
Chapter 1

Preparation on Hodge theory

1.1 Hodge structure and polarizations

Take R = Z,Q,R.
Let n → Z.

1.1.1 Hodge decomposition and Hodge filtration

Definition 1.1.1. An R-Hodge structure of weight n is a torsion-free R-module of finite
type V endowed with a bigrading (called the Hodge decomposition)

VC =
⊕

p+q=n
V p,q, with V q,p = V p,q.

For a subset A ↑ Z↓ Z, we say that V has Hodge type A if V p,q = 0 for all (p, q) ↔→ A.
An R-linear map ω : V ↗ W between two Hodge structures of weight n is said to be a

morphism of Hodge structures if ω(V p,q) ↑ W p,q for all p, q.

We thus have the category of R-Hodge structures of weight n, denoted by HSnR. One can
define direct sums in HSnR, and hence makes it into an abelian category.

We can also consider the category of R-Hodge structures, denoted by HSR. The objects are
R-Hodge structures of any weight. Then we can define tensor products, duals, and internal
homs in HSR as follows. Let V → HSnR and W → HSmR ,

(i) the bigrading on V ↘W → HSn+m
R is given by (V ↘W )p,q =

⊕
r+r→=p, s+s→=q V

r,s
↘W r→,s→ ;

(ii) the bigrading on V →
→ HS↑n

R is given by (V →)p,q = (V ↑p,↑q)→;

(iii) Hom(V,W ) := V →
↘W .

Here are some examples.

Example 1.1.2 (Tate twist). For each m → Z, set R(m) → HS↑2m
R to be

R(m) = (2εi)mR, R(m)C = R↑m,↑m.

Then R(0) = R, R(m) = R(1)↓m with R(≃1) = R(1)→.

Example 1.1.3 (cohomology from geometry). Let X be a connected smooth projective variety
defined over C. For each n ⇐ 0, the Betti cohomology Hn(X,Z)/tor admits a Z-Hodge structure
of weight n via the Betti–de Rham comparison Hn(X,C) ⇒ Hn

dR(X) and the decomposition of
Hn

dR(X) into the direct sum of subspaces arising from (p, q)-forms.
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Example 1.1.4 (Complex tori). We explain in this example the following equivalence of cate-
gories:

{complex tori}
↔
≃↗ {Z≃ Hodge structures of type (≃1, 0) + (0,≃1)} .

The direction ↗ is by sending T ⇑↗ H1(T,Z). Let T be a complex torus of dimension g ⇐ 1. Set

VZ := H1(T,Z).

As a real manifold, we then have T ⇒ VR/VZ. Moreover, as a real space VR is isomorphic to
Lie(TR), the Lie algebra with TR seen as a real Lie group. The complex structure on T gives an
action of J on VR, with

J :=

[
0 Ig

≃Ig 0

]
,

and hence the desired Hodge decomposition

VC = V ↑1,0
⊕

V 0,↑1

with V ↑1,0 the eigenspace of
⇓
≃1 and V 0,↑1 the eigenspace of ≃

⇓
≃1.

The direction ⇔ is given as follows. Let VZ be a Z-Hodge structure of type (≃1, 0)+ (0,≃1).
Then VC/V 0,↑1 is a complex space of dimension 1

2rankVZ. Thus we obtain the desired complex
torus

VZ\VC/V
0,↑1

⇒ VZ\V
↑1,0.

Notice that we have implicitly an isomorphism of real vector spaces VR ⇒ VC/V 0,↑1 = V ↑1,0

given as the composite VR ↑ VC ↗ VC/V 0,↑1 = V ↑1,0.

An alternative way to see the Hodge decomposition is the following Hodge filtration. It is of
particular importance when we consider families of Hodge structures.

Definition 1.1.5. Let V be an R-Hodge structure of weight n. The Hodge filtration is the
decreasing chain · · · ↖ F pVC ↖ F p+1VC ↖ · · · with

F pVC :=
⊕

r↗p
V r,s. (1.1.1)

Conversely, the Hodge decomposition can be recovered by the Hodge filtration via

V p,q = F pVC ↙ F qVC. (1.1.2)

1.1.2 Polarizations

Let V be an R-Hodge structure of weight n.
The Weil operator C → End(VC) is defined as follows: It acts on V p,q by multiplication by

⇓
≃1

q↑p
. We have Cx = Cx for all x → VR.[1] So C → End(VR). A more elegant way to define

the Weil operator will be given above Proposition 1.2.5, in terms of Deligne torus.

Definition 1.1.6. A polarization on V is a morphism of Hodge structures

ϑ : V ↘ V ↗ R(≃n)

such that the bi-linear map

VR ∝ VR ↗ R, (x, y) ⇑↗ ϑC(x, y) := (2ε
⇓
≃1)nϑ(x,Cy) (1.1.3)

is symmetric and positive definite.

