Chapter 1

Preparation on Hodge theory

1.1 Hodge structure and polarizations

Take R=7,Q,R.
Let n € Z.

1.1.1 Hodge decomposition and Hodge filtration

Definition 1.1.1. An R-Hodge structure of weight n is a torsion-free R-module of finite
type V' endowed with a bigrading (called the Hodge decomposition)

= P9 ; a,p — /P4
Ve @p+q:nv , with  V VP,

For a subset A CZ @7, we say that V has Hodge type A if VP4 =0 for all (p,q) ¢ A.
An R-linear map ¢: V. — W between two Hodge structures of weight n is said to be a
morphism of Hodge structures if p(V?9) C WP4 for all p,q.

We thus have the category of R-Hodge structures of weight n, denoted by HS%. One can
define direct sums in HS%;, and hence makes it into an abelian category.

We can also consider the category of R-Hodge structures, denoted by HSg. The objects are
R-Hodge structures of any weight. Then we can define tensor products, duals, and internal
homs in HSg as follows. Let V € HS%, and W € HS%,

(i) the bigrading on V@ W € HS%H™ is given by (V @ W)P4 = g V@ W

rr'=p, s+s
(ii) the bigrading on VY € HS;" is given by (V)P4 = (V—P~1)V;
(iii) Hom(V,W) :=VV @ W.
Here are some examples.
Example 1.1.2 (Tate twist). For each m € Z, set R(m) € HSEQ’” to be
R(m) = (2mi)™R, R(m)c = R™ ™.
Then R(0) = R, R(m) = R(1)®™ with R(—1) = R(1)V.

Example 1.1.3 (cohomology from geometry). Let X be a connected smooth projective variety
defined over C. For each n > 0, the Betti cohomology H" (X, 7Z)/tor admits a Z-Hodge structure
of weight n via the Betti-de Rham comparison H™"(X,C) ~ Hz(X) and the decomposition of
H}x (X) into the direct sum of subspaces arising from (p, q)-forms.
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Example 1.1.4 (Complex tori). We explain in this example the following equivalence of cate-
gories:
{complex tori} = {Z — Hodge structures of type (—1,0) + (0, —1)}.

The direction — is by sending T — H1(T,Z). Let T be a complex torus of dimension g > 1. Set
Vy = H(T,7Z).

As a real manifold, we then have T ~ Vr/Vyz. Moreover, as a real space Vi is isomorphic to
Lie(Tr), the Lie algebra with Tr seen as a real Lie group. The complex structure on T gives an

action of J on Vg, with
|0 I
=1 )

and hence the desired Hodge decomposition
V(C _ V*l,O @ VO,fl

with V=10 the eigenspace of /—1 and VO the eigenspace of —/—1.

The direction < is given as follows. Let Vz be a Z-Hodge structure of type (—1,0)+ (0, —1).
Then Ve /VO~1 is a complex space of dimension %rankVZ. Thus we obtain the desired complex
torus

Vo \Ve / VOt~ Vg \V 10
Notice that we have implicitly an isomorphism of real vector spaces Vg ~ Vg /VO1 = y—10
given as the composite Vg C Ve — V@/VO’*l =Vy~Lo,

An alternative way to see the Hodge decomposition is the following Hodge filtration. It is of
particular importance when we consider families of Hodge structures.

Definition 1.1.5. Let V' be an R-Hodge structure of weight n. The Hodge filtration is the
decreasing chain --- D FPVe D FPHWe D -.. with

P —— T,8
F%_@@V. (1.1.1)
Conversely, the Hodge decomposition can be recovered by the Hodge filtration via
VPi = FPVe N FaVe. (1.1.2)

1.1.2 Polarizations

Let V be an R-Hodge structure of weight n.
The Weil operator C € End(V¢) is defined as follows: It acts on VP4 by multiplication by

V=197 We have Cz = Cxz for all z € VR So C € End(VR). A more elegant way to define
the Weil operator will be given above Proposition in terms of Deligne torus.

