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1. Prime Numbers

1.1. Definitions. What are the “simplest” numbers? We can all agree that 0 and 1 are very
simple. Adding 0 to any number will not change that number, and multiplying 1 to any number
will also not change it. So 1 is the simplest number with respect to multiplication.

The next simplest numbers, with respect to multiplication, are prime numbers. An amazing
thing is that prime numbers “build up” all the integers. We now give two equivalent definitions
of prime numbers.

Definition 1.1. A prime number p is an integer bigger than 1 that has no proper divisors,
namely the only positive divisors of p are 1 and p.

Definition 1.2. A prime number p is an integer bigger than 1 such that for any integers a
and b, we have p|ab⇒ p|a or p|b .

Attention By definition, 1 is NOT a prime number. This fits our philosophy at the beginning:
we want prime numbers to be precisely the “second simplest” kind of integers with respect to
multiplication. Since 1 is the simplest, it should be the “second simplest”.

Now let us give the first proof in this course.

Proof of Definition 1.2⇒Definition 1.1. Let p ≥ 1 be any positive integer. Suppose d is a posi-
tive integer dividing p. In particular d ≤ p. We want to prove that d = 1 or d = p.

Since d|p, there exists an integer m (automatically positive) such that p = dm. So p|p = dm.
Definition 1.2 implies that either p|d or p|m.

(case) If p|d, then p ≥ d since d is positive. But we already have d ≤ p. So d = p.
(case) If p|m, then p ≤ m since m is positive. But p = dm ≥ m since d ≥ 1. So p = m, and

hence d = 1.
In summary, either d = 1 or d = p. So we are done. �

1.2. gcd and Euclid’s algorithm. Fix some (nonzero) integer a. What numbers can be
expressed as ax for some integer x? The answer is a tautology: all integers b such that a|b. We
write the set of such numbers as aZ.

Now suppose we fix two nonzero integers a and b. We use the following notation: Let aZ+ bZ
be the set of all numbers which can be expressed as ax + by for some x, y ∈ Z. Then what is
aZ + bZ?

Let us look at an example. Suppose a = 35 and b = 13. Dividing 35 by 13, we get

35 = 2 · 13 + 9.
1
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Therefore 35Z + 13Z = (2 · 13 + 9)Z + 13Z = 13Z + 9Z. (Check this) Repeat this process:

13 = 1 · 9 + 4⇒ 13Z + 9Z = 9Z + 4Z,
9 = 2 · 4 + 1⇒ 9Z + 4Z = 4Z + 1Z,
4 = 4 · 1 + 0⇒ 4Z + 1Z = 1Z + 0Z = Z.

The last step can be omitted as 4Z ⊂ 1Z = Z, so 4Z + 1Z = Z. To sum it up, we have
35Z + 13Z = Z.

In this process, we only used the division algorithm for Z. So this process works for any two
positive integers.

Let us look at another example. Suppose a = 8 and b = 6. We have

8 = 1 · 6 + 2⇒ 8Z + 6Z = 6Z + 2Z,
6 = 3 · 2 + 0⇒ 6Z + 2Z = 2Z + 0Z = 2Z.

So 8Z + 6Z = 2Z.
The process above is called the Euclid’s Algorithm: start with two positive integers a > b;

divide a by b to get a remainder r; replace a and b by b and r and repeat. The process will stop
within finitely many steps. In the end we will get a positive integer c such that aZ + bZ = cZ.
Moreover, c is uniquely determined by a and b, namely if a and b are fixed, then there is only a
such c.

Definition 1.3. Let a and b be positive integers. Define the greatest common divisor of a and
b, denoted by gcd(a, b), to be the unique positive integer such that aZ + bZ = gcd(a, b)Z.

Remark 1.4. gcd(a, b) satisfies the following properties:

(1) gcd(a, b)|a and gcd(a, b)|b;
(2) If d|a and d|b, then d|gcd(a, b). In particular d ≤ gcd(a, b).

Proof. (1) We have a ∈ aZ + bZ = gcd(a, b)Z. So a = gcd(a, b)x for some x ∈ Z. So
gcd(a, b)|a. Similarly gcd(a, b)|b.

(2) We have gcd(a, b) ∈ gcd(a, b)Z = aZ+ bZ. So gcd(a, b) = ax+ by for some x, y ∈ Z. But
d|a and d|b, so d|ax+ by = gcd(a, b). In particular d ≤ gcd(a, b) since gcd(a, b) > 0.

�

1.3. Proof of Definition 1.1 implies Definition 1.2. Let p ≥ 1 be any positive integer.
Suppose a, b integers such that p|ab and p - a. We need to prove p|b.

Since p - a and p has no positive divisors except for 1 and p, so gcd(p, a) = 1. Hence
pZ + aZ = Z. But 1 ∈ Z, so 1 = px+ ay for some x, y ∈ Z. Multiplying both sides by b, we get
b = pbx+ aby. So p|pbx+ (ab)y = b.

1.4. The infinitude of primes.

Theorem 1.5 (Euclid). There are infinitely many prime numbers.

Proof. Suppose for a contradiction that there are only finitely many prime numbers, say p1, . . . , pm.
Consider n = p1 · · · pm + 1. Since n > 1, it has a prime factor. So pi|n for some i ∈ {1, . . . ,m}.
But then pi|n− p1 · · · pm = 1. Contradiction. �
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Note that in the proof, we claimed that every integer bigger than 1 has a prime factor.
However we did not give a rigorous proof of this claim. To write down a rigorous proof, we
need to use the Principle of Induction: If we want to prove a statement P(n) for all integers
n ≥ n0, it suffices to prove:

• (base step) Prove P(n0) is true;
• (induction step) Assume P(n0), . . . ,P(n− 1) are true, prove P(n) is true.

Now we prove this claim. In this case P(n) is n has a prime divisor and n0 = 2.
(base step) P(2) is true: 2 has a prime factor as 2 itself is a prime number.
(induction step) Assume P(2), . . . ,P(n− 1) are true. If n is a prime number, then n itself is

a prime factor of n. If n is not a prime number, then by Definition 1.1 there exists an integer d
with 2 ≤ d ≤ n − 1 such that d|n. So P(d) implies that d has a prime factor p. But d|n, so n
has a prime factor p.

1.5. The Unique Factorization Theorem. Now we are ready to explain that integers are
“built up” by prime numbers.

Theorem 1.6 (Unique Factorization Theorem). Every integer bigger than 1 has a factorization
into a product of prime numbers, unique up to reordering. Namely, for any integer n ≥ 2, the
following properties hold:

existence There exist prime numbers p1, . . . pm such that n = p1 · · · pm.
(uniqueness) If n = p1 · · · pm = q1 · · · qr with prime numbers p1 ≤ . . . pm and q1 ≤ . . . qr, then

m = r and pi = qi for any i ∈ {1, . . . ,m}.

Proof. (existence) We do induction on n ≥ 2.
(base step) P(2) is true because 2 is a prime number.
(induction step) Assume P(2), . . . ,P(n− 1) are true.
If n is a prime number, then n = n is a prime factorization.
If n is not a prime number, then by Definition 1.1 there exists an integer d with 2 ≤ d ≤ n−1

such that d|n. So n = dk for some integer k, and moreover 2 ≤ k ≤ n− 1 since 2 ≤ d ≤ n− 1.
Now P(d) implies that d = p1 · · · ps for some prime numbers p1, . . . , ps, and P(k) implies that

k = q1 · · · qt for some prime numbers q1, . . . , qt. Hence we can express n as a product of prime
numbers n = p1 · · · ps · q1 · · · qt. �
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2. Fundamental Theorem of Arithmetic and Induction

2.1. Factorization in primes (continued). Today we continue to finish the proof of UFT
(Theorem 1.6). We do the uniqueness part. But first, let us prove the following lemma.

Lemma 2.1. Let p be a prime number. Suppose that p divides the product a1 · · · an of integers
with n ≥ 2. Then p divides ai for some i ∈ {1, . . . , n}.

Proof. We prove the lemma by induction on n.
(base step) P(2) is true by Definition 1.2.
(induction step) Assume P(2), . . . ,P(n − 1) are true. Suppose p|a1 · · · an = a1(a2 · · · an).

Then by P(2), we have either p|a1 or p|a2 · · · an. If p|a1, then we are done. If p|a2 · · · an, then
by P(n − 1), we have that p|ai for some i ∈ {2, . . . , n}. To sum it up, p divides ai for some
i ∈ {1, . . . , n}. So we are done. �

Now we are ready to finish the proof of the uniqueness part of Theorem 1.6.

Proof of Theorem 1.6 continued. uniqueness We do induction on n ≥ 2.

(base step) P(2) is true because 2 is a prime number.
(induction step) Assume P(2), . . . ,P(n − 1) are true. Suppose n = p1 . . . pm = q1 . . . qr for

prime numbers p1 ≤ . . . ≤ pm and q1 ≤ . . . ≤ qr.
Now p1|n = q1 · · · qr, so p1 divides qi for some i ∈ {1, . . . , r} by Lemma 2.1. Recall that p1

is a prime number, so in particular p1 ≥ 2. But qi is also a prime number, so it has only two
positive divisors 1 and qi. So p1 = qi. Similarly q1 = pj for some j ∈ {1, . . . ,m}.

Now we have p1 = qi ≥ q1 = pj ≥ p1, so we must have p1 = qi = q1 = pj . In particular
p1 = q1. So we get from p1 . . . pm = q1 . . . qr the following equality

p2 . . . pm = q2 . . . qr.

Call this product n′. Then 1 ≤ n′ < n because n′ = n/p1 and p1 ≥ 2. If n′ = 1, then both
products are empty and we can already conclude. If n′ ≥ 2, then we can apply P(n′) and get

m− 1 = r − 1, pi = qi for any i ∈ {2, . . . ,m}.
So we are done. �

Another way of stating the Unique Factorization Theorem (Theorem 1.6) is as follows: Let
n ≥ 2 be an integer. Then there exist a unique set of prime numbers {p1, . . . , pm} and a unique
set of positive integers {α1, . . . , αm} such that n = pα1

1 · · · pαmm .
Sometimes when we want to study two or more integers at the same time, it is more convenient

to allow the power to be 0. For example if we want to find gcd(a, b) for two positive integers a
and b, then we can first factorize a and b under UFT

a = pα1
1 · · · p

αm
m ,

b = pβ11 · · · p
βm
m ,

where we now require the αi’s and βi’s to be non-negative (so allow 0). In this way the statement

of the result is cleaner: we have gcd(a, b) = p
min(α1,β1)
1 · · · pmin(αm,βm)

m .
We can also define a notion of the least common multiple of a and b, denoted by lcm(a, b),

as the smallest positive integer that is divisible by both a and b. Then with the notation above,

it is easy to see that lcm(a, b) = p
max(α1,β1)
1 · · · pmax(αm,βm)

m .
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The following corollary is then easy to deduce.

Corollary 2.2. Let a and b be positive integers. Then ab = gcd(a, b)lcm(a, b).

2.2. Sum of powers of integers. The following formulae can be proven by induction: For any
integer n ≥ 1, we have

1 + 2 + . . .+ n =
n(n+ 1)

2
,

12 + 22 + . . .+ n2 =
n(n+ 1)(2n+ 1)

6
,

13 + 23 + . . .+ n3 =
n2(n+ 1)2

4
.

2.3. Fibonacci numbers. The Fibonacci sequence is defined by f1 = 1, f2 = 1 and fn =
fn−2 + fn−1 for n ≥ 3. The first few Fibonacci numbers are

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

The following statements are true for all integers n ≥ 1.

(1) gcd(fn, fn+1) = 1.
(2) fn+1 < (74)n.

(3) fn = an−bn√
5

where a = 1+
√
5

2 and b = 1−
√
5

2 .

(4) f21 + f22 + . . .+ f2n = fnfn+1.
(5) f1 + f3 + f5 + . . . f2n−1 = f2n.

These statements can be proven by induction.

Attention Except for (1), it is NOT enough to just prove P(1) as the base step because the
truth of P(1) alone does not imply the truth of P(2). In fact due to the nature of the definition
of the Fibonacci sequence, we need both P(n− 2) and P(n− 1) to deduce P(n). This suggests
that the base step should contain both P(1) and P(2).
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3. Modular Arithmetic

3.1. The ring Z/mZ. As we saw in Euclid’s Algorithm, in order to compute gcd(a, b) for two
integers a > b, we could iterate the division algorithm: For a = qb+ r with r ∈ {0, 1, . . . , b− 1},
we have gcd(a, b) = gcd(b, r). In other words, what is important in the process is the division
algorithm by b and the integer r ∈ {0, . . . , b− 1} such that b|a− r.

In Modular Arithmetic, we strip away factors of the modulus b and consider only the remain-
der.

Definition 3.1. Fix an integer m. We say two integers a and b are congruent modulo m,
and write a ≡ b (mod m), if m|a− b.

If two integers are congruent modulo m, we also say that they are in the same congruence
class modulo m. We use Z/mZ to denote the set of congruence classes modulo m.

For example 35 and 9 are congruent modulo 13. They are in the same congruence class
modulo 13.

Since m|x ⇔ −m|x for any integer x, we may and do assume m ≥ 1 in the rest of the
discussion. For any integer x, we denote by [x] the congruence class modulo m in which x lies.
In other words, [x] ∈ Z/mZ.

By the Division Algorithm, we have

Z/mZ = {[0], [1], . . . , [m− 1]} as sets.

Now we introduce a binary operation on Z/mZ, which we call the addition. It is defined as
follows: for any [a], [b] ∈ Z/mZ, define [a] + [b] = [a+ b].

Theorem 3.2. (Z/mZ,+; [0]) forms an abelian group.

Proof. It is easy to check the 3 conditions for abelian groups: [0] + [a] = [a], [a] + [b] = [b] + [a]
and [a] + [−a] = [0] for any [a], [b] ∈ Z/mZ. However before checking these rules, we need
to check that the binary operation + on Z/mZ is well-defined. Namely we need to prove: if
[a] = [a′] and [b] = [b′], then [a+ b] = [a′ + b′].

Let us prove this. If [a] = [a′], then m|a− a′. Similarly m|b− b′. So

m|(a− a′) + (b− b′) = (a+ b)− (a′ + b′).

So [a+ b] = [a′ + b′]. �

3.2. The group (Z/mZ)×. We can also define another binary operation · on Z/mZ by letting
[a] · [b] = [ab]. As before, we can check that it is well-defined, namely if [a] = [a′] and [b] = [b′],
then [ab] = [a′b′].

It is easy to see that the unit for · is [1], namely [1] is the only element of Z/mZ such that
[1] · [a] = [a] for any [a] ∈ Z/mZ. But what about taking the inverse with respect to [1]? Given
[a] ∈ Z/mZ, is it possible to find an element [b] ∈ Z/mZ such that [a] · [b] = [1]?

If we do not modulo m, then the answer is rather easy. In this situation we are just considering
Z. The only integers which are invertible with respect to the multiplication is 1 or −1. For
example 2 · 12 = 1, but 1

2 6∈ Z.
However the situation changes when we modulo m. Say m = 5, then [2] · [3] = [6] = [1] in

Z/5Z. In other words, [3] = [2]−1 in Z/5Z.
Let us make this discussion into the following lemma.
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Lemma 3.3. Let m and a be integers. Then

gcd(a,m) = 1⇔ there exists an element [b] ∈ Z/mZ such that [a] · [b] = [1].

Proof. (⇒) We have 1 ∈ Z = aZ + mZ = Z by assumption. So 1 = ab + my for some b, y ∈ Z.
So in Z/mZ, we have

[1] = [ab] + [my] = [ab] = [a] · [b].
(⇐) Now [ab] = [a] · [b] = [1], so m|ab− 1. So ab− 1 = my for some y ∈ Z. So ab−my = 1.
On the other hand gcd(a,m)Z = aZ +mZ. So 1 ∈ gcd(a,m)Z. So gcd(a,m) = 1. �

Now we make the following definition.

Definition 3.4. Fix m an integer. We say that an element [a] ∈ Z/mZ is invertible if it
satisfies either of the two equivalent conditions in Lemma 3.3. The element [b] is called the
inverse of [a] and be denoted by [a]−1.

We denote by (Z/mZ)× the set of invertible elements of Z/mZ.

Remark 3.5. (1) Any invertible element [a] has a unique inverse. In other words, if [a][b] =
[a][c] = [1], then [b] = [c]. The proof goes as follows: Multiplying the equality [a][b] = [a][c]
by [b] (on the left), we get ([b][a])[b] = ([b][a])[c]. But [b][a] = [a][b] = [1] by assumption,
so we get [b] = [c].

(2) For any [a] ∈ (Z/mZ)×, we have [a]−1 ∈ (Z/mZ)×. This is easy as [a] is the inverse of
[a]−1 by definition.

Now we are ready to state the structural theorem.

Theorem 3.6. ((Z/mZ)×, ·; [1]) is an abelian group.

Proof. We need to show that · is indeed a binary operation on (Z/mZ)×. Namely if [a], [b] ∈
(Z/mZ)×, then [a][b] ∈ (Z/mZ)×.

There are two ways to do this, each one using one equivalent definition of invertible elements.
(Method 1) Use the definition by gcd. Now gcd(a,m) = 1 by assumption, so gcd(ab,m) =

gcd(b,m) by the Exercise 1 of the first Assignment. But then gcd(ab,m) = 1 since gcd(b,m) = 1
by assumption. Hence we are done.

(Method 2) Use the abstract definition. We have

([a][b])([b]−1[a]−1) = [a]([b][b]−1)[a]−1 = [a][1][a]−1 = [a][a]−1 = [1].

Hence we have found an inverse of [a][b]. So [a][b] is invertible. �

What is #(Z/mZ)×? In other words, how many numbers among 1, 2, . . . ,m− 1 are coprime
to m? This number is denote by φ(m) and is called the Euler-phi function of m. Next time we
will give a formula for φ(m). Today let us look at an application.

Proposition 3.7. If ac ≡ bc (mod m) and gcd(c,m) = 1, then a ≡ b (mod m).

Proof. Let us consider Z/mZ. Then the assumptions are equivalent to:

(i) [ac] = [bc];
(ii) [c] is invertible, namely [c] ∈ (Z/mZ)×.



8 MAT 214, FALL 2017

By (ii), [c]−1 exists in Z/mZ. Multiplying [c]−1 on both sides of (i), we get

[ac][c]−1 = [bc][c]−1,

and hence
[a] = [b].

Thus a ≡ b (mod m). �

Theorem 3.8. If a is coprime to m, then aφ(m) ≡ 1 (mod m).

Proof. Consider Z/mZ. List the elements of (Z/mZ)× by (Z/mZ)× = {[b1], . . . , [bφ(m)]}. We
make the following claims.

(i) [abi] ∈ (Z/mZ)× for any i ∈ {1, . . . , φ(m)}.
(ii) If [abi] = [abj ], then [bi] = [bj ].

(i) is true because [a] ∈ (Z/mZ)× (by assumption) and the abelian group structure on (Z/mZ)×.
(ii) is true because [abi] = [abj ] implies [a]−1[abi] = [a]−1[abj ], and hence [bi] = [bj ].

By (ii), we have a set {[ab1], . . . , [abφ(m)]} which has φ(m) elements. By (i), we have

{[ab1], . . . , [abφ(m)]} ⊂ (Z/mZ)×.

But both sets has φ(m) elements, so they are equal. In other words we have given another listing
of the elements of (Z/mZ)× by (Z/mZ)× = {[ab1], . . . , [abφ(m)]}.

Now take the product of all elements of (Z/mZ)×. From the two listings of the elements of
(Z/mZ)×, we get

[b1 · · · bφ(m)] = [a]φ(m)[b1 · · · bφ(m)].

Now multiplying both sides (on the right) by [bφ(m)]
−1 · · · [b1]−1, we get [1] = [a]φ(m) = [aφ(m)].

Hence we are done. �

As a corollary, we get Fermat’s Little Theorem.

Corollary 3.9 (Fermat’s Little Theorem). Let p be a prime number. Then ap ≡ a (mod p) for
any integer a.
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4. Chinese Remainder Theorem

4.1. Euler-phi function (continued).

Theorem 4.1. Let m ≥ 2 be a positive integer. Suppose m = pα1
1 · · · pαnn under the Unique

Factorization with αi ≥ 1. Then

φ(m) = m(1− 1

p1
) · · · (1− 1

pn
) = m

∏
p|m, p prime

(1− 1

p
).

Proof. We prove this theorem by induction on the sum α(m) := α1 + . . .+ αn.
(base step) For m with α(m) = 1. In this case m is a prime number, so φ(m) = m−1 = m(1− 1

m).
(induction step) Assume the equality for any positive integer m′ with α(m′) < α(m).

Let p be a prime factor of m and write m = pm′. Then α(m′) = α(m)− 1. So by induction
hypothesis we have

φ(m′) = m′
∏

q|m′, q prime

(1− 1

q
).

We need to consider two cases: p|m′ and p - m′.
(case) If p|m′, then m and m′ have the same prime factors. Thus an integer x is coprime to

m if and only if x is coprime to m′.
Given any integer x among 1, 2, . . . ,m − 1, we can divide x by m′ and obtain x = m′a + r

with r ∈ {0, 1, . . . ,m′ − 1}. Then a ∈ {0, 1, . . . , p− 1} because 1 ≤ x ≤ m− 1. So x is coprime
to m if and only if r is coprime to m′.

So there are φ(m′) choices of r so that r is coprime to m′. There are p possibilities for a.
Hence we get

φ(m) = pφ(m′).

So we get the desired equality by induction hypothesis.
(case) If p - m′, then an integer x is coprime to m if and only if x is coprime to m′ and p - x.

As above, we express any integer x ∈ {1, 2, . . . ,m− 1} as m′a+ r for r ∈ {0, 1, . . . ,m′ − 1} and
a ∈ {0, . . . , p− 1}. Then x is coprime to m′ if and only if r is coprime to m′.

Now fix an r that is coprime to m′, we need to count the number of possibilities for a ∈
{0, . . . , p − 1} so that m′a + r is not divisible by p. But p|m′a + r if and only if [m′a] = [−r]
in Z/pZ. Since p - m′, the congruence class [m′] is invertible in Z/pZ. So [a] = [−r][m′]−1
in Z/pZ. Since a is an integer between 0 and p − 1, we see that there is a unique choice for
a ∈ {0, . . . , p−1} such that m′a+ r is divisible by p. In other words, there are p−1 possibilities
for a ∈ {0, . . . , p− 1} so that m′a+ r is not divisible by p.

So we have

φ(m) = (p− 1)φ(m′).

Again the desired equality follows by induction hypothesis. �

4.2. Chinese Remainder Theorem. Consider the following question: What are the last two
digits of 123456? The question is equivalent to asking for the reduction of 123456 modulo 100.
Since gcd(123, 100) = 1 and φ(100) = 40, we know that 123440 = (12340)11 ≡ 1 (mod 100) by
Theorem 3.8. Hence

123456 ≡ 12316 ≡ 2316 (mod 100).
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Then we have

232 = 529 ≡ 29 (mod 100)

292 = 841 ≡ 41 (mod 100)

412 = 1681 ≡ 81 (mod 100)

812 = 6561 ≡ 61 (mod 100).

So 123456 ≡ 61 (mod 100). Thus the last two digits of 123456 is 61.
This is quite a lot of work computationally. Sometimes it will not work: finding the last two

digits of 87654321 requires computing 654321 modulo 100. As 65 and 100 are not coprime, we
cannot apply Theorem 3.8. The Chinese Remainder Theorem, stated below, will allow us to
understand reduction modulo 100 by understanding reduction modulo 4 and 25.

Theorem 4.2 (Chinese Remainder Theorem). Let a, b be coprime positive integers. For any
integers x1 and x2, there exists a unique congruence class [x] in Z/abZ such that

x ≡ x1 (mod a) and x ≡ x2 (mod b).

Proof. (existence) We consider integers x of the form ay + x1. The second congruence then
translates into ay ≡ x2 − x1 (mod b). Since gcd(a, b) = 1, such a y exists. Namely we can take
y to be an integer among 0, 1, . . . , b− 1 such that [y] = [a]−1[x2−x1] in Z/bZ. Then this integer
ay + x1 satisfies the desired properties.

(uniqueness) Suppose x and x′ are two integers satisfying the desired congruence conditions.
Then x − x′ is divisible by both a and b. So ab|x − x′ since gcd(a, b) = 1. So [x] = [x′] in
Z/abZ. �

To apply Theorem 4.2 to the above example, we write 100 = 4 × 25. Now gcd(4, 25) = 1.
We have 123 ≡ −1 (mod 4) and so 123456 ≡ 1 (mod 4). We also have 123 ≡ −2 (mod 25) and
φ(25) = 20 and so 123456 ≡ (−2)16 = 65536 ≡ 11 (mod 25). Hence the reduction of 123456

modulo 100 is congruent to 1 modulo 4 and to 11 modulo 25. Therefore it must be 61.
Let us now look at the example of 87654321. Again we have 8765 ≡ 1 (mod 4) and so

87654321 ≡ 1 (mod 4). But 5|8765, so 25 = 52|87652|87654321. So 87654321 ≡ 0 (mod 25).
Therefore 87654321 ≡ 25 (mod 100).

The last example will be a first step to solve Diophantine equation. Let us solve the congruence
equation

(4.1) x3 + x ≡ 6 (mod 12).

That is, we want to find all the congruence classes in Z/12Z whose 3-rd power plus itself is
congruent to 6. It is of course possible to try all 12 congruence classes and see which ones work,
but this is a lot of work, especially if 12 is replaced by a large integer. Instead we use the Chinese
Remainder Theorem by first breaking up 12 = 3 × 4 in to a product of coprime integers. Now
(4.1) is equivalent to the following two conditions combined:

x3 + x ≡ 6 ≡ 0 (mod 3)

x3 + x ≡ 6 ≡ 2 (mod 4).

We can solve these two congruence equations by trying all congruence classes (the first one can
also be solved by Fermat’s Little Theorem). There are only 3 needed for the first one and 4
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needed for the second one. Checking all of them we get

x ≡ 0 (mod 3)

x ≡ 1, 2, 3 (mod 4).

There are then three solutions

x ≡ 0 (mod 3), x ≡ 1 (mod 4) ⇒ x ≡ 9 (mod 12)
x ≡ 0 (mod 3), x ≡ 2 (mod 4) ⇒ x ≡ 6 (mod 12)
x ≡ 0 (mod 3), x ≡ 3 (mod 4) ⇒ x ≡ 3 (mod 12)

One can generalize the Chinese Remainder Theorem by including more congruence conditions.
We delegate the proof to the homework.

