involution ε obtained from h(

↖
↑1). Use the notation from §2.3.2. The real

tangent space of X+ at h, denoted by TR(X+), can be identified as m.
The element J := h(eω

→
↑1/4) satisfies J2 = 1. Its action on X+ induces a decomposition

TR(X
+)↘R C = T 1,0(X+)∝ T 0,1(X+)

where J acts by multiplication by
↖
↑1 on T 1,0(X+) and by ↑

↖
↑1 on T 0,1(X+). Then T 1,0(X+) is

the holomorphic tangent space at h. On the other hand, we have mC = m
+
∝ m

↑ where J acts by
multiplication by

↖
↑1 on m

+ and by ↑
↖
↑1 on m

↑; in fact m
+ = g

↑1,1 and m
↑ = g

1,↑1. Then as we
have seen above, both m

+ and m
↑ are abelian Lie subalgebras of gC.

Let M+ := exp(m+), M↑ := exp(m↑); both are abelian subgroups of GC. Let KC := exp(kC) and
PC := exp(kC +m

↑) = KCM↑. Then PC is a subgroup of GC.
Here is a more precise version of (2.3.3), with Gc the real form of G from the end of §2.3.2.

Theorem 2.3.4 (Borel Embedding Theorem). The embedding Gc < G(C) induces an isomorphism of
real manifolds Gc/K↓ ≃ G(C)/PC = X↔. The embedding G < G(C) induces an open embedding

X+ = G+/K↓ ↔ X↔ = G(C)/PC,

realizing X+ as an open subset (in the usual topology) of X↔.

We call X↔ the compact dual of X+.

Theorem 2.3.5 (Harish–Chandra). The map

F : M+
⇓KC ⇓M↑

↔ GC, (m+, k,m↑) ↓↔ m+km↑

is a biholomorphism of of the left hand side onto an open subset of G(C) containing G. As a consequence,
the map

ς : m+
↔ X↔ = G(C)/PC, m+

↓↔ exp(m+)PC

is a biholomorphism onto a dense open subset of X↔ containing X+. Futhermore, D := ς↑1(X+) is a
bounded symmetric domain in m

+
≃ C

N and ς↑1(h) = 0.
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Example 2.3.6. Let us continue with Example 2.3.1. The Harish–Chandra realization of Siegel
upper-half space Hd, based at

↖
↑1Id, is

{Z → Matd↓d(C) : Z = Zt and Id ↑ ZZ > 0}.
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