[1]
Indeed, for x =

∑
p,q xp,q → VR, we have xp,q = xq,p because V p,q = V

q,p
. So Cx =

∑
p,q

↑
↓1

q↑p
xp,q =

∑
p,q

↑
↓1

p↑q
xq,p =

∑
p,q

↑
↓1

p↑q
xq,p = Cx, and hence Cx → VR.
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The Hermitian pairing associated with the bi-linear map (1.1.3) is (x, y) ⇑↗ ϑC(x, y).

Lemma 1.1.7. Let V → HSnR, and let ϑ be a polarization. Then

(i) ϑ is (≃1)n-symmetric, i.e. is alternating if n is odd and is symmetric if n is even.

(ii) the decomposition VC =
⊕

V p,q is orthogonal with respect to the Hermitian pairing asso-
ciated with (1.1.3).

Proof. We start by proving (ii). Take x → V p,q and y → V r,s. Then

(2ε
⇓
≃1)↑nϑC(x, y) = ϑ(x,Cy) = ϑ(x,

⇓
≃1

r↑s
y) =

⇓
≃1

r↑s
ϑ(x, y)

Now (x, y) → V p,q
∝ V s,r

↑ (V ∝ V )p+s,q+r. So ϑ(x, y) → R(≃n)p+s,q+r since ϑ is a morphism
of Hodge structures. Assume ϑ(x, y) ↔= 0. Then p+ s = q + r = n. But p+ q = r + s = n. So
p = r and q = s. Thus ϑC(V p,q, V r,s) = 0 unless p = r and q = s. This establishes (ii).

Now we turn to (i). The proof will be much easier and more elegant if we apply Proposi-
tion 1.2.5. Here we give a direct computation without using this proposition.

For each x, y → VR, write x =
∑

p,q xp,q and y =
∑

p,q yp,q under VC =
⊕

V p,q. Then (yp,q, xr,s) ↑

(V ∝ V )p+r,q+s, and hence ϑ(yp,q, xr,s) → R(≃n)p+r,q+s is 0 unless p+ r = q + s = n. So

ϑ(y, x) =
∑

p,q

ϑ(yp,q, xp,q).

On the other hand, xp,q = xq,p and yp,q = yq,p since V p,q = V q,p. So

ϑC(Cy, x) = ϑC(
∑

p,q

⇓
≃1

q→p
yp,q,

∑

p,q

xp,q)

= ϑC(
∑

p,q

⇓
≃1

q→p
yp,q,

∑

p,q

xp,q)

=
∑

p,q

ϑC(
⇓
≃1

q→p
yp,q, xp,q)

=
∑

p,q

ϑC(
⇓
≃1

q→p
yp,q, xq,p)

= (2ε
⇓
≃1)n

∑

p,q

ϑ(
⇓
≃1

q→p
yp,q, Cxq,p)

= (2ε
⇓
≃1)n

∑

p,q

ϑ(
⇓
≃1

q→p
yp,q,

⇓
≃1

p→q
xq,p)

= (2ε
⇓
≃1)n

∑

p,q

ϑ(yp,q, xq,p).

Therefore
ϑ(y, x) = (2ε

⇓
≃1)→nϑC(Cy, x).

Since ϑC is symmetric, we furthermore have

ϑ(y, x) = (2ε
⇓
≃1)→nϑC(x,Cy) = ϑ(x,C2y).

Notice that C2 acts on V p,q by multiplication by (≃1)q→p = (≃1)q+p = (≃1)n for all p, q. Thus C2 acts
on V as multiplication by (≃1)n. So we have

ϑ(y, x) = (≃1)nϑ(x, y).

This establishes (i).
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Example 1.1.8 (Complex abelian varieties). We continue with Example 1.1.4 and prove

{complex abelian varieties}
↔
≃↗ {polarizable Z-Hodge structures of type (≃1, 0) + (0,≃1)} .

Let T be a complex torus which corresponds to VZ = H1(T,Z). Then T ⇒ VR/VZ as real
manifolds. Thus

∧2 V →

Z
⇒

∧2H1(T,Z) = H2(T,Z). Therefore the set of alternating pairings

ϑ : VZ ↘ VZ ↗ Z(1)

is in bijection with H2(T,Z(1)).

The short exact sequence of sheaves 0 ↗ Z(1) ↗ OT
exp
≃≃↗ O

↘

T ↗ 0 induces

Pic(T ) = H1(T,O↘

T )
c1
≃↗ H2(T,Z(1)) ↗ H2(T,OT ).

