Chapter 2

From Hodge theory to Hermitian
symmetric domains

2.1 Basic background knowledge on reductive groups

Let k be a field. Let G be a connected linear group defined over k. Let k be an algebraic closure
of k.

Denote by G, the group defined by: for any k-algebra R, we have G,(R) = R. When k is
clear in the context, we simply write G,.

Definition 2.1.1. G is called a reductive group if Gi does not contain a normal subgroup
isomorphic to G,.

A notion closely related to reductive groups is the unipotent radical. Let us briefly recall the
definition. Recall that G can be embedded as a closed subgroup scheme of GLy for some N.
An element g € G is said to be unipotent if (Iny — g)V = 0 (as matrix). A subgroup of G is
said to be unipotent if all its elements are unipotent. As an example, Uy (consisting of upper
triangular matrices whose diagonal entries are 1) is a unipotent subgroup of GLy. Moreover, it
is known that any unipotent subgroup of GLy is a subgroup of gUyg~! for some g € GLy.

Definition 2.1.2. The unipotent radical of G, denoted by R, (G), is the identity component
of its maximal normal unipotent subgroup.

As an example, R, (GLy) = 1. Moreover, any algebraic torus has trivial unipotent radical.

1 0 - 0 =z
o1 0 - 0
Since G, is a unipotent subgroup of GLy via z — |: : © 1|, we have:
o 0 - 1 0
0 - o 0 1]

Lemma 2.1.3. G is a reductive group if and only if R,(Gg) = 1.

For any reductive group G, its connected center Z(G)® is an algebraic torus. Among reductive
groups, those with trivial connected center are of particular importance.

Definition 2.1.4. A reductive group G is called semi-simple if its connected center Z(G)° is
trivial. It is called simple if its only connected normal subgroups are 1 and G.
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Clearly, simple groups are semi-simple because Z(G) is a normal subgroup of G. Given a
reductive group G, one can naturally construct two semi-simple subgroups:

(i) the derived subgroup G := |G, G] which is a normal subgroup of G,
(ii) the adjoint G* := G /Z(G) which is a quotient of G.

The composite G4* — G — G2 is a central isogeny, i.e. it is surjective and has finite kernel
contained in Z(G). As an example, GL(}\?r = SLy and GL?\? = PGLy, and the kernel of
SLN — PGLN is {:l:IN}.

Next we recall the following structural theorem of reductive groups.

Theorem 2.1.5 (Structural theorem of reductive groups). Let G be a reductive group. Then
there are only finitely many non-trivial simple normal subgroups G1,...,G, of G, and

G=27Z(G)G - -Gy
with the intersections G; N G; < Z(G).
We end this revision by a characterization of a C-group to be reductive.
Proposition 2.1.6. Assume chark = 0. Then the followings are equivalent:
(i) G is a reductive group;
(i) Any representation V' of G can be decomposed into the direct sum of irreducible ones.

Corollary 2.1.7. Let G be a connected linear algebraic group defined over C. Then G s
reductive if and only if G has a real form Gr (i.e. Gr ® C ~ G) such that Gg(R) is compact.

Proof. We only sketch for <=. By definition it is enough to prove that Gg is reductive. For any repre-
sentation V of Gg, define an inner product on V induced by ||v| := fGR(R) gv with respect to a Haar

measure on Gg(R). Then this inner product is Gg-invariant. Thus V' can be decomposed into the direct
sum of irreducible sub-representations of Gg. O

Example 2.1.8. Let G = GLyc. Then GLyr and (write J, 4 = diag{I,, —1,} and denote for
simplicity by J = Jpq)
U(p,q) :={g € GLnc : 9" Jg = J}

are R-forms of G, with all p+ q = N. The associated complex conjugation for U(p,q) is
o:g— J(@)tJ. A compact R-form is U(N).

2.2 Polarization on families and reductive groups

Recall the setting of V is a finite-dimensional R-vector space, n € Z, G < GL(V) and
Xt C Hom(S,G) is a GT-orbit. We know that Xt parametrizes certain Hodge structures on V/
of weight n, and hence has carries a family of Hodge structures. By Proposition m X has
a unique complex structure such that this family of Hodge structures varies holomorphically.

