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Chapter 1

Heights on Projective and Affine
Spaces

1.1 Absolute values

1.1.1 Basic notions
Definition 1.1.1. An absolute value on a field K is a real valued function |-| on K such that
(a) |x| >0 and |x| =0 if and only if x = 0.
(b) ley| = |=[ly.
(c) |z +y| <|z|+|y| (triangle inequality).
If furthermore | - | satisfies instead of (c) the stronger condition
(¢’) |x+y| <max{|z|,|y|} (ultrametric triangle inequality),

then it is called non-archimedean. If (¢’) fails to hold for some x,y € K, then the absolute
value s called archimedean.

Example 1.1.2. (i) The trivial absolute value: |0| =0 and |x| =1 for all v € K*.
(i) K=Q
o An archimedean absolute value defined by
|| 0o = max{x, —z}.

e A non-archimedean absolute value for each prime number p defined as follows. For
any nonzero rational number x € Q, there exists a unique integer ord,(x) such that
x can be written in the form

T = pordp(”")% with a,b € Z and p 1 ab.

If x = 0, then we set ordy(x) = +00. The p-adic absolute value of v € Q is the
quantity
‘x|p _ pfordp(x).

Intuitively, x is p-adically small if it is divisible by a large power of p.
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Each absolute value |-| on K induces a topology via the metric defined by disc(x,y) = |z —yl.
If two absolute values define the same topology, they are called equivalent. Here is a basic

property.

Proposition 1.1.3. Two absolute values |- |1 and |- |2 are equivalent if and only if there exists
a positive real number s such that
||y = [a]3

for each x € K.
In practice, it is more convenient to study equivalence classes of absolute values.

Definition 1.1.4. A place v is an equivalent class of non-trivial absolute values. By |- |, we
denote an absolute value in the equivalence class determined by the place v.
We say that a place v is (non-)archimedean if | - |, is.

As an example, Q has a unique archimedean place and there is a natural bijection
{non-archimedean places of Q} <> {all prime numbers};

see Example (ii) for | - |, with each place v of Q.

Consider a field extension K/Ky. For a place v of K, the restriction of |- |, to Ky is an
absolute value of K, and hence is a representative of a place of Ky. We write v|vg if and only if
the restriction of | - |, to Ky is a representative of vg € M,. In this case, we say that v divides
v or v lies over vy or v extends vg.

Before moving on, let us look at the example of an arbitrary number field K.

Example 1.1.5. By definition, K/Q is a finite field extension, and hence any place v of K lies
over some place of Q. There are two possibilities: either v|p for a prime number p, or v|co for
the unique archimedean place co of Q. It can be then checked that

{non-archimedean places of K} <> {all prime ideals of Ok}

and
{archimedean places of K} «+» {equivalence classes of embeddings K — (C}

We will come back to this with a more precise description of the bijections in Example|1.1.11)

We close this subsection with the following discussion. Let K be a field with a non-
archimedean place v. The valuation ring of v is defined to be

R, :={z e K :|z|, <1}.

The definition is clearly independent of the choice of | - |,. It can be checked that R, is local
ring with unique maximal ideal m, := {z € K : |z|, < 1}. The residue field k(v) is defined to
be R,/m,. The quotient map R, — k(v), x +— T is called the reduction.

For example when K = Q and v corresponds to the prime number p, we have R, = {x €
Q:p %@ <1} = {z € Q:ordy(z) > 0} = {% : a and b coprime, p{b} and m, = {z € Q:
ordy(z) > 0} = {% : @ and b coprime, pla} = pR,. The residue field is F, = Z/pZ.

The place v is called discrete if the value group |K*|, is cyclic. Then m,, is a principal ideal
and any principal generator is called a local parameter. This is the case for the example abov
and a local parameter is p.

M Two embeddings o1,02: K < C are equivalent if and only if they are conjugate (i.e. oa(z) = o1(x) for all
z € K).
[IThis holds true for any number field and a non-archimedean place.
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1.1.2 Normalized absolute values

For each place v of K, we would like assign a well-chosen absolute value. In this subsection we
do this.

Definition-Proposition 1.1.6. For a place v of K, there exists a unique (up to isometric
isomorphisms) pair (K,,w) with K, /K an extension and w a place of K, satisfying the following
properties:

(a) w|v.
(b) The topology of K, induced by w is complete.
(¢) K is dense in K, in the above topology.

This K, is called the completion of K with respect to v. By abuse of notation, we shall denote
the unique place w also by v.

As an example, the field Q, of p-adic numbers is the completion of @ with respect to the
place p, and the completion of Q with respect to the archimedean place is R. In general, we
have:

Theorem 1.1.7 (Ostrowski). The only complete archimedean fields are R and C.

An elementary result of the local and global degrees is the following equality. It can be
proved using the primitive element theorem.

Lemma 1.1.8. Let Ky be a field with a place vy, and let K/Ky be a finite separable extension.
Then

> (K, Kog) = [K : K.

v|vg

With these preparations in hand, we are ready to state the following result about the unique-
ness of the extension of absolute values.

Proposition 1.1.9. Let K be a field which is complete with respect to an absolute value | - |y,
(i.e. Ko = Koy,) and let K/Ky be a finite extension. Then there exists a unique extension of
| o, to an absolute value |- |, of K. Furthermore, for each x € K, we have

|z]v = [Nk /K, (%) %[K:KO]

where Ny, is the norm. Moreover, K is complete with respect to | |o, i.e. K =K,.