Theorem 4.3. Let a1, . . . , an be pairwise coprime positive integers. For any integers x1, . . . , xn,
there exists a unique congruence class [x] in Z/mZ, where m = a1 · · · an, such that x ≡ xi
(mod ai) for all i ∈ {1, . . . , n}.

The above example of solving congruence equations illustrate an important idea. In number
theory, we usually have a polynomial f(x, y, . . .) with integer coefficients and we want to find
integer solutions to the equation f = 0. For example Fermat’s Last Theorem concerns with
the polynomial xn + yn − zn and it states that there are no solutions other than (0, 0, 0) when
n ≥ 3. Such a question is in general very hard while looking for solutions in Z/mZ is much easier
because Z/mZ is finite. In this procedure we would want m to run over all positive integers.
The Chinese Remainder Theorem (and its generalization) tells us that it suffices to consider
only prime powers for m. As we will see later, for a fixed polynomial f , except for a finite set
of primes, looking for solutions in Z/paZ is the same as looking for solutions in Z/pZ. Finally
since Z/pZ is a field (every non-zero element is invertible) we will have more tools available to
study the zeros of a polynomial in a field.
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5. The finite field Fp
5.1. Wilson’s Theorem. Today we focus on the ring Z/mZ where m is a prime number p.
Recall that (Z/pZ)× = {[1], . . . , [p − 1]} because gcd(a, p) = 1 for any a ∈ {1, . . . , p − 1}. In
other words, every non-zero element of Z/pZ is invertible.

Definition 5.1. A field is a commutative ring (F,+, ·; 0F , 1F ) such that every non-zero element
is invertible. In other words, F× = {a ∈ F : a 6= 0}. We sometimes abbreviate it as F if the
other data (+, ·, 0F , 1F ) are clear.

Let us see some examples of fields. We have (Z/pZ,+, ·; [0], [1]). We sometimes denote this
field by Fp. The unit for addition is [0], and the unit for multiplication is [1].

Other examples include Q the field of rational numbers, R the field of real numbers, and C
the field of complex numbers. Additions and multiplications are the usual ones in each case.
The unit for addition is the number 0 and the unit for multiplication is the number 1 in each
case.

In this list of examples, Z/pZ is finite and Q, R, C are infinite.

Attention We only write Fp for Z/pZ. For an integer m which is not a prime number, we do
NOT write Fm for Z/mZ. The reason will be explained in later lectures (in two or three weeks).

Recall the following Fermat’s Little Theorem which we proved last Thursday.

Theorem 5.2 (Fermat’s Little Theorem). ap = a for any a ∈ Fp.

In the statement, the symbol “a” represents an element of Fp instead of an integer. In other
words, a means a congruence class mod p. This is why we don’t write [a].

Today we prove the following theorem.

Theorem 5.3 (Wilson’s Theorem). (p− 1)! ≡ −1 (mod p).

Proof. When p = 2 and p = 3, this is clearly true. From now on we assume p ≥ 5.
Consider Fp = Z/pZ and the list of congruence classes [2], [3], . . . , [p− 2]. We observe that

{[2], [3], . . . , [p− 2]} = {[2]−1, [3]−1, . . . , [p− 2]−1}.
This is because

(1) for any a ∈ {2, . . . , p− 2}, [a]−1 is again an invertible element of Z/pZ and it is clearly
not [1] or [p− 1] = [−1];

(2) for any a, b ∈ {2, . . . , p− 2}, [a]−1 6= [b]−1 if a 6= b.

Now we can break {[2], [3], . . . , [p− 2]}, which has p− 3 elements, into (p− 3)/2 pairs consisting
of a congruence class and its inverse. So we can regroup the product [2][3] · · · [p− 2] so that

[2][3] · · · [p− 2] = [1] · · · [1]((p− 3)/2 of them) = [1].

So [1][2] · · · [p−1] = [1]([2] · · · [p−2])[p−1] = [1][1][p−1] = [−1] in Z/pZ. Hence we are done. �

Next time, we will see another proof of Wilson’s Theorem using polynomials.

5.2. The characteristic of a field. Let (F,+, ·; 0F , 1F ) be a field. Let us define a map ϕ : Z→
F , sending n to n · 1F (meaning the sum of n-times 1F ). Using the fact 12F = 1F , it is not hard
to show that ϕ(n + m) = ϕ(n) + ϕ(m) and ϕ(n ·m) = n · ϕ(m). In the language of Tuesday’s
homework (if you have done it), ϕ is a ring homomorphism.
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Definition 5.4. The characteristic of the field F , denote by char(F ), is the smallest positive
integer n such that ϕ(n) = 0F . In other words it is the smallest positive integer n such that
n · 1F = 0F . If no such integer exists, then we set char(F ) = 0.

For example, char(Fp) = p and char(Q) = 0.

Proposition 5.5. We have the following properties.

(1) char(F ) is either 0 or a prime number p;
(2) for any a ∈ F , we have char(F ) · a = 0F ;
(3) if n · 1F = 0F for some integer n, then char(F ) is a prime number and divides n.

Proof. (1) Suppose for contradiction that char(F ) is neither 0 nor a prime number. Then
there exist integers 1 < d1, d2 < char(F ) such that char(F ) = d1d2. However

0F = (d1d2) · 1F = (d1 · 1F ) · (d2 · 1F ).

If d1 ·1F 6= 0F , then it is invertible in F since any non-zero element of F is invertible. But
then multiplying both sides by (d1 · 1F )−1, we get 0F = d2 · 1F . Thus either d1 · 1F = 0F
or d2 · 1F = 0F . This contradicts the minimality of char(F ).

(2) We have

char(F ) · a = char(F ) · 1F · a = (char(F ) · 1F ) · a = 0F · a = 0F .

(3) If n ·1F = 0F for some integer n, then char(F ) 6= 0. Hence char(F ) is a prime number by
(1). Recall that gcd(char(F ), n)Z = char(F )Z+nZ, hence gcd(char(F ), n) = char(F )x+
ny for some x, y ∈ Z. So

gcd(char(F ), n) · 1F = (char(F )x+ ny) · 1F = x · (char(F ) · 1F ) + y · (n · 1F ) = 0F .

By minimality of char(F ), we have gcd(char(F ), n) = char(F ). So char(F )|n.
�

Theorem 5.6. (1) ϕ is injective if char(F ) = 0. In particular, if char(F ) = 0, then F is
infinite.

(2) ϕ induces an injection from Z/pZ to F if char(F ) = p.

Proof. (1) If char(F ) = 0. Suppose ϕ(n) = ϕ(m) for some integers n and m. Then

(n−m) · 1F = ϕ(n−m) = ϕ(n)− ϕ(m) = 0F .

Because char(F ) = 0, we have n − m = 0 and so n = m. Thus ϕ is injective if
char(F ) = 0.

But then F is infinite because Z is infinite.
(2) If char(F ) = p, then define a map ϕ : Z/pZ → F by ϕ([a]) = ϕ(a). This map is well-

defined: if [n] = [m] in Z/pZ, then

ϕ(n)− ϕ(m) = ϕ(n−m) = ϕ(pr) = p · ϕ(r) = 0F ,

and so ϕ(n) = ϕ(m).
Let us prove that the map ϕ is injective. For [m], [n] ∈ Z/pZ, we have

ϕ([m])− ϕ([n]) = ϕ(m)− ϕ(n) = (m− n) · 1F .
If ϕ([m])−ϕ([n]) = 0F , then (m− n) · 1F = 0F . So p|m− n by Proposition 5.5.(3), and
hence [m] = [n].

�
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5.3. A previous Exercise. Ex 1 of the first Assignment. Show that if gcd(a, c) = 1, then
gcd(ab, c) = gcd(b, c).

Proof. We shall use our definition of gcd, i.e. gcd(m,n)Z = mZ + nZ and gcd(m,n) > 0.
We have

aZ + cZ = gcd(a, c)Z = Z.
Multiplying both sides with b, we get

abZ + bcZ = bZ.
Adding cZ on both sides, we have

abZ + (bcZ + cZ) = bZ + cZ.
But bcZ ⊂ cZ, so bcZ + cZ = cZ. So we have

abZ + cZ = bZ + cZ.
So gcd(ab, c)Z = gcd(b, c)Z. So gcd(ab, c) = gcd(b, c) because both are positive. �
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6. Polynomials with coefficients in a field

Through this section, we let (F,+, ·; 0F , 1F ) be a field. We abbreviate it as F .
Let F [x] denote the set of polynomials with coefficients in F . We have

F [x] = {anxn + an−1x
n−1 + . . .+ a1x+ a0 : n ≥ 0, ai ∈ F for all i}.

For example [5], [2]x2 + [3]x, [5]x3 + [6]x2 + [4] are elements of F7[x].

6.1. Commutative ring structure. In this course, we will see many analogies between F [x]
and Z. Let us start with the following structural proposition: We can endow F [x] with addition
and multiplication. The formulae will be exactly as expected. We illustrate multiplication with
an example: Suppose we are in F7[x], then

([2]x2 + [3]x)([4]x+ [1]) = [2][4]x3 + ([2][1] + [3][4])x2 + [3][1]x = [1]x3 + [3]x.

Then it is not hard to see that 0F + f = f and 1F · f = f for any f ∈ F [x]. The following
theorem is not hard to check.

Theorem 6.1. (F [x],+, ·; 0F , 1F ) is a commutative ring.

Next let us study the invertible elements of F [x], namely the polynomials f ∈ F [x] such that
f · g = 1F for some g ∈ F [x]. As for Z/mZ, we denote by F [x]× the set of invertible elements
of F [x]. We can prove that (F [x]×, ·; 1F ) is an abelian group. The proof is similar to what we
did for (Z/mZ)× (Method 2).

Recall that for Z/mZ, we had a concrete description of (Z/mZ)×. We would like to ask
whether such a concrete description exists for F [x]×. The answer is yes. Before computing this,
let us look at the easy Z.

Suppose now we want to compute Z×. For any a ∈ Z×, we have ab = 1 for some b ∈ Z. Then
we can take the absolute value of both sides and get |a||b| = 1. Note that a, b 6= 0, so |a|, |b| ≥ 1.
But then we must have |a| = |b| = 1. So a = ±1. On the other hand it is clear that ±1 ∈ Z×.
So Z× = {±1}.

In this easy computation, we used the absolute value of numbers to compare different numbers.
If we can transport the notion to polynomials, then we will be able to compute F [x]×. This
notion is the degree which we introduce now.

Definition 6.2. To any polynomial f ∈ F [x], we define its degree, denoted by deg(f), to be
the largest integer n such that the coefficient of xn is non-zero.

In other words, for f(x) = anx
n + an−1x

n−1 + . . .+ a0 with an 6= 0F , we have deg(f) = n. If
f = 0F , then we say deg(f) = −∞.

So in particular, if f 6= 0F , then deg(f) ≥ 0. Moreover, the polynomials with degree 0 are
precisely the non-zero constant polynomials.

Lemma 6.3. For any f, g ∈ F [x], we have deg(fg) = deg(f) + deg(g).

Proof. If one of f and g is 0F , then fg = 0F . Hence deg(fg) = deg(0F ) = −∞, and deg(f) +
deg(g) = −∞. So deg(fg) = deg(f) + deg(g) in this case.

Now suppose neither of f and g is 0F . Suppose deg(f) = n and deg(g) = m. Then we can
write f(x) = anx

n + an−1x
n−1 + . . .+ a0 with an 6= 0F and g(x) = bmx

m + bm−1x
m−1 + . . .+ b0

with bm 6= 0F . Thus
f(x)g(x) = anbmx

n+m + lower terms.
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Now an, bm 6= 0F and F is a field, so anbm 6= 0F . So by definition deg(fg) = n+m. So we are
done. �

Now we are ready to compute F [x]×, just as we did for Z×.

Theorem 6.4. F [x]× = F×.

Proof. Suppose f ∈ F [x]×, then fg = 1F for some g ∈ F [x]. Taking the degree of both sides,
we get deg(f) + deg(g) = deg(fg) = deg(1F ) = 0. Thus neither of deg(f) and deg(g) is −∞.
But then deg(f), deg(g) ≥ 0. So deg(f) = deg(g) = 0. So f is a non-zero constant polynomial.
So f ∈ F× = F \ {0F }. This proves F [x]× ⊂ F×.

On the other hand, every element of F× is still invertible in F [x]. So to sum it up, we have
F [x]× = F×. �

6.2. Divisor and root.

Definition 6.5. We say that a polynomial g(x) divides f(x) in F [x] if there exists a polynomial
h(x) such that f(x) = g(x)h(x).

For example in F7[x], the polynomial x− [3] divides x2 − [2] as

(x− [3])(x+ [3]) = x2 − [9] = x2 − [2].

Note that any polynomial divides 0F . If g|f and f 6= 0F , then deg(f) ≥ deg(g) (easy exercise).

Lemma 6.6. Suppose f ∈ F [x] satisfies f(a) = 0F for some a ∈ F . Then x− a|f(x).

Proof. The key trick is to use

xr − ar = (x− a)(xr−1 + xr−2a+ xr−3a2 + . . .+ ar−1).

Suppose f(x) = anx
n + . . .+ a0, then

f(x) = f(x)− f(a)

= an(xn − an) + . . .+ a1(x− a).

Now x− a divides each xr − ar for r ∈ {1, . . . , n}, so x− a|f(x). �

Definition 6.7. An element a ∈ F such that f(a) = 0F is called a root of f .

Proposition 6.8. Let f ∈ F [x] be a non-zero polynomial of degree d. Then f has at most d
roots, with multiplicity counted.

Proof. We prove by induction on d.
(base step) P(0) is true: when d = 0, f is non-zero constant, so it has no roots.
(induction step) Assume P(0), . . . ,P(d− 1) are true. Suppose f is a non-zero polynomial of

degree d.
If f has no roots, then we are done. Otherwise suppose f(a) = 0F . But x−a|f by Lemma 6.6.

So f(x) = (x− a)rg(x) for some 1 ≤ r ≤ d and some g ∈ F [x].
If a′ is a root of f other than a, then 0F = f(a′) = (a′ − a)rg(a′), so g(a′) = 0F , namely a′ is

a root of g. So the roots of f are precisely a (with r times) and the roots of g.
Now deg(f) = deg((x − a)r) + deg(g) = r + deg(g). Now by P(d − r), g has at most d − r

roots. So f has at most r + (d− r) = d roots. �
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Now we use this to get another proof of Wilson’s Theorem: (p − 1)! ≡ −1 (mod p) for any
prime number p.

Another proof of Wilson’s Theorem. Consider f(x) = xp−1 − [1] in Fp[x]. Fermat’s Little The-
orem implies that [1], [2], . . . , [p − 1] are roots of f . So as in the previous proposition (this is
sketchy here, think why), we get

f(x) = g(x)(x− [1]) · · · (x− [p− 1])

for some g ∈ Fp[x] by Lemma 6.6. Taking the degree of both sides, we get p − 1 = deg(f) =
deg(g) + p − 1. So deg(g) = 0. So g(x) is a constant. Comparing the leading terms we get
g(x) = [1]. Hence

xp−1 − [1] = (x− [1]) · · · (x− [p− 1]).

Now we can conclude by comparing the constant terms. �
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7. Arithmetic in F [x]

7.1. Irreducible polynomials. Let us continue the analogy between Z and F [x]. Last time
we introduced a notion of “size” which we call the degree and the notion of divisibility. Today
we define “prime” elements of F [x].

Definition 7.1. An irreducible polynomial f(x) is a non-constant polynomial that has no
non-constant polynomial divisors of smaller degree, namely if g|f , then either g is constant or
deg(g) = deg(f).

Definition 7.2. An irreducible polynomial f(x) is a non-constant polynomial such that
f |gh⇒ f |g or f |h.

Remark 7.3. Let us see some easy consequences of the definitions.

(1) The constant polynomial 0F is NOT irreducible. Any non-zero constant polynomial is
NOT irreducible. This is similar to Z: 0 is not a prime number, and 1 (any element of
Z×) is also not a prime number.

(2) Any polynomial of degree 1 is irreducible. This can be proven by Definition 7.1 and
taking degrees.

(3) If f is irreducible, then cf(x) for any c ∈ F× is again irreducible. This follows easily
from Definition 7.1.

(4) If g|f and deg(g) = deg(f), then f(x) = cg(x) for some c ∈ F×. This can be proven by
Definition 7.1 and taking degrees.

(5) Recall that Z× = {±1}. So when defining prime numbers in Z, we only considered
positive numbers. Last time we saw F [x]× = F×, so when defining the “prime” elements
of F [x], we can confine ourselves to monic polynomials, i.e. polynomials whose leading
coefficient is 1F . This is justified by (3) and (4) of this remark. However we choose not
to do this due to several reasons which will be revealed later in the course.

Before going on, let us explain that the field F is important for this definition. Say f(x) =
x2 + [1]. If we view f ∈ F2[x], then f(x) = (x+ [1])(x− [1]) and so f is not irreducible. But if
we view f ∈ F3[x], then f(x) is irreducible since it has no roots in F3.

As an exercise, please prove Definition 7.2⇒Definition 7.1 as we did for prime numbers in
the first lecture. Proving Definition 7.1⇒Definition 7.2 requires the notion of gcd and Euclid’s
Algorithm. Recall that for Z, the most important input for Euclid’s Algorithm is the following
division algorithm: suppose a, b are two positive integers, then there exist unique integers q and
r ∈ {0, . . . , b− 1} such that a = bq + r. The analogous statement for F [x] is as follows:

Proposition 7.4 (Division Algorithm). Let a(x), b(x) be two polynomials in F [x] and b(x) 6= 0F .
Then there exist unique polynomials q(x) and r(x) such that

a(x) = b(x)q(x) + r(x), deg(r) < deg(b).

Proof. (uniqueness) Suppose there are polynomials q1(x), r1(x), q2(x), r2(x) with

a(x) = b(x)q1(x) + r1(x), deg(r1) < deg(b),

a(x) = b(x)q2(x) + r2(x), deg(r2) < deg(b).

Subtracting these two equations gives r1(x) − r2(x) = b(x)(q2(x) − q1(x)). So deg(r1 − r2) =
deg(b) + deg(q2 − q1). But deg(r1 − r2) ≤ max(deg(r1),deg(r2)) < deg(b). So r1 − r2 = 0F . So
r1(x) = r2(x) and hence q1(x) = q2(x).
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(existence) We do induction on d = deg(a)− deg(b).
(base step) When d < 0, then P(d) holds: we can simply take q(x) = 0F and r(x) = a(x).
(induction step) Now assume d ≥ 0 and P(k) holds for any k ≤ d − 1. Note that deg(a) ≥ 0
now.

Put m = deg(a) and n = deg(b). Then m− n = d ≥ 0. Write

a(x) = amx
m + . . .+ a0, b(x) = bnx

n + . . .+ b0.

Multiplying b(x) by amb
−1
n xm−n gives a polynomial of degree m with the same leading coefficient

as a(x). Now define c(x) = a(x) − amb−1n xm−nb(x), then deg(c) < m. So deg(c) − deg(b) <
m− n = d.

Now P(deg(c)−deg(b)) implies that there exist polynomials q′(x) and r′(x) such that c(x) =
b(x)q′(x) + r′(x) with deg(r′) < deg(b). So we have

a(x) = b(x)(amb
−1
n xm−n + q′(x)) + r′(x).

Now we can take q(x) = amb
−1
n xm−n + q′(x) and r(x) = r′(x). �

Having the division algorithm, we can do what we did for Z to get Euclid’s algorithm and
find “greatest common divisors” of two polynomials. Before doing this, let us prove an auxiliary
lemma.

Lemma 7.5. Let f, g ∈ F [x]. Then fF [x] = gF [x]⇔ f(x) = cg(x) for some c ∈ F×.

Proof. (⇐) For any h ∈ F [x], we have fh = g(ch) ∈ gF [x]. So fF [x] ⊂ gF [x]. Conversely for
any h ∈ F [x], we have gh = f(c−1h) ∈ fF [x], so gF [x] ⊂ fF [x]. Hence fF [x] = gF [x].

(⇒) If one of f and g is 0F , then the other one is also 0F . In this case we are done.
Now assume neither of f and g is 0F . By assumption we have f ∈ fF [x] = gF [x]. So f = gh

for some h ∈ F [x]. Taking the degrees we get deg(f) = deg(g) + deg(h). Since f 6= 0F , we have
h 6= 0F . So deg(h) ≥ 0. So deg(f) ≥ deg(g).

Similarly deg(g) ≥ deg(f). So deg(f) = deg(g). But then deg(h) = deg(f)− deg(g) = 0. So
h is a non-zero constant polynomial, i.e. h ∈ F×. �

Definition 7.6. For two polynomials f, g ∈ F [x], define gcd(f, g) to be a polynomial such that
fF [x] + gF [x] = gcd(f, g)F [x].

Remark 7.7. (1) Under this definition, gcd(f, g) is NOT unique. But it is unique up to
F [x]× = F× (by Lemma 7.5), i.e. if two polynomials h1 and h2 satisfies fF [x]+gF [x] =
hiF [x] for i ∈ {1, 2}, then h1 = ch2 for some c ∈ F×.

(2) As for Z, we can prove: Let h ∈ F [x]. If h|f and h|g, then h|gcd(f, g).

Now let us see an example of Euclid’s algorithm. Say in F7[x] we take (for simplicity we omit
the “[]”)

a(x) = x3 − 2x2 − 4x+ 1, b(x) = 3x2 − 4x− 4.

Now

x3 − 2x2 − 4x+ 1 = (3x2 − 4x− 4)(5x− 1) + (5x+ 4)

3x2 − 4x− 4 = (5x+ 4)(2x− 1).

So a(x)F [x] + b(x)F [x] = (5x+ 4)F [x], or gcd(x3 − 2x2 − 4x+ 1, 3x2 − 4x− 4)“=”5x+ 4.
Then with this we can prove Definition 7.1⇒Definition 7.2 as we did for Z.
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Again by imitating what we did for Z, we can prove the following Unique Factorization
Theorem for F [x].

Theorem 7.8. Every non-zero polynomial has a factorization into a product of a constant and
monic irreducible polynomials, unique up to reordering. Namely ∀f ∈ F [x] non-zero,

• there exist c ∈ F× and monic irreducible polynomials g1, . . . , gn ∈ F [x] such that f(x) =
cg1(x) · · · gn(x);
• if f(x) = cg1(x) · · · gn(x) = c′h1(x) · · ·hm(x) for c, c′ ∈ F× and g1, . . . , gn, h1, . . . , hm

monic irreducible polynomials, then c = c′, n = m and {g1, . . . , gn} = {h1, . . . , hm} as
multi-sets (i.e. elements are counted with multiplicities).

Again this theorem can be proven by induction on deg(f).

7.2. Formal derivatives.

Definition 7.9. Let f(x) = anx
n+an−1x

n−1 + . . .+a1x+a0 ∈ F [x]. Its (formal) derivative,
denoted f ′(x), is

f ′(x) = nanx
n−1 + (n− 1)an−1x

n−2 + . . .+ a1.

Here na means a+ a+ . . .+ a the sum of n-times a.
For example a′(x) = b(x) for a(x) = x3 − 2x2 − 4x+ 1, b(x) = 3x2 − 4x− 4 in F7[x].

Proposition 7.10. Let f(x), g(x) ∈ F [x].

(1) (Addition) (f + g)′ = f ′ + g′.
(2) (Leibniz’ rule) (fg)′ = f ′g + fg′.

Remark 7.11. When char(F ) = 0, then g′ = 0F ⇒ g is constant. However when char(F ) = p,
then this is not true. Take for example g(x) = xp − 1. Then g′ = pxp−1 = 0F , but g is NOT
constant.

Proposition 7.12. Let f(x), g(x) ∈ F [x]. Suppose g(x) is irreducible and g′(x) 6= 0F . Then
g(x)2|f(x)⇔ g(x)|gcd(f(x), f ′(x)).

Proof. (⇒) We have f(x) = g(x)2h(x) for some h(x) ∈ F [x]. So

f ′ = (g2)′h+ g2h′

= (g′g + gg′)h+ g2h′

= g(2g′h+ gh′)

So g divides both f and f ′. So g|gcd(f(x), f ′(x)).
(⇐) By assumption g|f . So f = gh for some h ∈ F [x]. Then

f ′ = g′h+ gh′.

Since g|f ′ = g′h + gh′, we have g|g′h. But g is irreducible, so g|g′ or g|h. But g′ 6= 0F and
deg(g′) < deg(g), so we cannot have g|g′. So g|h. Thus g2|gh = f . �

As we can see from the previous remark, the assumption g′ 6= 0F is redundant if char(F ) = 0
(but should not be removed if char(F ) = p).

For example for a(x) = x3 − 2x2 − 4x + 1 in F7[x], we can compute a(x) = (x − 2)2(x + 2).
It is not so surprising now gcd(a, a′) = 5(x− 2).
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8. Arithmetic in F [x] (continued)

8.1. Formal derivative (continued). Let us prove the following lemma, which is part of
Remark 7.11.

Lemma 8.1. Assume char(F ) = 0. Let f ∈ F [x]. Then f ′ = 0F ⇔ f is constant.

Proof. The implication ⇒ is clear. Let us prove ⇐ by contradiction.
Assume f is non-constant. Then we can write f = anx

n + . . .+ a0 with n ≥ 1 and an 6= 0F .
Then f ′ = nanx

n−1 + lower terms. Now nan = (n1F )an. If we could prove that nan 6= 0F , then
f ′ 6= 0F . This contradicts the assumption. So we are left to prove nan 6= 0F . But an 6= 0F , so
it suffices to prove n1F 6= 0F because F is a field.

Since n 6= 0, we have n1F 6= 0F because char(F ) = 0. So we are done. �

In this proof, we can see clearly where the assumption char(F ) = 0 is used. It is used in the
last step. Suggested by its proof, we (guess and) prove its corresponding version for char(F ) = p.

Lemma 8.2. Assume char(F ) = p is a prime number. Let f ∈ F [x]. Then f ′ = 0F ⇔ f =∑n
i=0 aix

ip for some ai ∈ F .

Proof. (⇒) We have

f ′ =
n∑
i=1

ipaix
ip−1.