Definition 1.1.6. A polarization on V is a morphism of Hodge structures
Y: VeV — R(—n)
such that the bi-linear map
xR =R, (z,y) = Yo(z,y) = (2nvV—=1)"p(x, Cy) (1.1.3)

is symmetric and positive definite.

Mindeed, for z = > p.qTpa € Vk, we have Tp g = xq,p because VP4 = V4. So Cz = > \/—1q7px77q =
> V=T, = > V—=1""%z,, = Cz, and hence Cz € Vk.
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The Hermitian pairing associated with the bi-linear map (1.1.3)) is (z,y) — ¥ (x,7).
Lemma 1.1.7. Let V € HS%, and let ¢ be a polarization. Then
(i) © is (—1)"-symmetric, i.e. is alternating if n is odd and is symmetric if n is even.

(ii) the decomposition Vo = @ VP4 is orthogonal with respect to the Hermitian pairing asso-

ciated with (1.1.3)).

Proof. We start by proving (ii). Take z € VP and y € V"°. Then

(2W\/j1)_n¢0($ay) = Tl)(l‘, Cy) = ?l)(x, \/jlr_sy) = \/jlr_sdj(l‘ay)

Now (z,7) € VP4 x V" C (V x V)PT84+7" So o)(x,7) € R(—n)PT54t" since v is a morphism
of Hodge structures. Assume 9(z,35) #0. Then p+s=qg+r=n. Bt p+¢=r+s=n. So
p=rand g =s. Thus Yo (VP4 V") =0 unless p = r and ¢ = s. This establishes (ii).

Now we turn to (i). The proof will be much easier and more elegant if we apply Proposi-
tion [1.2.5] Here we give a direct computation without using this proposition.

For each x,y € Vg, write z = an ZTpg and y = Zp,q Yp,q under Vo = @ VP9, Then (ypq,2rs) C
(V x V)PT7a+s "and hence ¢(yp,q, Tr,s) € R(—n)PH™4%5 is 0 unless p+ 7 = ¢+ s =n. So

Uy, x) = Z V(Yp,q» Tp,q)-
pa

On the other hand, z, ¢ = %4, and yp ¢ = Yq,p since VP4 = V9P, So

Ye(Cy,z) = ¢C(Z \/jlq_pypm Z Tpq)
Py

p.q

= ¢C(Z \/jlq_pyp,q» Z Tpg)

p,q p,q

= Z ﬁ’C(\/jlq_pyILm Tp.q)

p.q

= Z¢C(\/j1q7pyp,qvxq,p)
p.q
= (2mV/=1)" Z w(\/jlqipyp,qa Czqp)

p.q

= 2rV/=1)" > (V1" Ty VST Mg )
= (2rv-1)" Z V(Yp.q> Tq,p)-

p,q

Therefore
¢(y7 Jf) = (27T \ _1)7711#0(03/) Z‘)
Since ¢ is symmetric, we furthermore have

U(y,x) = 2mV=1)""pc(z, Cy) = p(z,C?y).

Notice that C? acts on VP4 by multiplication by (—1)?7P = (—=1)?*? = (—1)" for all p,q. Thus C? acts
on V as multiplication by (—1)". So we have

Py, x) = (=1)"P(x,y).
This establishes (i). O
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Example 1.1.8 (Complex abelian varieties). We continue with Example and prove
{complex abelian varieties} — {polarizable Z-Hodge structures of type (—1,0) + (0, —1)}.

Let T be a complex torus which corresponds to Vg = Hy(T,Z). Then T ~ Vg/Vz as real
manifolds. Thus /\2 V) ~ /\2 HY\(T,Z) = H*(T,Z). Therefore the set of alternating pairings

P: VoV —>Z(1)

is in bijection with H*(T,Z(1)).
The short exact sequence of sheaves 0 — Z(1) — Or Rl OF — 0 induces

Pic(T) = HY(T, 03) < H*(T,Z(1)) — H*(T,Or).