Inspired by this proposition, we make the following constructions. Let Ky be a field with a
non-trivial absolute value | - |,,. Let K/K( be a finite separate extension with a place v such
that v|vg. For any = € K, define

1/[Kv: Ko,
2l = [N, g, (@) 0] (L.L.1)

and
12]lv := [N, 1cq 0 (2) o (1.1.2)

The following statements are easy to verify.

e The |- |, defined above is an absolute value representing v by Proposition m
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e The || - ||, defined above is an absolute value representing v unless Ko, = R and K, = C.
In practice, it is however often more practical to use || - ||, than | - |s.

Lemma 1.1.10. Under the assumptions and notation above, we have

Zlog x|, = [K : Ko]log|z|y, for all z € K,

v|vg
> logllylle =10g [Ny (0)loy ~ for ally € K*.
v|vo
Example 1.1.11. Again, let us look at the case of number fields. When K = Q, set
Mg :={]-|p : p prime number or p = oo}

normalized as in Example[1.1.4 (ii).

In general for an arbitrary number field K.

e Fach place v of K lying over p corresponds to a unique prime ideal p dividing p.

For each x € K*, the fractional ideal xOx can be uniquely factorized into a finite product
Hp po" 4 (@) with p running over all the prime ideals of O . This defines a homomorphism
ordy: K* — 7Z for each p (and set ord,(0) := +00).

Set |[,C‘p = p_[k(p)lmp]ordp(l’)/[[{v:@p] = p_ordb(x)/ep Notice that |p|p = p_l,

We show that | - |, is precisely the absolute value | - |, from (L.1.1)). Indeed, we have for
[T1.2)

Izl = [Nk, s, (@)l = [Nic, g, 00 )], = [pROIEordn(@)) | =lk(p)Fylordy (@)

It is a standard fact from Algebraic Number Theory that [K, : Qp] = ep[k(p) : Fp]. Thus

Kyp:Qp)

||, = ||£L‘H11;/[ equals ||, defined above.

Now we set
My = {|-|p : p prime ideal of O}. (1.1.3)

Then each element M?( s a representative of a non-archimedean place of K, and all non-
archimedean places of K arises in this way.

e For an archimedean place v of K, it lies over the unique archimedean place of Q which
gives rise to the embedding Q — R. Consider all the embeddings o: K — C; there are
exactly [K : Q| of them. Each such embedding defines an absolute value on K

|2|o == |o()|oo
where |z|oo is the usual absolute value on R or C. It can be shown that all archimedean
places of K arise in this way.

Among the embeddings K < C there are two kinds: r1 real embeddings with o(K) C R (call
them p1, ..., pr ) and ro complex embeddings with o(K) € R (call them T1,T1, ..., Try, Try)-
The complex embeddings come in pairs under the complex conjugation. We have [K : Q] =
r142ry. One can show that two embeddings K — C give rise to equivalent absolute values
if and only if they are conjugate.

In summary, there are r1 + ro archimedean places of K. Set

M52 = {] - loYoctpprs miving ] (1.1.4)

BIRecall the standard definition e, = ord,(p) from Algebraic Number Theory.
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Now set
My = My | Mz (1.1.5)

From now on, for a number field K we will always use Mg to denote the set from
(1.1.5). Moreover, the following convention on the notation My for a number field
K will always be used in this course.

Notation 1.1.12. It is sometimes more convenient to work with || - ||, than |- |, and so we will
also use the following notation. By v € My for a number field K, we always use |- |, to denote

the corresponding absolute value in the set from (1.1.5)), and use || - ||, to denote | - [Fo:Qp] for
vlp and |- \L vR] for v|oo. Notice that when K = Q, || - ||, and |- |, coincide.

We finish this subsection by the following Product Formula.
Theorem 1.1.13 (Product Formula). Let K be a number field. Then

Z log||z|l, =0  for each x € K*.
vEME

Proof. Let x € K*. We start with the case K = Q. In this case, z = Hp p°" 4 (®) with p running
over all prime numbers. Then

H “T|v = ’x‘ooH ’«T|p = |‘T|oo prordp(ff) —1.
p

vEMg p

So ZveMQ log |z|, = 0.
For arbitrary K, apply Lemma [1.1.10| to K/Q and v|vg with vy a place of Mg. Then we

obtain Zv‘p log ||z||, = ﬁlog ‘NK/Q(JU)"UO- So

Y loglallo= ) > logllallo=) log|Ni/q(@)lu,

vEME U()EMQ v|v0 UoEM@

which equals 0 from the case K = Q. Hence we are done. O

1.2 Height on projective spaces

In the whole section, we will use K to denote a number field.

1.2.1 Definition and basic properties

Let us start with the simplest case. Let x € P1(Q). There is a unique way to write x as [a : b]
with a,b € Z such that we are in one of the following two cases:

ea=0,b=1lora=1,b=0;
e a >0 and b # 0 are coprime.

Set
H(z) := max{|al,|b|}.

Notice that H(x) > 1 by definition. Also notice that any rational number x can be identified
with [z : 1] € P}(Q), so we can set H(x) := H([z : 1]).
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In Height Theory, it turns out to be more convenient to work with the logarithmic height.
On PY(Q) it is h(z) := log H(z) = logmax{|al, |b|}. Then we have h(x) > 0 for each z € P1(Q).