Now ipai = ip1Fai = (p1F )(iai) = 0F (iai) = 0F for any i ∈ {1, . . . , n}. So f ′ = 0F .
(⇐) Assume that there exists an integer m ≥ 1 with p - m such that the m-th coefficient of

f is non-zero. Then we can write f = amx
m + higher terms + lower terms with am 6= 0F . So

f ′ = mamx
m−1 + higher terms + lower terms.

If we could prove mam 6= 0F , then f ′ 6= 0F . This contradicts the assumption. So we are left to
prove mam 6= 0F .

Assume again for contradiction that mam = 0F . Then by Proposition 5.5.(3), we have
p = char(F )|m. But this contradicts our choice p - m. Hence mam 6= 0F . So we are done. �

Attention For f ∈ F [x], the following fact is in general NOT true: f = 0F if f(a) = 0F for all
a ∈ F . Take for example F = Fp and f(x) = xp−x. By Fermat’s Little Theorem, f(a) = [0] for
any a ∈ Fp. But f is NOT the zero polynomial by definition. For example deg(f) = p 6= −∞.

As a consequence, for f, g ∈ F [x], f(a) = g(a) for all a ∈ F 6⇒ f = g.
However, we will see in later lectures how to fix this problem (e.g. the statement is true if F

is “large enough”).

8.2. Hensel’s Lemma.

Theorem 8.3 (Hensel’s Lemma). Let f(x) ∈ Z[x] be a polynomial with integer coefficients.
Suppose that x1 ∈ Z satisfies

f(x1) ≡ 0 (mod p) and f ′(x1) 6≡ 0 (mod p).

Then for any integer r ≥ 1, there exists an integer xr such that

xr ≡ x1 (mod p), f(xr) ≡ 0 (mod pr).

Moreover, any two such xr are congruent to each other modulo pr.
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Before proving Hensel’s Lemma, let us first restate Hensel’s Lemma in a form which better
explains its meaning. To do this, we introduce the following notation.

Say f ∈ Z[x] and m ≥ 1 is an integer. Then we use (f mod m) to denote the polynomial
in (Z/mZ)[x] which is obtained by modulo every coefficient of f by m. For example if f =
x4 + 7x3 + 5x2 + 4x+ 6 and m = 6, then (f mod 6) = x4 + x3 − x2 − [2]x is a polynomial with
coefficients in Z/6Z.

Now let m ≥ 1 and n ≥ 1 be two integers such that m|n. Then we can define a map Z/nZ→
Z/mZ, sending [a] ∈ Z/nZ to [a] ∈ Z/mZ. This map is well-defined: if [a] = [a′] ∈ Z/nZ, then
n|a − a′, so m|a − a′, and hence a and a′ are in the same congruence class modulo m. We call
this map (mod m).

Now we are ready to restate Hensel’s Lemma.

Theorem 8.4. Let f(x) ∈ Z[x] be a polynomial with integer coefficients. Suppose x1 ∈ Z/pZ
satisfies

(f mod p)(x1) = [0] and (f ′ mod p)(x1) 6= [0] in Z/pZ.
Then for any integer r ≥ 1, there exists a unique xr ∈ Z/prZ such that

(mod p)(xr) = x1, (f mod pr)(xr) = [0] in Z/prZ.
Now we can better understand the statement of Hensel’s Lemma. The hypothesis in Hensel’s

Lemma is equivalent to: after modulo p, x − x1|(f mod p) but (x − x1)2 - (f mod p). We call
such an x1 a simple root of (f mod p) (or of f over Fp). Then the conclusion of Hensel’s
Lemma says that every simple root of f over Fp has a unique lift to a root of f in Z/prZ (for
any integer r ≥ 1).

The following paragraph was said at the end of Section 4: In number theory, we usually have
a polynomial f(x, y, . . .) with integer coefficients and we want to find integer solutions to the
equation f = 0. For example Fermat’s Last Theorem concerns with the polynomial xn+yn−zn
and it states that there are no solutions other than (0, 0, 0) when n ≥ 3. Such a question is in
general very hard while looking for solutions in Z/mZ is much easier because Z/mZ is finite.
In this procedure we would want m to run over all positive integers. The Chinese Remainder
Theorem (and its generalization) tells us that it suffices to consider only prime powers for m.

Now Hensel’s Lemma tells us that for a fixed polynomial f , except for a finite set of primes,
looking for solutions in Z/prZ is the same as looking for solutions in Z/pZ. Since Z/pZ is a field
(every non-zero element is invertible) we will have more tools to study the zeros of a polynomial
with coefficients in Z/pZ compared to Z/prZ (r ≥ 2).

Proof of Hensel’s Lemma in the form of Theorem 8.3. We prove it by induction on r ≥ 1. We
will prove the existence part and uniqueness part at the same time, so the statement P(r)
contains both parts.

(base step) The existence part of P(1) is true by assumption. The uniqueness part of P(1) is
clearly true.

(induction step) Assume P(1), . . . ,P(r − 1) are true.
(existence part) By the existence part of P(r − 1), there exists xr−1 ∈ Z such that xr−1 ≡ x1
(mod p) and f(xr−1) ≡ 0 (mod pr−1). It suffices to find an integer a such that f(xr−1+pr−1a) ≡
0 (mod pr) and set xr = xr−1 + pr−1a. Recall that f(xr−1 + pr−1a) ≡ f(xr−1) + pr−1af ′(xr−1)
(mod pr) by Exercise 4 of Assignment 10/05. So it suffices find an integer a such that

pr|f(xr−1) + pr−1af ′(xr−1).
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Since pr−1|f(xr−1), we have f(xr−1) = pr−1b for some b ∈ Z. The above condition then translate
to

p|b+ af ′(xr−1), or equivalently [b] + [a][f ′(xr−1)] = [0] in Fp.
Since xr−1 ≡ x1 (mod p), we have f ′(xr−1) ≡ f ′(x1) 6≡ 0 (mod p). So [f ′(xr−1)] 6= [0] in Fp.
But then [f ′(xr−1)]

−1 exists in Fp. So we can take a to be any integer whose congruence class
modulo p is −[b][f ′(xr−1)]

−1.
(uniqueness part) Suppose xr and x∗r both satisfy the desired condition. Then they also satisfy
the same condition for r−1. So by the uniqueness part of P(r−1), we have xr ≡ x∗r (mod pr−1).
So x∗r = xr + pr−1a for some a ∈ Z. It suffices to prove p|a.

Now

0 ≡ f(x∗r) = f(xr + pr−1a) ≡ f(xr) + pr−1af ′(xr) ≡ pr−1af ′(xr) (mod pr).

Here the second congruence follows from Exercise 4 of Assignment 10/05. So pr|pr−1af ′(xr). So
p|af ′(xr). So p|a or p|f ′(xr) since p is a prime number. But f ′(xr) ≡ f ′(x1) 6≡ 0 (mod p), so
we must have p|a. Hence we are done. �
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9. Arithmetic in F [x] (continued): Modular Arithmetic for F [x]

Recall that one of the major topics we covered is the comparison between Z and F [x], where
(F,+, ·; 0F , 1F ) is a field. They share many common properties. One thing we haven’t cov-
ered yet is the modular arithmetic: we have seen this for Z, namely the commutative ring
(Z/mZ,+, ·; [0], [1]) for any integer m > 1. Recall the following properties of this ring Z/mZ.

• (Z/mZ,+, ·; [0], [1]) is a commutative ring.
• As a list of representatives, we can take Z/mZ = {[0], [1], ..., [m− 1]}.
• This commutative ring is a field if and only if m is a prime number.
• #(Z/mZ)× = φ(m) = m

∏
p|m(1− 1

p).

Today we do a similar construction for F [x] and prove the analogues for the first three bullet
points.

Let g(x) ∈ F [x] be a nonconstant polynomial. In particular deg(g) ≥ 1. We say that two
polynomials f1(x), f2(x) ∈ F [x] are congruent modulo g(x) and write

f1(x) ≡ f2(x) (mod g(x)) if g(x)|f1(x)− f2(x).

In other words, f1(x) and f2(x) are congruent modulo g(x) if and only if f1(x)−f2(x) = g(x)h(x)
for some h(x) ∈ F [x]. Define

F [x]/(g(x)) := the set of congruent classes modulo g(x).

For any f(x) ∈ F [x], we denote by f(x) the congruent class of f(x) modulo g(x).

We define f1(x) + f2(x) = f1(x) + f2(x), and f1(x) · f2(x) = f1(x)f2(x). It is not hard to
check that these two binary operations are well-defined. Then it is not hard to prove:

Proposition 9.1. (F [x]/(g(x)),+, ·; 0F , 1F ) is a commutative ring.

Next let us take a list of representatives for F [x]/(g(x)). Assume d = deg(g) ≥ 1 and

g(x) =
∑d

i=0 aix
i with ad 6= 0. In F [x]/(g(x)), we have 0F = g(x). So

xd = −a−1d (
d−1∑
i=0

aix
i).

Hence for any polynomial f(x) ∈ F [x], we have

(9.1) f(x) = f0(x) for some f0(x) ∈ F [x] with deg(f0) ≤ d− 1.

On the other hand, if f1(x), f2(x) ∈ F [x] with deg(f1),deg(f2) < d satisfy f1(x) = f2(x), then
f1(x)− f2(x) = g(x)h(x) for some h(x) ∈ F [x], so

d > max(deg(f1), deg(f2)) ≥ deg(f1 − f2) = deg(g) + deg(h) = d+ deg(h),

and hence deg(h) < 0, and thus deg(h) = −∞ and h(x) = 0. So

(9.2) f1(x) = f2(x) and deg(f1),deg(f2) < d⇒ f1(x) = f2(x).

By (9.1) and (9.2), we have:

Proposition 9.2. For a list of representatives, we have

F [x]/(g(x)) = {f(x) : deg(f) < deg(g)}.
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In particular, if F is a finite field with q elements (for notation we will denote F by Fq)[1], then

#(F [x]/(g(x))) = qdeg(g).

Next we prove:

Proposition 9.3. F [x]/(g(x)) is a field if and only if g(x) is irreducible.

Proof. (⇒) Suppose g(x) is not irreducible, then g(x) = g1(x)g2(x) for some g1(x), g2(x) ∈ F [x]

with 0 < deg(g1), deg(g2) < deg(g). But then g1(x) · g2(x) = g(x) = 0F . However g1(x), g2(x) 6=
0F by Proposition 9.2. So F [x]/(g(x)) is not a field if g(x) is not irreducible.

(⇐) For any f(x) 6= 0F , we have gcd(f(x), g(x)) = 1F since g(x) is irreducible. So

f(x)q(x) + g(x)r(x) = 1F

for some q(x), r(x) ∈ F [x]. Then modulo g(x) we have f(x) · q(x) = 1F . So f(x) is invertible
with respect to · in F [x]/(g(x)). So every non-zero element of F [x]/(g(x)) is invertible, and
hence F [x]/(g(x)) is a field. �

Comparison between Z and F [x] (omitted in the notes).
Some exercises from Assignments (Assignment 10/05)

Exercise 1. Let f1(x), f2(x), . . . , fn(x) ∈ F [x] be pairwise coprime polynomials, namely there
is no irreducible polynomial dividing both fi(x) and fj(x) for any i 6= j. Prove: if g(x) ∈ F [x]
satisfies fi(x)|g(x) for any i = 1, . . . , n, then f1(x)f2(x) · · · fn(x)|g(x).

Proof. The crucial case is when n = 2. In general one can either imitate this case or do induction
on n. Here we give a proof by induction on n.

(Base Step) P(2): Write f1(x) = c1p1(x)α1 · · · ps(x)αs and f2(x) = c2q1(x)β1 · · · qm(x)βm as the
unique factorizations of f1(x) and f2(x) into monic irreducible polynomials. Since gcd(f1, f2) =
1, we have pi(x) 6= qj(x) for any i and j.

Write g(x) = cr1(x)γ1 · · · rt(x)γt as the unique factorization of g(x) into monic irreducible
polynomials. Since f1(x)|g(x), we know that all the pi(x)’s are irreducible factors of g(x). Up
to reordering the rk(x)’s, we may assume r1(x) = p1(x), . . ., rs(x) = ps(x). But then γi ≥ αi
for any i = 1, . . . , s because f1(x)|g(x).

Since f2(x)|g(x) and pi(x) 6= qj(x) for any i and j, up to reordering the rk(x)’s for k ≥ s+ 1,
we may assume rs+1(x) = q1(x), . . ., rs+m(x) = qm(x). But then γs+j ≥ βj for any j = 1, . . . ,m
because f2(x)|g(x).

Therefore f1(x)f2(x) = c1c2
∏n
i=1 pi(x)αi

∏m
j=1 qj(x)βj divides

∏n+m
k=1 rk(x)γk , which again di-

vides g(x). So f1(x)f2(x)|g(x).
(Induction) Assume P(2), . . . ,P(n− 1) are true. We want to apply the induction hypothesis

to the n − 1 polynomials f1(x), . . . , fn−2(x) and fn−1(x)fn(x). To do this it suffices to prove:
for any i = 1, . . . , n−2, we have gcd(fi, fn−1fn) = 1. This is true: by assumption fi and fn−1fn
have no common irreducible factors for any i = 1, . . . , n− 2. �

Exercise 2. Prove the following generalization of Proposition 7.12: Let F be a field. Let f(x)
and g(x) be polynomials in F [x]. Suppose that g(x) is irreducible and that g′(x) is nonzero. Sup-
pose r is a positive integer such that char(F ) - r. Then g(x)r+1|f(x)⇔ g(x)r|gcd(f(x), f ′(x)).

[1]Next week we shall see that there exists a field with q elements if and only if q = pr for some prime number
p and some integer r ≥ 1. For each such q, there exists essentially only one field with q elements. This is why we
can use Fq to denote the field with q elements.
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Proof. (⇒) f = gr+1h for some h ∈ F [x]. So f ′ = (r + 1)grg′h + gr+1h′. So gr divides both f
and f ′, and hence divides gcd(f, f ′).

(⇐) Since gr|f , we have f = grh for some h ∈ F [x]. Then f ′ = rgr−1g′h+ grh′. Since gr|f ′,
we have gr|f ′ − grh′ = rgr−1g′h. Since char(F ) - r, we have gr|gr−1g′h. So g|g′h. Since g is
irreducible, we have either g|g′ or g|h.

It suffices to prove that g - g′. Suppose g|g′, then g′ = gh0 for some h0 ∈ F [x]. Then
deg(g′) = deg(g) + deg(h0). Since g′ 6= 0F , we have h0 6= 0F . So deg(g′) ≥ deg(g). But we have
g(x) = anx

n + . . . + a0 with an 6= 0F for some n ≥ 1, so deg(g) = n and deg(g′) ≤ n − 1. But
deg(g′) < deg(g). Hence we get a contradiction. �

Exercise 3. Let F be a field. Let f(x) ∈ F [x] non-constant such that gcd(f, f ′) = 1F . Prove
that all roots of f(x) in F are distinct.

Proof. Suppose that the conclusion is not true. Then there exists some a ∈ F such that (x−a)2|f .
Then f(x) = (x − a)2g(x) for some g ∈ F [x]. So f ′ = 2(x − a)g(x) + (x − a)2g′(x). But then
x− a|f ′. So x− a|gcd(f, f ′). This contradicts gcd(f, f ′) = 1F . �

Exercise 4. For any prime number p and positive integer r, show that

f(x0 + pra) ≡ f(x0) + f ′(x0)p
ra (mod pr+1), ∀f(x) ∈ Z[x].

Proof by Method 1. (Case f(x) = amx
m for some m) In this case, f ′(x) = mamx

m−1. So

f(x0 + pra) = am(x0 + pra)m = am(xm0 +mxm−10 pra+
m∑
i=2

(
m

i

)
xm−i0 priai)

≡ am(xm0 +mxm−10 pra) = amx
m
0 +mamx

m−1
0 pra = f(x0) + f ′(x0)p

ra (mod pr+1).

Note that this also works for m = 0 as 0a0x
−1 = 0 by convention (Or you can argue separately

for m = 0 very easily).
(General case) For any f(x) = anx

n + . . . + a0, we have f ′(x) = nanx
n−1 + . . . + a1. Now

apply the previous case to each amx
m for m ∈ {0, . . . , n} and do the sum, we get the desired

conclusion. �

Proof by Method 2. Let n = deg(f). Since Z ⊂ R, we can use Taylor expansion for functions of
real numbers.

f(x0 + pra) = f(x0) + f ′(x0)p
ra+

n∑
i=2

f (i)(x0)

i!
(pra)i

The right hand side is a finite sum since f (i) = 0 for any i > n = deg(f). It suffices to prove

pr+1|f
(i)(x0)pri

i! for any i ≥ 2, or equivalently to prove p|f
(i)(x0)pr(i−1)

i! .
This is NOT trivial as there is a denominator i!. Say for i = 2, we want to prove that

p|f
′′(x0)pr

2 . First of all, for this divisibility to make sense, we need to show that f ′′(x0)pr

2 is an

integer. Second for r = 1, what we want is p|f
′′(x0)p
2 , or equivalently 2|f ′′(x0). So there is really

some non-trivial work to do.
In the end the proof looks very much like Method 1: we need to use the fact that f is a

polynomial. For f(x) = anx
n + . . .+ a0, we can compute

f (i)(x) =
n∑

m=i

amm(m− 1) · · · (m− i+ 1)xi−m.
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So
f (i)(x0)

i!
=

n∑
m=i

am

(
m

i

)
xi−m0

is an integer. Hence p|f
(i)(x0)
i! pr(i−1) for any i ≥ 2. �
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10. Classification of Finite Fields

10.1. Some preparation on abelian groups. Let (G, ·; e) be an abelian group.

Definition 10.1. For any element a ∈ G, the order of a, denoted by ord(a), is defined to be the
smallest positive integer d such that ad = e. If such a d does not exist we say that a has order
+∞.

Lemma 10.2. Suppose m 6= 0 is an integer. Then the order of am is ord(a)/gcd(m, ord(a)) if
ord(a) < +∞ and is +∞ if ord(a) = +∞.

Lemma 10.3. Let G be a finite group such that #G = n. Then the order of any element a ∈ G
divides n.

These two lemmas will be your homework today.
As an application, we prove the following proposition on numbers.

Proposition 10.4. Let n be a positive integer. Then n =
∑

d|n, d>0 φ(d).

Proof. Consider the abelian group (Z/nZ,+; [0]).
For any positive divisor d of n, the equation dx = [0] has exactly d solutions, namely [ndy] for

y = 0, . . . , d−1. These are all the elements of Z/nZ of order dividing d, and Lemma 10.2 implies
that there are exactly φ(d) among them of order d (namely those y such that gcd(y, d) = 1).

By Lemma 10.3, every element of Z/nZ has order dividing n. So the number of elements
of Z/nZ is the sum of the number of elements of order d for each d|n, d > 0. In other words
#(Z/nZ) =

∑
d|n, d>0 #{a ∈ Z/nZ : ord(a) = d}.

Combine the last two paragraphs and we can conclude. �

10.2. Basic properties of a finite field F . Let (F,+, ·; 0F , 1F ) be a field. Recall the definition
of the characteristic of F : we say that char(F ) = n if n is the smallest positive integer such that
n1F = 0F . If such an integer does not exist, we say that char(F ) = 0.

Denote by ϕ : Z→ F , n 7→ n · 1F .
Recall that for any field F , either char(F ) = 0 or char(F ) = p is a prime number. If

char(F ) = 0, then F has infinitely many elements because the map ϕ is injective (and hence
induces an injective map Q→ F , m/n 7→ (m · 1F )(n · 1F )−1). If char(F ) = p, then ϕ induces an
injection Fp = Z/pZ→ F , [n] 7→ n · 1F . In other words, Fp is the smallest field of characteristic
p, and every field with p elements is isomorphic to Fp.

Theorem 10.5. Suppose F has q elements. Then q is a power of p where the prime number
p = char(F ).

Proof. Since F is a finite field, its characteristic is a prime number p. So p · a = 0F for any
a ∈ F .

We will construct an ascending chain of subsets of F which are closed under addition and
negation

V1 ⊂ V2 ⊂ . . . ⊂ Vi ⊂ . . .
such that #Vi = pi. Since F has only finitely many elements, there exists some r ≥ 1 such that
#F < pr+1. But then we must have F = Vr and hence #F = pr (and the chain stops at Vr).
We are done.

Let us construct the chain by induction.
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Let a1 be a non-zero element of F . Define V1 := {n1 · a1 : n1 ∈ Z}. Then V1 is clearly
closed under addition and negation. We prove that #V1 = p: For any two numbers m1,m

′
1 ∈

{0, . . . , p − 1}, if m1 · a1 = m′1 · a1, then (m1 −m′1)a1 = 0F and hence ((m1 −m′1)1F )a1 = 0F .
Since a1 6= 0F , we have (m1 −m′1)1F = 0F . So p|m1 −m′1. But −(p − 1) ≤ m1 −m′1 ≤ p − 1,
so m1 = m′1. Thus #V1 = p.

Assume V1, . . . , Vi−1 are constructed (i ≥ 2). If F = Vi−1, then we are done. Otherwise let
ai ∈ F \Vi−1. Let Vi = {v+niai : v ∈ Vi−1, ni ∈ Z}. Then Vi is clearly closed under addition and
negation.We prove that #Vi = pi: For any v, v′ ∈ Vi−1 and any numbers mi,m

′
i ∈ {0, . . . , p−1},

if v+miai = v′+m′iai, then (mi−m′i)ai = v′− v ∈ Vi−1. Since −(p− 1) ≤ mi−m′i ≤ p− 1, we
have either mi = m′i or gcd(mi −m′i, p) = 1. In the latter case, we have s(mi −m′i) + tp = 1 for
some s, t ∈ Z. But then ai = s(mi −m′i)ai + tpai = s(mi −m′i)ai ∈ Vi1 , contradicts ai 6∈ Vi−1.
Thus mi = m′i and hence v = v′. Therefore #Vi = (#Vi−1)p = pi. �

Theorem 10.6. Suppose F has q elements. Then (F×, ·; 1F ) is isomorphic to (Z/(q−1)Z,+; [0])
as abelian groups, namely there exists a bijective map ψ : F× → Z/(q−1)Z such that ψ(1F ) = [0]
and ψ(ab) = ψ(a) + ψ(b) for any a, b ∈ F×.

Proof. For simplicity we write n for q− 1. Then F× is an abelian group with n elements. So by
Ex 2 of Assignment 09/21, we have an = 1F for any a ∈ F×. In other words, every element of
F× is a root of the polynomial xn − 1F ∈ F [x].

For any element a ∈ F×, define a map

ψa : Z/nZ→ F×, [m] 7→ am.

Check that this map is well-defined and is a group homomorphism (namely ψa([0]) = 1F and
ψa([m] + [m′]) = ψa([m])ψ([m′]) for any [m], [m′] ∈ Z/nZ). Then it suffices to prove that ψa is
bijective for some a ∈ F×, or equivalently to prove that ord(a) = n for some a ∈ F×.

Since F× is an abelian group with n elements, we have ord(a)|n for any a ∈ F× by Lemma 10.3.
Suppose d|n and d > 0. We will prove

(10.1) F× contains at most φ(d) elements of order d.

The polynomial xd − 1F has degree d and hence at most d roots in F . In other words, there
are at most d elements whose order divides d.

Now if a satisfies ord(a) = d, then 1F = a0, a, a2, . . . , ad−1 all satisfy xd − 1F = 0F . Hence
we have found d elements of F× whose order divides d. Thus the set of elements of F× whose
order divides d is exactly {1F , a, a2, . . . , ad−1}.[2]

Any element in the set {1F , a, a2, . . . , ad−1} whose order is exactly d is of the form am for
some m ∈ {0, 1, . . . , d − 1} such that gcd(m, d) = 1. This follows from Lemma 10.2. There are
φ(d) such integers. Hence we have proven (10.1).

Thus the total number of elements in F× whose order is smaller than n is at most
∑

d|n,1≤d<n φ(d).

So the number of elements in F× of order n is n −
∑

d|n,1≤d<n φ(d), which equals φ(n) > 0 by

Proposition 10.4. Hence we are done. �

[2] Attention This is different from the proof of Proposition 10.4: in the current proof, such an element a may

NOT exist a priori, so that F× may NOT have any element of order dividing d. It is part of the proof to establish
the existence of such an a.
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11. Classification of Finite Fields (Continued)

11.1. Algebraically closed field.

Definition 11.1. A field (F,+, ·; 0F , 1F ) is said to be algebraically closed if every non-
constant polynomial in F [x] has at least one root in F .

The field Q is not algebraically closed since the polynomial x2−2 has no roots in Q. The field
R is not algebraically closed since the polynomial x2 + 1 has no roots in R. The Fundamental
Theorem of Algebra states that C is algebraically closed.

On the other hand, F3 is not algebraically closed since the polynomial x2 − 2 has no roots in
F3. In fact, no finite field is algebraically closed: suppose F is a finite field with q elements, then
(F×, ·; 1F ) is an abelian group with q− 1 elements, so xq−x = 0F for any x ∈ F , and hence the
polynomial xq − x+ 1F has no roots in F .

Theorem 11.2. For any field F , there exists an algebraically closed field F which contains F
as a subfield.

Such an F is not unique. The proof of this theorem uses foundational assumption in logic
theory. The basic idea is to add all roots of all polynomials in F [x] and so on. We will not
present it here. But we make the following observation: 0F ∈ F ⊂ F is the unit for addition on
F and 1F ∈ F ⊂ F is the unit for multiplication on F . So we can use (F ,+, ·; 0F , 1F ) to denote
this algebraically closed field (no need to introduce the notation 0F and 1F ).

Theorem 11.3. Let F be an algebraically closed field. Let f ∈ F [x] be a polynomial of degree
d ≥ 0. Then f has exactly d roots in F counted with multiplicity. Namely

(1) f(x) = c(x− x1) . . . (x− xd) for some elements c, x1, . . . , xd ∈ F ;
(2) if f(x) = c(x− x1) . . . (x− xd) = c′(x− x′1) . . . (x− x′d), then c = c′ and {x1, . . . , xd} =
{x′1, . . . , x′d} as multi-sets.