Assume T is an abelian variety. Then there exists an ample line bundle L on T . The Ampell–
Hubert data for L then gives an alternating pairing ϑ → H2(T,Z(1)) such that the Hermitian
pairing (x, y) ⇑↗ ϑ(x,

⇓
≃1y) is the c1 of L for a suitable Hermitian metric on L. But VZ has

Hodge type (≃1, 0) + (0,≃1) and the complex structure on VR/VZ is by identifying VR ⇒ V ↑1,0.
So c1(L) is precisely ϑC . The ampleness of L implies that ϑC is positive-definite. Thus ϑ is a
polarization on VZ.

Conversely assume ϑ is a polarization on VZ. Then ϑ can be seen as an element in
H2(T,Z(1)), and ϑC equals (x, y) ⇑↗ ϑ(x,

⇓
≃1y) as above. So the Ampell–Hubert Theorem

gives a line bundle L on T such that c1(L) = ϑC . The positivity of ϑC thus implies the ample-
ness of L by Kodaira embedding. So T is an abelian variety.

Example 1.1.9 (Primitive cohomology and Lefschetz). We continue with Example 1.1.3. As-
sume d = dimX. Let ϖ be a Kähler form on Xan, which is a closed (1, 1)-form. It induces
a homomorphism L : Hn(X,Q) ↗ Hn+2(X,Q), [ϱ] ⇑↗ [ϖ ′ ϱ]; here we are using Hn(X,Q) ↑
Hn(X,C) ⇒ Hn

dR(X). The Hard Lefschetz Theorem says that Lr : Hd↑r(X,Q)
↔
≃↗ Hd+r(X,Q)

for all r ⇐ 0. Now let r = d ≃ n. Set Hn
prim(X,Q) to be the kernel of Lr+1 : Hn(X,Q) ↗

H2d↑n+2(X,Q). We have a morphism of Hodge structures

ϑ : Hn(X,Q)↘Hn(X,Q)
1↓Lr

≃≃≃↗
↔

Hn(X,Q)↘H2d↑n(X,Q)(dimX≃n)
≃
≃↗ H2d(X,Q)(d≃n) = Q(≃n).

The restriction of ϑ to Hn
prim(X,Q) is a polarization. Thus we obtain a polarization on Hn(X,Q)

by the Lefschetz decomposition Hn(X,Q) =
⊕

0⇐s⇐⇒n/2⇑ L
s(Hn↑2s

prim (X,Q)).

1.2 Mumford–Tate group

1.2.1 Revision on algebraic tori

Let k be a field. A linear algebraic group defined over k is an a!ne group scheme G/k of finite
type; it can be embedded as a closed subgroup scheme of GLN for some N . If chark = 0, then
G is reduced and smooth. As an example, we have Gm,k := GL1,k which is defined by: for any
k-algebra R, we have Gm,k(R) = R⇓. When k is clear in the context, we simply write Gm.

Let ks be a separable closure of k. If chark = 0, then ks is an algebraic closure of k.

Definition 1.2.1. An algebraic torus defined over k is a linear algebraic group T defined over
k such that its base change to ks is isomorphic to G

r
m,ks for some r ⇐ 1.
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The group of characters (resp. group of cocharacters) of T is

X↘(T ) := Hom(Tks ,Gm,ks), (resp. X↘(T ) := Hom(Gm,ks , Tks)).

Both X↘(T ) and X↘(T ) are isomorphic (as groups) to Z
dimT and are naturally endowed with a

Gal(ks/k)-action. We also have a perfect pairing as Gal(ks/k)-modules

X↘(T )∝X↘(T ) ↗ Z = End(Gm,ks), (ς, µ) ⇑↗ ∞ς, µ∈ := ς ∋ µ. (1.2.1)

By definition, Tk→ ⇒ Gm,k→ for some finite separable extension k⇔/k. So the Galois action of
Gal(ks/k) on X↘(T ) factors through Gal(k⇔/k) which is a finite group. Therefore the Gal(ks/k)-
action on X↘(T ) is continuous. Same for the Gal(ks/k)-action on X↘(T ). Thus the functor
T ⇑↗ X↘(T ) gives an equivalence from the category of algebraic tori defined over k to the
category of free abelian groups of finite rank endowed with a continuous Gal(ks/k)-action.

Next we turn to the representations of algebraic tori φ : T ↗ GL(V ). Passing to k⇔, φ becomes
Tk→ ⇒ G

r
m,k→ ↗ GL(Vk→). Then Vk→ can be decomposed into

Vk→ =
⊕

ω↖X↓(T )
Vω =

⊕

(n1,...,nr)↖Zr

V n1,...,nr

where Vω = {v → Vk→ : φ(t)v = ς(t)v} and V n1,...,nr = {v → Vk→ : φ(z1, . . . , zr)v = z↑n1
1 · · · z↑nr

r v}.
On the base field k, the decomposition is Galois compatible, i.e. ↼(Vω) = Vωω for all ↼ →

Gal(k⇔/k).