For more general number fields, we will use the absolute values introduced in the previous
section (Example to define the height. Let Q be an algebraic closure of Q.

Definition 1.2.1. Let x = [z : -+ : xp] € P*(Q). The (absolute logarithmic Weil) height
of x is defined to be

B 1

h(x) : K. Q

S tog max{ 2o . [all}

vEME

where K C Q is a number field such that xj € K forall j.
We also set H(x) := e"™) to be the multiplicative height.

One can check that this definition coincides with the one for P}(Q) above. More generally,
we have the following lemma.

Lemma 1.2.2. Let x = [xg : --- : x,] € P"(Q). Suppose the x;’s are all integers and are
coprime. Then
h(x) = log max{|zo],...,|zn|}
with the usual absolute value.
Proof. Exercise class. O

Lemma 1.2.3. The height function defined above satisfies the following properties.
(i) It is independent of the choice of K.
(ii) It is independent of the choice of the homogeneous coordinates.

(iii) h(x) >0 for all x € P*(Q).

Proof. Let x = [xg: -+ : zp] € P*(Q).
For (i): Assume that each z; is in K and L for two number fields K, L C Q. We may assume
K C L. Then

> log max |||, = > Zlogm?XijHw

weMy, vEMp wlv

— Z Z log m;lx INL, /50 (T5) 0

vEME wlv

= = D logma g 1

vEMg wlv

— Z Z[Lw : Ky longaXijHv

vEMK wlv

= Z [L: K]logmax |||, by Lemma [I.1.§
veEMK J

This establishes (i).
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For (ii): Let [xg : -+ : x,] and [yo : -+ - : yn] be two homogeneous coordinates for a point

x € P*"(Q). By part (i), we may and do assume that all coordinates are in the same number
field K. Then there exists A € K* such that y; = Az; for each j € {0,...,n}. We have then

D> logmax|iy;lo = > logmax |zl + > logliAl = > logmaxz;.,

vEMK vEM g vEMK vEMK

where the last equality follows from the Product Formula (Theorem [1.1.13). This establishes
(ii).

Part (iii) follows from part (ii) because we can always choose homogeneous coordinates for
x such that some coordinate is 1. ]

Lemma 1.2.4. The action of the Galois group Gal(Q/Q) on P*(Q) leaves the height invariant.
More precisely, for any x € P"(Q) and any o € Gal(Q/Q), we have h(c(x)) = h(x).

Proof. Exercise class. O

The following theorem is of fundamental importance for the Height Machine.

Theorem 1.2.5 (Northcott Property). For each B > 0 and D > 1, the set

[x € P@): h(x) < B, [Q(x): Q] < D}
is a finite set.

Proof. We start with the case D = 1. Then the set in question becomes
{x e P*(Q) : h(x) < B}.

It is not hard to check that this set is finite by Lemma [1.2.2

For general D. Write x = [z¢ : -+ : zp] € P"(K) such that at least one coordinate equals 1.
Then for each v € Mg, we have

max{|[zollv, - .-, |Zn[lv} = max{[[ill,, 1}

for each i € {0,...,n}. So B > h(x) > h(z;) for each i € {0,...,n}. Moreover, x; € K, and
hence Q(z;) C Q(x) and hence [Q(z;) : Q] < [Q(z) : Q] < D.

It suffices to prove that there are finitely many choices for z; for each i € {0,...,n}. Thus
it suffices to establish the following simpler finiteness result.
Claim: For each numbers B > 0 and d > 1, the set

{r€Q:h(z) < B, [Qx): Q] =d}

is finite.
Let us prove this claim. Write K = Q(z), and write 1 = z, ..., x4 for the Galois conjugates
of z over Q. The minimal polynomial of x over Q is

d

d
F(D) = [T~ 2)) = S (~1) s, ()T

j=1 r=0
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with s,(x) the r-th symmetric polynomial in z1,...,z4. Denote by s, = s,(x); it is a number
in Q. For each v € Mg we have

57| = Z Lyy w0 Ty,

1<iy < <ir<d ;

<e(v,r,d max Ti v Xy triangular inequalit
<e(vrd)  max |z ez g quality

< e(v,r,d) lrglaé(d |0

Here one can take €(v,r,d) = 1 if v is non-archimedean and e(v,r,d) = (f) < 24 if v is
archimedean.

Thus we have ||s,.||, < maxj<j<q ||z;]|] if v is non-archimedean, and ||s,||, < 245 & max; <, |27
if v is archimedean.

Consider the point s :=[sg : -+ : 84 : 1] € P¥1(Q). We have
K : Qh(s) = > log max {]lsrlu, 1}
vEMK
= > uax flog .0}
vEME

< Z max max{r10g||xi||v,0}+dZ[Kv : R]log 2

0<r<d 1<i<d

veEMK v]oo
< ) .
<> d max {log |, 0} + dY [K, : R]log?2
veEMyg T T v|oo
<d Z Z max{log ||zi||v,0} + dZ[KU : R]log 2
1<i<dveEMg v]oo
=d Z [K : Qlh(x;) + dZ[Kv :R]log2
1<i<d v|oo

=dK :Q]-dh(z)+d[K :Q]log2 by Lemma[I.2.4

So h(s) < d*h(x) 4+ dlog?2 < d’B + dlog?2 is bounded. But s € P4*1(Q), so by the case D = 1

there are only finitely many choices for s. So there are only finitely many choices for s, ..., sq,
and therefore only finitely many choices for the minimal polynomial of x over Q. Thus there are
only finitely many choices for x, and this is exactly the desired claim. We are done. O

1.2.2 Height on affine spaces

In the proof of the Northcott property, we computed the height of [sg : --- : 54 : 1] € PH1(Q).
This point lies in A% (Q) , viewed as the complement of the hypersurface with last homogeneous
coordinate being 0. It is then convenient to introduce the following notions.