Proof. (1) Induction of d.
(base step) P(0) and P(1) are clearly true.
(induction step) Assume P(1), . . . ,P(d − 1) are true. By definition of algebraically

closed field, f has a root xd ∈ F . So x− xd|f . So f = (x− xd)g for some g ∈ F [x]. So
d = deg(f) = 1 + deg(g). But then P(d− 1)⇒ g(x) = c(x− x1) . . . (x− xd−1) for some
c, x1, . . . , xd−1 ∈ F . Hence we are done.

(2) This follows directly from UFT since any degree 1 polynomial is irreducible.
�

This theorem completes Proposition 6.8. Moreover in view of Theorem 11.2, it implies Propo-
sition 6.8 immediately.

Before going on, let us state the following result which is an immediate corollary of Theo-
rem 11.3 (or even of Proposition 6.8).

Corollary 11.4. Let F be a field. If f, g ∈ F [x] of the same degree d satisfy that f(a) = g(a)
for at least d+ 1 elements a ∈ F , then f = g.

This tells us when we can decide whether two polynomials are equal by testing the evaluations.
In particular if F is infinite (for example when char(F ) = 0 or F is algebraically closed), then
two polynomials are equal if they have the same evaluations on every element of F .
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11.2. The field Fq. Let p be a prime number. We fix an algebraic closed field Fp which contains
Fp as a subfield. For simplicity, we will omit the “[]” for [0] and [1]. So we have a field inclusion

(Fp,+, ·; 0, 1) ⊂ (Fp,+, ·; 0, 1).
Last time we have seen that the cardinality of any finite field of characteristic p is pr for some

integer r ≥ 1. Conversely, let q = pr. The polynomial g(x) = xq − x then has q roots in Fp by
Theorem 11.3. Since g′(x) = qxq−1 − 1 = −1 is coprime to g(x), we see that all the q roots of
g(x) are distinct by Proposition 7.12 (i.e. no roots with multiplicity at least 2). Let Fq denote
the set of all the roots of g(x). This is a set with q elements. Then Fp ⊂ Fq as sets by Fermat’s
Little Theorem.

It is easy to check that Fq is closed under negation, multiplication and inverse. Checking that
Fq is closed under addition needs some extra work. We need to use Ex 3 of Assignment 10/17

((a + b)q = aq + bq for any a, b ∈ Fp). Hence we obtain a field (Fq,+, ·; 0, 1) and the following
field inclusions

(Fp,+, ·; 0, 1) ⊂ (Fq,+, ·; 0, 1) ⊂ (Fp,+, ·; 0, 1).

This proves the following theorem.

Theorem 11.5. For any q = pr for some prime number p and some integer r ≥ 1, there exists
a field with q elements.

Useful Fact For any x ∈ Fp, we have x ∈ Fq ⇔ xq = x.

In fact, we have a much stronger uniqueness result, which is a particular property of finite
fields.

Theorem 11.6. Let q = pr for some prime number p and some integer r ≥ 1. Then every field
F with q elements is isomorphic to Fq.

Proof. Recall that by Theorem 10.6, as an abelian group we have an isomorphism ϕ : (F×, ·; 1F )
∼−→

(Z/(q − 1)Z,+; [0]). Let a = ϕ−1([1]), then ord(a) = q − 1. So F× = {1, a, ..., aq−1}.
For any positive integer 1 ≤ i ≤ q − 1, let Vi = {

∑i−1
j=0 nja

j : 0 ≤ nj ≤ p − 1}. Then
V1 ⊂ V2 ⊂ ... ⊂ Vq−1, and F = Vq−1. Moreover,

• #Vi ≤ pi, with “=” if and only if ai−1 6∈ Vi−1.
• If ai−1 ∈ Vi−1, then Vi−1 = Vi = ... = Vq−1 = F .

But #Vr+1 ≤ #F = pr < pr+1, so ar ∈ Vr. In other words, there exist c0, ..., cr−1 ∈ Fp such
that

c0 + ...+ cr−1a
r−1 + ar = 0.

Let g(x) = c0 + ...+ cr−1x
r−1 + xr ∈ Fp[x]. Then deg(g) = r.

We prove that F = Vr. It suffices to prove #Vr = pr. Suppose not, then ar−1 ∈ Vr−1, and so
Vr−1 = Vr = ... = Vq−1 = F . But #Vr−1 ≤ pr−1 and #F = pr, contradiction!

Now we are ready to define the map (identify F = Vr)

ψ : F → Fp[x]/(g(x)),
r−1∑
i=0

nia
i 7→

r−1∑
i=0

nixi.

It is not hard to check that this map is a ring homomorphism and is surjective. Hence ψ is also
injective because #F = #(Fp[x]/(g(x))) = pr. So ψ is a ring isomorphism. But F is a field, so
Fp[x]/(g(x)) is also a field. So g(x) is irreducible.
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To sum it up, we have a field isomorphism ψ : F → Fp[x]/(g(x)) where g(x) ∈ Fp[x] is an
irreducible polynomial.

Next we prove that there exists an injective ring homomorphism

ι : Fp[x]/(g(x))→ Fp.

Let α be a root of g(x) in Fp and define ι to be the map sending each polynomial h(x) to h(α).
Then ι is well-defined as g(α) = 0. This map ι is injective: let h(x) a monic polynomial in Fp[x]
of minimal degree such that h(α) = 0, then g(x) = h(x)q(x) + r(x) where deg(r) < deg(h),
and so 0 = g(α) = h(α)q(α) + r(α) = r(α). But then r(x) is a polynomial such that r(α) = 0
and deg(r) < deg(h), contradicting the minimality of deg(h) unless r(x) = 0. So r(x) = 0 and
so h(x)|g(x). But g(x) is irreducible, so either h(x) = 1 or h(x) = g(x). But h(α) = 0, so

h(x) = g(x) and hence h(x) = 0.
Therefore we have proven that there exists an injective field homomorphism ι ◦ ψ : F → Fp.

It suffices to prove that ι ◦ ψ(F ) = Fq. But ι ◦ ψ(F ) is a subfield of Fp having q elements, so it

suffices to prove that Fq is the unique subfield of Fp with q elements. This is true: every element
of a field with q elements satisfies xq = x and Fq is the set of all the roots of xq − x. �

11.3. Summary. Let us make a summary of the results concerning the classification of finite
fields with we have obtained so far. See Theorem 10.5, Theorem 11.5 and Theorem 11.6.

(1) Any finite field has characteristic p for a prime number p.
(2) The cardinality of any finite field F is pr for p = char(F ) and some integer r ≥ 1.
(3) (existence) For any q = pr for some prime number p and some integer r ≥ 1, there exists

a finite field F with q elements.
(4) (uniqueness) Moreover any two finite fields with q elements are isomorphic to each other.
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12. Solutions to Assignment 10/10 and 10/12

Exercise 1. For any non-constant polynomial f(x) ∈ Q[x] with f(x) = cp1(x)α1 · · · pn(x)αn

as the factorization into monic irreducible polynomials as above, prove deg(f)− deg(rad(f)) ≤
deg(gcd(f(x), f ′(x))). (Hint: prove p1(x)α1−1 · · · pn(x)αn−1|gcd(f(x), f ′(x)).)

Proof. (Because pi(x) are irreducible polynomials, they are non-constant by definition. So p′i(x)

is nonzero for any i = 1, . . . , n because pi(x) ∈ Q[x] (Q is of characteristic 0!).)[3] By the “only if”

part of Proposition 7.12 and its generalization (i.e. Exercise 2 of Assignment 10/05)[4], we have
pi(x)αi−1|gcd(f(x), f ′(x)). But the pi(x)’s are pairwise coprime because they are all irreducible.
So By Exercise 1 of Assignment 10/05, we have p1(x)α1−1 · · · pn(x)αn−1|gcd(f(x), f ′(x)). But
then

deg(f)− deg(rad(f)) =
n∑
i=1

αideg(pi)−
n∑
i=1

deg(pi)

=
n∑
i=1

(αi − 1)deg(pi)

=
n∑
i=1

deg(pi(x)αi−1)

= deg(p1(x)α1−1 · · · pn(x)αn−1)

≤ deg(gcd(f(x), f ′(x))) since gcd(f(x), f ′(x)) 6= 0.

Another proof: if we compute f ′(x) directly, then we see that
∏n
i=1 pi(x)αi−1 divides every

term in the sum, so
∏n
i=1 pi(x)αi−1|f ′(x). So

∏n
i=1 pi(x)αi−1|gcd(f, f ′). But f(x) is non-constant,

so gcd(f, f ′) 6= 0. So

deg(f)− deg(rad(f)) = deg(
f(x)

rad(f)
) = c

n∏
i=1

pi(x)αi−1 ≤ deg(gcd(f, f ′)).

�

Exercise 2. (Mason’s Theorem). Let f(x), g(x) and h(x) be non-constant polynomials in Q[x]
such that no irreducible polynomial divides all three of them. Suppose f(x) + g(x) = h(x). We
prove the following inequality:

max{deg(f),deg(g), deg(h)} ≤ deg(rad(f(x)g(x)h(x)))− 1.

(1) Prove that f , g and h are pairwise coprime. Deduce from this that gcd(f, f ′), gcd(g, g′)
and gcd(h, h′) are pairwise coprime.

(2) Prove: f ′(x)g(x)− g′(x)f(x) = f ′(x)h(x)− h′(x)f(x). Deduce from this that gcd(f, f ′),
gcd(g, g′) and gcd(h, h′) all divide f ′(x)g(x)− g′(x)f(x).

(3) Prove: gcd(f, f ′)gcd(g, g′)gcd(h, h′)|f ′(x)g(x)− g′(x)f(x).

[3]This is not necessary by the next footnote.
[4]The statement is the following: Let F be a field. Let f(x) and g(x) be polynomials in F [x]. Suppose that

g(x) is irreducible and that g′(x) is nonzero. Suppose r is a positive integer such that char(F ) - r. Then g(x)r+1

divides f(x) if and only if g(x)r divides gcd(f(x), f ′(x)). But the “only if” part does NOT need g′(x) 6= 0F or
char(F ) - r.
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(4) Prove the following inequalities:

deg(f) + deg(g) + deg(h)− deg(rad(f))− deg(rad(g))− deg(rad(h))

≤deg(f ′(x)g(x)− g′(x)f(x))

≤deg(f) + deg(g)− 1.

(5) Prove:

deg(h)

≤deg(rad(f)) + deg(rad(g)) + deg(rad(h))− 1

=deg(rad(f)rad(g)rad(h))− 1

=deg(rad(fgh))− 1.

(6) Conclude by rewriting the equation f + g = h as f + (−h) = −g (so that “g(x)” becomes
“−h(x)” and “h(x)” becomes “−g(x)”) and g + (−h) = −f . Your argument for this
question should not exceed four lines.

Proof. (1) Suppose not. Say r(x) is an irreducible polynomial dividing two of f(x), g(x), h(x).
Then since f(x) + g(x) = h(x), we have that r(x) divides the third one. Hence r(x)
divides all three of them. This is a contradiction to our hypothesis.

Now f(x), g(x), h(x) are pairwise coprime, so they have different irreducible factors.
So do gcd(f, f ′), gcd(g, g′) and gcd(h, h′). Hence gcd(f, f ′), gcd(g, g′) and gcd(h, h′) are
also pairwise coprime.

(2) f ′h− fh′ = f ′(f + g)− f(f + g)′ = f ′(f + g)− f(f ′ + g′) = f ′g − fg′.
It is clear that gcd(f, f ′)|f ′g − fg′ and gcd(g, g′)|f ′g − fg′. On the other hand,

gcd(h, h′)|f ′h− fh′ = f ′g − fg′.
(3) This follows directly from (1), (2) and Exercise 1 of Assignment 10/05.
(4) Apply Exercise 1 to f(x), g(x) and h(x) respectively, we have

deg(f)− deg(rad(f)) + deg(g)− deg(rad(g)) + deg(h)− deg(rad(h))

≤deg(gcd(f, f ′)) + deg(gcd(g, g′)) + deg(gcd(h, h′))

=deg(gcd(f, f ′)gcd(g, g′)gcd(h, h′))

If f ′g−fg′ 6= 0, then by (3) we have deg(gcd(f, f ′)gcd(g, g′)gcd(h, h′)) ≤ deg(f ′g−fg′).
Now by definition of formal derivative, we have deg(f ′) ≤ deg(f) − 1 and deg(g′) ≤
deg(g)−1 since f and g are non-constant. So deg(f ′g−fg′) ≤ max{deg(f ′g), deg(fg′)} ≤
deg(f) + deg(g)− 1.

Thus we are left to prove f ′g − fg′ 6= 0. Let p(x)α be an irreducible factor of f(x)
with maximal power, meaning p(x)α|f(x) but p(x)α+1 - f(x). So f(x) = p(x)αf0(x)
for some f0(x) ∈ Q[x] with p(x) - f0(x). So f ′(x) = αp(x)α−1f0(x) + p(x)αf ′0(x). Now
p(x)α - αp(x)α−1f0(x) since p(x) - f0(x) and αp(x)α−1f0(x) 6= 0 (f(x) is non-constant
and characteristic 0!), so p(x)α - f ′(x). So we have p(x)α|fg′ and p(x)α - f ′g since f and
g are coprime. So f ′g − fg′ 6= 0.

(5) By (4), we have

deg(h) ≤ deg(rad(f)) + deg(rad(g)) + deg(rad(h))− 1 = deg(rad(f)rad(g)rad(h))− 1.
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But f , g and h are pairwise coprime, so they have different irreducible factors. So by
definition of radical, we have rad(f)rad(g)rad(h) = rad(fgh). Hence we are done.

(6) By assumption, f+(−h) = −g, and f , −h, −g are non-constant such that no irreducible
polynomial divides all three of them. Apply the conclusion of (5) to f , −h and −g, we
have deg(g) = deg(−g) ≤ deg(rad(f)rad(g)rad(h)) − 1. Similarly from g + (−h) = −f
we obtain deg(f) = deg(−f) ≤ deg(rad(f)rad(g)rad(h))− 1. Hence we are done.

�

Exercise 3. Formulate the analogous statement of Mason’s Theorem, namely Exercise 3, for Z
(i.e. replace Q[x] by Z). This statement is called the abc conjecture. (Hint: start by defining
the radical for any integer). You only need to write down this statement and no explanation or
proof is required. After you finish all the other exercises including those below, you can try to
prove the abc conjecture.

Proof. Let a, b and c be positive integers such that a + b = c and no prime number divides all
three of them. Then c < rad(abc).[5] Here rad(

∏r
i=1 p

αi
i ) =

∏r
i=1 pi for any prime numbers pi

and integers αi ≥ 1. �

Exercise 4. The goal of this exercise is to prove the following result (known as Fermat’s Last
Theorem for Q[x]): Let n ≥ 3 be an integer. Then there are no non-constant polynomials f(x),
g(x) and h(x) in Q[x] such that there is no irreducible polynomial dividing all three of them and
they satisfy

f(x)n + g(x)n = h(x)n.

(Hint: apply Mason’s Theorem, namely Exercise 2, to f(x)n, g(x)n and h(x)n).

Proof. Suppose such f(x), g(x), h(x) exist. Apply Mason’s Theorem to f(x)n, g(x)n and h(x)n,
we have

nmax{deg(f), deg(g), deg(h)} ≤ deg(rad(fngnhn))− 1 = deg(rad(fgh))− 1.

But deg(rad(fgh)) ≤ deg(fgh) = deg(f) + deg(g) + deg(h), so

3 max{deg(f),deg(g),deg(h)}
≤nmax{deg(f), deg(g), deg(h)}
≤deg(f) + deg(g) + deg(h)− 1

≤3 max{deg(f),deg(g),deg(h)} − 1.

But this cannot happen. So we get a contradiction and we are done. �

Exercise 5. Formulate the analogue of Fermet’s Last Theorem for Q[x], namely Exercise 5, for
Z (i.e. replace Q[x] by Z). This statement is called Fermat’s Last Theorem. You only need to
write down this statement and no explanation or proof is required.

A bonus will be given if you use the abc conjecture, namely the statement that you formulated
in Exercise 3, to prove Fermat’s Last Theorem for Z.

[5]In fact we need to include a calibration factor for this inequality. But for the purpose of this course (compare
Z and F [x]), this is good enough. The correct conclusion of the abc conjecture should be: For any ε > 0, there
exists a real number Kε > 0 such that c < Kεrad(abc)1+ε.
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Proof. For any integer n ≥ 3, there are no positive integers a, b, c such that no prime number
divides all three of them and

an + bn = cn.

Apply the abc conjecture to an, bn and cn (the formulation in Exercise 3):

cn < rad(anbncn) = rad(abc) ≤ abc ≤ c3.
This contradicts n ≥ 3. �

Exercise 6. Briefly explain why our statements for Mason’s Theorem and Fermat’s Last The-
orem for Q[x] are wrong when Q[x] is replaced by Fp[x]. You can do this either by pointing out
which step of your proof does not work for Fp[x] or by giving a counterexample. A bonus will be
given if you can furthermore correct the statements for Fp[x] (no need to prove this correction).

Proof. This is because of the last paragraph of the proof of Step (4): the fact that f(x) ∈ Fp[x]
is non-constant does NOT imply f ′(x) 6= 0. So it may happen that f ′g− fg′ = 0 (in which case
both f ′ and g′ must be zero).

To correct the statement, simply replace “f(x), g(x), h(x) are non-constant” by “f ′(x) 6= 0,
g′(x) 6= 0 and h′(x) 6= 0”. �
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13. Quadratic Reciprocity

We start our topic on solving Diophantine equations now. The first non-trivial question we
ask is: what integers can be represented as a sum of two squares? In other words, we are looking
for the integer solutions to z = x2 + y2.

From the Unique Factorization Theorem, it is helpful to know what prime factors can a sum
of two square have. That is, we want to ask when the equation

x2 + y2 ≡ 0 (mod p)

has a solution.
There is an obvious solution, namely x, y ≡ 0 (mod p). We call this the trivial solution. Note

that in this case, x2 + y2 will be divisible not just by p, but also by p2. Suppose now we have a
non-trivial solution. Then neither x nor y can be congruent to 0 modulo p. Dividing by x2 then
implies that −1 is a square in Fp.

13.1. Quadratic residue v.s. nonresidue.

Definition 13.1. Let m be a positive integer and let a be an integer. Then a is quadratic
residue modulo m if the equation x2 ≡ a (mod m) has a solution. Otherwise, a is called a
quadratic nonresidue.

Our question now becomes: when is −1 a quadratic residue modulo p? Since every element
of F2 is a square, we may assume p > 2 is odd. Suppose −1 is a quadratic residue modulo p,
then there exists a ∈ Fp such that a2 = −1 in Fp. Clearly, a is nonzero and so Fermat’s Little
Theorem implies ap−1 ≡ 1 (mod p). On the other hand, since p is odd, p − 1 is divisible by 2
and we have

ap−1 = (a2)
p−1
2 ≡ (−1)

p−1
2 (mod p).

Hence we conclude that p−1
2 is even and hence p ≡ 1 (mod 4).

Conversely, suppose p ≡ 1 (mod 4). Let α ∈ F×p be a primitive (p − 1)-th root of unity (it

exists by Theorem 10.6). Then there exists an integer m such that αm = −1. Since (−1)
p−1
2 = 1,

we see that α
m(p−1)

2 = 1 and hence m(p−1)
2 is divisible by p − 1. This implies that m is even.

Taking a = α
m
2 then gives a solution to x2 = −1 in Fp.

This proves the following criterion.

Proposition 13.2. −1 is a square modulo p if and only if p = 2 or p ≡ 1 (mod 4).

In fact the above argument generalizes to give a proof of the following result:

Proposition 13.3. Let p > 2 be a prime number. Then an integer a is a quadratic residue

modulo p if and only if a
p−1
2 = 1 in Fp. Equivalently, an integer a is a quadratic nonresidue

modulo p if and only if a
p−1
2 = −1 in Fp.

Definition 13.4. Let p be a prime number and let a be an integer. The Legendre symbol is
defined to be (

a

p

)
=


1 if p - a and a is a quadratic residue modulo p

0 if p|a
−1 if a is not a quadratic residue modulo p

.
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In other words, (
a

p

)
=


1 if [a] 6= [0] is a square in Fp
0 if [a] = [0] in Fp
−1 if [a] is not a square in Fp

.

Note that by Proposition 13.3, we have(
a

p

)
≡ a

p−1
2 (mod p)

for any prime number p > 2. This shows that the Legendre symbol is multiplicative, namely

(13.1)

(
ab

p

)
=

(
a

p

)(
b

p

)
.

Now suppose we want to compute
(
n
p

)
for an integer n ∈ Z and a prime number p. The Unique

Factorization Theorem tells us that n = sgn(n)pα1
1 · · · pαrr for some prime numbers p1, . . . , pr and

positive integers α1, . . . , αr. Then we have(
n

p

)
=

(
sgn(n)

p

) r∏
i=1

(
pi
p

)αi
.

Thus all we need to do is to compute
(−1
p

)
,
(
2
p

)
and

(
l
p

)
for any odd prime number l.

We have discussed
(−1
p

)
in Proposition 13.2. Now let us compute

(
2
p

)
. Again we may assume

p > 2. Unlike previously, we do not have an information on whether 2
p−1
2 is 1 modulo p. The

new idea is to try finding a square root of 2 in Fp and check to see whether it is in Fp. Recall

that Fp is precisely the set of elements of Fp that satisfies xp = x. Finally using the fact that

(a+ b)p = ap + bp in Fp will allow us to simplify the computation.

Proposition 13.5. 2 is a quadratic residue modulo p if and only if p = 2 or p ≡ ±1 (mod 8).

Proof. 2 is certainly a quadratic residue modulo 2. From now on we assume p > 2.
Since p 6= 2, there exists a primitive 8-th root of unity α in Fp by Exercise 2 of Assignment

10/19.
Consider x0 = α+ α−1 ∈ Fp. Then

(13.2) x20 = α2 + α−2 + 2 = α−2(1 + α4) + 2.

But α is primitive 8-th root of unity, so α8 = 1 but α4 6= 1. From α8 = 1, we get (1+α4)(1−α4) =
0. But 1 − α4 6= 0, so 1 + α4 = 0. Hence x20 = 2 by (13.2). Therefore x0 and −x0 are roots
of the polynomial x2 − 2 ∈ Fp[x]. But deg(x2 − 2) = 2, so x2 − 2 has 2 roots in Fp. Thus the
polynomial x2 − 2 has a root in Fp if and only if x0 ∈ Fp. In other words, we have proven

Claim 2 is a quadratic residue modulo p if and only if x0 ∈ Fp.
On the other hand xp0 = (α + α−1)p = αp + α−p. Since α8 = 1 and α4 = −1 (we proved this

in last paragraph), we have xp0 = x0 if p ≡ ±1 (mod 8) and xp0 = −x0 if p ≡ ±3 (mod 8).

Recall Fp = {x ∈ Fp : xp = x}. Since p > 2, we have x0 6= −x0 in Fp. So by the previous
paragraph, we have x0 ∈ Fp ⇔ p ≡ ±1 (mod 8). Now combined with the claim above, we can
conclude. �
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Before going on, let us point out the two important steps in this proof (l = 2 in the rest of
the paragraph): (1) find a square root, say x0, of l or −l in Fp (the upshot is that x0 ∈ Fp if
and only if l (or −l) is a quadratic residue modulo p) such that xp0 is easy to compute; (2) see

whether x0 is in Fp by using the fact Fp = {x ∈ Fp : xp = x}.

13.2. Law of Quadratic Reciprocity. One of Gauß’s most amazing contribution to mathe-
matics is his law of quadratic reciprocity.

Theorem 13.6. Suppose p and l are two distinct odd prime numbers. Then(
p

l

)(
l

p

)
= (−1)

p−1
2

l−1
2 .

In particular, (
p

l

)
= −

(
l

p

)
if p, l ≡ 3 (mod 4);(

p

l

)
=

(
l

p

)
otherwise.

For example if we want to compute
(
11
29

)
, then we can do(

11

29

)
=

(
29

11

)
=

(
7

11

)
= −

(
11

7

)
= −

(
4

7

)
= −1.

The proof of Theorem 13.6 follows the same framework as underlined in the last paragraph of
the previous subsection. What gets (much) more complicated is the computation.
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14. Quadratic Reciprocity (continued)

Today we prove Gauß’s law of quadratic reciprocity, namely Theorem 13.6.
Recall that when computing

(
2
p

)
in Proposition 13.5, the two important steps are (with l = 2):

(1) find a square root, say x0, of l or −l in Fp (the upshot is that x0 ∈ Fp if and only if l (or
−l) is a quadratic residue modulo p) such that xp0 is easy to compute; (2) see whether x0 is in

Fp by using the fact Fp = {x ∈ Fp : xp = x}.
The proof of Theorem 13.6 follows the same framework. What gets (much) more complicated

is the computation.

Proof of Theorem 13.6. Step 1 Find a square root, say x0, of l or −l in Fp such that xp0 is easy
to compute.

Let α be a primitive l-th root of unity in Fp, namely in the group F×p we have ord(α) = l. See
Exercise 2 of Assignment 10/19 for the existence of such an α.

For any congruence class [m] ∈ Fl, define α[m] to be αm ∈ Fp. Note that α[m] is well-defined:

if [m] = [m′] in Fl = Z/lZ, then αm = αm
′

since αl = 1.
From now on we will simplify the notation (drop the “[]”) for elements of Fl. Consider the

Gauß sum

x0 =
∑
m∈Fl

(
m

l

)
αm ∈ Fp.

We claim that

(14.1) x20 =

(
−1

l

)
l.

Indeed, squaring x0 gives

x20 =
∑
m∈Fl

∑
n∈Fl

(
mn

l

)
αm+n

=
∑
m∈Fl

∑
t∈Fl

(
m(t−m)

l

)
αt

where we made a change of variable, setting t equal to m + n. When m = 0, the Legendre

symbol
(m(t−m)

l

)
is 0. When m 6= 0, we have(

m(t−m)

l

)
=

(
−m2(1− tm−1)

l

)
=

(
−1

l

)(
m2

l

)(
1− tm−1

l

)
=

(
−1

l

)(
1− tm−1

l

)
.

Combing with equality above gives

x20 =
∑
m∈F×l

∑
t∈Fl

(
−1

l

)(
1− tm−1

l

)
αt

=

(
−1

l

)∑
t∈Fl

 ∑
m∈F×l

(
1− tm−1

l

)αt.(14.2)
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When t = 0, we have ∑
m∈F×l

(
1− tm−1

l

)
=
∑
m∈F×l

(
1

l

)
=
∑
m∈F×l

1 = l − 1.