1.2.2 Deligne torus

View C as an R-algebra using the inclusion R ↑ C. Let S be the algebraic group ResC/RGm

defined over R, i.e. for any R-algebra R, we have

S(R) = (R↘R C)⇓.

Then

S(C) = (C↘R C)⇓ =
(
(R↓

⇓
≃1R)↘R C

)⇓
= (R↘R C)⇓ ∝ (

⇓
≃1R↘R C)⇓ = C

⇓
∝ C

⇓.

Hence S is an algebraic torus defined over R, and Gal(C/R) = {1,↼} acts on S(C) by ↼(z1, z2) =
(z2, z1). Thus S(R) = {z → S(C) : z = ↼(z)} = {(z1, z2) → C

⇓
∝ C

⇓ : z2 = z1}. In other words,
the natural inclusion S(R) ↑ S(C) is given by z ⇑↗ (z, z).

Definition 1.2.2. The algebraic torus S is called the Deligne torus.

The character group of the Deligne torus is

X↑(S) = Hom(S(C),C↓) = Hom(C↓
∝ C

↓,C↓) = Hom(C↓,C↓)↓Hom(C↓,C↓) ⇒ Z↓ Z, (1.2.2)

where the last isomorphism is obtained from the inverse of

Z
↔
≃↗ Hom(C⇓,C⇓), p ⇑↗ (z ⇑↗ z↑p). (1.2.3)

The Galois group Gal(C/R) = {1,↼} acts on X↘(S) by ↼(p, q) = (q, p).

Among the cocharacters of S, two are particularly important:
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- the weight cocharacter w : Gm,C ↗ SC, z ⇑↗ (z, z), which descends to R (namely it is the
base change to C of a morphism Gm,R ↗ S).

- the principal cocharacter µ : Gm,C ↗ SC, z ⇑↗ (z, 1).

An important character of S is the norm character Nm: S ↗ Gm, z ⇑↗ z↼(z). It fits into the
following short exact sequence:

0 ↗ U(1) ↗ S
Nm
≃≃↗ Gm ↗ 0. (1.2.4)

Notice that Nm ∋ w sends each z → Gm(R) = R
⇓ to z2.

1.2.3 Hodge structures as representations of the Deligne torus

Now let V be an R-Hodge structure of weight n. Recall the Hodge decomposition VC =
⊕

V p,q.
It gives rise to an action of SC on VC by setting V p,q to be the eigenspace of the character
(p, q) → X↘(S). More precisely, for each (z1, z2) → S(C) = C

⇓
∝ C

⇓ and each v = (vp,q)p,q →

VC =
⊕

V p,q, we have
(z1, z2) · v = (z↑p

1 z↑q
2 vp,q)p,q. (1.2.5)

This action of SC on VC induces a morphism

h : SC ↗ GL(VC). (1.2.6)

Lemma 1.2.3. The morphism h descends to R, i.e. it is the base change to C of a morphism
S ↗ GL(VR).

Proof. For Gal(C/R) = {1,↼}, we can do the following computation. Let (z1, z2) → S(C) and v =
(vp,q)p,q → VC.

Recall that the Hodge decomposition satisfies V p,q = V q,p. So vp,q → V p,q = V q,p. Hence the
decomposition of v = ↼(v) under VC =

⊕
V p,q is v = (vq,p)p,q. In particular, vp,q = vq,p.

Now we have
h(↼(z1, z2))v = (z2, z1) · v = (z→p

2 z→q
1 vp,q)p,q

and

↼ (h(z1, z2)) v = ↼ (h(z1, z2)v) = ↼ ((z1, z2) · v) = ↼((z→p
1 z→q

2 vp,q)p,q) = ↼((z→p
1 z→q

2 vq,p)p,q) = (z→q
1 z→p

2 vp,q)p,q.

Hence h is Gal(C/R)-equivariant, and therefore descends to R.

Thus from any R-Hodge structure V of weight n, we have constructed a morphism S ↗

GL(VR). Conversely given any h : S ↗ GL(VR), we can define V p,q to be the eigenspace of the
character (p, q) → X↘(S) of SC. Then V =

⊕
V p,q, and V q,p = V p,q because h is defined over R.

Hence we have the following proposition.

Proposition 1.2.4. Let R = Z,Q and let V be a torsion-free R-module of finite type.
Then there are bijections between the following sets of:

(i) Hodge structures of weight n on V ;

(ii) morphisms h : S ↗ GL(VR) such that the eigenspace of (p, q) → X↘(S) is 0 unless p+q = n.