Assume T is an abelian variety. Then there exists an ample line bundle L on T. The Ampell-
Hubert data for L then gives an alternating pairing ¢ € H?*(T,Z(1)) such that the Hermitian
pairing (z,y) — ¥(x,/—1%) is the c¢1 of L for a suitable Hermitian metric on L. But Vz has
Hodge type (—1,0) + (0,—1) and the complex structure on Vi /Vz is by identifying Vg ~ V10,
So c1(L) is precisely . The ampleness of L implies that V¢ is positive-definite. Thus v is a
polarization on Vz.

Conversely assume ¥ is a polarization on Vz. Then b can be seen as an element in
H2(T,Z(1)), and ¥¢c equals (x,y) — ¥(x,/—1y) as above. So the Ampell-Hubert Theorem
gives a line bundle L on T such that ¢1(L) = v¥¢c. The positivity of 1V thus implies the ample-
ness of L by Kodaira embedding. So T is an abelian variety.

Example 1.1.9 (Primitive cohomology and Lefschetz). We continue with Example . As-
sume d = dim X. Let w be a Kdhler form on X®", which is a closed (1,1)-form. It induces
a homomorphism L: H"(X,Q) — H""%(X,Q), [a] = [w A a]; here we are using H"(X,Q) C
H"(X,C) ~ HJ:(X). The Hard Lefschetz Theorem says that L": HY"(X,Q) = H™" (X, Q)
for all v > 0. Now let r = d —n. Set H[;,(X,Q) to be the kernel of L' H(X,Q) —

H?d=n+2(X Q). We have a morphism of Hodge structures
Y H'(X,Q@H"(X,Q) ~2 H"(X,Q)@H*~"(X,Q)(dim X—n) % H*(X,Q)(d—n) = Q(-—n).

The restriction of ¢ to HJ (X, Q) is a polarization. Thus we obtain a polarization on H"(X, Q)
by the Lefschetz decomposition H"(X, Q) = @o<s<|n/2) L (H"%(X,Q)).

prim

1.2 Mumford—Tate group

1.2.1 Revision on algebraic tori

Let k be a field. A linear algebraic group defined over k is an affine group scheme G/k of finite
type; it can be embedded as a closed subgroup scheme of GLy for some N. If chark = 0, then
G is reduced and smooth. As an example, we have Gy, ;, := GL1 , which is defined by: for any
k-algebra R, we have Gy, ;(R) = R*. When k is clear in the context, we simply write Gy,.

Let k® be a separable closure of k. If chark = 0, then k° is an algebraic closure of k.

Definition 1.2.1. An algebraic torus defined over k is a linear algebraic group T defined over
k such that its base change to k° is isomorphic to an,ks for some r > 1.
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The group of characters (resp. group of cocharacters) of T is
X*(T) == Hom(Tys, G ps), (resp. Xu(T') := Hom (G s, Ths))-

Both X*(T) and X.(T) are isomorphic (as groups) to Z4™7 and are naturally endowed with a
Gal(k®/k)-action. We also have a perfect pairing as Gal(k®/k)-modules

XHT) x Xo(T) = Z = End(Guye),  (xo 1) — (X, 1) 1= x 0 . (1.2.1)

By definition, T}y ~ Gy, s for some finite separable extension k’/k. So the Galois action of
Gal(k®/k) on X*(T') factors through Gal(k’/k) which is a finite group. Therefore the Gal(k®/k)-
action on X*(7T') is continuous. Same for the Gal(k®/k)-action on X, (7). Thus the functor
T — X.(T) gives an equivalence from the category of algebraic tori defined over k to the
category of free abelian groups of finite rank endowed with a continuous Gal(k®/k)-action.

Next we turn to the representations of algebraic tori p: T'— GL(V). Passing to k’, p becomes
Ty ~ G . — GL(Vi). Then Vi can be decomposed into

(nl,...,nr)GZT

where V) = {v € Vi : p(t)v = x(t)v} and V™" = {v € Vi : p(z1,..., 20 )v = 20 "+ 27 "0}
On the base field k, the decomposition is Galois compatible, i.e. o(Vy) = Vo for all o €
Gal(K'/k).

