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Introduction

The aim of this participating seminar is to go through Faltings’s proof of the Mordell Conjecture in 1983.
Here is the sketch of the proof, extracted from [Ast127].

integral points on moduli space

Inspired by this, we will divide the seminar into the following themes:

- Finiteness theorem for Faltings height;

- Isogeny and Tate Conjecture;

- Shafarevich Conjecture;

- Kodaira–Parshin construction and conclusion.
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Schedule

1. Finiteness theorem for Faltings height:

- 01/14 (Tom Han): Introduction to height theory. Define the logarithmic Weil height on pro-
jective spaces and state the Northcott property ([Gao22, §1.2.1], [HS00, §B.2]). Introduce the
Height Machine ([Gao22, §5.1] or [HS00, §B.3]). Introduce Arakelov height defined by Hermi-
tian line bundles on arithmetic varieties ([HS00, pp. 248 of §B.10]). Define the (stable) Faltings
height of an abelian variety [Ast127, Exp. I, §3.3, Defn. 2] if time permits (assume the existence
of the Néron model).

- 01/21 (Jacob Swenberg): Define the height associated with a Hermitian line bundle with loga-
rithmic singularities, and prove the “Northcott property” in this case. See [FW84, Chapter I, §4]
and [Ast127, Exp. 1, §3.2]. Recall the definition of the (stable) Faltings height of an abelian va-
riety [Ast127, Exp. 1, §3.3, Defn. 2] (assume the existence of the Néron model). Prove [Ast127,
Exp. I, Thm. 3.2].

- 01/28 (Jas Singh): Introduction to moduli spaces. Explain the general theory (without proof)
of the moduli spaces of curves Mg and principally polarized abelian varieties Ag (over Z).

- 02/04 (Zach Baugher): Summary of the analytic theory of Ag over C and Baily–Borel com-
pactification. Should cover [FW84, Chapter I, §5]. See also [Nam, §1 and 5].

- 02/11 (John Zhou): Summary of the toroidal compactification of Ag over C. Should cover
[FW84, Chapter I, §6]. See also [AMRT10, I.1, I.3, I.4] and [Nam, §6, 7].

- 02/18 (Tom Han): Comparison of the Faltings height and the theta height. We take the analytic
approach [FW84, Chapter 2, Thm. 3.1]. An alternative (more algebraic) approach is provided
by [Ast127, Exp. IV].

2. Isogeny and Tate Conjecture:

- 02/25, 03/04, 03/11: Introduction to finite group schemes and Raynaud’s result on group
schemes of type (p, . . . , p). Need to cover [FW84, Chapter III, §2 and §4].

- 04/01, 04/08: Introduction to p-divisible groups. See [FW84, Chapter III, §3 and §5].

- 04/15: Prove that the Faltings height is bounded within an isogeny class. See [FW84, Chap-
ter III, §3] and/or [Ast127, Exp. VII].

- 04/22: Prove Tate Conjecture and the finiteness of isomorphism classes in an isogeny class. See
[Ast127, Exp. VIII].

3. Shafarevich Conjecture:

- 04/29: Reformulation of Tate conjecture; see [FW84, Chapter IV, Thm. 1.1, Cor. 1.2, Cor. 1.3].
Proof of the finiteness of isogeny classes using Tate conjecture; see [FW84, Chapter V, §2]
and/or [Ast127, Exp. IX].

4. Kodaira–Parshin construction and conclusion.

- 05/06: [Ast127, Exp. X].
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