(iii) morphisms h : S ↗ GL(VR) such that the composite h ∋ w : Gm,R ↗ GL(VR) sends each
z → R

⇓ to the multiplication by z↑n.
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If a Hodge structure on V corresponds to h : S ↗ GL(VR), by abuse of notation we use (V, h)
to denote this Hodge structure. In this terminology, the Weil operator C of the Hodge structure
(V, h) in the definition of polarizations (1.1.3) is simply h(

⇓
≃1).

Proposition 1.2.5. Let (V, h) and (W,h⇔) be two R-Hodge structures of weight n, and let
ω : V ↗ W be an R-linear map.

Then ω is a morphism of Hodge structures if and only if ω(h(z)v) = h⇔(z)ω(v) for all z → S(R)
and v → VR.

The proof of Lemma 1.1.7.(i) can be much simplified by this proposition: ϑ(y, x) = ϑ(Cy,Cx) =
(2ε

⇓
≃1)↑2nϑC(Cy, x) = (2ε

⇓
≃1)↑2nϑC(x,Cy) = ϑ(x,C2y) = (≃1)nϑ(x, y), and hence ϑ is

(≃1)n-symmetric.

Proof. Write v = (vp,q)p,q → VC =
⊕

V p,q. Then h(z)v = (z↑pz↑qvp,q)p,q. So ω(h(z)v) =
(z↑pz↑qω(vp,q))p,q by linearity of ω.

Assume ω is a morphism of Hodge structures. Then ω(V p,q) ↑ W p,q for all p, q, and hence
ω(vp,q) = ω(v)p,q for all p, q. So ω(h(z)v) = (z↑pz↑qω(v)p,q)p,q = h⇔(z)ω(v).

Conversely assume ω(h(z)v) = h⇔(z)ω(v) for all z → S(R) and v → VR. Let v → V p,q.
By considering v + v and (v ≃ v)/

⇓
≃1, we have ω(h(z)v) = h⇔(z)ω(v) for all z → S(R). So

h⇔(z)ω(v) = ω(h(z)v) = ω(z↑pz↑qv) = z↑pz↑qω(v) for all z → S(R). Therefore ω(v) → W p,q.

This proposition has the following immediate corollary.

Corollary 1.2.6. Let (V, h) be an R-Hodge structure of weight n, and let W be a torsion-free
R-submodule of V .

Then h|W is an R-Hodge structure if and only if WR is an h(S)-submodule of V .

In this case, we call the Hodge structure (W,h|W ) a sub-R-Hodge structure of (V, h).
Another corollary is:

Corollary 1.2.7. Let Q : V ∝ V ↗ R induce a polarization on (V, h). Then h(S) ↑ Aut(V,Q).

Proof. By definition, Q induces a morphism of Hodge structures between V ↘ V and R(≃n).
Thus the conclusion follows immediately from Proposition 1.2.5.

1.2.4 Mumford–Tate group

In this subsection, assume R = Z or Q. Let (V, h) be an R-Hodge structure.

Definition 1.2.8. The Mumford–Tate group of (V, h) is the smallest Q-subgroup MT(h) of
GL(VQ) such that h(S) ↑ MT(h)(R).

It is easy to check that MT(h) is connected since S is, and MT(h)(C) is the subgroup of
GL(V (C)) generated by ↼(h(S(C))) for all ↼ → Aut(C/Q). We also have the following charac-
terization of MT(h) using the principal cocharacter µ defined above (1.2.4).

Lemma 1.2.9. MT(h) is the smallest Q-subgroup of GL(VQ) such that µh := h ∋ µ : Gm,C ↗

GL(VC) factors through MT(h)C.

Proof. By definition µh(Gm,C) ↑ MT(h)C. Conversely let M be a Q-subgroup of GL(VQ) which
contains µh(Gm,C) = h(µ(Gm,C)). Then M(C) contains h(z, 1) → GL(V (C)) for all z → C

⇓.
Since M is defined over Q and h is defined over R, we have that M(C) contains ↼(h(z, 1)) =
h(↼(z, 1)) = h(1, z) for all z → C

⇓, where Gal(C/R) = {1,↼}. Hence M(C), as a group, contains
h(z, 1)h(1, z⇔) = h(z, z⇔) for all z, z⇔ → C

⇓. Hence h(SC) ↑ MC, so MT(h) ↑ M .
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It is not hard to check that the Mumford–Tate of the dual Hodge structure of (V, h) is still
MT(h).

Now assume R = Q. For m,n → Z↗0, we have a Hodge structure Tm,nV := V ↓m
↘

(V →)↓n, and MT(h) acts on Tm,nV componentwise. The following proposition is an immediate
consequence of Corollary 1.2.6 (applied to Tm,nV ).