Better, we have fixed a (—1)™-symmetric pairing @: V x V' — R which induces a polarization
for the Hodge structure on V given by each h € X . In this section, we prove that this extra
information forces G to be a reductive group.
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2.2.1 Cartan involution

We need some background knowledge on Cartan involutions.
Let Gr be a linear algebraic group defined over R. Let o: G¢ — G¢ be the associated
conjugation.

Definition 2.2.1. A Cartan involution is a morphism 0: Gg — Gr such that 6> = 1 and
that (Ge)™ :=={g € Gc : 7(g9) = g} is a compact real form of Gc, where T =60c oo =0 o0fc.
Example 2.2.2. Let us look at the following examples with Gc = GLy c.

(a) Gr =U(N), with 0 = 1.

(b) Gr =U(p,q), with 6(g) = JgJ where J = Jp,,.

(¢) Gr = GLyR, with 0(g) = (¢")~".
Proposition 2.2.3. Gy is reductive if and only if Gg admits a Cartan involution. And any
two Cartan involutions of Gr are conjugate.

In Example the Cartan involutions in (a) and (b) are induced by an element of G(R),

while in (c) it is not. The first kind is called inner Cartan involution and is of particular
importance because of its relation with polarizations explained by the following lemma.

Lemma 2.2.4 (Deligne). Let C € G(R) with C? = 1. Then the followings are equivalent:
(i) Int(C) is a Cartan involution of G,

(ii) any Gr-representation V is C-polarizable, i.e. there exists a Gr-invariant bi-linear map
¢: V. xV — R such that (z,y) — éc(z,CY) is Hermitian and positive-definite (equiva-
lently, (z,y) — ¢(x,Cy) is symmetric and positive-definite),

(i1i) Gr admits one faithful representation which is C-polarizable.

Proof. Let ¢ be a bi-linear map. Observe that the followings are equivalent:

e ¢ is G-invariant;

e oc(gr,0(9)y) = ¢c(z,y) for all g € G¢ and z,y € Vi;

* ¢c(gx,0(9)CY) = dc(x, CY) for all g € G and x,y € Ve;

o (z,y) — ¢c(z,Cy) is U-invariant, where U = (G¢)” with 7 = Int(C) o 0.

The last equivalence follows from ¢c(gz,0(9)Cy) = ¢c(gz, CT(9)Y)-

Now let us go back to the proof of the lemma. (ii) implying (iii) is trivial. (iii) implies that
U is compact, and hence implies (i). It remains to show that (i) implies (ii).

Assume (i). Then G¢ has a compact real form U, which is the set of fixed points of 7 =
Int(C) o 0. There exists a U-invariant positive-definite symmetric bi-linear map ¢: V- x V. — R
since U is compact. Hence ¢¢ is Ge-invariant, and so ¢c(gx, 7(9)y) = éc(z,y) for all g € Ge.
But 7(g9) = Ca(9)C~! = Co(g)C, hence ¢c(gx,0(g)CY) = ¢c(x, Cy) for all g € Ge. Thus ¢ is
also Ggr-invariant. This establishes (ii). O

Here is a corollary on the Mumford-Tate group.
Corollary 2.2.5. Let (V,h) be a Q-Hodge structure of weight n with a polarization . Then
MT(h) is a reductive group.

Proof. Let Gg := MT(h)g and C := h(v/—1). Then C? = 1, and Vg is a faithful representation
of Gr which is C-polarization. Hence Int(C) is a Cartan involution of Gg by Lemma So
GR is reductive by Proposition m Hence MT(h) is a reductive group. O
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2.2.2 Polarization on parametrizing space

Now let us go back to our setting at the beginning of this section.

Let h € XT. Let Gy be the subgroup of G generated by h(S) for all h € X . In other words,
G1 is the smallest subgroup of G which contains h(S) for all h € X*. It is easy to check that
G is a normal subgroup of G, and that X is a Gf—orbit, where Gf is the identity component
of the real Lie group G1(R).