When t 6= 0, we see that as m runs over every element of F×l , 1− tm−1 runs over every element
of Fl \ {1}. Hence∑

m∈F×l

(
1− tm−1

l

)
=
∑
s∈Fl

(
s

l

)
−
(

1

l

)
=
∑
s∈F×l

(
s

l

)
+

(
0

l

)
−
(

1

l

)
=
∑
s∈F×l

(
s

l

)
− 1.

In Exercise 1 of Assignment 10/24, we have proven that half of the elements of F×l are squares

in Fl = Z/lZ and half of the elements of F×l are not squares in Fl = Z/lZ. Hence
(
s
l

)
equals 1

for half of s ∈ F×l and equals −1 for half of s ∈ F×l . Hence
∑

s∈F×l

(
s
l

)
= 0. Therefore we have∑

m∈F×l

(
1− tm−1

l

)
= −1

for any t 6= 0. Hence we get by (14.2)

x20 =

(
−1

l

)l − 1 +
∑
t∈F×l

(−αt)


=

(
−1

l

)(
l − 1−

l−1∑
t=1

αt

)

=

(
−1

l

)
(l − 1− α(1− αl−1)

1− α
)

=

(
−1

l

)
(l − 1− α− αl

1− α
)

=

(
−1

l

)
(l − 1− α− 1

1− α
)

=

(
−1

l

)
l,

which is precisely what we desire (14.1).
Let us see the upshot of Step 1. Now x0 and −x0 are roots of the polynomial x2−

(−1
l

)
l ∈ Fp[x].

But deg(x2 −
(−1
l

)
l) = 2, so x2 −

(−1
l

)
l has 2 roots in Fp. Thus the polynomial x2 −

(−1
l

)
l has a

root in Fp if and only if x0 ∈ Fp. Hence we have(
−1

l

)
l is a quadratic residue modulo p if and only if x0 ∈ Fp.

Since gcd(l, p) = 1, the sentence above becomes((−1
l

)
l

p

)
= 1⇔ x0 ∈ Fp.
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By Proposition 13.3 (applied to l > 2 and then to p > 2), we have((−1
l

)
l

p

)
=

(
(−1)

l−1
2 l

p

)
=

(
(−1)

l−1
2

p

)(
l

p

)
= (−1)

l−1
2

p−1
2

(
l

p

)
,

so

(−1)
l−1
2

p−1
2

(
l

p

)
= 1⇔ x0 ∈ Fp.

Step 2 See whether x0 is in Fp by using the fact Fp = {x ∈ Fp : xp = x}.
Since char(Fp) = p, we have by Exercise 3 of Assignment 10/17

xp0 =
∑
m∈Fl

(
m

l

)p
αmp.

By definition of the Legendre symbol,
(
m
l

)
can only be −1, 0 or 1 and all three of them raised

to an odd power equal to themselves, we have

xp0 =
∑
m∈Fl

(
m

l

)
αmp

=
∑
n∈Fl

(
np−1

l

)
αn by change of variable by setting n = mp

=

(
p−1

l

)∑
n∈Fl

(
n

l

)
αn

=

(
p

l

)
x0.

Thus

xp0 = x0 ⇔
(
p

l

)
= 1,

and hence

x0 ∈ Fp ⇔
(
p

l

)
= 1.

Now let us look at the conclusions of the two steps. By definition, the Legendre symbol can
only be −1, 0 or 1. But gcd(p, l) = 1, so

(
l
p

)
6= 0 and

(p
l

)
6= 0. Then the conclusions of the two

steps imply

(−1)
l−1
2

p−1
2

(
l

p

)
=

(
p

l

)
.

Multiplying both sides by
(p
l

)
, we have

(−1)
l−1
2

p−1
2

(
p

l

)(
l

p

)
=

(
p

l

)2

= 1.

Hence we are done. �
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15. Arithmetic in Z[i]

15.1. Sum of two squares. We now work towards the following result which has been promised
a long time ago. This gives the integer solutions to z = x2 + y2.

Theorem 15.1. An integer m ≥ 1 is expressible as a sum of two squares if and only if m =
2αpα1

1 · · · pαnn with αi even when pi ≡ 3 (mod 4).

Proof of ⇒. Let us prove the necessity, namely⇒, first. The statement then becomes: Let p be
an odd prime number such that p ≡ 3 (mod 4). Let m ≥ 1 be an integer. If m = x2 + y2 for
some x, y ∈ Z, then the greatest integer γ such that pγ |m is even.

Let us prove this statement by induction on m. Note that m = x2 + y2 and p|m together
imply that x2 + y2 ≡ 0 (mod p).
(base step) P(1) is clearly true as γ = 0 is even in this case.
(induction step) Assume P(1), . . . ,P(m− 1) are true.

Assume p - x. Then x is invertible in Fp. Then we have 1 + (yx−1)2 = 0 in Fp. In other
words, −1 = (yx−1)2 is a square in Fp. Thus

(−1
p

)
= 1. But then Proposition 13.2 implies p ≡ 1

(mod 4), contradicting the assumption p ≡ 3 (mod 4).
Hence p|x. Then x2 + y2 ≡ 0 (mod p) implies that p|y. But then p2|x2 + y2 = m. Now

m/p2 ∈ Z is the sum of two squares (x/p)2 + (y/p)2.
Since m/p2 < m, we can apply induction hypothesis to conclude that γ − 2 is even. So γ is

even. �

In the proof, we see that the equation x2 + y2 = 0 in Fp only has (0, 0) as solutions when
p ≡ 3 (mod 4). We call (0, 0) the trivial solution to this equation. Similarly we say that a
solution (x0, y0) to x2 + y2 ≡ 0 (mod p) is trivial if p|x0 and p|y0.

Proving the sufficiency ⇐ of Theorem 15.1 is more involved. We start with the following
observation, whose motivation we will see later.

(15.1) (x2 + y2)(u2 + v2) = (xu+ yv)2 + (xv − yu)2.

In other words, the product of two integers both expressible as sums of two squares is also
expressible as a sum of two squares. Since 2 = 12 + 12 and p2 are both expressible as a sum of
two squares, it suffices to prove the following statement.

Theorem 15.2. Let p be an odd prime number such that p ≡ 1 (mod 4). Then p is expressible
as a sum of two squares.

15.2. The ring Z[i] of Gaussian integers. Let Q be an algebraic closed field containing Q.
Let i be an element of Q that satisfies i2 + 1 = 0. Let Z[i] = {a + bi : a, b ∈ Z} ⊂ Q. The
addition and multiplication on Q restrict to Z[i], or equivalently Z[i] is closed under addition
and multiplication: The laws are defined as follows

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i;

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i.

So (Z[i],+, ·; 0, 1) is a commutative ring.
We want to compute Z[i]× = {α ∈ Z[i] : αβ = 1 for some β ∈ Z[i]}. As for Z and F [x], it

will be more convenient to do the computation if there is a size function on Z[i]. Fortunately
such a nice function does exist for Z[i]. Let us define it now.
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For any α = a + bi ∈ Z[i], we define its norm by N(α) = (a + bi)(a − bi) = a2 + b2. Then
N(α) ∈ Z, N(α) ≥ 0 and N(α) = 0⇔ α = 0. Moreover (15.1) implies that

N(αβ) = N(α)N(β).

It is not hard to see that N(α) ≥ 1 for any α 6= 0.
With this size function, we can compute Z[i]× as for Z and F [x].

Proposition 15.3. Z[i]× = {1,−1, i,−i}.

Proof. It is clear that Z[i]× ⊃ {1,−1, i,−i}. Let us prove the other inclusion.
Suppose α ∈ Z[i]×. Then αβ = 1 for some β ∈ Z[i]. In particular α, β 6= 0. Taking the norms

of both sides, we have N(α)N(β) = N(αβ) = N(1) = 1. But N(α), N(β) ≥ 1, so we must have
N(α) = N(β) = 1. Write α = a + bi. Then a2 + b2 = N(α) = 1. But then a = ±1, b = 0 or
a = 0, b = ±1. So α = ±1,±i. Hence Z[i]× ⊂ {1,−1, i,−i}. Hence we are done. �

Note that we showed in the proof N(α) = 1⇔ α = ±1,±i⇔ α ∈ Z[i]×.
As an exercise, prove the following lemma. (Compare this with Lemma 7.5.)

Lemma 15.4. If αZ[i] = βZ[i], then α ∈ βZ[i]×, namely α = βγ for some γ ∈ {±1,±i}.

We also have the following division algorithm in Z[i].

Proposition 15.5 (Division Algorithm). For any α, β ∈ Z[i] with β 6= 0, there exist elements
γ, δ ∈ Z[i] such that

α = βγ + δ, with N(δ) < N(β).

Note that (γ, δ) may not be unique. For example

i = (2 + i)0 + i,

i = (2 + i)1 + (−2),

but N(i), N(−2) < N(2 + i). However in most applications of the division algorithm, the
uniqueness is not important as we only want to find a “smaller” δ and do descent argument.
Let us call this δ the remainder.

Proof of Proposition 15.5. Write α = a + bi and β = c + di. Since α, β ∈ Q, we may compute
αβ−1 in Q even though β−1 may not be in Z[i]:

a+ bi

c+ di
=

(a+ bi)(c− di)
(c+ di)(c− di)

=
(ac+ bd) + (bc− ad)i

c2 + d2
=
ac+ bd

c2 + d2
+
bc− ad
c2 + d2

i =: s+ ti.

Now s, t are rational numbers. Let x, y be the closest integers to s, t respectively, namely x, y ∈ Z
such that |x− s| ≤ 1

2 and |y− t| ≤ 1
2 .[6] Set γ = x+ yi and δ = α−βγ. Then it suffices to prove

N(δ) < N(β). But now δ = β((s− x) + (t− y)i), so

N(δ) = N(β)N((s− x) + (t− y)i) = N(β)(|s− x|2 + |t− y|2) ≤ N(β)(
1

4
+

1

4
) < N(β).

�

[6]x and y may not be unique, for example when s = 3.5. But here we only need one such x and y.
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We illustrate this algorithm with an example: take α = 1− 8i and β = 2 + i, then

1− 8i

2 + i
=

(1− 8i)(2− i)
(2 + i)(2− i)

=
−6− 17i

5
= −1.2− 3.4i.

Then we take x = −1 and y = −3. Hence set γ = −1− 3i and δ = α − βγ = −i. Sure enough
N(−i) < N(2 + i).

One major advantage of the division algorithm, as we have seen twice in this course, is that
it allows us to have the Euclid’s Algorithm in Z[i]. As before, we define gcd(α, β) ∈ Z[i] to be
such that αZ[i] + βZ[i] = gcd(α, β)Z[i]. We know that gcd(α, β) is well-defined up to Z[i]× by
Lemma 15.4. A candidate for gcd(α, β) is the last non-zero remainder in the Euclid’s Algorithm
applied to α and β.

Now we are ready to prove Theorem 15.2.

Proof of Theorem 15.2. Let p be a prime number such that p ≡ 1 (mod 4). Then x2 + 1 ≡ 0
(mod p) has solution by Proposition 13.2. In other words there exists an integer a such that
p|a2 + 1 = N(a + i). Set α = gcd(p, a + i). Then αZ[i] = pZ[i] + (a + i)Z[i] 3 p, and hence

p = αβ for some β ∈ Z[i]. So N(α)|N(p) = p2 in Z.[7] There are three choices for N(α): 1, p
and p2.

If N(α) = 1, then we have seen that α = ±1,±i. Then pZ[i] + (a+ i)Z[i] = αZ[i] = Z[i]. So
pβ+(a+ i)γ = 1 for some β, γ ∈ Z[i]. Write pβ = c+di, then p|c, p|d and (a+ i)γ = (1−c)−di.
Then

N(a+ i)N(γ) = N((1− c)− di) = (1− c)2 + d2 ≡ 1 (mod p).

But we have seen p|N(a+ i), so N(a+ i)N(γ) ≡ 0 (mod p). Contradiction.
If N(α) = p2. Recall p = αβ. Taking the norms on both sides we get N(β) = 1. So β = ±1,±i

and hence α = ±pi,±p. However α|a + i in Z[i], so p|a + i in Z[i]. Hence a + i = p(c + di) for
some c, d ∈ Z. But then 1 = pd, which is impossible.

So we must have N(α) = p. Writing α = k + li then yields p = k2 + l2 being a sum of two
squares. �

[7]Taking the complex conjugation for p = αβ, we get p = αβ. Then N(p) = p2 = (αα)(ββ) = N(α)N(β).
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16. Arithmetic in Z[i] (continued)

16.1. Guassian primes. Just as in the cases of Z and F [x], we wish to know what the analogous
notion of “prime” is for Z[i]. Here are two equivalent definitions.

Definition 16.1. A nonzero element α of Z[i] is a prime if α 6∈ Z[i]× and any divisor of α
belongs to Z[i]×

⋃
αZ[i]×.

Definition 16.2. A nonzero element α of Z[i] is a prime if α 6∈ Z[i]× and α|βγ ⇒ α|β or α|γ
(∀β, γ ∈ Z[i]).

To distinguish between a prime in Z[i] with a prime in Z, we call a prime in Z[i] a Gaussian
prime and the latter a prime number.

Again as for Z and F [x], the proof of Definition 16.2⇒Definition 16.1 is straight-forward,
and Definition 16.1⇒Definition 16.2 follows from the notion of gcd. Moreover, we also have the
following Unique Factorization Theorem.

Theorem 16.3. Let α ∈ Z[i] such that α 6= 0 and α 6∈ Z[i]×. Then α can be factorized into a
product of Gaussian primes, unique up to reordering and Z[i]×. More precisely, we have

(1) α = p1 · · · pn for some Gaussian primes p1, . . . , pn.
(2) If α = p1 · · · pn = p′1 · · · p′m for Gaussian primes p1, . . . , pn and p′1, . . . , p

′
m, then n = m

and we can reorder p′1, . . . , p
′
n such that pi ∈ p′iZ[i]× for all i ∈ {1, . . . , n}.

Next, let us give a classification of Gaussian primes.

Proposition 16.4. If α is a Gaussian prime, then α divides a prime number.

Proof. Write α = a+ bi. Then N(α) = (a+ bi)(a− bi) = α(a− bi) is a positive integer divisible
by α. Factorize N(α) into a product of prime numbers p1 · · · pn in Z, then α|N(α) = p1 · · · pn.
By Definition 16.2, we have α|pi for some i ∈ {1, . . . , n}. Hence we are done. �

Proposition 16.5. Suppose α ∈ Z[i] and N(α) is a prime number. Then α is a Gaussian
prime.

Proof. Clearly α 6= 0 and α 6∈ Z[i]×. We use Definition 16.1. Suppose α = βγ for β, γ ∈ Z[i].
We need to show that either β ∈ Z[i]× or γ ∈ Z[i]×.

Taking norms gives N(α) = N(β)N(γ). Since N(α) is a prime number, either N(β) or N(γ)
is 1. Then the conclusion follows from the paragraph below Proposition 15.3. �

Corollary 16.6. Let p be a prime number. Suppose p = x2 + y2 = z2 + w2 for non-negative
x, y, z, w ∈ Z. Then {x, y} = {z, w}.

Proof. Let α = x + yi, α′ = x − yi and β = z + wi, β′ = z − wi. Then p = N(α) = N(α′) =
N(β) = N(β′). By Proposition 16.5, we know that α, α′ and β, β′ are Gaussian primes. Thus
we have two factorizations of p ∈ Z[i] into the product of Gaussian primes: p = αα′ and p = ββ′.
Then the uniqueness part of UFT for Z[i], namely Theorem 16.3.(2), implies the result (recall
that Z[i]× = {±1,±i}). �

This corollary supplements Theorem 15.2 and Theorem 15.1. Let us write this more clearly.

Theorem 16.7. A prime number p is expressible as a sum of two squares if and only if p = 2
or p ≡ 1 (mod 4). Moreover when it happens, then the expression is unique.
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Proposition 16.8. Suppose p is a prime number such that p ≡ 3 (mod 4). Then p is a Gaussian
prime.

Proof. Clearly α 6= 0 and α 6∈ Z[i]×. We use Definition 16.1. Suppose p = βγ for some β, γ ∈ Z[i].
Taking norms gives p2 = N(β)N(γ). Since p is not a sum of two squares by Theorem 15.1, p
is not the norm of any element of Z[i]. Hence either N(β) or N(γ) is 1. Equivalently either
β ∈ Z[i]× or γ ∈ Z[i]×. Thus p is a Gaussian prime. �

Now we can summarize the discussion above and give the classification of Gaussian primes.

Theorem 16.9. A Gaussian prime α is, up to Z[i]×,

(1) 1 + i, or
(2) prime numbers congruent to 3 modulo 4, or
(3) elements β such that N(β) is a prime number congruent to 1 modulo 4.

Proof. By Proposition 16.5 (applied to case 1 and 3) and Proposition 16.8 (applied to case 2),
we know that every element in the list above is a Gaussian prime.

Conversely given any Gaussian prime α ∈ Z[i], it divides a prime number p by Proposi-
tion 16.4. So p = αβ for some β ∈ Z[i].

If p = 2, then as 2 = −i(1+i)2 is a prime factorization of 2 in Z[i], we have that α ∈ (1+i)Z[i]×

by the uniqueness part of UFT for Z[i] (Theorem 16.3.(2)). This is case 1 in the list.
If p ≡ 3 (mod 4), then p is a Gaussian prime by Proposition 16.8. Hence α ∈ pZ[i]× by the

uniqueness part of UFT for Z[i] (Theorem 16.3.(2)). This is case 2 in the list.
If p ≡ 1 (mod 4), then p = x2 + y2 for some x, y ∈ Z by Theorem 15.2. But then p =

(x+ yi)(x− yi). Now N(x+ yi) = N(x− yi) = p is a prime number, so both x+ yi and x− yi
are Gaussian primes by Proposition 16.5. So p = (x + yi)(x − yi) is a factorization of p into
a product of Gaussian primes. So α ∈ (x + yi)Z[i]× by the uniqueness part of UFT for Z[i]
(Theorem 16.3.(2)). This is case 3 in the list. �

16.2. Factorizing Gaussian integers. We know that Gaussian integers have unique factor-
ization. It will be nice if we know how to explicitly factor a Gaussian integer into Gaussian
primes. We illustrate this with an example. Let β = 1 − 8i. A Gaussian prime α dividing β
must also divide

N(β) = 1 + 82 = 65 = 5× 13 = (2 + i)(2− i)(3 + 2i)(3− 2i).

Here since 5 and 13 are congruent to 1 modulo 4, we can decompose them as products of two
Gaussian primes. The above equation also implies that α must be, up to Z[i]×, one of 2 + i,
2− i, 3 + 2i, 3− 2i. We can simply divide β by all of them using the division algorithm to see
which of them divides β:

1− 8i

2 + i
=

(1− 8i)(2− i)
(2 + i)(2− i)

=
−6− 17i

5
6∈ Z[i]

1− 8i

2− i
=

(1− 8i)(2 + i)

(2− i)(2 + i)
=

10− 15i

5
= 2− 3i ∈ Z[i]

Since N(2− 3i) = 22 + 32 = 13 is a prime number, we know that 2− 3i is a Gaussian prime. So
1− 8i = (2− i)(2− 3i) is a factorization of 1− 8i into a product of Gaussian primes. If we test
for divisibility for the other two primes, then we will find 1 + 8i = (3− 2i)(−1 + 2i).
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Note that the two factorizations (2 − i)(2 − 3i) = (3 − 2i)(−1 + 2i) are essentially the same
factorization: 2− i = −i(−1 + 2i) and 2− 3i = −i(3− 2i).

Let us summarize the factorization algorithm: For any Gaussian integer β, we should

(1) Compute N(β) and factor it as a product pα1
1 · · · pαnn of prime numbers;

(2) For any pj = 2, we have (1 + i)αj |β;

(3) For any pj ≡ 3 (mod 4), αj must be even and p
αj/2
j |β;

(4) For any pj ≡ 1 (mod 4), write it as a product pj = (a + bi)(a − bi) of two Gaussian
primes. Test which of these two Gaussian primes divides β. Divide β by the one that
does divide β and repeat the process.

16.3. Extra: Irreducible v.s. Prime. We have studied three rings extensively in the class:
Z, F [x] and Z[i]. For all three, we defined prime elements in two equivalent ways. In general we
have the following definitions.

Setting Let (R,+, ·; 0R, 1R) be a commutative ring. In the discussion below we only consider

the case where R is an integral domain, namely ab = 0R ⇒ a = 0R or b = 0R (∀a, b ∈ R).

Definition 16.10. Let R be an integral domain. An element α ∈ R is an irreducible element
if α = βγ ⇒ β ∈ R× or γ ∈ R× (∀β, γ ∈ R).

Definition 16.11. Let R be an integral domain. An element α ∈ R is a prime element if
α|βγ ⇒ α|β or α|γ (∀β, γ ∈ R).

Proposition 16.12. In an integral domain R, any prime element is irreducible.

The proof is as before.
The converse is in general not true. Consider the ring R = Z[

√
−5] consisting of elements of

the form a+ b
√
−5. Then 2 · 3 = (1 +

√
−5)(1−

√
−5). Then 2 divides the product of 1 +

√
−5

and 1 −
√
−5 but it does NOT divide any one of them. So 2 is not a prime element. On the

other hand, one defines the norm of an element of R by N(a+ b
√
−5) = a2 + 5b2. Then similar

to Z[i], we have N(αβ) = N(α)N(β) for any α, β ∈ R. Then it is not hard to compute that no
elements of 2 have norm 2. Hence 2 is an irreducible element since a divisor of 2 has norm either
1 or 4: in the former case it is in Z[

√
−5]×, in the latter case it is 2 multiplied by an element of

Z[
√
−5]×.

The failure for an irreducible element to be a prime element is the lack of the notion of gcd.
This already shows that we do not have Euclid’s Algorithm, nor Division Algorithm in Z[

√
−5].

Definition 16.13. We say that an integral domain R is a principal ideal domain if for any
α, β ∈ R, there exists an element γ ∈ R such that αR+ βR = γR.

In particular, any integral domain with gcd is a principal ideal domain (the converse not true).

Proposition 16.14. Suppose R is a principal ideal domain. Then every irreducible element is
a prime element.

Proof. Suppose α ∈ R is irreducible. Let β, γ ∈ R be such that α|βγ. Since R is a principal
ideal domain, we have αR + βR = δR for some δ ∈ R. Since α ∈ αR + βR, we have α = δε for
some ε ∈ R. Since α is irreducible, either δ or ε is in R×.

If δ ∈ R×, then δR = R. So αx + βy = 1R for some x, y ∈ R. Multiplying both sides by γ
gives αxγ + βyγ = γ. Since α|βγ, we have α|γ.

If ε ∈ R×, then δ = αε−1 is divisible by α. Since δ|β, we get α|β. �
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17. Pythagorean triples and the descent

17.1. The equation x2 + y2 = z2. This is the well-known Pythagorean theorem for the three
sides of a right angle triangle. There are ancient greek tablets with several large solutions. It is
quite likely they already have an algorithm to write down many solutions, perhaps all of them.

Observe that if a prime number p divides two of x, y, z, then it also divides the square of the
third and hence also the third. If p divides all x, y, z, then replacing x, y, z by x/p, y/p, z/p gives
another set of solution. We say that a solution is primitive if x, y, z have no common prime
factors. In this case, being primitive is equivalent to being pairwise coprime.

In order to get all solutions to x2 + y2 = z2, it suffices to understand all primitive solutions.
The following theorem gives all primitive solutions.

Theorem 17.1. If (x0, y0, z0) is a primitive solution to x2 + y2 = z2, then one of x0 and y0 is
odd and the other is even. Suppose y0 is even without loss of generality, then there are coprime
integers r and s such that

x0 = r2 − s2,
y0 = 2rs,

z0 = r2 + s2.

Proof. We first work modulo 4. Since only 0, 1 are squares modulo 4, we see that it is impossible
for x0 and y0 to be both odd: otherwise z20 = x20 + y20 ≡ 2 (mod 4) which cannot happen. So
one of x0 and y0 is even. Since (x0, y0, z0) is a primitive solution, we cannot have both x0 and
y0 being even. So one of x0 and y0 is odd and the other is even.

Suppose y0 is even without loss of generality. Then x0 is odd, and hence z0 is odd. We have

(17.1) y20 = z20 − x20 = (z0 + x0)(z0 − x0),

and hence

(17.2) (
y0
2

)2 =
z0 + x0

2

z0 − x0
2

.

Note that y0
2 , z0+x0

2 and z0−x0
2 are integers because y0 is even and x0, z0 are both odd.

We have gcd(z0 + x0, z0 − x0) = gcd(z0 + x0, 2x0). Since z0 and x0 are coprime, we conclude
that gcd(z0 + x0, z0 − x0) = gcd(z0 + x0, 2). But both x0 and z0 are odd, so z0 + x0 is even. So
gcd(z0 + x0, z0 − x0) = 2. So (17.2) is the factorization of the integer (y02 )2 into the product of
two coprime integers. By UFT, both factors must be squares of integers, namely we have

z0 + x0
2

= r2 and
z0 − x0

2
= s2

for some r, s ∈ Z which are coprime to each other. So we get x0 = r2 − s2 and z0 = r2 + s2.
Now (y02 )2 = r2s2, so replacing r by −r if necessary, we have y0 = 2rs. �

The key idea in the above proof is (17.1) where we express the power of an integer as a product
of integers. Furthermore, we can compute the gcd of the factors so that the UFT then implies
that each factor is not far from being a power themselves. We will use this technique a lot in
the coming weeks!
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17.2. The equation x4 + y4 = z2. One of Fermat’s most famous result is that the equation
x4 + y4 = z2 has no nontrivial solution. From this it follows that x4 + y4 = z4 also has no
nontrivial solution. Here a trivial solution means that one of the x, y, z is 0.

Theorem 17.2. If (x0, y0, z0) is a solution to x4 + y4 = z2, then x0y0z0 = 0.

Proof. Assume none of x0, y0, z0 is zero. By replacing x0, y0, z0 by their negatives if necessary, we
may assume they are all positive. Like before, we first reduce to the case where x0, y0, z0 are pair-
wise coprime. If a prime number p divides two of them, then it also divides the third. If p divides
x0 and y0, then p4 divides z20 and so p2 divides z0. Replacing (x0, y0, z0) by (x0/p, y0/p, z0/p

2)
gives another solution. Hence, we can once again only consider primitive solutions.