Proposition 1.2.10. Let W be a Q-subspace of Tm,nV . Then W is a sub-Q-Hodge structure
of Tm,nV if and only if W is a MT(h)-submodule of Tm,nV .

This proposition gives rise to another useful characterization of MT(h), which is important
in the study of (sub-)Shimura varieties. We make the following definition.

Definition 1.2.11. The elements of (Tm,nVC)0,0 ↙Tm,nV , with m and n running over all non-
negative integers, are called the Hodge tensor for (V, h).

Denote by Hdgh the set of all Hodge tensors for (V, h).

Proposition 1.2.12. We have MT(h) = ZGL(V )(Hdgh).
In particular by dimension reasons, MT(h) = ZGL(V )(I) for some finite set I ↑ Hdgh.

Proof. Take t → Hdgh. For any ↼ → Aut(C/Q), we have ↼(t) = t since t is a Q-element. By (1.2.5)
we have h(z1, z2)t = z01z2

0t = t for any (z1, z2) → S(C). Applying the action of any ↼ → Aut(C/Q) and
recalling that MT(h)(C) is generated by the ↼(h(S(C)))’s, we have that t is fixed by MT(h)(Q). This
establishes “↑”.

To get MT(h) = ZGL(V )(Hdgh), notice that MT(h) is a closed subgroup of GL(V ). By theory of
algebraic groups, MT(h) is thus the stabilizer of some 1-dimensional Q-subspace L in

⊕
(m,n)↔I T

m,nV

for some finite subset I ↑ Z
2
↗0. Now that L is a 1-dimensional MT(h)-submodule of

⊕
(m,n)↔I T

m,nV ,
Proposition 1.2.10 implies that L is a 1-dimensional Q-Hodge structure, and hence LC = Lp,q for some p
and q. But then p = q since Lp,q = Lq,p.[2] In other words, L ⇒ Q(≃p) has weight 2p.

If p = 0, take a Q-generator ↽ of L. Then MT(h)(Q) fixes ↽ by the same argument on proving “↑”.
So MT(h), being the stabilizer of Q↽, equals ZGL(V )(↽). If p ↔= 0, then the weight of (V, h) is not zero,

and hence the weight r of the Hodge structure detV :=
∧dimV V is non-zero (since detV can be realized

as a MT(h)-submodule of V ↘ dimV ). We may assume r > 0 up to replacing V by V ≃. The 1-dimensional
Q-space L↘r

↘ (detV )↘→2p is a Hodge structure of weight 0 and hence equals its (0, 0)-piece. Let ↽ be
a generator of L↘r

↘ (detV )↘→2p. Then ↽ is fixed by MT(h)(Q) by the same argument on proving “↑”.
Hence MT(h) = ZGL(V )(↽) as in the case of p = 0.

To summarize, there exists a finite sum of Hodge tensors t1+ · · ·+tN such that MT(h) = ZGL(V )(t1+

· · ·+ tN ). So MT(h) ↑
⋂N

i=1 ZGL(V )(ti) ↑ ZGL(V )(t1 + · · ·+ tN ) becomes an equality. We are done.

Finally, we point out that the Mumford–Tate group of any polarized Q-Hodge structure of
weight n is a reductive group. A detailed discussion on this will be given in the next chapter
(Corollary 2.2.5).

1.3 Passing to families

In practice it is important for us to work with families. We discuss two aspects, and end up
with a question to relate them.

[2]
To make the argument in this paragraph vigorous, we need to argue with mixed Hodge structures because⊕

(m,n)↔I T
m,n

V may have more than one weight. However, since
⊕

(m,n)↔I T
m,n

V is a direct sum of (pure)

Hodge structures and dimL = 1, we are essentially working with a pure Hodge structure.
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1.3.1 Variation of Hodge structures

Let S be a complex manifold.

Definition 1.3.1. A Z-variation of Hodge structures (Z-VHS) of weight n on S is (VZ,F•)
where

- VZ is a local system of free Z-modules on S of finite rank,

- F
• is a finite decreasing filtration (called the Hodge filtration) of the holomorphic vector

bundle V := VZ ↘ZS OS by holomorphic subbundles,

such that

(i) (VZ,s,F•
s ) is a Z-Hodge structure of weight n for each s → S,

(ii) the connection △ : V ↗ V ↘OS ”1
S whose sheaf of horizontal sections is VC := VZ ↘Z C

satisfies the Gri!ths’ transversality condition

△(Fp) ↑ F
p↑1

↘ ”1
S for all p. (1.3.1)

A polarization on (VZ,F•) is a morphism of local systems

VQ ↘ VQ ↗ QS

inducing on each fiber a polarization of the corresponding Q-Hodge structure.