1.2.2 Deligne torus

View C as an R-algebra using the inclusion R C C. Let S be the algebraic group Resc/rGm
defined over R, i.e. for any R-algebra R, we have

S(R) = (R®r C)*.
Then
S(C) = (Cer C)* = ((R@\/ZR) QR (C)X = (R C)* x (V-IR®g C)* = C* x C*.

Hence S is an algebraic torus defined over R, and Gal(C/R) = {1,0} acts on S(C) by o(z1, 22) =
(Z2,%1). Thus S(R) = {2 € S(C) : z = 0(2)} = {(21,22) € C* x C* : 20 = Z1}. In other words,
the natural inclusion S(R) C S(C) is given by z — (z,%).

Definition 1.2.2. The algebraic torus S is called the Deligne torus.
The character group of the Deligne torus is
X*(S) = Hom(S(C),C*) = Hom(C* x C*,C*) = Hom(C*,C*) @ Hom(C*,C*) ~Z & Z, (1.2.2)
where the last isomorphism is obtained from the inverse of
Z = Hom(C*,C*), p— (2 27P). (1.2.3)

The Galois group Gal(C/R) = {1,0} acts on X*(S) by o(p,q) = (g, p)-

Among the cocharacters of S, two are particularly important:
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- the weight cocharacter w: Gy c — Sc, 2 — (2, 2), which descends to R (namely it is the
base change to C of a morphism G, g — S).

- the principal cocharacter p: Gy c — Sc, 2z — (2,1).

An important character of S is the norm character Nm: S — Gy, z — zo(z). It fits into the
following short exact sequence:

0= U®1) =S Gy — 0. (1.2.4)

Notice that Nm o w sends each z € G, (R) = R to 2.

1.2.3 Hodge structures as representations of the Deligne torus

Now let V' be an R-Hodge structure of weight n. Recall the Hodge decomposition Vg = @ VP1.
It gives rise to an action of S¢ on V¢ by setting VP4 to be the eigenspace of the character
(p,q) € X*(S). More precisely, for each (21,22) € S(C) = C* x C* and each v = (Vpq)p,q €
Ve = @ VP4, we have

(21,22) " v = (21 23 Wpg)pg- (1.2.5)

This action of S¢ on V¢ induces a morphism
h:Sc — GL(Vg). (1.2.6)

Lemma 1.2.3. The morphism h descends to R, i.e. it is the base change to C of a morphism

Proof. For Gal(C/R) = {1,0}, we can do the following computation. Let (z1,22) € S(C) and v =
(vp.g)p.g € Ve -

Recall that the Hodge decomposition satisfies V¢ = V9P, So v,, € VP4 = V9P, Hence the
decomposition of 7 = o(v) under Vo = @ VP9 is U = (Vg ,p)p.q- 10 particular, T, ; = Tg .

Now we have

h(o(21,22))v = (22,%1) - v = (2321 "Vp,0)p.g
and
o (h(z1,22)) v = 0 (h(21,22)0) = 0 ((21, 22) - ) = 0 ((21 P23 "Vp,q)p,a) = 7 ((21 " 25 Wap)pa) = (Z1 22 PVp.0)p.q-
Hence h is Gal(C/R)-equivariant, and therefore descends to R. O
Thus from any R-Hodge structure V of weight n, we have constructed a morphism S —
GL(VRr). Conversely given any h: S — GL(VR), we can define VP4 to be the eigenspace of the

character (p,q) € X*(S) of Sc. Then V =@ VP4 and VP = VP4 because h is defined over R.
Hence we have the following proposition.

Proposition 1.2.4. Let R =7,Q and let V' be a torsion-free R-module of finite type.
Then there are bijections between the following sets of:

(i) Hodge structures of weight n on V;
(i1) morphisms h: S — GL(VR) such that the eigenspace of (p,q) € X*(S) is 0 unless p+q = n.