Notation 1.2.6. Set
log®(z) := max{logz,0} = log max{x, 1}

for each x > 0.

Definition 1.2.7. For each point x = (z1,...,x,) € A"(Q), define

h(x) := h([x : 1])
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with [x : 1] :=[z1: - : xp 1 1] viewed as a point in P*(Q).
We also set H(x) := "),
We have
1

ho0) = s (h(r)} = o 3 To™ max{lm o, ). (1.2.1)
- vEMK

The next proposition discusses the height of the sum of algebraic numbers. It will be seen
again in the discussion for heights of polynomials.

Proposition 1.2.8. Let Py,...,P. € A™(Q). Then
h(Pr+---+P) <h(P)+---+h(P,) +logr.
In the case n = 1, the left hand side is the sum of r algebraic numbers.

Proof. Write, for each k € {1,...,7}, P, = (xgk), e ,x%k)). Assume all the P.’s are in a number
field K. Then

[K:Qh(P +---+P,) = Z 1ré1ja<xn10g+ ny) + ... +x§,7“)||v.
vEMg T

If v is not archimedean, then || - |[, is an absolute value and hence

(1) (r) (k)
”l,j + z; Hv < lrgl?icr HCC] ”v

If v is archimedean, then the triangular inequality for the absolute value |- |, yields \azg-l) +- 4

x§r)|v <|r|, max;<p<, \azg-k)|v. Hence raising both sides to the power of [K, : R] we get

[

(r) (k)
o IIvSIITIIvg]ggTIIw]- o

Thus

[K:Qh(P +---+P)< Z H}%XlOng ||x§k)Hv + Zlog |7l

vEMp 7 v|oo

k
S Y maxlog |, + > log |17l
1<k<rveMg J v]oo

= Z [K : Q]h(Py) + [K : Q]logr by Lemma [I.1.10

1<kLZr

IN

Hence we are done. O

1.2.3 Liouville’s inequality
Lemma 1.2.9. h(l/a) = h(a) for any o € K*.

Proof. By definition, h(1/a) = h([1/a : 1]) with [1/a : 1] € P1(K) and similarly h(a) = h([a :
1]). So
h(1/a) = ({1 /e 1)) = h(1 = a]) = h(fa : 1]) = h(a),

with h([1: a]) = h(]a : 1]) following directly from the definition of height. O
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Alternatively, one can check
log ||, = log™ |a|, —log™ |1/al, (1.2.2)
and use the Product Formula to prove this lemma.

Proposition 1.2.10 (Fundamental Inequality). Let S C Mg be a finite set. For each a € K*,
we have

ha) > @;log ol (1.23)
and 1
h(a) > —Mélog IET (1.2.4)

Proof. By the definition h(«a) = ﬁZveMK log™ ||a||, and noticing that log® takes non-
negative values, we get the first inequality.
To prove second inequality, we apply the first inequality to 1/a and use Lemmam ]

Example 1.2.11. Consider K = Q and a = p is a prime number. Then h(p) =logp, |plec =P

and |pl, = p~t. Now (1.2.3)) attains equality for S = {00}, and (1.2.4) attains equality for
S =A{p}.

Now we are ready to state Liouville’s inequality. The classical formulation is in terms of the
multiplicative height H(-) = (),
In the statement of Liouville’s Inequality, let Ky be a number field.

Theorem 1.2.12 (Liouville’s Inequality). Fiz f € Ko. Let K/Ky be a finite extension and
consider a finite set S C Mg . For any a € K with o # 3, we have

T llew = Bllo, o = (2H (@) H (8))

veS

1/[Ko:
where || - lo.xo = || - o/ 5.

Before moving on to its proof, let us look at the following corollary which is closer to the
classical statement of this inequality. It has a flavor of approximating algebraic numbers by
rational numbers.

Corollary 1.2.13. Let o € R be an algebraic number of degree r > 1, i.e. [Q(cv) : Q] =r. Then
there exists a constant c(a) > 0 such that for the usual absolute value | - | on R, we have

o= 8] = c(@)H(B) " for all § € Q.

This corollary follows immediately from Theorem [1.2.12| applied to Ky = Q, K = Q(«) and
S the archimedean place given by the natural inclusion Q(«) C R. Notice that if o € C\ R,
then the same conclusion holds true with | - | replaced by | - |%.