Example 1.3.2. Let f : X ↗ S be a smooth projective morphism. Then V := Rnf↘ZX is a
local system of Z-modules on S with fiber Vs = Hn(Xs,Z). Replace V by its quotient by torsion.
Under the isomorphism V ⇒ Rnf↘”•

X/S, the Hodge filtration is F
p
V = Rnf↘”

↗p
X/S. Notice that

the subbundle of (p, q)-forms is not holomorphic if q ↔= 0, but Fp
V is holomorphic. The fiberwise

polarization from Example 1.1.9 gives a polarization on V.
And this example is the geometric origin of the Gri!ths’ transversality.

1.3.2 Parametrizing space

Next we turn to the following question. Let V be a finite-dimensional R-vector space, and let
n → Z.

Fix a partition {hp,q}p,q↖Z of dimVC into non-negative integers with p + q = n such that
hp,q = hq,p. Consider the set of all Hodge structures on V such that in the Hodge decomposition,
we have dimV p,q = hp,q for all p, q. Equivalently by Proposition 1.2.4, we are considering the
subsetM0 of Hom(S,GLV ) such that the eigenspace of (p, q) → X↘(S) has dimension hp,q. Notice
that GLV acts on Hom(S,GLV ), by sending h ⇑↗ Int(g) ∋ h.

Lemma 1.3.3. M0 is a GLV -orbit.

Proof. Fix h → M0. Then V p,q
h = {v → VC : h(z)v = z↑pz↑qv for all z → S(R)}.

For any g → GLV , it is easy to check that {v → VC : (g · h)(z)v = z↑pz↑qv for all z → S(R)}
equals gV p,q

h , and hence has dimension hp,q. Hence the Hodge structure on V determined by
g · h is in M0. Namely GLV · h ↑ M0.

Conversely let h⇔ → M0. By assumption dimV p,q
h→ = dimV p,q

h for all p, q. Assume hp,q = 0
unless r ▽ p ▽ s. Such r and s exist since dimVC < ̸. Now there exists a g1 → GLV such
that V r,n↑r

h→ = g1V
r,n↑r
h by dimension reasons. Now we work with h⇔ and g1 · h, and there exists

g2 → GLV such that g2V
r,n↑r
h→ = V r,n↑r

h→ and V r+1,n↑r↑1
h→ = g2V

r+1,n↑r↑1
g1·h

. We continue to work
with h⇔ and g2g1 ·h and repeat this process which stops after finitely many steps. Hence we find
a g → GLV such that V p,q

h→ = V p,q
g·h for all (p, q). So h⇔ = g · h. Thus M0 ↑ GLV · h.



14 CHAPTER 1. PREPARATION ON HODGE THEORY

Next we fix furthermore a non-degenerate (≃1)n-symmetric pairing Q : V ∝ V ↗ R. We
furthermore consider the subset M of M0 consisting of Hodge structures on V for which Q is a
polarization. Then by Corollary 1.2.7, we have M ↑ Hom(S,Aut(V,Q)). Moreover using (the
proof of) Lemma 1.3.3, we see that M is an Aut(V,Q)-orbit.

Example 1.3.4. Assume dimV = 2g and let Q : V ∝V ↗ R be the standard symplectic pairing.
Then Aut(V,Q) = GSp2g. If g = 1, then Aut(V,Q) = GL2.

Finally fix a collection of tensors {sε} on Tm,n = V ↓m
↘ (V →)↓n with m,n running over all

non-negative integers. Set

G := Aut(V,Q) ↙
⋂

ε
StabGLV (sε). (1.3.2)

Let G+ be the identity component of the real Lie group G(R). Then [G(R) : G+] < ̸.
Fix h : S ↗ Aut(V,Q) such that each sε is a Hodge tensor for the Hodge structure (V, h).

Then the same holds true for the Hodge structure (V, g · h) for all g → G+. Let X+ := G+
· h ↑

Hom(S, G).[3]

Now we have a family of Hodge structures on X+ as follows: X+
∝V ↗ X+, with the Hodge

structure on V over each h → X+ being precisely the one given by h. Now X+
∝ V can be seen

as a smooth vector bundle on X+, and for each p there is a subbundle F p whose fiber over each
h → X+ is the Hodge filtration F p

h .
In view of the definition of VHS (Definition 1.3.1), we wish the investigate the following

questions:

(i) Is there a complex structure on X+ for which each subbundle F p is a holomorphic?

(ii) When does Gri!ths’ transversality hold true, i.e. △(F p) ↑ F p↑1
↘ ”1

X+ for all p?