(111) morphisms h: S — GL(VR) such that the composite h o w: G g — GL(VR) sends each

n

z € R* to the multiplication by z~".
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If a Hodge structure on V' corresponds to h: S — GL(V&), by abuse of notation we use (V, h)
to denote this Hodge structure. In this terminology, the Weil operator C' of the Hodge structure

(V,h) in the definition of polarizations (1.1.3)) is simply h(y/—1).

Proposition 1.2.5. Let (V,h) and (W,h') be two R-Hodge structures of weight n, and let
p: V. — W be an R-linear map.

Then ¢ is a morphism of Hodge structures if and only if o(h(z)v) = h/(2)¢(v) for all z € S(R)
and v € Vg.

The proof of Lemma (i) can be much simplified by this proposition: ¢(y, ) = ¥(Cy,Czx) =
(27TV _1)_2n¢]0(0y7$) = (27TV _1)_2nw0($70y) = ¢($7021/) = (_1)n¢(x’y)’ and hence w is

(—1)"-symmetric.

Proof. Write v = (vpq)pq € Vo = @ VP4 Then h(z)v = (27227 %pq)pq- S0 @(h(z)v) =
(27PZ799(vp q))p,q by linearity of ¢.

Assume ¢ is a morphism of Hodge structures. Then ¢(VP?) C WP for all p,q, and hence
(05.0) = 9()pg for all p,g. S0 P(A(2)v) = (= P2 %p(0)pg)pg = W (2)p(0).

Conversely assume @(h(z)v) = W' (2)p(v) for all z € S(R) and v € Vg. Let v € VP4
By considering v + 7 and (v — 7)/v/—1, we have p(h(z)v) = h'(2)p(v) for all z € S(R). So
R(2)p(w) = p(h(z)v) = p(2 Pz~ %) = 27 Pz 9p(v) for all z € S(R). Therefore p(v) € WP4. [

This proposition has the following immediate corollary.

Corollary 1.2.6. Let (V,h) be an R-Hodge structure of weight n, and let W be a torsion-free
R-submodule of V.
Then hlw is an R-Hodge structure if and only if Wg is an h(S)-submodule of V.

In this case, we call the Hodge structure (W, hlw) a sub-R-Hodge structure of (V,h).
Another corollary is:

Corollary 1.2.7. Let Q: V x V — R induce a polarization on (V,h). Then h(S) C Aut(V, Q).

Proof. By definition, @ induces a morphism of Hodge structures between V ® V' and R(—n).
Thus the conclusion follows immediately from Proposition [1.2.5] O

1.2.4 Mumford—Tate group
In this subsection, assume R = Z or Q. Let (V,h) be an R-Hodge structure.

Definition 1.2.8. The Mumford—Tate group of (V, h) is the smallest Q-subgroup MT(h) of
GL(Vg) such that h(S) C MT(h)(R).

It is easy to check that MT(h) is connected since S is, and MT(h)(C) is the subgroup of
GL(V(C)) generated by o(h(S(C))) for all o € Aut(C/Q). We also have the following charac-
terization of MT(h) using the principal cocharacter p defined above (|1.2.4).

Lemma 1.2.9. MT(h) is the smallest Q-subgroup of GL(Vg) such that pp, := ho p: Gpc —
GL(Vt) factors through MT (h)c.

Proof. By definition 5, (Gm,c) € MT(h)c. Conversely let M be a Q-subgroup of GL(Vgp) which
contains pp(Gm,c) = h((Gmc)). Then M(C) contains h(z,1) € GL(V(C)) for all z € C*.
Since M is defined over Q and h is defined over R, we have that M (C) contains o(h(z,1)) =
h(o(z,1)) = h(1,%) for all z € C*, where Gal(C/R) = {1,0}. Hence M (C), as a group, contains
h(z,1)h(1,Z') = h(z,Z’) for all 2,2’ € C*. Hence h(S¢) C M, so MT(h) C M. O
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It is not hard to check that the Mumford-Tate of the dual Hodge structure of (V, h) is still
MT(h).