The key idea is to play with the following two equations

(17.3) x4 + y4 = z2

and

(17.4) x2 + 4y4 = z4.

We will show: a primitive solution to (17.3) gives a solution to (17.4), and vice versa a primitive
solution to (17.4) gives a solution to (17.3). However, if one starts with a primitive solution to
(17.3), one ends up with another primitive solution to (17.3) but smaller. This process can be
continued forever while positive integers cannot be decreased indefinitely while staying positive.
Contradiction. This method is called Fermat’s infinite descent.

Let us give more details of this descent process. Suppose (x0, y0, z0) is a primitive solution to
(17.3). Then (x20, y

2
0, z0) is a primitive solution to x2 + y2 = z2. Without loss of generality we

assume that y0 is even. By Theorem 17.1, there are coprime integers r and s such that

x20 = r2 − s2,
y20 = 2rs,

z0 = r2 + s2.

Since x0 is odd, we see that r2 − s2 = x20 ≡ 1 (mod 4). So we must have r2 ≡ 1 (mod 4) and
s2 ≡ 0 (mod 4) since any square is congruent to 0 or 1 modulo 4. Thus r is odd and s is even.
The second equation then implies

(
y0
2

)2 = r
s

2
,

where r and s
2 are coprime (since r and s are already coprime). So UFT implies that r = r20

and s = 2s20 for some positive integers r0 and s0. Then the first equation shows that (x0, s0, r0)
is a solution to (17.4). Note that we have z0 ≥ r2 = r40 > r0.

Now let us start with a solution (x1, y1, z1) to (17.4). As before, if a prime number p divides two
of x1, y1, z1 then it also divides the third. If p divides y1 and z1, then p2|x1 and (x1/p

2, y1/p, z1/p)
also gives a solution to (17.4). Hence we may restrict ourselves to primitive solutions and assume
that x1, y1, z1 are pairwise coprime. So (x1, 2y

2
1, z

2
1) is a primitive solutioh to x2+y2 = z2. Hence

there are coprime positive integers r1, s1 such that

x1 = r21 − s21,
2y21 = 2r1s1,

z21 = r21 + s21.
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By UFT, the second equation then gives r1 = r22, s1 = s22 for coprime positive integers r2, s2.
Plugging them into the third equation gives z21 = r42 + s42. Hence we get a solution (r2, s2, z1) to
(17.3).

Now we summarize our descent algorithm: We start with a positive primitive solution (x0, y0, z0)
to (17.3); we obtain a positive solution (x′1, y

′
1, z
′
1) to (17.4) with z′1 < z0; we divide out by com-

mon factors to get a positive primitive solution (x1, y1, z1) to (17.4) with z1 ≤ z′1 < z0; we then
obtain a positive solution (x′2, y

′
2, z
′
2) to (17.3) with z′2 = z1 < z0; we divide out by common fac-

tors to get a positive primitive solution (x2, y2, z2) to (17.3) with z2 ≤ z′2 < z0. The component
z keeps decreasing and is positive. From this we obtain our contradiction since our algorithm
can be repeated forever. �
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18. Diophantine equations via local methods

Some Diophantine equations are easy to tell to have no solutions. For example, the equation
x2 + y2 = −1 has no integer solution because it does not even have any real solutions. Here are
a few more examples where solutions do not exist modulo some positive integer m. We view
these methods as local methods.

Proposition 18.1. The equation x2 + y2 = 4z + 3 has no integer solutions.

Proof. Working modulo 4, we see that the right hand side is congruent to 3 modulo 4. Squares
modulo 4 can only be 0 or 1, so the left hand side can only can 0 or 1 or 2 modulo 4. This
implies the conclusion. �

Proposition 18.2. The equation 15x2 − 7y2 = 9 has no integer solutions.

Proof. We work modulo 3. If (x0, y0) is a solution, then 3|7y20 and hence 3|y0. Write y0 = 3y1,
then we get 5x20 − 21y21 = 3.

Working modulo 3 again, we get 3|5x20 and hence 3|x0. Write x0 = 3x1, then we have
15x21 − 7y21 = 1.

Observe that squares modulo 3 can only be 0 or 1. So the left hand side is congruent to 0 or
2 modulo 3. But the right hand side is congruent to 1 modulo 3. So we get a contradiction. �

Proposition 18.3. The equation x2 + y2 = 3(z2 + w2) has no nontrivial integer solutions.

Proof. If (x0, y0, z0, w0) is a nontrivial solution, then dividing out the common factors gives rise
to another nontrivial solution. Hence we may assume that the only positive integer dividing at
the same time x0, y0, z0, w0 is 1.

Modulo 3 we get x20 + y20 ≡ 0 (mod 3). Since squares modulo 3 are either 0 or 1, we get that
3|x0 and 3|y0. Write x0 = 3x1 and y0 = 3y1. Then we have 3(x21 + y21) = z20 +w2

0. Again modulo
3 we get z20 + w2

0 ≡ 0 (mod 3). Since squares modulo 3 are either 0 or 1, we again get 3|z0 and
3|w0.

Now 3 divides all of x0, y0, z0, w0. Contradiction. �

In the previous examples, it suffices to specify a modulus m and argue modulo m. The next
example is a case where it is not enough to modulo a specific m but many different numbers m.

Proposition 18.4. The equation y2 = x3 + 7 has no integer solutions.

Proof. Suppose (x0, y0) is a solution. We have

y20 = x30 + 7 ≡ x30 − 1 (mod 4).

If x0 is even, then 4|x30 and hence y20 ≡ −1 (mod 4), which cannot happen. So x0 is odd and
hence x20 ≡ 1 (mod 4). Then y20 = x30 + 7 is even and hence y0 is even. Then the congruent
equation above becomes

0 ≡ x0 − 1 (mod 4).

So x0 ≡ 1 (mod 4). Next observe that

y20 + 1 = x30 + 23 = (x0 + 2)(x20 − 2x0 + 4).

Let us consider the prime factors of both sides. If p is such a prime number, then p|y20 + 1. So
y20 ≡ −1 (mod p), namely −1 is a quadratic residue modulo p. So p = 2 or p ≡ 1 (mod 4) by
Proposition 13.2. But y20 + 1 is odd, so p ≡ 1 (mod 4).
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Thus by UFT, x0 + 2 is the product of some prime numbers which are congruent to 1 modulo
4. But then x0 + 2 ≡ 1 (mod 4). This contradicts x0 ≡ 1 (mod 4). �

There are also plenty of Diophantine equations have solutions in real numbers and modulo
m or every positive integer m while having no solutions in Z. We call this the failure of the
local-global principle. Next we give an example where the local-global principle fails.

Proposition 18.5. Let f(x) = (x2 − 17)(x2 − 19)(x2 − 17× 19). Then f(x) ≡ 0 (mod m) has
a solution for any positive integer m, but f(x) = 0 has no integer solutions.

Proof. We know that the solutions to f(x) = 0 are ±
√

17, ±
√

19 and ±
√

17× 19. None of them
is an integer. So f(x) = 0 has no integer solutions.

Next let us prove that f(x) ≡ 0 (mod m) has a solution for any positive integer m. By
Chinese Remainder Theorem, it suffices to prove this for all m = pr for some prime number p
and some integer r ≥ 1.

For any prime number p, we have(
17

p

)(
19

p

)(
17× 19

p

)
=

(
17

p

)2(19

p

)2

= 0 or 1.

If the product is 0, then [0] is a solution to f(x) ≡ 0 (mod p).
If the product is 1, then one of

(
17
p

)
,
(
19
p

)
and

(
17×19
p

)
is 1. Hence one of [17], [19] and [17×19]

is a square in Fp. This gives a solution x0 to f(x) ≡ 0 (mod p).
When p 6= 2, 17, 19, then we can check that f ′(x0) 6≡ 0 (mod p). So by Hensel’s Lemma,

f(x) ≡ 0 (mod pr) has a solution for any r ≥ 1.
When p = 2, then 1 is a solution to x2 ≡ 17 (mod 8). So by Exercise 3 of Assignment 10/24,

there is a solution to x2 ≡ 17 (mod 2r) for any r ≥ 3. So f(x) ≡ 0 (mod 2r) has a solution for
any r ≥ 1.

When p = 17, then (
19

p

)
=

(
19

17

)
=

(
2

17

)
= 1

where the last equality follows from Proposition 13.5. So 19 is a quadratic residue modulo 17.
Now suppose x20 ≡ 19 (mod 17). Then x0 6≡ 0 (mod 17), and hence f ′(x0) ≡ 4x30 ·2x0 = 8x40 6≡ 0
(mod 17). So by Hensel’s Lemma, x0 lifts to a solution to x2− 19 ≡ 0 (mod 17r) for any r ≥ 1.
Hence f(x) ≡ 0 (mod 17r) has a solution for any r ≥ 1.

When p = 19, then (
17

p

)
=

(
17

19

)
=

(
−2

19

)
=

(
−1

19

)(
2

19

)
= 1

where the last equality follows from Proposition 13.2 and Proposition 13.5. So 17 is a quadratic
residue modulo 19. Now suppose x20 ≡ 17 (mod 19). Then x0 6≡ 0 (mod 19), and hence f ′(x0) ≡
4x30 · 2x0 = 8x40 6≡ 0 (mod 19). So by Hensel’s Lemma, x0 lifts to a solution to x2 − 17 ≡ 0
(mod 19r) for any r ≥ 1. Hence f(x) ≡ 0 (mod 19r) has a solution for any r ≥ 1.

Now we are done. �

We conclude with a baby example that uses techniques in Diophantine approximation. The
main feature is the use of inequalities.
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Proposition 18.6. The equation x4+x3+x2+x+1 = y2 has integer solutions (−1, 1), (0, 1), (3, 11)
and no others.

Proof. Let f(x) = 4x4 + 4x3 + 4x2 + 4x + 4. Note that any solution (x0, y0) of the original
equation gives a solution (x0, 2y0) to the equation y2 = f(x). So we only need to study the
equation y2 = f(x).

Fist we have

f(x) = (2x2 + x)2 + 3(x+
2

3
)2 +

8

3
> (2x2 + x)2

and
f(x) = (2x2 + x+ 1)2 − (x+ 1)(x− 3).

Hence if (x + 1)(x − 3) > 0, or equivalently if x > 3 or x < −1, then f(x) is between two
consecutive squares and so itself cannot be a square! Thus any solution to y2 = f(x) must satisfy
−1 ≤ x ≤ 3. There are then 5 possibilities for x. Checking them all gives the conclusion. �
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19. Pell Equation x2 − 2y2 = m.

19.1. The ring Z[
√

2]. Let
√

2 be a root of x2−2 in C and let Z[
√

2] = {a+b
√

2 : a, b ∈ Z} ⊂ C.
The addition and multiplication formula for Z[

√
2] is as follows:

Addition: (a+ b
√

2) + (c+ d
√

2) = (a+ c) + (b+ d)
√

2.

Multiplication: (a+ b
√

2)(c+ d
√

2) = (ac+ 2bd) + (ad+ bc)
√

2.

From this, we can check that (Z[
√

2],+, ·; 0, 1) is a commutative ring.
We define the norm in Z[

√
2] to be N(a+ b

√
2) = (a+ b

√
2)(a− b

√
2) = a2− 2b2. Note that

unlike Z[i] and Z[
√
−2], N(α) in Z[

√
2] may be negative. (So we will need a modification for

the division algorithm in Z[
√

2]. See Proposition 19.5.)
It is not easy to decide Z[

√
2]×, the set of invertible elements of Z[

√
2]. We will do this later.

First let us prove a simple property for elements in Z[
√

2]×.

Lemma 19.1. We have N(αβ) = N(α)N(β) for any α, β ∈ Z[
√

2].

Proof. Write α = a+ b
√

2 and β = c+ d
√

2. Then

N(αβ) = N((ac+2bd)+(ad+bc)
√

2) = (ac+2bd)2−2(ad+bc)2 = (a2−2b2)(c2−2d2) = N(α)N(β).

�

Proposition 19.2. α ∈ Z[
√

2]× ⇔ N(α) = ±1.

Proof. If α ∈ Z[
√

2]×, then αβ = 1 for some β ∈ Z[
√

2]. Then N(α)N(β) = N(αβ) = 1. So
N(α) = ±1.

Conversely if N(α) = ±1, then α(a− b
√

2) = ±1 (write α = a+ b
√

2). So either a− b
√

2 or
−a+ b

√
2 is the inverse of α. �

To illustrate the fact that Z[
√

2] is not as easy as previous cases (Z[i], Z[
√
−2]), let us prove

the following simple lemma.

Lemma 19.3. We have

{±(1 +
√

2)n : n ∈ Z} = {±1, (±1 +
√

2)n,−(±1 +
√

2)n : n positive integer} ⊂ Z[
√

2]×.

Proof. Since (1+
√

2)n(−1+
√

2)n = ((1+
√

2)(−1+
√

2))n = 1n = 1, we have that (−1+
√

2)−n =
(1 +

√
2)n and so

{(1 +
√

2)n : n ∈ Z} = {1, (±1 +
√

2)n : n positive integer} ⊂ Z[
√

2]×.

Similarly {−(1 +
√

2)n : n ∈ Z} = {−1,−(±1 +
√

2)n : n positive integer} ⊂ Z[
√

2]×. �

Remark 19.4. The deep reason for this, which we cannot prove in this class, is that i,
√
−2 are

square roots of negative integers but
√

2 is a square root of a positive integer. In fact this is a
general fact: If we consider the ring obtained from Z and a square root of a square-free integer
D,[8] then its set of invertible elements is finite if D < 0 and is infinite if D > 0. In the latter
case, this set of invertible elements equals {±αn : n ∈ Z} for some element α.

Later on, we will use the following fact, which we do not prove:

Z[
√

2]× = {±(1 +
√

2)n : n ∈ Z} = {±1, (±1 +
√

2)n,−(±1 +
√

2)n : n positive integer}.

[8]This ring is Z[ 1+
√
D

2
] if D ≡ 1 (mod 4) and Z[

√
D] otherwise.
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There are two ways to prove it: either use continued fractions or by geometry of numbers. The
first proof is elementary, the second proof is more general (works for other more complicated
situations in Algebraic Number Theory).

Now let us turn to the Division Algorithm and UFT for Z[
√

2].

Proposition 19.5 (Division Algorithm for Z[
√

2]). We have the following division algorithm
for Z[

√
2]: For any α, β ∈ Z[

√
2] with β 6= 0, there exist elements γ, δ ∈ Z[

√
2] such that

α = βγ + δ, with |N(δ)| < |N(β)|.

Proof. Write α = a+ b
√

2 and β = c+ d
√

2. Then

α

β
=
a+ b

√
2

c+ d
√

2
=

(a+ b
√

2)(c− d
√

2)

(c+ d
√

2)(c− d
√

2)
=
ac− 2bd

c2 − 2d2
+

bc− ad
c2 − 2d2

√
2 =: s+ t

√
2.

Let x, y ∈ Z such that |x− s| ≤ 1/2 and |y − t| ≤ 1/2. Set γ = x+ y
√

2 and δ = α− βγ. Then

|N(δ)| = |N(β)N((s−x)+(t−y)
√

2| = |N(β)|(|s−x|2+2|t−y|2) ≤ |N(β)|(1/4+1/2) < |N(β)|.

�

Now since |N(α)| ≥ 0 for any α ∈ Z[
√

2], this division algorithm indeed implies the Euclid’s
algorithm. So there are two equivalent definitions for prime elements in Z[

√
2], and Z[

√
2]

satisfies the Unique Factorization Theorem.

Definition 19.6. A nonzero non-invertible element α of Z[
√

2] is a prime element if any divisor
of α is the multiple of 1 or α by an invertible element.

Definition 19.7. A nonzero non-invertible element α of Z[
√

2] is a prime element if the fol-
lowing condition holds: α|βγ implies α|β or α|γ.

Theorem 19.8 (UFT for Z[
√

2]). Every nonzero element α of Z[
√

2] can be written as the
product of prime elements with an invertible element, unique up to reordering. More precisely
for any α ∈ Z[

√
2], we have

(1) α = p1 · · · pn for some prime elements p1, . . . , pn of Z[
√

2];
(2) If α = p1 · · · pn = p′1 · · · p′m for prime elements p1, . . . , pn and p′1, . . . , p

′
m, then n = m

and up to reordering pi ∈ p′iZ[
√

2]× for each i ∈ {1, . . . , n}.

Next let us see some propositions regarding the prime factorizations.

Proposition 19.9. If the norm of α ∈ Z[
√

2] is ±p for a prime number p, then α is a prime
element.

Proof. If α = βγ, then ±p = N(α) = N(β)N(γ). So either N(β) = ±1 or N(γ) = ±1. So by
Proposition 19.2, either β ∈ Z[

√
2]× or γ ∈ Z[

√
2]×. Hence we are done. �

Example 19.10. Write down a prime factorization of 7 in Z[
√

2]. One possible way is 7 =
(3 +
√

2)(3−
√

2). By the previous exercise, both 3 +
√

2 and 3−
√

2 are prime elements because
their norms are 7 which is a prime number.
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19.2. Relation between Z[
√

2] and the Diophantine equations x2− 2y2 = m. Let us first
see some examples.

Example 19.11. Find all integer solutions to x2 − 2y2 = 1.

Proof. We have that x2 − 2y2 = 1 is equivalent to N(x + y
√

2) = 1. Hence we are looking for
elements α := x+ y

√
2 ∈ Z[

√
2] such that N(α) = 1.

By Proposition 19.2, such α’s are elements of Z[
√

2]×. Now let us check the norms of the
elements in Z[

√
2]×. Since N(1 +

√
2) = −1, we have that

N(±(1 +
√

2)n) = N(±1)N((1 +
√

2)n) = 1(−1)n = (−1)n.

So

{α ∈ Z[
√

2] : N(α) = 1} = {±(1+
√

2)2m : m ∈ Z} = {±1, (±1+
√

2)2m,−(±1+
√

2)2m : m positive integer}.
So the integer solutions to x2 − 2y2 = 1 are

(±1, 0), (
m∑
k=0

(
2m

2k

)
2k,±

m∑
k=1

(
2m

2k − 1

)
2k−1), (−

m∑
k=0

(
2m

2k

)
2k,±

m∑
k=1

(
2m

2k − 1

)
2k−1).

�

Example 19.12. Find all integer solutions to x2 − 2y2 = −1.

Proof. Similarly to the previous example, the integer solutions to x2− 2y2 = −1 are those (x, y)
corresponding to the elements of

{α ∈ Z[
√

2] : N(α) = −1} = {±(1+
√

2)2m−1 : m ∈ Z} = {(±1+
√

2)2m−1,−(±1+
√

2)2m−1 : m positive integer}

by α = x+ y
√

2. Now expand. �

Example 19.13. Find all integer solutions to x2 − 2y2 = 2.

Proof. The integer solutions to x2 − 2y2 = 2 are those (x, y) corresponding to the elements of
{α ∈ Z[

√
2] : N(α) = 2} by α = x+ y

√
2.

We compute {α ∈ Z[
√

2] : N(α) = 2}. First N(
√

2) = −2. So

{±
√

2(1 +
√

2)2m−1 : m ∈ Z} ⊂ {α ∈ Z[
√

2] : N(α) = 2}.
We will prove that this inclusion is actually an equality. Then it suffices to expand.

For any α = a+ b
√

2 ∈ Z[
√

2] such that N(α) = 2, denote by β = a− b
√

2. Then αβ = 2 =
(
√

2)2. So
√

2|αβ. But
√

2 is a prime element because N(
√

2) = −2 (by Proposition 19.9), so
either

√
2|α or

√
2|β.

But N(α) = N(β) = 2, so α and β are prime elements by Proposition 19.9. So α ∈
√

2Z[
√

2]×

or β ∈
√

2Z[
√

2]×. In either case we have α ∈
√

2Z[
√

2]× because α = β = −(
√

2)2. So
α =

√
2u for some u ∈ Z[

√
2]×. But N(α) = 2 and N(

√
2) = −2, so N(u) = −1. Therefore

α ∈ {
√

2u : N(u) = −1}. Hence

{α ∈ Z[
√

2] : N(α) = 2} ⊂ {±
√

2(1 +
√

2)2m−1 : m ∈ Z}.
This is what we want. �

Example 19.14. Find all integer solutions to x2 − 2y2 = −2.
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Proof. Similar argument as above. We have

{α ∈ Z[
√

2] : N(α) = −2} = {
√

2u : N(u) = 1} = {±
√

2(1 +
√

2)2m : m ∈ Z}.
�

Example 19.15. Find all integer solutions to x2 − 2y2 = ±3.

Proof. Suppose (x0, y0) is an integer solution. First x0 6= 0 and y0 6= 0. The square of any
integer modulo 3 is 0 or 1, so x20 − 2y20 ≡ 0 (mod 3) if and only if x0 ≡ y0 ≡ 0 (mod 3). Write
x0 = 3x1 and y0 = 3y1 for x1, y1 ∈ Z, then 3(x21 − 2y21) = ±1. But this cannot happen. �

Corollary 19.16. 3 is a prime element of Z[
√

2].

Proof. If 3 = αβ, then N(α)N(β) = N(3) = 9. We want to prove that either α or β is
invertible, so it suffices to prove that we cannot have N(α) = ±3. But then it follows from
Example 19.15. �

Example 19.17. Find all integer solutions to x2 − 2y2 = 7.

Proof. Write (x +
√

2y)(x −
√

2y) = (3 +
√

2)(3 −
√

2). The right hand side is a prime decom-
position.

Let α = x +
√

2y. Then N(α) = 7 and so α is a prime element. So α = u(3 ±
√

2) with
u ∈ Z[

√
2]× (similar argument as before). Comparing the norms of both sides we have N(u) = 1.

So the elements α ∈ Z[
√

2] we are looking for are precisely

(1 +
√

2)2m(3±
√

2), −(1 +
√

2)2m(3±
√

2) with m ∈ Z.
�

Example 19.18. Find all integer solutions to x2 − 2y2 = 49.

Proof. We are looking for elements α ∈ Z[
√

2] such that N(α) = 49.
We want to look for a prime decomposition of α. First note that α is not a prime element.

This is because α(a − b
√

2) = 49 = (3 +
√

2)2(3 −
√

2)2 (where we write α = a + b
√

2) is the
product of four prime elements.

Now for any decomposition α = βγ, we have N(β)N(γ) = N(α) = 49 = 72. Assume
N(β) 6= ±1, then we are in one of the two cases: N(β) = N(γ) = ±7 or N(β) = ±49 and
N(γ) = ±1. There is a 1-to-1 correspondence between elements of norm 49 and elements of
norm −49, by sending α 7→ (1 +

√
2)α.

So it suffices to investigate the case N(β) = N(γ) = ±7. Similar to the previous exercise, we
can show that

{β ∈ Z[
√

2] : N(β) = 7} = {(1 +
√

2)2m(3±
√

2), −(1 +
√

2)2m(3±
√

2) with m ∈ Z},

{β ∈ Z[
√

2] : N(β) = −7} = {(1 +
√

2)2m−1(3±
√

2), −(1 +
√

2)2m−1(3±
√

2) with m ∈ Z}.
Then the elements α we are looking for are precisely the products of any two elements in one of
the set above (but they must come from the same set). �

Proposition 19.19. Now let p be any prime number. The following statements are equivalent:

(1) x2 − 2y2 = p has integer solutions;
(2) x2 − 2y2 = −p has integer solutions;
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(3) p is not a prime element in Z[
√

2].

Moreover x2−2y2 = p has either no integer solutions or infinitely many integer solutions (same
for x2 − 2y2 = −p).

Proof. First note that x +
√

2y ∈ Z[
√

2]× ⇔ x −
√

2y ∈ Z[
√

2]× ⇔ −x +
√

2y ∈ Z[
√

2]×. So
(1)⇒ (3) and (2)⇒ (3).

On the other hand, it is not hard to prove that (1) ⇔ (2): If N(a +
√

2b) = p, then N((a +
2b) +

√
2(a+ b)) = N((a+

√
2b)(1 +

√
2)) = −p and vice versa.

Now we prove that (3) implies (1) or (2). Suppose p is not a prime element in Z[
√

2],
then p = αβ for some α, β ∈ Z[

√
2] not invertible. Then p2 = N(p) = N(α)N(β). Now

N(α) = N(β) = ±p because N(α) 6= ±1 and N(β) 6= ±1. So if we write α = a + b
√

2, then
(a, b) is an integer solution to x2 − 2y2 = ±p. Hence (3) implies (1) or (2).

Now if (a, b) is an integer solution to x2−2y2 = p, then any element (a+b
√

2)u with N(u) = 1
gives an integer solution to x2 − 2y2 = p. Since any u = ±(1 +

√
2)n with n even has norm 1,

so there are infinitely many integer solutions to x2 − 2y2 = p. Exactly the same argument for
x2 − 2y2 = −p. �
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20. x3 + y3 = z3 with 3 - xyz

The goal of this section is to find all the integer solutions to the following Fermat equation

x3 + y3 = z3.

There are some obvious solutions: (0, k, k), (k, 0, k) and (k,−k, 0) for all k ∈ Z. We call these
trivial solutions.

Theorem 20.1. There are no non-trivial integer solutions to x3 + y3 = z3 with 3 - xyz.

The claim is also true when we remove the assumption 3 - xyz. Its proof is harder and we
will consider it later.

Suppose (a, b, c) is an integer solution. One can factor a3 + b3 as

a3 + b3 = (a+ b)(a2 − ab+ b2).

We wish to furthermore decompose a2 − ab+ b2 = b2
(
(ab )2 − a

b + 1
)
. To do this let ζ ∈ C be a

solution to x2 − x+ 1 = 0. There are two choices for ζ. In this lecture we take

ζ =
1 +
√
−3

2
.

Then the other solution to x2 − x+ 1 = 0 is ζ = 1− ζ.

20.1. The ring Z[ζ]. We now consider the set Z[ζ] = {a + bζ : a, b ∈ Z} ⊂ C. Recall that ζ
satisfies ζ2 = ζ − 1. Then the addition and multiplication on Z[ζ] are given by the formulae

(a+ bζ) + (c+ dζ) = (a+ c) + (b+ d)ζ,

(a+ bζ)(c+ dζ) = ac+ (ad+ bc)ζ + bdζ2

= ac+ (ad+ bc)ζ + bd(ζ − 1)

= (ac− bd) + (ad+ bc+ bd)ζ.