1.3.3 Constraint on the Hodge type

Continue to use the notation above. Let h → X+
↑ Hom(S, G). Composing with the adjoint

representation G ↗ GL(LieG), we have a Hodge structure on LieG by Proposition 1.2.4. By
abuse of notation, we use (LieG, h) to denote this Hodge structure. Since X+ is a G+-orbit, the
Hodge type of (LieG, h) is independent of the choice of h → X+.

Moreover h induces a Hodge structure on End(V ) = V →
↘ V , which must be of weight

0 and by abuse of notation we denote by (End(V ), h). The inclusion G ↑ GL(V ) induces
LieG ↑ End(V ) = V →

↘ V . Hence the weight of (LieG, h) is 0.
In what follows, we use g to denote LieG.

Proposition 1.3.5. There exists a unique complex structure on X+ such that F p is holomorphic
for each p. Gri!ths’ transversality holds true if and only if the Hodge structure (LieG, h) has
type (≃1, 1) + (0, 0) + (1,≃1) for one (and hence all) h → X+.

Proof. For each h → X+, let F •

h be the Hodge filtration of the Hodge structure (V, h). For
each p, write dp := dimF p

h =
∑

r↗p h
r,n↑r which does not depend on h. We have a flag variety

F↽ parametrizing sequences (called flags) · · · ↖ Vp ↖ Vp+1 ↖ · · · of subspaces of VC with
dimVp = dp for each p. By general theory, F↽ is a complex algebraic variety which is a GL(VC)-
orbit. Moreover, the tangent space of F↽ at the flag · · · ↖ Vp ↖ Vp+1 ↖ · · · is a subspace
of ⊕

p

Hom(Vp, VC/Vp). (1.3.3)

[3]
In fact, X

+
is known to be a connected component of X ↔ M which parametrizes all Hodge structures on V

for which each sε is a Hodge tensor.
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There is a natural map
ω : X+

↗ F↽, h ⇑↗ F •

h ,

which is injective since a Hodge structure is uniquely determined by its Hodge filtration. The
group GL(VC) naturally acts on F↽, and it is not hard to check that the stabilizer of F •

h is
expF 0

hEnd(VC).
Let us show that ω makes X+ into a complex subvariety of F↽. Fix h0 → X+ and let

K↙ := StabG+(h0). Then X+ = G+
· h0 ⇒ G+/K↙, and LieK↙ = g ↙ F 0

h0
gC which is the

(0, 0)-constituent of the Hodge structure (g, h0). So ω factors through

X+ = G+/K↙ ↗ X→ := G(C)/ expF 0
h0
gC ↗ F↽ ⇒ GL(VC)/ expF

0
h0
End(V ). (1.3.4)

The first map makes X+ into an open submanifold of X→, and the second map is a closed
immersion as complex algebraic varieties. So X+ has a natural complex structure induced from
X→.

Next we turn to the Gri!ths’ transversality. The tangent map of ω at h0 is

dω : Th0X
+
↗ Th0F↽ ⇒ End(VC)/F

0
h0
End(VC) ↑

⊕

p

Hom(F p
h0
, VC/F

p
h0
).

Gri!ths’ transversality holds true if and only if

im(dω) ↑
⊕

p

Hom(F p
h0
, F p↑1

h0
/F p

h0
),

and hence if and only if
im(dω) ↑ F↑1

h0
End(VC)/F

0
h0
End(VC).

But im(dω) = LieGC/F 0
h0
gC. So Gri!ths’ transversality holds true if and only if gC = F↑1

h0
gC.

Therefore we can conclude.

We yet to understand the polarization attached to this family, for which we need to recall
some background knowledge on reductive groups. The full discussion will be carried out in §2.2.


	Preparation on Hodge theory
	Hodge structure and polarizations
	Hodge decomposition and Hodge filtration
	Polarizations

	Mumford–Tate group
	Revision on algebraic tori
	Deligne torus
	Hodge structures as representations of the Deligne torus
	Mumford–Tate group

	Passing to families
	Variation of Hodge structures
	Parametrizing space
	Constraint on the Hodge type


	From Hodge theory to Hermitian symmetric domains
	Basic background knowledge on reductive groups
	Polarization on families and reductive groups
	Cartan involution
	Polarization on parametrizing space

	Hermitian symmetric domains
	The example of Siegel case
	Cartan decomposition of semi-simple groups
	Proof of Theorem 2.3.1
	Borel embedding theorem and Harish–Chandra realization


	Shimura data and Shimura varieties
	Basic definitions
	Shimura data
	Shimura varieties

	Shimura varieties as Hermitian locally symmetric domains
	Two approximation theorems for algebraic groups
	Preparation and adjoint Shimura data
	Proof of (3.2.3)
	Torsion-free subgroup
	The group of connected components of a Shimura variety