Recall the weight cocharacter w: Gy, — S induced by R* C C*.

Proposition 2.2.6. Assume how factors through Z(G) for one (and hence all) h € X . Then
the followings are equivalent:

(1) There existsp: V@V — R(—n) which is a polarization for the Hodge structure determined
by each h € X™T;

(2) Gy is a reductive group for one (and hence all) h € X, and Int(h(v/—1)) is a Cartan
involution of G34.

In (2), Int(h(y/—1)) is an automorphism of G which acts trivially on Z(G1), and so can be
seen as an automorphism of G34.

In our setting, v is induced by (). But this proposition also gives an abstract way of showing
the existence of a polarization on a family of Hodge structures, which will be useful in

Proof. By assumption, the subgroup (how)(Gy,) of Gy is independent of the choice of h € X,
and we denote it by W. Then W < Z(Gy).
Recall the short exact sequence of group over R

15 U1) =S Gy — 1.

Let G2 be the subgroup of G generated by h(U(1)) for all h € X*. Then G; = W - Ga.
Moreover since W < Z(G1), the inclusion Gy < G induces G3% ~ G34. So (2) is equivalent to:
(*) Gy is a reductive group for h € X+, and Int(h(v/—1)) is a Cartan involution of G&.

Take a map ¢: V@V — R. Then

¥: V ®V — R(—n) is a morphism of Hodge structures for all h € X

&1 is h(S)-equivariant for all h € X

&1 is h(U(1))-invariant for all b € X because S = w(Gy,) - U(1)

<) is Gg-invariant.
Thus ¢: V@V — R(—n) is a polarization for all h € X if and only if the Go-equivariant map (z,y)
¥(x, h(v/—1)y) is Hermitian and positive-definite. Hence by Lemma (1) is equivalent to
Int(h(v/—1)) being a Cartan involution of Go. Hence by (), it suffices to prove that Int(h(v/—1))
is a Cartan involution of Go if and only if it is a Cartan involution of G3%. So it remains to

prove that Z(Gy) is compact. This is true because G is generated by compact subgroups (since
U(1) is compact). O

2.3 Hermitian symmetric domains

Motivated by Proposition and we shall study pairs (G, X1) where

e (G is a reductive group defined over R,
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e X' is a GT-orbit contained in Hom(S, G), with G acting on Hom(S, G) via conjugation
(with G the identity component of the real Lie group G(R))

satisfying the following properties:
(i) For any h € X, the Hodge structure (LieG, h) has type (—1,1) + (0,0) + (1, —1),
(i) For any h € X+, Int(h(/—1)) is a Cartan involution for G4,

In fact, it is enough to require (i) and (ii) for one h € X*. And condition (i) implies that
how: Gy — G factors through Z(G). Indeed by (i), Ado how: Gy, — GL(LieG) sends z to
the multiplication by 20 = 1, and hence is trivial. So im(h o w) C Ker(Ad) = Z(G).

Now take any representation V of G. Then X xV — X is a family of R-Hodge structures
with the Hodge structure on h € X determined by S LNFeR GL(V). By Proposition
and this family is an R-variation of Hodge structures endowed with a polarization.

Theorem 2.3.1. X is a Hermitian symmetric domain. More precisely, this means:
(1) Xt = X" x - x X}F;

(2) Each Xf is a Riemannian symmetric space of non-compact type, i.e. Xi+ ~ G;"/Ki,oo
where G is a simple group defined over R and K; s a maximal compact subgroup of

G/;
(3) For eachi € {1,...,k}, X;" has a G;-invariant complex structure.

Conversely, any Hermitian symmetric domain can be obtained as X for a pair (G, X ™) as
above. But we will not prove this in this course.

2.3.1 The example of Siegel case

Let V=R% Let: V xV — R be (z,y) — z'Jy with J = [(} Iﬂ
—1q

Define the R-group

Gr = GSp(¥) = GSpyy := {g € GL(V) : ¥ (g, gy) = cp(x,y) for some ¢ € R*}
= {g € GLogR : ngt = ¢J for some ¢ € IR{X} )

The derived subgroup G3 = Spy,; = {g € GL(V) : ¢(g9z, gy) = ¥(z,y)} = {g € GLoggr : 9Jg" = J}.
Define
ho: S — Gszd, a-+bv—1 alyg + bJ.