Then (Z[ζ],+, ·; 0, 1) is a commutative ring.
Next let us define the norm in Z[ζ]. We define

N(a+bζ) = (a+bζ)(a+ bζ) = (a+
b

2
+
b

2

√
−3)(a+

b

2
− b

2

√
−3) = (a+

b

2
)2+3(

b

2
)2 = a2+ab+b2.

Then N(a+ bζ) ∈ Z, N(a+ bζ) ≥ 0 and N(a+ bζ) = 0⇔ a = b = 0. Again we have

N(α)N(β) = (αα)(ββ) = (αβ)(αβ) = N(αβ).

Lemma 20.2. For any α ∈ Z[ζ], we have α ∈ Z[ζ]× ⇔ N(α) = 1.

Proof. If N(α) = 1, then αα = 1 by the definition of norms. So α ∈ Z[ζ]×.
Conversely if α ∈ Z[ζ]×, then αβ = 1 for some β ∈ Z[ζ]. Taking norms of both sides we have

N(α)N(β) = 1. But N(α) ≥ 1 and N(β) ≥ 1, so N(α) = N(β) = 1. �

Proposition 20.3. Z[ζ]× = {1,−1, ζ,−ζ, ζ = 1− ζ,−ζ = −1 + ζ}.

Proof. We have ζ(1− ζ) = 1. So the right hand side is contained in Z[ζ]×.
Conversely for any α = a+bζ ∈ Z[ζ]×, we haveN(α) = 1 by Lemma 20.2. So (a+ b

2)2+3
4b

2 = 1.
But then we have b = 0,±1.

If b = 0, then a = ±1. So α = ±1.
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If b = 1, then a = 0 or −1. So α = ζ or −1 + ζ.
If b = −1, then a = 0 or 1. So α = −ζ or 1− ζ. �

Next we turn to division algorithm.

Proposition 20.4 (Division Algorithm for Z[ζ]). For any α, β ∈ Z[ζ] with β 6= 0, there exist
γ, δ ∈ Z[ζ] such that

α = βγ + δ, with N(δ) < N(β).

Proof. Write α = a+ bζ and β = c+ dζ. Then

a+ bζ

c+ dζ
=
a+ b

2 + b
√
−3
2

c+ d
2 + d

√
−3
2

c+ d
2 −

d
√
−3
2

c+ d
2 −

d
√
−3
2

=
ac+ bd+ bc+ad

2 + bc−ad
2

√
−3

c2 + cd+ d2

=
ac+ bd+ ad

c2 + cd+ d2
+

bc− ad
c2 + cd+ d2

ζ

=: s+ tζ.

Here s, t are rational numbers. Let x, y be the closest integer to s, t respectively. Then |x−s| ≤ 1
2

and |y − t| ≤ 1
2 . Set γ = x+ yζ and δ = α− βγ. Then δ = β((s− x) + (t− y)ζ) and hence

N(δ) = N(β)N((s− x) + (t− y)ζ)

= N(β)
(
(s− x)2 + (s− x)(t− y) + (t− y)2

)
≤ N(β)(|s− x|2 + |s− x||t− y|+ |t− y|2)

≤ N(β)(
1

4
+

1

4
+

1

4
) < N(β).

�

With the Division Algorithm in hand, we obtain the Euclid’s Algorithm and the notion of gcd
(defined by αZ[ζ]+βZ[ζ] = gcd(α, β)Z[ζ] and is well-defined up to Z[ζ]×). So Z[ζ] is a principal
ideal domain (PID). Moreover we have two equivalent definitions of prime elements of Z[ζ], and
the Unique Factorization Theorem.

We end this subsection with the following proposition.

Proposition 20.5. If α ∈ Z[ζ] satisfies that N(α) is a prime number, then α is a prime element
of Z[ζ].

The proof is the same as for Z[i] and Z[
√
−2].

20.2. Application to x3 + y3 = z3. Now we are ready to prove Theorem 20.1. Recall that ζ is
a solution to x2 − x+ 1 = 0 and (a, b, c) is an integer solution to x3 + y3 = z3. We assume that
3 - abc. Then (a, b, c) is clearly non-trivial.

If p divides two of a, b, c, then it also divides the third. Hence (a/p, b/p, c/p) is another integer
solution to x3 + y3 = z3. Hence by dividing out the common factor, we may assume that a, b, c
are pairwise coprime.

The solutions to x2 − x+ 1 = 0 are, by computation, ζ and 1− ζ. So

x2 − x+ 1 = (x− ζ)(x− (1− ζ)).
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So we can complete our factorization of a3 + b3 in Z[ζ]:

a3 + b3 = (a+ b)(a2 − ab+ b2) = (a+ b)(a− bζ)(a− b(1− ζ)).

Lemma 20.6. a+ b, a− bζ and a− b(1− ζ) are pairwise coprime in Z[ζ], namely any element
in Z[ζ] dividing two of them is in Z[ζ]×.

Proof. We start with the first two. Note that

gcd(a+ b, a− bζ) = gcd(a+ b, (a+ b)− (a− bζ)) = gcd(a+ b, b(1 + ζ)).

By assumption a and b are coprime in Z, so a+b and b are coprime in Z. So 1 = (a+b)m+bn for
some m,n ∈ Z. But then 1 ∈ (a+b)Z[ζ]+bZ[ζ], and hence Z[ζ] = (a+b)Z[ζ]+bZ[ζ]. So a+b and
b are also coprime in Z[ζ]. So by the UFT for Z[ζ], we have gcd(a+b, b(1+ζ)) = gcd(a+b, 1+ζ).
Thus

gcd(a+ b, a− bζ) = gcd(a+ b, 1 + ζ).

On the other hand we haveN(1+ζ) = 3. So 1+ζ is a prime element of Z[ζ] by Proposition 20.5.
So gcd(a+ b, a− bζ) = 1 or 1 + ζ. We only need to exclude the latter case.

Suppose 1 + ζ|a + b, then N(1 + ζ)|N(a + b).[9] So 3|(a + b)2. But then 3|a + b as 3 is a
prime number. But then c3 = a3 + b3 ≡ (a+ b)3 (mod 3) implies that 3|c. This contradicts our
assumption that 3 - abc. Hence we proved that a+ b and a− bζ are coprime in Z[ζ].

The proof for a + b and a − b(1 − ζ) is similar: we have gcd(a + b, a − b(1 − ζ)) = gcd(a +
b, b(2− ζ)) = gcd(a+ b, 2− ζ) and N(2− ζ) = 3.

Now we prove that a− bζ and a− b(1− ζ) are coprime in Z[ζ]. We have

gcd(a− bζ, a− b(1− ζ)) = gcd(a− bζ, b(1− 2ζ)).

But gcd(a− bζ, b) = gcd(a− bζ + bζ, b) = gcd(a, b) = 1. So

gcd(a− bζ, a− b(1− ζ)) = gcd(a− bζ, 1− 2ζ).

We have N(1−2ζ) = 3. So 1−2ζ is a prime element of Z[ζ]. So it suffices to prove 1−2ζ - a−bζ.
Suppose otherwise, then we have N(1− 2ζ)|N(a− bζ), namely

3|a2 − ab+ b2 = (a+ b)3 − 3ab.

So again 3|a+ b and consequently c. Contradiction! �

Now let us study the equality

c3 = a3 + b3 = (a+ b)(a− bζ)(a− b(1− ζ)).

The left hand side is a cube. The right hand is the product of pairwise coprime elements of
Z[ζ]. Hence by UFT for Z[ζ], there exist elements α1, α2, α3 ∈ Z[ζ] and u1, u2, u3 ∈ Z[ζ]× =
{±1,±ζ,±(1− ζ)} such that

a+ b = u1α
3
1,

a− bζ = u2α
3
2,

a− b(1− ζ) = u3α
3
3.

[9]For a + b = (1 + ζ)α, we have a + b = (1 + ζ)α by taking the complex conjugation. Then N(a + b) =

(a+ b)2 = (1 + ζ)α(1 + ζ)α = N(1 + ζ)N(α).
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Note that for any α = s+ tζ ∈ Z[ζ], we have

α3 ≡ s3 + t3ζ3 = s3 − t3 ≡ s− t (mod 3).

Here modulo 3 is done in Z[ζ] instead of in Z! [10]

Let us write α2 = s+ tζ. Then a− bζ = u2α
3
2 implies

a− bζ ≡ u2(s− t) (mod 3).

Since s, t ∈ Z, we must have u2 = ±(1 − ζ). Up to replacing α2 by −α2 we may assume
u2 = 1− ζ.

Now by using ζ2 = ζ − 1, we have

a− bζ = (1− ζ)(s+ tζ)3

= (1− ζ)(s3 + 3s2tζ + 3st2ζ2 + t3ζ3)

= (1− ζ)(s3 + 3s2tζ + 3st2(ζ − 1)− t3)
= (1− ζ)

(
s3 − 3st2 − t3 + (3s2t+ 3st2)ζ

)
= s3 − 3st2 − t3 + (3s2t+ 3st2 − s3 + 3st2 + t3)ζ + (−3s2t− 3st2)ζ2

= s3 − 3st2 − t3 + (3s2t+ 3st2 − s3 + 3st2 + t3)ζ + (−3s2t− 3st2)(ζ − 1)

= (s3 + 3s2t− t3) + (−s3 + 3st2 + t3)ζ.

Comparing both sides, we have a = s3 + 3s2t− t3 ≡ s3 − t3 (mod 3) and b = −s3 + 3st2 + t3 ≡
−s3 + t3 (mod 3). So a ≡ −b (mod 3). But then

c3 = a3 + b3 ≡ (−b)3 + b3 = 0 (mod 3).

So 3|c3 and hence 3|c. Contradiction to 3 - abc. This proves Theorem 20.1.

Remark 20.7. After we proved u2 = 1 − ζ, the first natural way to continue the argument is
as follows: we have then a− bζ ≡ (1− ζ)(s− t) (mod 3), and hence

a− (s− t) ≡ (b− (s− t))ζ (mod 3).

The left hand side does not have ζ and the right hand side is a multiple of ζ. So both sides are
0. Hence

a ≡ b ≡ s− t (mod 3).

As a, b and s−t are integers, this congruence can be seen in Z or in Z[ζ] (same effect). Unfortu-
nately this does NOT give any contradiction. So we must go through the complicated computation
as we did.

[10]As a set we have that Z[ζ]/3Z[ζ] = {a+ bζ : a, b = 0, 1, 2} has 9 elements.
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21. Solving x3 + y3 = z3 in Z[ζ]

The goal is to prove the following improvement of Theorem 20.1.

Theorem 21.1. There are no non-trivial solutions to x3 + y3 = z3 in Z[ζ], namely: if (α, β, γ)
is a solution in Z[ζ], then αβγ = 0.

If (α, β, γ) is a solution to x3 + y3 = z3 in Z[ζ] and 0 6= δ ∈ Z[ζ] divides two out of three,
then δ also divides the third one. Then (α/δ, β/δ, γ/δ) gives another solution to x3 + y3 = z3 in
Z[ζ]. Hence if (α, β, γ) is a non-trivial solution, then we may assume that α, β, γ are pairwise
coprime in Z[ζ].

21.1. Local analysis: The modular arithmetic Z[ζ]/(
√
−3). Let us consider the element√

−3 ∈ Z[ζ]. We have N(
√
−3) = 3, and hence

√
−3 is a prime element of Z[ζ] by Proposi-

tion 20.5. Then 3 = −(
√
−3)2 is a prime factorization of 3 in Z[ζ].

Suppose α ∈ Z[ζ] satisfies N(α) = 3, then −(
√
−3)2 = 3 = αα. So

√
−3|α or α. But√

−3 = −
√
−3, so

√
−3|α. So up to an element in Z[ζ]×, α is

√
−3 or 3. But N(3) = 9 6= 3. So

α ∈
√
−3Z[ζ]×.[11]

We want to study the modular arithmetic Z[ζ]/
√
−3Z[ζ], which we denote by Z[ζ]/(

√
−3)

for simplicity. First we point out that the ring structure on Z[ζ] induces a ring structure on
Z[ζ]/(

√
−3) (as we did for modular arithmetic in Z or F [x]).

Proposition 21.2. As rings, (Z[ζ]/(
√
−3),+, ·; 0, 1) and (Z/3Z,+, ·; [0], [1]) are isomorphic. In

particular, (Z[ζ]/(
√
−3),+, ·; 0, 1) is a field.

Proof. We give two proofs for this proposition. The first proof is explicit, while the second proof
is abstract but more general.

Method 1 We define the following map

φ : Z/3Z→ Z[ζ]/(
√
−3), [a] 7→ a.

We prove that φ is well-defined: If a = a′ + 3k for some k ∈ Z, then a = a′ +
√
−3(1− 2ζ)k and

hence a = a′. We prove that φ is a ring homomorphism: φ([0]) = 0, φ([1]) = 1, φ([a] + [b]) =
φ([a]) + φ([b]) = a+ b and φ([a][b]) = φ([a])φ([b]) = ab.

We prove that φ is injective: Suppose φ([a]) = φ([b]), then a = b. So a = b +
√
−3α

for some α ∈ Z[ζ]. But then
√
−3α = a − b ∈ Z. Taking the norms of both sides, we get

3|3N(α) = N(
√

3α) = N(a − b) = (a − b)2. Since 3 is a prime number, we have 3|a − b. Thus
[a] = [b].

We prove that φ is surjective: By a simple computation we have ζ = 2 +
√
−3ζ. Hence

ζ = 2 = φ([2]). So for any α = a+ bζ ∈ Z[ζ], we have α = φ([a+ 2b]).
Now φ−1 is the desired isomorphism.

Method 2 We first prove that Z[ζ]/(
√
−3) is finite. That is, there are finitely many congruence

classes modulo
√
−3. Note that if two elements of Z[ζ] are congruent modulo 3, then they are

congruent modulo
√
−3 since

√
−3|3 in Z[ζ]. Hence the number of congruence classes modulo√

3 is at most the number of congruence classes modulo 3, which is 9. This proves the finiteness
of Z[ζ]/(

√
−3). But we have more: since

√
−3 and 0 are congruent modulo

√
−3 but not modulo

3, we see that #(Z[ζ]/(
√
−3)) < 9.

[11]For example, 1 + ζ =
√
−3(1− ζ) and 1− 2ζ =

√
−3(−1).
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Next we shall use some abstract facts, which we prove later. Since
√
−3 is a prime element, we

have that Z[ζ]/(
√
−3) is an integral domain, namely the product of any two non-zero elements

is still non-zero. But Z[ζ]/(
√
−3) is finite, and hence it is a field. These follow from the two

claims below.
Since 3 is congruent to 0 modulo

√
−3, we see that the field Z[ζ]/(

√
−3) is of characteristic

3. But #(Z[ζ]/(
√
−3)) < 9 = 32. So #(Z[ζ]/(

√
−3)) = 3 by Theorem 10.5. Now Z[ζ]/(

√
−3) is

a field with 3 elements. So it must be F3.

Claim 1. Let R be an integral domain, and let α be a prime element, namely α|βγ ⇒ α|β or
α|γ. Then R/αR is again an integral domain.

Claim 2. Let R be an integral domain. If R has finitely many elements, then R is a field.

Proof of Claim 1. Suppose βγ = 0R. Then βγ ∈ αR, or equivalently α|βγ. So α|β or α|γ, or
equivalently β = 0R or γ = 0R. Thus R/αR is an integral domain by definition. �

Proof of Claim 2. Take any 0 6= α ∈ R. We wish to prove that αβ = 1R for some β ∈ R.
Let us define a map ψ : R → R, β 7→ αβ. This map is injective: If ψ(β) = ψ(β′), then

αβ = αβ′. Hence α(β − β′) = 0R. But α 6= 0R and R is an integral domain. So β − β′ = 0R. So
β = β′.

So ψ is also surjective because R is finite. In particular 1R = ψ(β) for some β ∈ R. This β is
what we desire. �

�

Proposition 21.2 implies that any α ∈ Z[ζ] is congruent to 0 or 1 or −1 modulo
√
−3.

Proposition 21.3. Let e ∈ {1,−1}. If α ∈ Z[ζ] is congruent to e modulo
√
−3, then α3 is

congruent to e modulo 9.

Proof. Write α = e+ β
√
−3 for β ∈ Z[ζ]. Then we have

α3 = e3 + 3e2β
√
−3 + 3e(β

√
−3)2 + (β

√
−3)3

= e+ 9eβ2 + 3
√
−3(β − β3)

≡ e+ 3
√
−3β(β − 1)(β + 1) (mod 9).

By Proposition 21.2, β is congruent to 0 or 1 or −1 modulo
√
−3. So

√
−3|β(β− 1)(β+ 1), and

hence 9|3
√
−3β(β − 1)(β + 1). Thus α3 ≡ e (mod 9). �

Corollary 21.4. Suppose α, β, γ ∈ Z[ζ] pairwise coprime and ε ∈ Z[ζ]× satisfy α3+β3+εγ3 = 0.
Then

√
−3 divides exactly one of α, β, γ.

Proof. Since α, β, γ are pairwise coprime and
√
−3 6∈ Z[ζ]×, we know that

√
−3 divides at most

one of α, β, γ.
If
√
−3 does not divide any one of them, then α3, β3, γ3 are congruent to 1 or −1 modulo 9 by

Proposition 21.3. But then α3+β3+εγ3 cannot be congruent to 0 modulo 9. Contradiction. �

Corollary 21.5. Suppose α, β ∈ Z[ζ] neither of which is divisible by
√
−3. Suppose ε ∈ Z[ζ]× =

{±1,±ζ,±(1 − ζ)} with α3 + εβ3 ≡ 0 (mod 3). Then ε = ±1 and moreover α3 + εβ3 ≡ 0
(mod 9).

Proof. By Proposition 21.3, we have α3, β3 ≡ ±1 (mod 9). Now the only elements in {±1,±ζ,±(1−
ζ)} for which ±1± ε can possibly be congruent to 0 modulo 3 are ±1. �
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21.2. Global analysis: A descent argument. In order to prove Theorem 21.1, we need to
prove an even stronger form of it.

Theorem 21.6. There do not exist (pairwise) coprime elements α, β, γ ∈ Z[ζ] and an element
ε ∈ Z[ζ]× such that

(21.1) α3 + β3 + εγ3 = 0.

We will prove this theorem by a descent argument: we show that if one has a quadruple
(α, β, γ, ε) satisfying the desired conditions, then there exists another quadruple (α′, β′, γ′, ε′)
also satisfying the desired conditions but with N(α′β′γ′) < N(αβγ). This process can be
repeated forever, but N(αβγ) is always a positive integer. This cannot happen. Thus we get a
contradiction.

First of all,
√
−3 divides exactly one of α, β, γ by Corollary 21.4. If

√
−3 divides α or β, then

ε = ±1 = ε3 by Corollary 21.5. So in this case we can absorb ε into γ3, namely replace γ by εγ.
Then α, β, γ are still (pairwise) coprime and we have α3 +β3 +γ3 = 0 in this case. We can then
rename α, β, γ so that

√
−3|γ.

In summary, we may assume
√
−3|γ and so

√
−3 - α, β. Moreover, α3 + β3 ≡ 0 (mod 9) by

Corollary 21.5. So (
√
−3)4 = 9|γ3. Since

√
−3 is a prime element in Z[ζ], we have (

√
−3)2|γ by

UFT for Z[ζ].
Similar to last time, we factor α3 + β3 as

(21.2) − εγ3 = α3 + β3 = (α+ β)(α− βζ)(α− β(1− ζ)).

Lemma 21.7. If $ 6∈ Z[ζ]× divides any two of α+β, α−βζ or α−β(1−ζ), then $ ∈
√
−3Z[ζ]×.

Proof. Suppose $ divides the first two. Then $ divides α(1 + ζ) = (α + β)ζ + (α − βζ) and
β(1 + ζ) = (α+ β)− (α− βζ). Since α, β are coprime, we get $|1 + ζ. Since N(1 + ζ) = 3, we
have that 1 + ζ is a prime element and is in

√
−3Z[ζ]×. Hence $ ∈

√
−3Z[ζ]×.

Suppose $ divides the first and the third, then the same argument shows $|2−ζ. Once again
$ ∈

√
−3Z[ζ]× since N(2− ζ) = 3.

Suppose $ divides the last two, then $|1− 2ζ = −
√
−3 and so $ ∈

√
−3Z[ζ]×. �

We introduce the following notation: for any element δ ∈ Z[ζ], we denote by µ√−3(δ) to be

the largest non-negative integer k such that (
√
−3)k|δ.

Recall that
√
−3 - β. So the difference of any two of α + β, α − βζ and α − β(1 − ζ) is not

by
√
−3

2
. Write

a = µ√−3(α+ β)

b = µ√−3(α− βζ)

c = µ√−3(α− β(1− ζ)).

(The proof of) Lemma 21.7 implies

α+ β ≡ α− βζ ≡ α− β(1− ζ) (mod
√
−3).

Thus either a = b = c = 0 or a, b, c ≥ 1. But
√
−3

6| − εγ3 = (α + β)(α + β)(α − β(1 − ζ)), so
a+ b+ c ≥ 6. Thus a, b, c ≥ 1.

On the other hand at most one of a, b, c is ≥ 2 since the difference of any two of α+β, α−βζ
and α− β(1− ζ) is not divisible by

√
−3

2
.
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Thus as multi-sets {a, b, c} = {1, 1, 3r − 2} where r = µ√−3(γ) ≥ 2.

Dividing both sides of (21.2) by
√
−3

3r
, we get

−ε
(

γ√
−3

r

)3

=
α+ β√
−3

a
α− βζ
√
−3

b

α− β(1− ζ)√
−3

c .

Lemma 21.7 implies that the three terms on the right hand side are pairwise coprime. Hence by
UFT for Z[ζ], there exist ε1, ε2, ε3 ∈ Z[ζ]× and pairwise coprime elements λ1, λ2, λ3 ∈ Z[ζ] such
that

α+ β = ε1
√
−3

a
λ31,

α− βζ = ε2
√
−3

b
λ32,

α− β(1− ζ) = ε3
√
−3

c
λ33.

Since ζ, 1− ζ ∈ Z[ζ]×, we multiply the second equation by −ζ and the last by −(1− ζ) and get

α+ β = ε1
√
−3

a
λ31,

−ζα− β(1− ζ) = ε4
√
−3

b
λ32,

−(1− ζ)α− βζ = ε5
√
−3

c
λ33,

where ε4 = −ε2ζ, ε5 = −ε3(1− ζ) ∈ Z[ζ]×. Summing up these three new equations gives

0 = ε1
√
−3

a
λ31 + ε4

√
−3

b
λ32 + ε5

√
−3

c
λ33.

Since this equation is symmetric, we may assume without loss of generality that a = 1, b = 1,
c = 3r − 2. Dividing by ε1

√
−3 gives

0 = λ31 + ε6λ
3
2 + ε7(

√
−3

r−1
λ3)

3 = 0

for some ε6, ε7 ∈ Z[ζ]×. Since r ≥ 2, we have λ31 + ε6λ
3
2 ≡ 0 (mod 3). So by Corollary 21.5,

ε6 = ±1 = ε36. Set (α′, β′, γ′, ε′) = (λ1, ε6λ2,
√
−3

r−1
λ3, ε7). Then (α′, β′, γ′, ε′) is a quadruple

satisfying (21.1).
Since

λ31λ
3
2(
√
−3

r−1
λ3)

3 =
u1(α

3 + β3)
√
−3

3 =
u2γ

3

√
−3

3

for some u1, u2 ∈ Z[ζ]×, we have

N((α′β′γ′)3) = N(γ3/
√
−3

3
) < N(γ3).

So N(α′β′γ′) < N(γ) ≤ N(αβγ).
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22. Quadratic Fields

22.1. Algebraic Numbers and Algebraic Integers.

Definition 22.1. A complex number ξ is called an algebraic number if it is a root of some
non-zero f ∈ Q[x].

For example any rational number r is algebraic since we can take f(x) = x − r. There are

many other examples, like
√
D for any D ∈ Q as we can take f(x) = x2 −D.

Any complex number that is not algebraic is said to be transcendental. The best known
examples of transcendental numbers are π and e.

Theorem 22.2. Let ξ be an algebraic number. Then there exists a unique irreducible monic
polynomial f ∈ Q[x] such that f(ξ) = 0. Moreover f satisfies the following property: For any
g ∈ Q[x] such that g(ξ) = 0, we have f |g.

Proof. By definition of algebraic numbers, ξ is a root of some non-zero polynomial in Q[x]. Let
f be such a polynomial of minimal degree, say d. Such an f exists because the degree of a
non-zero polynomial is non-negative. We may assume that f is monic by dividing f by the
leading coefficient.

We prove that f is irreducible. Suppose f = f1f2 with f1, f2 ∈ Q[x]. It suffices to prove that
either deg(f1) = 0 or deg(f2) = 0. Observe that f1 6= 0 and f2 6= 0 since f 6= 0. Now 0 = f(ξ) =
f1(ξ)f2(ξ). So f1(ξ) = 0 or f2(ξ) = 0. But then deg(f1) ≥ deg(f) or deg(f2) ≥ deg(f) by the
minimality of deg(f). However deg(f) = deg(f1) + deg(f2) ≥ max(deg(f1),deg(f2)). So either
deg(f2) = 0 or deg(f1) = 0.

Now for any g ∈ Q[x] such that g(ξ) = 0, we apply the Division Algorithm and get g = fh+r
for some h, r ∈ Q[x] with deg(r) < deg(f). Then 0 = g(ξ) = f(ξ)h(ξ) + r(ξ) = r(ξ). By the
minimality of deg(f), we must then have r = 0. Hence f |g. This proves the “Moreover” part of
the theorem.

We turn to the uniqueness of f . Let f∗ ∈ Q[x] be another irreducible monic polynomial with
f∗(ξ) = 0. Then by the previous paragraph we have f |f∗. So f∗ = fh for some h ∈ Q[x]. But
f∗ is irreducible and f is non-constant, so h ∈ Q∗. By comparing leading coefficients we get
h = 1. So f∗ = f . �

Definition 22.3. The minimal polynomial of an algebraic number ξ is the polynomial f(x) ∈
Q[x] described in Theorem 22.2. The degree of ξ, denoted by deg(ξ), is defined to be deg(f).

