Exercise 1. Let K be a field and let $|\cdot|$ be an absolute value on K. Give an example where $|K^*|$ is discrete in $\mathbb{R}_{>0}$ but |K| is not discrete in \mathbb{R} .

Exercise 2. Let K be a field and let $|\cdot|_1, ..., |\cdot|_n$ be non-trivial inequivalent absolute values on K. Let $r_1, ..., r_n$ be real numbers. Suppose

$$|a|_1^{r_1}\cdots|a|_n^{r_n}=1$$

for all $a \in K^*$. Prove that $r_i = 0$ for any *i*. (In other words, there is NO finite product formula.)

Exercise 3. Let K be a field and let $|\cdot|_1, ..., |\cdot|_n$ be non-trivial inequivalent absolute values on K. Denote by K_i the completion of K with respect to $|\cdot|_i$. Prove that the image of K under the diagonal embedding $K \hookrightarrow \prod K_i$ is dense, i.e. for any *n*-tuple of elements $a_i \in K_i$ (i = 1, ..., n) and any $\epsilon > 0$, there exists an element $a \in K$ s.t. $|a - a_i|_i < \epsilon$.