Indeed, this map is well-defined since (alpg + bJ)J(alyg + bJ)® = (a® + b?)J. Notice that
ho ow: Gy, — GSpy, sends r € R* to multiplication on V' by r. Hence the Hodge structure
(V, ho) has weight —1.

The eigenvalues for J are £v/—1. Let V=50 (resp. V?~1) be the eigenspace of v/—1 (resp.
of —y/—1). Then one can check that each z € S(R) = C* acts on V10 as multiplication by 2z
and on V%~ as multiplication by Z. Thus (V, hg) is a Hodge structure of type (—1,0) + (0, —1),
and 1 is a polarization.

Now that LieGg C End(V) =V @ VY, we know that the Hodge structure (LieG, h) has type
(=1,1) + (0,0) + (1,—1). So condition (i) holds true.

For condition (ii), apply Lemma to the group (GSpsy)® = GSpy,/Z, where Z is the
subgroup of scalar matrices, and the element C' € (GSpyy)®(R) being the image of hg(v/—1) =
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J € GSpyy(R). Since v is a J-polarization of the Hodge structure (V,hg), by Lemma
Int(ho(v/—1)) is a Cartan involution for (GSpy,)*d.

Let X* C Hom(S, Gg) be the GSp,-orbit of hg. Then Spyy acts transitively on X+, and
Stabsp,, (ho) = U(d) = O(2d) N Spy, is a maximal compact subgroup of Spy,. So

X1 =~ Spyy/(0O(2d) N Spyy)

with Sp,; a simple group defined over R which is not compact. To see the complex structure in
a more concrete way, let us make the identification

X =8py,/(0(2d) N Spyg) = H4 := {7 € Matgxa(C) : 7 = 7* and Im7 > 0} (2.3.1)

which sends

g-hor g-V—1I;:= (V=1A+ B)(vV—1C + D) ! with g = [A B] .

C D

The Spy,-invariant complex structure on X ™ is the same as the complex structure on $), inherited
from the open inclusion £ C {T € Matgxq(C) : 7 = Tt} ~ Cdld+1)/2

2.3.2 Cartan decomposition of semi-simple groups

In this subsection, we review background knowledge (without proof) on the Cartan decompo-
sition of semi-simple groups G defined over R. This is closely related to the Cartan involution
from
Let 6 be a Cartan involution of a semi-simple group G defined over R. Composing with the
adjoint representation Ad: G — GL(LieG), we get an involution on g := LieG which we still
call a Cartan involution and denote by 6. Then 6 has eigenvalues 1, and let ¢ (resp. m) be the
eigenspace for 1 (resp. for —1). Then
g=tom. (2.3.2)

Moreover, [¢, €] C ¢, [¢,m] C m, and [m,m] C ¢ by looking at the eigenvalues. So £ is a Lie
subalgebra of g, while any Lie subalgebra contained in m is commutative.

Lemma 2.3.2. K, := exp(t) is a mazimal compact subgroup of GT.

We can also recover the compact real form of G as follows. The Cartan involution 6 extends
to gc and we have a corresponding gc = £c ® mc. Let g. := € ® /—1m. Then G. := exp(g.) is
a compact real Lie group and which is a real form of G. Notice that K, = G N G..