Definition 22.4. Let ξ be an algebraic number and let f(x) = xn + an−1x
n−1 + . . . + a0 be

its minimal polynomial. Suppose the roots of f in C are ξ1 = ξ, . . . , ξn. Then the norm of ξ,
denoted by N(ξ), is defined to be ξ1 · · · ξn = (−1)na0 ∈ Q. The trace of ξ, denoted by Tr(ξ), is
defined to be ξ1 + · · ·+ ξn = −an−1 ∈ Q.

We have seen norms in Z[i],Z[
√
−2],Z[

√
2] and Z[1+

√
−3

2 ]. All these norms are particular cases
of the norm defined here if the element is not an integer. There is another way to define norms
and traces: we first fix a field and then talk about norms and traces in that field. These two
definitions are slightly different. For example N(2) = 2 for Definition 22.4, but N(2) = 22 = 4
if we use the norm in Z[i] defined previously.

Definition 22.5. An algebraic number ξ is an algebraic integer if it is a root of some monic
f ∈ Z[x].
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In this definition, it is important to request f to be monic: Otherwise let f ∈ Q[x] non-zero
be such that f(ξ) = 0 and let f∗ = cf where c ∈ Z is a multiple of the denominator of any
coefficient of f (e.g. c can be taken to be the lcm of the denominators of the coefficients). Then
ξ is a root of f∗ ∈ Z[x]. But we certainly do not want any algebraic number to be an algebraic
integer.

The following lemma justifies the name “integer” in the sense that it coincides with the
common sense in the simplest case.

Lemma 22.6. A rational number is an algebraic integer if and only if it is in Z.

Proof. It is clear that any integer is an algebraic integer.
On the other hand if a

b ∈ Q is an algebraic integer, then we may assume gcd(a, b) = 1. By
definition of algebraic integers(a

b

)n
+ cn−1

(a
b

)n−1
+ . . .+ c0 = 0

for some c0, . . . , cn−1 ∈ Z. Multiplying both sides by bn we get

an + cn−1ba
n−1 + . . .+ c0b

n = 0.

Thus b|an. But gcd(a, b) = 1. Hence b = ±1. Thus a
b ∈ Z. �

Proposition 22.7. The minimal polynomial of an algebraic integer is in Z[x].

Proof. Suppose ξ is an algebraic integer. Then g(ξ) = 0 for some monic polynomial g ∈ Z[x].
Let f ∈ Q[x] be the minimal polynomial of ξ. Then by Theorem 22.2, we have g = fh for

some h ∈ Q[x]. Since both f and g are monic, h is also monic.
By Gauß’s Lemma (Lemma 22.8), we have f ∈ Z[x] (and h ∈ Z[x]). Hence we are done. �

Lemma 22.8 (Gauß’s Lemma). Let f ∈ Z[x] be monic. Suppose f = f1f2 for f1, f2 ∈ Q[x]
monic, then f1, f2 ∈ Z[x].

Proof. We introduce the following notion: A polynomial g ∈ Z[x] is said to be primitive if the
only positive integer dividing all its coefficients is 1. We make use of the following Claim.

Claim 3. The product of two primitive polynomials is primitive.

Let c1 be the smallest positive integer such that c1f1(x) ∈ Z[x]. Then c1f1(x) is a primitive
polynomial: If p divides all coefficients of c1f1(x), then p|c1 since c1 is the leading coefficient,
and hence (c1/p)f1(x) ∈ Z[x], contradiction to the minimality of c1.

Similarly let c2 be the smallest positive integer such that c2f2(x) ∈ Z[x]. Then c2f2(x) is a
primitive polynomial.

Then c1c2f(x) = (c1f1(x))(c2f2(x)) is primitive by Claim 3. But f ∈ Z[x], so c1c2 = 1. Hence
c1 = c2 = 1. So it suffices to prove Claim 3.

Proof of Claim 3. Let anx
n + . . . + a0 and bmx

m + . . . + b0 be primitive polynomials and let
denote their product by cn+mx

n+m + . . .+ c0. Suppose that the product is not primitive. Then
there exists a prime number p such that p|ck for each k ∈ {0, . . . , n+m}.

Let ai be the first coefficient of anx
n + . . . + a0 such that p - ai. Such an i exists since

anx
n + . . . + a0 is primitive. Let bj be the first coefficient of bmx

m + . . . + b0 such that p - bj .
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Such a j exists since bmx
m + . . . + b0 is primitive. Then the coefficient of xi+j in the product

polynomial is

ci+j =
∑

0≤k≤n, 0≤i+j−k≤m
akbi+j−k.

In this sum, any term with k > i is a multiple of p by looking at ak, any term with i+ j− k > j
(i.e. i > k) is a multiple of p by looking at bk. Hence ci+j ≡ aibj (mod p). Hence p|aibj . This
contradicts p - ai and p - bj . �

�

We close this subsection by the following important proposition.

Proposition 22.9. Let α and β be algebraic numbers (resp. algebraic integers). Then α + β
and αβ are also algebraic numbers (resp. algebraic integers).

Proof. (Sketch) Let f be the minimal polynomial of α and let g be the minimal polynomial of β.
Suppose the roots of f in C are α1 = α, α2, . . . , αn and the roots of g in C are β1 = β, β2, . . . , βm.
Then

f(x) =
n∏
i=1

(x− αi) and g(x) =
m∏
j=1

(x− βj).

Let
h1(x) =

∏
1≤i≤n, 1≤j≤m

(x− (αi + βj)) and h2(x) =
∏

1≤i≤n, 1≤j≤m
(x− αiβj)

Then h1, h2 ∈ Q[x]. (Not very easy. Expand for j, then for i.)[12]

If α and β are algebraic integers, then f, g ∈ Z[x] by Proposition 22.7. Then h1, h2 ∈ Z[x]. �

Corollary 22.10. The set of all algebraic numbers forms of a field. The set of all algebraic
integers forms a commutative ring.

Proof. If α, β are algebraic numbers, then so are α+ β and αβ by Proposition 22.9.
If α is a root of anx

n + . . . + a0, then −α is a root of (−1)nanx
n + . . . + a0. If furthermore

α 6= 0, then α−1 is a root of an + an−1x+ . . .+ a0x
n.

Hence the set of all algebraic numbers is closed under addition, multiplication, negation and
inverse. It certainly contains 0 and 1. Hence it is a field.

As for the set of all algebraic integers, it is closed under addition, multiplication, negation
but not necessarily inverse. It contains 0 and 1. Hence it is a commutative ring. �

22.2. Number Fields. For any algebraic number ξ, define

Q(ξ) =

{
f(ξ)

h(ξ)
: f, h ∈ Q[x], h(ξ) 6= 0

}
.

Here the inverse is taken in C. On C, we have the addition and multiplication. Now

f1(ξ)

h1(ξ)
+
f2(ξ)

h2(ξ)
=
f1(ξ)h2(ξ) + f2(ξ)h1(ξ)

h1(ξ)h2(ξ)
=

(f1h2 + f2h1)(ξ)

(h1h2)(ξ)
∈ Q(ξ),

[12]Philosophically, h1 and h2 are stable under all possible “conjugations” because we have added all possible
conjugates of α+β and αβ respectively, so they are in Q[x]. This argument can be made precise by Galois theory.
Otherwise it is also possible to expand these two polynomials and prove directly that they are in Q[x].
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f1(ξ)

h1(ξ)

f2(ξ)

h2(ξ)
=

(f1f2)(ξ)

(h1h2)(ξ)
∈ Q(ξ).

So (Q(ξ),+, ·; 0, 1) is a commutative ring. It is easy to check that this ring is actually a field.

Lemma 22.11. Let n = deg(ξ). Then every element of Q(ξ) can be written uniquely as

a0 + a1ξ + . . .+ an−1ξ
n−1

where ai ∈ Q for all i ∈ {0, . . . , n− 1}.

Proof. (existence) Let g ∈ Q[x] be the minimal polynomial of ξ. In particular g is irreducible
and deg(g) = n.

For any f(ξ)
h(ξ) ∈ Q(ξ), we have h(ξ) 6= 0. But g(ξ) = 0, so g - h. But g is irreducible, so

gcd(g, h) = 1. Hence g(x)G(x) + h(x)H(x) = 1 for some G,H ∈ Q[x]. Take x = ξ in this

equation, then we have h(ξ)H(ξ) = 1. Hence f(ξ)
h(ξ) = f(ξ)H(ξ) = (fH)(ξ).

Now apply the Division Algorithm in Q[x] to fH and g, we get fH = gq + r for some
q, r ∈ Q[x] with deg(r) < deg(g) = n. Then r(ξ) = (fH)(ξ). Hence r(ξ) is the expression which
we desire.

(uniqueness) If a0+a1ξ+. . .+an−1ξ
n−1 = a′0+a

′
1ξ+. . .+a

′
n−1ξ

n−1 with a0, . . . , an−1, a
′
0, . . . , a

′
n−1 ∈

Q, then ξ is a root of the polynomial

g∗(x) = (an−1 − a′n−1)xn−1 + . . .+ (a0 − a′0) ∈ Q[x].

Now deg(g∗) ≤ n− 1 and deg(ξ) = n, so g∗ = 0. Hence ai = a′i for all i ∈ {0, . . . , n− 1}. �

Another way to look at Q(ξ) is to use the Modular Arithmetic in Q[x]. Note that we have
used this point of view for the classification of finite fields. See the proof of Theorem 11.6.

Theorem 22.12. Let g be the minimal polynomial of ξ. Then there exists a ring (or field)
isomorphism

(Q(ξ),+, ·; 0, 1) ' (Q[x]/(g),+, ·; 0, 1).

Proof. Define a map

ϕ : Q[x]/(g)→ Q(ξ), f 7→ f(ξ).

We prove that ϕ is well-defined: If f1 = f2, then f1 − f2 = gh for some h ∈ Q[x]. Then
f1(ξ)− f2(ξ) = g(ξ)h(ξ) = 0. Hence f1(ξ) = f2(ξ).

We prove that ϕ is a ring homomorphism: ϕ(0) = 0 and ϕ(1) = 1. Also ϕ(f1 + f2) =
ϕ(f1 + f2) = (f1 + f2)(ξ) = f1(ξ) + f2(ξ) = ϕ(f1) + ϕ(f2). Similarly ϕ(f1f2) = ϕ(f1)ϕ(f2).

We prove that ϕ is injective: If ϕ(f1) = ϕ(f2), i.e. f1(ξ) = f2(ξ), then (f1 − f2)(ξ) = 0.
Hence g|f1 − f2 by the definition of minimal polynomials. Hence f1 = f2.

Finally ϕ is surjective by Lemma 22.11. �

22.3. Ring of Integers. For any algebraic number ξ, define the ring of integers of the field
Q(ξ) to be the set of algebraic integers contained in Q(ξ). It is a ring by Proposition 22.9.
This ring is usually denoted by OQ(ξ). It is clearly an integral domain, i.e. the product of any
non-zero elements is still non-zero.

We use O×Q(ξ) to denote the set of invertible elements of OQ(ξ). Then (O×Q(ξ), ·; 1) is an abelian
group.
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22.4. Quadratic Fields. Now we turn to quadratic fields. Let D be a square-free integer, and
let
√
D be a root of x2 −D. We wish to understand OQ(

√
D).

Theorem 22.13. OQ(
√
D) =

{
Z[
√
D] if D ≡ 2, 3 (mod 4)

Z[1+
√
D

2 ] if D ≡ 1 (mod 4)
.

Proof. We start with ⊂. Let α ∈ OQ(
√
D). Then α = a+b

√
D for some a, b ∈ Q by Lemma 22.11.

Define α′ = a− b
√
D. Then α+α′ = 2a and αα′ = a2−Db2. Let f(x) = x2− 2ax+ (a2−Db2).

Then α, α′ are the roots of f .
If α ∈ Q, then α ∈ Z by Lemma 22.6. If α 6∈ Q, then b 6= 0. Hence f is irreducible in Q[x]. So

f is the minimal polynomial of α. But α is an algebraic integer, so f ∈ Z[x] by Proposition 22.7.
So 2a ∈ Z and a2 −Db2 ∈ Z.

If a ∈ Z, then Db2 ∈ Z. But D is square-free, so b ∈ Z. Hence α ∈ Z[
√
D] in this case.

If a ∈ 1
2Z \ Z, then the denominator of a2 is 4. So the denominator of Db2 is also 4. Since D

is square-free, we then have b ∈ 1
2Z \Z. Hence α = a+ b

√
D = (a− b) + 2b1+

√
D

2 . Now a− b ∈ Z
and 2b ∈ Z since a, b ∈ 1

2Z \ Z. Hence α ∈ Z[1+
√
D

2 ]. However, in this case we can rewrite

a2 −Db2 =
(2a)2 −D(2b)2

4
∈ Z.

So (2a)2 −D(2b)2 ≡ 0 (mod 4). But 2a and 2b are odd integers, so we get D ≡ 1 (mod 4).
To sum it up, we have the desired “⊂”.
Conversely,

√
D is a root of x2 − D ∈ Z[x]. So the “⊃” holds when D ≡ 2, 3 (mod 4). If

D ≡ 1 (mod 4), then 1+
√
D

2 is a root of x2−x+ 1−D
4 ∈ Z[x]. So the “⊃” also holds when D ≡ 1

(mod 4).
So we are done. �

Theorem 22.14. For D < −3, we have O×
Q(
√
D)

= {±1}.

Proof. The inclusion ⊃ is clear. We prove ⊂. As before, we can prove that

O×
Q(
√
D)

= {α ∈ OQ(
√
D) : N(α) = ±1}.

If D ≡ 2, 3 (mod 4), then we let α = a + b
√
D ∈ OQ(

√
D) with a, b ∈ Z. We then have

N(α) = a2 − Db2 ≥ 0 since D < 0. If N(α) = 1, then a2 − Db2 = 1. Since D < −3 and so
−D > 3, we must have b = 0 and a = ±1. So we are done in this case.

If D ≡ 1 (mod 4), then we let α = a + b1+
√
D

2 ∈ OQ(
√
D) with a, b ∈ Z. We then have

N(α) = (a + b
2)2 − D( b2)2 ≥ 0 since D < 0. If N(α) = 1, then (a + b

2)2 − D( b2)2 = 1. Since
D < −3 and so −D > 3, we must have b = 0 and a = ±1. hence we are done in this case. �

Remark 22.15. When D > 0, we have the following result: There exists some α ∈ OQ(
√
D)

such that
O×

Q(
√
D)

= {±αn : n ∈ Z}.

Theorem 22.16. For D = −1,−2,−3,−7,−11, 2, 3, 5, the ring OQ(
√
D) has the Division Algo-

rithm. Namely for any α, β ∈ OQ(
√
D) and β 6= 0, there exist γ, δ ∈ OQ(

√
D) such that

α = βγ + δ, with |N(δ)| < |N(β)|.
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The proof is similar as before. Note that −7,−11, 5 ≡ 1 (mod 4). This is why they are not
“too large” for the Division Algorithm to hold (recall that OQ(

√
−5) cannot have the Division

Algorithm as we have shown in §16.3).
Most of the time, we do not really need the Division Algorithm, but only that OQ(

√
D) is PID.

Here is a big theorem regarding this perspective.

Theorem 22.17. If D < 0, then OQ(
√
D) is PID if and only if D = −1, −2, −3, −7, −11,

−19, −43, −67, −163.

On the other hand, for 0 < D < 100, OQ(
√
D) is PID if and only if

D =2, 3, 5, 6, 7, 11, 13, 14, 17, 19, 21, 22, 23, 29, 31, 33, 37, 38, 41, 43, 46, 47,

53, 57, 59, 61, 62, 67, 69, 71, 73, 77, 83, 86, 89, 93, 94, 97.

When an integral domain R is not a PID, then prime elements and irreducible elements are
not the same. This is somewhat annoying. In order to (partly) fix this problem, we introduce
the following definition of ideals and prime ideals.

Definition 22.18. (1) An ideal I of R is a subset of R closed under addition such that
aI ⊂ I for any a ∈ R.

(2) An ideal I of R is called a prime ideal if the following property holds: For any a, b ∈ R,
ab ∈ I ⇒ a ∈ I or b ∈ I.

For example, in all previous cases of PID (R = Z, F [x], Z[i], Z[
√
−2], Z[

√
2], Z[1+

√
−3

2 ]), what
we actually cared for was αR for some element α ∈ R. This is an ideal of R, which is usually
denoted by (α) in the theory of rings. Then β ∈ (α) ⇔ β = αγ for some γ ∈ R ⇔ α|β. So the

definition of prime ideal is a generalization of irreducible elements.[13] Moreover, (α) = R ⇔
α ∈ R×.

For elements α1, . . . , αn ∈ R, we use (α1, . . . , αn) to denote the ideal α1R + . . . + αnR. If R
is PID, then (α1, . . . , αn) = (γ) for some γ ∈ R.

We already know that OQ(
√
−5) is not a PID. In fact we can prove that (2, 1 +

√
−5) cannot

be expressed as (γ) for any γ ∈ OQ(
√
−5). Suppose it could, then 2 ∈ (γ) and 1 +

√
−5 ∈ (γ).

Hence 2 = γα and 1 +
√
−5 = γβ. Taking the norms, we get

4 = N(γ)N(α) and 6 = N(γ)N(β).

So N(γ)|gcd(4, 6) = 2. Hence N(γ) = 1 or 2.
If N(γ) = 2, then a2 + 5b2 = 2 where γ = a+ b

√
−5 with a, b ∈ Z. But this cannot happen.

So N(γ) = 1, and hence γγ = 1. So γ ∈ O×Q(
√
−5), and hence (γ) = OQ(

√
−5). In particular

1 = 2(c+ d
√
−5) + (1 +

√
−5)(e+ f

√
−5) for some c, d, e, f ∈ Z. Hence

1 = (2c+ e− 5f) + (2d+ e+ f)
√
−5.

So 2c + e − 5f = 1 and 2d + e + f = 0. Taking the sum we get 2(c + d + e − 2f) = 1. This
cannot happen.

[13]The terminology is somewhat unfortunate.
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23. Extra Topic: Transcendence of e and π

In this section, we take a glance at the transcendence theory. A first attempt is to prove that
a certain number is not algebraic. More advanced topics will be to understand the relations
between different transcendental numbers. Transcendence theory has many applications, and
(perhaps) surprisingly it has been proved to be very useful to study algebraic objects.[14]

One useful technic for transcendence theory is the construction of appropriate auxiliary func-
tions. The construction varies case by case, but there are some general tools, for example the
Pigeonhole Principle, Geometry of Numbers and Siegel’s Lemma.

In this section, we will present a proof of the transcendence of e and π.
The auxiliary function we shall use is the following one:

I(t) =

∫ t

0
et−uf(u)du,

where f(x) ∈ C[x]. Denote by n = deg(f), then

(23.1) I(t) = et
n∑
j=0

f (j)(0)−
n∑
j=0

f (j)(t)

where f (j) means the j-th derivative of the polynomial f . Here the computation is done by
integration by parts:

I(t) =

∫ t

0
(
d

du
(−et−u))f(u)du

= (−et−uf(u))|t0 −
∫ t

0
−et−uf ′(u)du

= etf(0)− f(t) +

∫ t

0
et−uf ′(u)du

= etf(0)− f(t) + etf ′(0)− f ′(t) +

∫ t

0
et−uf ′′(u)du

= · · ·

= et
n∑
j=0

f (j)(0)−
n∑
j=0

f (j)(t)

We shall use the following notation. For any f(x) =
∑n

j=0 ajx
j , set

f †(x) =

n∑
j=0

|aj |xj .

Then we have

(23.2) |I(t)| ≤ |
∫ t

0
|et−uf(u)|du| ≤ |t|max

u
{|et−u|}max

u
{|f(u)|} ≤ |t|e|t||f †(|t|)|

Theorem 23.1. The number e is transcendental.

[14]In this application, transcendence theory is often combined with the height theory.
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Proof. Assume e is an algebraic number, then it is a root of some

g(x) = brx
r + . . .+ b0 ∈ Z[x].

We may assume b0 6= 0. Let p be a prime number such that p > max(r, |b0|). Define

f(x) = xp−1(x− 1)p(x− 2)p · · · (x− r)p ∈ Z[x].

Consider

J = b0I(0) + b1I(1) + . . .+ brI(r) ∈ Z.
Let n = deg(f) = (r + 1)p− 1. By (23.1), we have

J = b0(1−
n∑
j=0

f (j)(0)) + b1(e−
n∑
j=0

f (j)(1)) + . . .+ br(e
r −

n∑
j=0

f (j)(r))

= g(e)− b0
n∑
j=0

f (j)(0)−
r∑

k=1

n∑
j=0

bkf
(j)(k)

= −b0
n∑

j=p−1
f (j)(0)−

r∑
k=1

n∑
j=p

bkf
(j)(k).

Each term in this sum is divisible by p! except for

fp−1(0) = (p− 1)!(−1)rp(r!)p.

Here we have used the fact that p > r. Hence (p − 1)!|J , and p - J (since p > |b0|). Now p - J
implies that J 6= 0. Hence (p− 1)!|J implies that

(23.3) |J | ≥ (p− 1)!.

On the other hand,

f †(j) = jp−1(j + 1)p(j + 2)p · · · (j + r)p ≤ (2r)n

for any 0 ≤ j ≤ r, we have by (23.2)

(23.4) |J | ≤
r∑
j=0

|bj ||I(j)| ≤
r∑
j=0

|bj |jejf †(j) ≤ c(2r)n ≤ c
(
(2r)r+1

)p
,

where c = max0≤j≤r(|bj |)rer independent of p.
Combining (23.3) and (23.4), we get

(p− 1)! ≤ c
(
(2r)r+1

)p
for every prime number p > max(r, |b0|). In this inequality c and r are independent of p. But
then this inequality cannot hold for p large enough. Hence we get a contradiction. �

Next we turn to π. Before moving on, let us prove the following lemma.

Lemma 23.2. Let α be an algebraic number with minimal polynomial f ∈ Q[x]. Let c ∈ Z be
such that cf ∈ Z[x]. Then cα is an algebraic integer.
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Proof. Write f(x) = xn + an−1x
n−1 + . . . + a0 ∈ Q[x]. Then cai ∈ Z for all i ∈ {0, . . . , n − 1}.

Hence
g(x) = xn + can−1x

n−1 + c2an−2x
n−2 + . . .+ cna0 ∈ Z[x].

But g(cα) = cnf(α) = 0. Hence cα is an algebraic integer. �

Theorem 23.3. The number π is transcendental.

Proof. Suppose π is algebraic. Then θ = iπ is algebraic by Proposition 22.9. Let f ∈ Q[x] be the
minimal polynomial of θ, and let θ1 = θ, θ2, . . . , θr be the roots of f in C. Let b ∈ Z be positive
such that bf ∈ Z[x]. Then bθj is an algebraic integer for any j ∈ {1, . . . , r} by Lemma 23.2.
Since eiπ = −1, we have

(1 + eθ1) · · · (1 + eθr) = 0.

Expanding the left hand side, we get 2r terms of the form eφ where φ = ε1θ1 + . . . + εrθr with
εj ∈ {0, 1} for all j ∈ {1, . . . , r}. The number φ may or may not be zero.

Let φ1, . . . , φm be the non-zero expressions of this form, then the remaining 2r −m φ’s are 0.
Hence we get

(2r −m) + eφ1 + . . .+ eφm = 0.

Let us look at the polynomial
∏
φ(x − φ), which has degree 2r. It is symmetric in θ1, . . . , θr,

meaning that this polynomial does not change if we reorder the θ1, . . . , θr. Hence this polynomial
is in Q[x].[15] But

∏
φ(x− φ) = x2

r−m∏m
j=1(x− φi), and hence

∏m
j=1(x− φi) ∈ Q[x].

Let p be a prime number such that p > bm|φ1 · · ·φm|. Define

f(x) = bmpxp−1(x− φ1)p · · · (x− φm)p.

Then deg(f) = n = (m + 1)p − 1 and f ∈ Q[x]. Moreover bφj is an algebraic integer for each
j ∈ {1, . . . ,m} since bθj is an algebraic integer for each j ∈ {1, . . . , r}. So every coefficient of f
is an algebraic integer by Proposition 22.9. Hence f ∈ Z[x] by Lemma 22.6. Define

J = I(φ1) + . . . I(φm).

By (23.1), we have

J = −(2r −m)
n∑
j=0

f (j)(0)−
n∑
j=0

m∑
k=1

f (j)(φk).

Observe that the sum over k is a symmetric polynomial in bφ1, . . . , bφm with integer coefficients
and hence a symmetric polynomial with integer coefficients in the 2r numbers bφ = b(ε1θ1 +
. . .+ εrθr). Hence again this sum is an algebraic integer in Q, and hence in Z by Lemma 22.6.

Since f (j)(φk) = 0 for all j < p, we deduce that the double sum in the expression for J is
an integer divisible by p!. Let us study the other sum in the expression for J . First observe
that f (j)(0) = 0 for all j < p − 1 and f (j)(0) is divisible by p! for all j ≥ p. Now we want to

understand f (p−1)(0). We have

f (p−1)(0) = bmp(−1)mp(p− 1)!(φ1 · · ·φm)p.

Recall that f ∈ Z[x]. Looking at the constant term of f , we get that bmp(−1)mp(φ1 · · ·φm)p ∈ Z.

Hence f (p−1)(0) ∈ Z is divisible by (p− 1)!. Since p > bm|φ1 · · ·φm|, we have p - f (p−1)(0).

[15]This can be seen as a consequence of the fundamental theorem of elementary symmetric functions. It can
also be easily proven if one has some basic knowledge of the Galois group.
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To sum it up, (p− 1)!|J and p - J . Thus J 6= 0, and

|J | ≥ (p− 1)!.

On the other hand (23.2) implies

|J | ≤
m∑
k=1

|φk|e|φk|f †(|φk|) =

m∑
k=1

|φk|e|φk|bmp|φk|p−1(|φk|+ |φ1|)p · · · (|φk|+ |φm|)p ≤ c1cp2

for some numbers c1, c2 independent of p.[16] Now we get

(p− 1)! ≤ c1cp2
for all p > bm|φ1 · · ·φm|. But this cannot be true for p large enough. Hence we get a contradic-
tion. �

[16]Of course it is possible to write down the expressions for c1, c2 in terms of b, m and the φj ’s. But since all
we want is that these two numbers are independent of p, we may as well simply introduce the new symbols c1, c2
and say that they are independent of p.
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