Now assume R = Q. For m,n € Z>(, we have a Hodge structure 77"V := V& g
(VV)®" and MT(h) acts on T™"™V componentwise. The following proposition is an immediate

consequence of Corollary (applied to T™"V).

Proposition 1.2.10. Let W be a Q-subspace of T"™"™V. Then W is a sub-Q-Hodge structure
of T™™V if and only if W is a MT(h)-submodule of T™"V .

This proposition gives rise to another useful characterization of MT(h), which is important
in the study of (sub-)Shimura varieties. We make the following definition.

Definition 1.2.11. The elements of (T™"Vg)*NT™"V, with m and n running over all non-
negative integers, are called the Hodge tensor for (V,h).

Denote by Hdg;, the set of all Hodge tensors for (V, h).

Proposition 1.2.12. We have MT(h) = Zgy,v)(Hdgy,).
In particular by dimension reasons, MT(h) = Zgy,v)(J) for some finite set I C Hdg,.

Proof. Take t € Hdg;,. For any o € Aut(C/Q), we have o(t) = ¢ since ¢ is a Q-element. By ([1.2.5)
we have h(z1, 22)t = 2023°t = t for any (21,22) € S(C). Applying the action of any o € Aut(C/Q) and
recalling that MT(h)(C) is generated by the o(h(S(C)))’s, we have that ¢ is fixed by MT(h)(Q). This
establishes “C”.

To get MT(h) = Zgyv)(Hdgy,), notice that MT(h) is a closed subgroup of GL(V). By theory of
algebraic groups, MT(h) is thus the stabilizer of some 1-dimensional Q-subspace L in @(mﬁn)e IV
for some finite subset I C Z2 . Now that L is a 1-dimensional MT(h)-submodule of @(m’n)el Tmn"V,
Proposition [[.2.10]implies that L is a 1-dimensional Q-Hodge structure, and hence Lc = LP*Y for some p
and ¢. But then p = ¢ since LP? = m In other words, L ~ Q(—p) has weight 2p.

If p = 0, take a Q-generator ¢ of L. Then MT(h)(Q) fixes £ by the same argument on proving “C”.
So MT(h), being the stabilizer of Q¢, equals Zgr,(v)(£). If p # 0, then the weight of (V,h) is not zero,
and hence the weight r of the Hodge structure det V := /\dimv V is non-zero (since det V' can be realized
as a MT(h)-submodule of V®4mV) We may assume r > 0 up to replacing V by V. The 1-dimensional
Q-space L™ @ (det V)®~2P is a Hodge structure of weight 0 and hence equals its (0,0)-piece. Let £ be
a generator of L®" @ (det V)®~2P. Then / is fixed by MT(h)(Q) by the same argument on proving “C”.
Hence MT(h) = Zar,v)(£) as in the case of p = 0.

To summarize, there exists a finite sum of Hodge tensors ¢; +- - -4t such that MT(h) = Zarv)(t1 +
<+ +tn). So MT(h) C ﬂfil ZarLwvy(ti) € Zarnv)(ts + -+ +tny) becomes an equality. We are done. [

Finally, we point out that the Mumford-Tate group of any polarized Q-Hodge structure of
weight n is a reductive group. A detailed discussion on this will be given in the next chapter

(Corollary [2.2.5).

1.3 Passing to families

In practice it is important for us to work with families. We discuss two aspects, and end up
with a question to relate them.

2ITo make the argument in this paragraph vigorous, we need to argue with mized Hodge structures because
@(m,n)EI T™"™V may have more than one weight. However, since @(myn)a T™"™V is a direct sum of (pure)
Hodge structures and dim L = 1, we are essentially working with a pure Hodge structure.
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1.3.1 Variation of Hodge structures

Let S be a complex manifold.