2.3.3 Proof of Theorem [2.3.1]

By definition of X, the center Z(G) acts trivially on X . Hence the action of G factors
through G*¢(R)*. By Theorem G2 can be decomposed into a direct product G* =
G1 X -+ x Gy with each G; a simple group. Fix h € X, and let X;r = G;r - h. Then the
decomposition of the group induces

X~ X x X

This establishes (1).
In the rest of proof, to ease notation, use G to denote G; and X to denote X;r. Then G is
a simple group with trivial center.
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Denote by g := LieG. Consider the action of h(y/—1) on g via the adjoint representation.
Then h(yv/—1) acts on g% as identity and on gh~! @ g=! as multiplication by —1. Thus
X+ ~ GT /K for the subgroup K., := exp(g’") of G*. Condition (ii) says that the action of
h(yv/—1) on g is a Cartan involution, and hence we have a Cartan decomposition g = €@ m as in
(2.3.2). Then condition (i) says that &€ = g”° (and m¢ = gt @ g~ 1!). Hence K := exp(g”?)
is maximal compact in G* by Lemma[2.3.2| This establishes (2).

Remark 2.3.3. Assume G is simple with trivial center. If G is compact, we claim that X =
{trivial map}. Indeed, Int(h(v/—1)) is identity because it is a Cartan involution for G. Thus
Adoh: S — GL(g) sends v/—1 to identity, and hence (g, h) has Hodge type (0,0) by assumption
(i) (since \/—1 acts on the complement of g®° by multiplication by —1). But then Ado h is
trivial since z € S(R) = C* acts on g as multiplication by 2°2° = 1. Thus h(S) C Ker(Ad) =
Z(G) = {1}.

For part (3), notice that [gh~! gh~1] C g>2 = 0. Hence gl'~! is an abelian Lie subalgebra
of gc. Same is true for g~ 5!, Thus Flgc = g%° @ gt ! is a Lie subalgebra of gc. Therefore
P = exp(Fgc) is a subgroup of G(C), with P N G = K. Thus the inclusion G C G(C)
induces an injective morphism of real smooth manifolds

Xt =G"/Ky — XY :=G(C)/P¢. (2.3.3)

The tangent of this map is an isomorphism as real vector spaces. Hence this map realizes X
as an open subset of XV. This establishes (3). We are done. O

2.3.4 Borel embedding theorem and Harish—Chandra realization

Replacing G' by G4 does not change X+. Hence we may assume that G is semi-simple. Fix h € X,
and take the inner Cartan involution # obtained from h(y/—1). Use the notation from §2.3.2| The real
tangent space of X at h, denoted by Tr(X ™), can be identified as m.

The element J := h(e™~1/4) satisfies J2 = 1. Its action on X induces a decomposition
Tr(XT)@rC=T"XT) e T0(XT)

where J acts by multiplication by v/—1 on T1%(X*) and by —v/—1 on T%*(X*). Then T10(X¥) is
the holomorphic tangent space at h. On the other hand, we have m¢ = m* © m~ where J acts by
multiplication by v/—1 on m* and by —v/—1 on m~; in fact m* = g~1! and m~ = g>»~!. Then as we
have seen above, both m™ and m™ are abelian Lie subalgebras of gc.

Let MT := exp(m™), M~ := exp(m™); both are abelian subgroups of G¢. Let K¢ := exp(tc) and
Pr:=exp(tc + m~) = KcM~. Then P is a subgroup of Gc.

Here is a more precise version of , with G, the real form of G from the end of

Theorem 2.3.4 (Borel Embedding Theorem). The embedding G. < G(C) induces an isomorphism of
real manifolds Go/ Ky ~ G(C)/Pc = XV. The embedding G < G(C) induces an open embedding

Xt =G"/Ky — XY =G(C)/ P,
realizing X as an open subset (in the usual topology) of XV.
We call XV the compact dual of XT.
Theorem 2.3.5 (Harish-Chandra). The map
F: M* x Ke x M~ — Gg, (mT, k,m™) = mThkm™

is a biholomorphism of of the left hand side onto an open subset of G(C) containing G. As a consequence,
the map

n:mt - XY =G(C)/F, mT — exp(m™)Pc
is a biholomorphism onto a dense open subset of XV containing X . Futhermore, D := n~%(X7T) is a
bounded symmetric domain in m* ~ CN and n~'(h) = 0.
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Example 2.3.6. Let us continue with Example|2.5.1. The Harish—Chandra realization of Siegel
upper-half space H4, based at \/—11y, is

{Z € Matgq(C): Z = Z" and Iy — ZZ > 0}.
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