Proof of Theorem [1.2.12. Apply Proposition ton=1,r=2, PL=«aand P, = —f3. Then
we get h(a — 8) < h(a) + h(B) +1og2. So H(a — ) < 2H(a)H(S).
Apply the Fundamental Inequality (1.2.4)) to a — 5. Then we get

o og ||a — :;o a— -1
h(a—ﬁ)z—[K:Q]glgll Bl [K:@]lg(g” Bll) "
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From this, we get

[T llee = Bllo,ieo = (T e = Bll) /IEOG > (M=) IR = F(a — g) 71Kl

veS veS

Now we can conclude because we have seen H(a — ) < 2H (o) H (). O

1.2.4 The change of height under geometric operations

In this section, we go back to the height function on P"(Q). We will consider several geometric
operations concerning projective spaces and see how the heights change.
Consider the Segre embedding

Spm: P x P P10 (v v s x @y = (@150 (1.2.5)
and the d-uple embedding
Og: P =PV x = [My(x): -1 My(x)] (1.2.6)

with N = (":d) — 1 and {Mp(x),..., Mn(x)} the complete collection of monomials of degree d
in the variables xq, ..., z,.

Proposition 1.2.14. We have

(i) h(x ®y) = h(x) + h(y) for all x € P*(Q) and y € P"(Q).

(i) h(®q(x)) = dh(x) for all x € P*(Q).
Proof. Part (i) in Exercise class, by using max; j |;y;|, = max; |z;|, - max; |y;o.
We prove part (ii). Each M;(x) is a monomial of degree d in the variables xo, ..., z,. It is
clear that |M;(x)|, < max; |z;|¢ for each 0 < j < N. Moreover since the particular monomials
:cg, R fo appear in the collection, we have

d
pmax | M (x)|, = [nax |5

From this we can conclude. O
We finish this section by a discussion on the change of heights under linear maps.

Theorem 1.2.15. Let ¢: P* — P™ be a linear map defined over Q, i.e. ¢ = [Lo(X) : -+ : Lyp(x)]
for some linear forms on P". Let Z C P" be the common zero of the L;’s.
Let X CP" be a closed subvariety such that X N Z = (. Then

h(p(x)) = h(x) +O(1)  for all x € X(Q).

More precisely, the conclusion means that there exists a constant ¢ = ¢(¢, X) > 0 depending
only on ¢ and X such that
[h(¢(x)) = h(x)| < ¢

for all x € X(Q). We remark that this bound®|does not hold true on the whole P\ Z, but on
any closed subvariety disjoint from Z.

M Or more precisely, “half” of the bound does not hold true on the whole P" \ Z as will be shown in the proof.
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Proof. The proof is divided into two parts. We may and do assume that Z # P", i.e. one of the
L;’s does not vanish on the whole P™.

Write L;(x) = Zogjgn a;jz;. Then [agp : -+t @on -+ 1 Qmo © -+ : Gmy] IS & point in
P+Dm+1)-1(@) and is uniquely determined by ¢.
Prove: there exists a constant ¢; (¢) depending only on ¢ such that h(¢(x))—h(x) < c1(¢9)
for all x € (P \ Z)(Q).

Let x = [xg : -+ : xy] € (P*\ Z)(Q). Fix a number field K such that x € P*(K) and all
a;;'s are in K. Then for each v € Mk, we have

O<i<n

1 ifoi -archimed

where €(v, k) = 1 v ?S non .arc e ean. Raising both sides to the power of [K, : Q)]
k if v is archimedean

(with Qe = R), we get

me | Li(a0) [ < (v, + DD (mas g ) (ma [ -

Now we have

(K :Qh(o(x) = ) log max[| Li ()],

veEMK
< 3 o (efwn+ 1) ma ol - ], )
i.j j
veEMK
< > (logmax [|a; ||y + log max ||lz]|,) + Y [K, : R]log(n + 1)
vEMK ZJ J v]oo
— 3 togmax as + [K : Qh(x) + K : Qllogn + 1)
vEM g J
=[K:Qh(Jaoo: - :aon: - Qmo: - amu)) + [K : Qh(x) + [K : Q]log(n + 1).
Thus h(p(x)) — h(x) < h([aoo - - @opn: - Qmo - Gmpl) +1log(n+1). The first term on

the right hand side depends only on ¢. So we are done for this part.
Prove: there exists a constant constant ca(¢, X) such that h(¢(x)) — h(x) > co(p, X)

for all x € X(Q).
Write I(X) = (F1,. .., F). Since XNZ = (), we have that the polynomials L, ..., Ly, F1, ..., F,
have no common zeros in P". By Hilbert Nullstellensatz, we then have the following equality of

ideals of Q[Xy, ..., Xy]

VLo, ..., Ly, Fy, ..., F) = (Xo,...,X,).

In particular, for each j € {0,...,n}, we can find polynomials G; ; and H;; and an exponent
t > 1, all depending only on X and ¢, such that

GO,jLD 4. +Gm7]Lm —|—H17jF1 + ... +HT,jFr = X;

Moreover deg G; ; =t —deg L; =t — 1.
Write G j = Z|e|:t—1 bi jeX® with e = (eq,...,en) a multi-index with |e| :=eg+--- + e,
and X© = X°--- X¢. Notice that G, is the sum of at most ("*'~") monomials.
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Now let x = [z : -+ : ] € X(Q). Evaluating the equation above at x, we get
Go,j(X)Lo(X) + -+ + G j(X) Lin(x) =

for each j € {0,...,n}.
Fix a number field K such that x € X(K) and all the coefficients b; ;¢ are in K.
For each v € Mg, we have

251} = 1Go,j (%) Lo (%) + -+ + G (%) Lin(x)]o < €(v,m + 1) max |Gyj(x)|y max |Li(x)]o.
0<i<m 0<i<m
Thus
max [}, < e(v,m + 1) max |Gy ()] max |Li(x)],
J 1,7 7