Definition 1.3.1. A Z-variation of Hodge structures (Z-VHS) of weight n on S is (Vz, F*)
where

- Vz is a local system of free Z-modules on S of finite rank,

- F* is a finite decreasing filtration (called the Hodge filtration) of the holomorphic vector
bundle V := V7 ®z, Og by holomorphic subbundles,

such that
(1) (Vz.s,Fs) is a Z-Hodge structure of weight n for each s € S,

(i1) the connection V:V — V ®pg Q}g whose sheaf of horizontal sections is V¢ := Vg ®7 C
satisfies the Griffiths’ transversality condition

V(FP)C FP ey for all p. (1.3.1)
A polarization on (Vz, F®) is a morphism of local systems
Vo ® Vg — Qg
inducing on each fiber a polarization of the corresponding Q-Hodge structure.

Example 1.3.2. Let f: X — S be a smooth projective morphism. Then V := R"f.Zx is a
local system of Z-modules on S with fiber Vo = H™"(X,,Z). Replace V by its quotient by torsion.
Under the isomorphism V ~ R"f*Q;(/S, the Hodge filtration is FPV = R"f*Q)Z(I;S. Notice that
the subbundle of (p, q)-forms is not holomorphic if ¢ # 0, but FPV is holomorphic. The fiberwise
polarization from Ezample gives a polarization on V.

And this example is the geometric origin of the Griffiths’ transversality.

1.3.2 Parametrizing space

Next we turn to the following question. Let V' be a finite-dimensional R-vector space, and let
n € Z.

Fix a partition {hP?}, ;cz of dim V¢ into non-negative integers with p + ¢ = n such that
hP4 = h?P. Consider the set of all Hodge structures on V' such that in the Hodge decomposition,
we have dim VP4 = hP4 for all p,q. Equivalently by Proposition we are considering the
subset My of Hom(S, GLy ) such that the eigenspace of (p, q) € X*(S) has dimension h”9. Notice
that GLy acts on Hom(S, GLy ), by sending h +— Int(g) o h.

Lemma 1.3.3. Mg is a GLy -orbit.

Proof. Fix h € M. Then VP = {v e V¢ : h(z)v = z7Pz % for all z € S(R)}.

For any g € GLy, it is easy to check that {v € V¢ : (g h)(2)v = 2Pz % for all z € S(R)}
equals gV,ff’ 7 and hence has dimension h?4. Hence the Hodge structure on V determined by
g - hisin Mgy. Namely GLy - h € M.

Conversely let B’ € My. By assumption dim VY = dim V" for all p,q. Assume h?? = 0
unless r < p < s. Such r and s exist since dim Vg < oo. Now there exists a g1 € GLy such
that V,,""" = g1V,"""" by dimension reasons. Now we work with »" and g - h, and there exists
g2 € GLy such that g V7" " = Vhr,’n_r and V,:,H’n_r_l = gngTfhl’n_r_l. We continue to work
with A’ and gog1 - h and repeat this process which stops after finitely many steps. Hence we find
a g € GLy such that V77 = ij for all (p,q). So b/ = g-h. Thus My C GLy - h. d
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Next we fix furthermore a non-degenerate (—1)"-symmetric pairing @Q: V x V — R. We
furthermore consider the subset M of M/ consisting of Hodge structures on V for which @ is a
polarization. Then by Corollary we have M C Hom(S, Aut(V,Q)). Moreover using (the
proof of) Lemma [1.3.3] we see that M is an Aut(V, Q)-orbit.

Example 1.3.4. Assume dimV = 2g and let Q: V xV — R be the standard symplectic pairing.
Then Aut(V,Q) = GSpy,. If g =1, then Aut(V,Q) = GLa.

Finally fix a collection of tensors {s,} on T™" = V&M @ (VV)®" with m, n running over all
non-negative integers. Set

G :=Aut(V,Q) N ﬂa Stabar, (Sa)- (1.3.2)

Let GT be the identity component of the real Lie group G(R). Then [G(R) : GT] < oo.

Fix h: S — Aut(V, Q) such that each s, is a Hodge tensor for the Hodge structure (V,h).
Then the same holds true for the Hodge structure (V,g-h) for all g € G*. Let X+ := Gt -h C
Hom(S, G) !

Now we have a family of Hodge structures on X as follows: X xV — X T, with the Hodge
structure on V over each h € X being precisely the one given by h. Now X+ x V can be seen
as a smooth vector bundle on X, and for each p there is a subbundle FP? whose fiber over each
h € X is the Hodge filtration F}.

In view of the definition of VHS (Definition , we wish the investigate the following
questions:

(i) Is there a complex structure on X for which each subbundle F” is a holomorphic?

(ii) When does Griffiths’ transversality hold true, i.e. V(F?) C FP~1 @ QL for all p?

1.3.3 Constraint on the Hodge type

Continue to use the notation above. Let h € X C Hom(S,G). Composing with the adjoint
representation G — GL(LieG), we have a Hodge structure on LieG by Proposition m By
abuse of notation, we use (LieG, h) to denote this Hodge structure. Since X is a G*-orbit, the
Hodge type of (LieG, h) is independent of the choice of h € X .

Moreover h induces a Hodge structure on End(V) = VV ® V, which must be of weight
0 and by abuse of notation we denote by (End(V),h). The inclusion G C GL(V') induces
LieG C End(V) = VV ® V. Hence the weight of (LieG, h) is 0.

In what follows, we use g to denote LieG.

Proposition 1.3.5. There exists a unique complex structure on X such that FP is holomorphic
for each p. Griffiths’ transversality holds true if and only if the Hodge structure (LieG,h) has
type (—1,1) + (0,0) + (1, —1) for one (and hence all) h € X™.

Proof. For each h € XT, let F? be the Hodge filtration of the Hodge structure (V,h). For
each p, write d, := dim F; }I; = Zr>p h"™~T which does not depend on h. We have a flag variety
F{ parametrizing sequences (called flags) --- 2 V, O V11 2 --- of subspaces of V¢ with
dim V,, = d), for each p. By general theory, F/ is a complex algebraic variety which is a GL(V¢)-
orbit. Moreover, the tangent space of F/ at the flag --- D V, O V41 2 --- is a subspace
of

B Hom(V;,, Ve / V). (1.3.3)

P

Bl fact, X is known to be a connected component of X C M which parametrizes all Hodge structures on V
for which each s, is a Hodge tensor.
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There is a natural map
o: Xt > Fl, he F,

which is injective since a Hodge structure is uniquely determined by its Hodge filtration. The
group GL(Vc) naturally acts on F/, and it is not hard to check that the stabilizer of F} is
exp FYEnd(Vg).

Let us show that ¢ makes X into a complex subvariety of F£. Fix hy € X and let
Ko = Stabg+(ho). Then X = Gt - hy ~ G /Ky, and LieKo, = g N F}) gc which is the
(0, 0)-constituent of the Hodge structure (g, ho). So ¢ factors through

Xt =G"/Ko = XY 1= G(C)/ exp Fy), gc — F€ ~ GL(V¢)/ exp Fy) End(V). (1.3.4)

The first map makes X into an open submanifold of XV, and the second map is a closed
immersion as complex algebraic varieties. So X has a natural complex structure induced from

XV,
Next we turn to the Griffiths’ transversality. The tangent map of ¢ at hg is

de: Ty X+ — Ty, Ft ~ End(Ve)/Fp, End(Ve) € @ Hom(FY, , Ve /FL).
p

Griffiths’ transversality holds true if and only if
. -1
im(dye) € @ Hom(F}, , FE—/FD ),
P
and hence if and only if
im(dg) C F,_'End(Vc)/Fp, End(Ve).

But im(dy) = LieG¢/F, ,90 gc. So Griffiths’ transversality holds true if and only if gc = Fj| Lyc.
Therefore we can conclude.

We yet to understand the polarization attached to this family, for which we need to recall
some background knowledge on reductive groups. The full discussion will be carried out in
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