= e(v,;m+ 1) (max| Y bigery - ayfe)( max [Li(x))

1, OSZS’H’L
le|l=t—1
n+t—1 _
< ctoom-+ 1) (et )y ma el a1 (s 124G
n 1,j,e J 0<i<m
Dividing both sides by max; |z;|"~!, we get

n+t—1
< o+ el )y el g |24 Go)-
i n %,7,e 0<i<m

5J 9

Raising both sides to the power of [K, : Q,] (with Qs = R), we get

n

),

) n+t—1 .
mjax |zl < e(v,m+ 1)[K“'Qp]e(v, < ))[K”'QP] nﬁx Hbi,j7evalaX 1L (%) |-

Now we have

(K Q) = 3 maxla]l,

vEME

IN

n+t—1
> togmx[begell + 3 maxlZil + 1K, Rltogtm + (" T )

’UEMK UEMK v|oo

= [K : QJh(b) + [K : Qlh(¢(x)) + [K : Q]log(m + 1) (n +:L ) 1>

where b is the point in an appropriate projective space whose homogeneous coordinates are
b; je- Notice that b is uniquely determined by the Gj; ;’s, and hence by X and ¢. Now we get

the desired inequality h(p(x)) — h(x) > ca(¢, X) for all x € X(Q). Hence we are done. O

1.3 Height of polynomials

In this section, we study the heights of polynomials. We will use the Weil height on projective
and affine spaces defined in of this chapter.
Definition 1.3.1. The (affine) height of a polynomial
Ftot) = > ag gty -t = gt
J

j19-~~7jn

with coefficients in Q is the quantity h(a) where a = (a;); is viewed as a point in @N for some

N.
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In other words, if we assume each a; € K for an appropriate number field K and define the
Gaufl norm
1fllo = maxla{l, (1.3.1)

for each v € Mg, then we have

h(f) Z log™ || fllo = K. Q Z log max{|| f|l», 1} (1.3.2)
UEM ’UEMK
1.3.1 Affine height vs the Projective height

In some literature, one defines the height of f as the height of the point [a;]; viewed as a point in
an appropriate projective space. This is sometimes called the projective height of f and denoted
by hproj(f), and is in general smaller than the affine height we defined above.

In this course, we always use the affine height. An important advantage to take this conven-
tion is the following proposition, which is about the evaluation of a polynomial at a point. The
proof shares some similarities with the proof of Theorem [1.2.15

Proposition 1.3.2. Let d be the sum the partial degrees of f. Letx = (x1,...,2,) € Q". Then
h(f(x)) < h(f) + dh(x) + min{(n + 1)log(n +d + 1), (n + d + 1) log 2}.

As shown by the proof, this result is not correct if we use the projective height of f.

Proof. Write f(t) = ZZ:O 2 lj=k a;td. Set ¥(n,d) ;= min{(n +d + 1)"*!, 274+ Then as in
the proof of Theorem [1.2.15] it is not hard to check

| Z axd], < e (U, (n * k)) 1|r1|1ax{|aJ| }max\xz|v <e <v, <n + k>) I‘I‘laX{|CLJ‘ v} max{1, max|acl| I
n n
lil=F

with (v, m) defined to be 1 for v non-archimedean and to be m for v archimedean. Recall that

Yo (1) = ("rhY) < d(n.d). So
x)|y = ’ZGJX v < Z’ Z ajx Iy < e(v,9(n, d))max{]aﬂ }max{l i}
=0 |jl=k

and hence
max{1, |f(x)[s} < €(v,¥(n, d))mfx{la |ajlo} max{1, i},

Raising to the power of [K, : Q] and taking the log, we get an upper bound for log™ || f(x) |-
Hence

(K Qa(f(x) = Y log™ [|£ ()l
vEME
< Z max log™ ||aj]|, + d Z max log™ ||z, + Z[Kv : R]log ¢ (n, d)
vEMK J vEMK ’ v|oco

= [K - QIA(f) + [K : Qldh(x) + [K : Q]log ¢ (n, d).

We are done. O
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We mention an advantage of the projective height. It is an immediate corollary of Proposition|1.2.14} (i).
However, we shall not use it. Indeed, Theorem is a more general and more applicable statement
concerning the height of a product of two polynomials.

Lemma 1.3.3. Let f(t1,...,t,) and g(s1,...,8m) be two polynomials in disjoint sets of variables. Then

hproj (fg) = hproj(f) + hproj (g)

If f and g do not have disjoint sets of variables, the estimate of hpoj(fg) in terms of hproi(f) and
hproj(g) has the same quality of Theorem In most applications, unfortunately we do not have
disjoint sets of variables and hence need to use the more complicated Theorem [I.3.4]

1.3.2 Height of product

The main result of this section is to study the height of a product of two polynomials. We will
prove the following theorem for this estimate.

Theorem 1.3.4. Let f1,..., fm be polynomials in n variables with coefficients in Q. Let d be
the sum of the partial degrees of f :== f1--- fm. Then

—dlog2+ > h(f;) < h(f) < dlog2+ > h(f;).

=1 =1

Moreover in the second inequality, one can replace d by the sum of the partial degrees of the
product f1 -+ fr—1-

To prove this theorem, one separates the non-archimedean places and the archimedean places.
For the non-archimedean places, we prove Gauf$’s Lemma. For the archimedean places, we prove
Gelfond’s Lemma. Then we combine these two lemmas to conclude.

Non-archimedean places

The contribution at the non-archimedean places is not hard to study. In this case, we have the
following:

Lemma 1.3.5 (Gauf’s Lemma). If v is non-archimedean, then || fg|lo = || f|lv]lgllv-

Proof. The direction ||fgllv < ||f|lvllgllv is not hard to obtain because v is non-archimedean.
Now we focus on proving the other direction |[fglly > || fllv|lg]]v-

| One-variable case| We start with the case where both f(t) = > a;t/ and g(t) = > bt/ are

polynomials in one variable . Up to dividing both f and g by an appropriate element in K, we

may and do assume || f||, = ||g][y = 1. Then ||fg|l, < 1.

Suppose ||fg]ls < 1 and we wish to get a contradiction.

For each j, set c; = Zj:kH arb;. Then fg = Zj cjtj. Let jo be the smallest integer with
llajollo = 1. Since |lax|, < 1 for each k& < jo, we have ||arbj,—kllv < 1 for each k < jo. If
[bollo = 1, then [[aj,bollo = 1 and hence |[cj,llv = [lajobo + >p <), arbjo—kllv = 1, contradicting
|l fgllo < 1. Hence ||bpl|, < 1.

Next for each lp, we prove that |bj]l, < 1 by induction. Suppose we have proved for
0,...,lo — 1. Consider c¢j,4i, = ZOSk§j0+lo aibjo41o—k- For 0 < k < jo — 1, we have |lagll, <1
and hence ||agbj,+1o—kllo < 1. For jo+1 < k < jo + lo, we have [|bj;41,—k|lv < 1 by induction
hypothesis and hence ||arbj,+1o—k|lv < 1. Thus ||by, ||, = 1 would yield ||cjo4iollo = [|ajobiolle = 1,
contradicting || fg|l, < 1. Hence we can conclude ||by,|[, < 1.
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But then ||g||, < 1, contradicting ||g||, = 1. So we can conclude that || fg||, = 1 for this case.

Write f(z1,....20) = 3 a;x and g(z1,...,7,) = pOF bjx. One can reduce

the general case to the one-variable case by the following standard technique. Fix an integer
d > deg(fg), and consider the Kronecker substitution

o
zj = t? j=1,...,n). (1.3.3)
Then
T R I G (e e G D S
J 0<j1,-5n<d—1
and  g(xq1,...,7,) = Z bj,.. gt td 15
0<j1,--,jn<d—1
It is not hard to see that both fo(t) := > o<j, i <41 ajl7“_7]-”tj1+dj2+'“+d"_ljn and go(t) :=
D011 <d—1 b, ... j, 71T H2 " " in are one-variable polynomials in simplified form. So || foll, =
maxj, |1, gallo = [fllos Ngolle = maxj, s, [105....galle = llgll, and [[fogolle = [[fgllo-
Hence we can conclude by the one-variable case. O

Archimedean places

It is more complicated to handle the archimedean places. The goal is to prove Gelfond’s Lemma
(Lemma , which plays a similar role as Gaufy’s Lemma for the archimedean places.

In this subsection, we consider polynomials with coefficients in C. We use | - | to denote the
usual euclidean absolute value on C.

Let f =3, ajtd € C[ty,...,t,]. Define

loo(f) = |floo = mjax|aj\. (1.3.4)

We also call £ (f) the L>®-norm of f.
Now we can state the main result of this subsection.

Lemma 1.3.6 (Gelfond’s Lemma). Let fi,..., fm € Clt1,...,tn] and set f:= f1--- fm. Let d
be the sum of the partial degrees of f. Then

Z_dHKOO(fj) < lo(f) < QdHEOO(fj)'
j=1 =1

Moreover in the second inequality, one can replace d by the sum of the partial degrees of the
product f1--+ fr—1.

Before moving on, let us see how Gaufi’s Lemma and Gelfond’s Lemma imply Theorem [1.3.4]
Proof of Theorem [1.5.7). We have

[K:Qh(f)= > log" [ flo=Y_ logmax{|fll,1} = > logmax{[|fi-- fmllv,1}.

vEM g vEME vEME
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To get the upper bound, we proceed as follows

(K- Qln(f) =

IN

IN

IN

IN

21

- fmle by GauB’s Lemma (Lemma [1.3.5])

m
max { [K, : R log v+dlog2],0 by Gelfond’s Lemma (Lemma [1.3.6)
J

+ 3 [K, : Rldlog2

> max{logllfi--- fullv, 0}
veEMpg
D> max Zlognfjuv,o + D Ky Rllog* |f1 -
veMY v|oo
Z ZlOngHfij"‘ZmaX{[Kv:R]logvl'”fmlvvo}
veMy j=1 v|oo
> D logt il +
veMY j=1 v]oo
> Zlogﬂlfylleerax ZIOngJHu +[K, : Rldlog 2,0
veMY j=1
> Zlogﬂlngmeax Zlognfjnv,o
veMy j=1 v|oo v|oo
m
> 210g+Hf]||v+ZZlOg+”fij+ZK R]dlog 2
veMd j=1 v]oo j=1 v|oo
Zh fi) + Qldlog 2.

The “Moreover” part holds true because of the “Moreover” part of Gelfond’s Lemma.
To get the lower bound, we have

>3 > loglfille+ YK

We are done.

h(f) = Y logl|fll

vEMEK

> logfi-

vEME

S S togllfllo + SIK, ¢

veMY j=1 v|oo

fmllv

J=lveMy v]oo =1
Z Z log || fjlv + Z[K’u : R]dlog 2
Jj=lveMp v|oo

Zh () +

Q]dlog2.

R]log |fy -

fm"u

by Gaufi’s Lemma (Lemma |1.3.5])

R](Zlog |filo —dlog2) by Gelfond’s Lemma (Lemma |1.3.6)

So in the rest, we aim to prove Gelfond’s Lemma (Lemma |1.3.6]).

Definition 1.3.7. The Mahler measure of [ is defined to be

M(f) :=exp </7blog]f(ei'91,...,

&)|dp - dun) 7
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where T is the unit circle {ew :0 <0 < 27} in R equipped with the standard measure dp =
(1/2m)dé.

The following multiplicative property of the Mahler measure is easy to check:

M(fg) = M(f)M(g). (1.3.5)
Definition 1.3.8. The L%2-norm of f is defined to be

1/2

) ) 1/2
) = ([ 1) = (Sl
J

In fact, we have given two equivalent definitions of the L?-norm above. They coincide by
Parseval’s identity.
One-variable case‘ We start by studying the one-variable case. The following lemma is an
elementary tool to study the Mahler measure.

Lemma 1.3.9 (Jensen’s Lemma). Let f(t) = agt? +--- +ag € C[t]. Write aq,...,aq € C for
the roots of f, i.e. f(t)=aq(t—ay)---(t —aq). Then we have

d
log M(f) =1log |aa| + > log™ |ay],
j=1

with log™ (r) := max{log x,0}.

Proof. We only give a sketch here.

Because Mahler measure is multiplicative, it suffices to prove log M(t — a) = log™ |a] for
each a € C.

If |o] > 1, then the function log |t — «| is harmonic in the unit disk, and hence its mean
value on the unit circle is its value at the center which is log|a| = log™ |a|. If |a| < 1, then
the function log |1 — at| is harmonic in the unit disk and coincides with log |t — «| on the unit
circle, while its value at the center is 0 = log™ |a|. Finally, the case |a| = 1 is obtained by
continuity. O

The following lemma uses the Mahler measure M (f) to bound f(f).
Lemma 1.3.10. Let f(t) = aqt® + -+ + ao € C[t]. Then we have
d \' y

loo(f) < M(f) < La(f) < (d+ 1)l (f).

(1aa)) ) < MU < () < (o4 D20 5)

Proof. The last inequality is easy to see because fa(f) = (Z;j:o ;)2 < (d+1)Y? max;{|a;|} =

(d+ 1) 20,0 (f).
To prove the first inequality, write f(t) = aq(t — 1) - - (t— ). Then for each r € {0,...,d}

we have
d d
oacs =laal| 3 -] < () [ et
j:

J1<<jgr
Thus Jensen’s Lemma above yields

el = (D)0 = (1) )10
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for each r € {0,...,d}. So we have lo(f) < (Ld‘/lQJ)M(f) and this is the first inequality.

To prove the inequality in the middle, we use Jensen’s inequality which applies to convex
functions. It says: If Q is a space with a measure du such that du(Q) = [du =1, if g is a
real-valued p-integrable function on €2 and ¢ is a convex function on R, then we have

w(/ﬂgdu> < /ﬂ(wog)du- (1.3.6)

Applying this to Q = T, du as in the definition of Mahler measure and L?-norm, ¢ = exp and
g(t) = 2log | f ()|, we obtain

MUPsAU@%&m:@uﬂ

Hence we are done for the middle inequality. O

Multi-variable case ‘ Here is the multi-variable version of the bound of ¢o(f) by M(f).

Lemma 1.3.11. Let f(t1,...,tn) € Clt1,...,t,] with partial degrees dy,...,d,. Then

d;

@mDMm‘

H(dj +1)7V2M(f) < loo(f) < H <L

j=1 i
Proof. The desired inequality is equivalent to

i A - 1/2

E<MM)£M”SWﬂSE%+U loolf).

The proof for the second inequality follows the same line as in the one-variable case; one uses the
L?-norm as an intermediate. More precisely, one uses Jensen’s inequality (1.3.6]) to prove M (f) <
l5(f), and then applies the easy bound £2(f) = (301<j<q, 0<i;<d; lai, . ,)2)? < H?Zl(dj +
Y200 (f)-

N the first inequality T]"_, (%) lse(f) < M(f) by inducti Th

ow we prove the first inequality J[;_; (|47 0o < v induction on n. e

base step n = 1 is proved in Lemma [1.3.10

Assume the result is proved for 1,...,n — 1. We can write uniquely

dn
Fltr,otn) = filti, ot
=0

for certain polynomials f; € C[t1,...,t,—1]. Then /s (f(eiel, e ,ew"—l,t)) = max; |fj(ei91, et
Fixing 601, ...,0,_1, we have

log M (f(ewl,...,ew””,t)> :/log’f(eielwu7ei9n)|dun’
T
and thus
log M(f) = [ 1og (e ...l -

= / 1OgM (f(ewl’ RS 61’9”717&) d:ul U d:unfl-
Tr—1
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Fixing 61, ...,0,_1, we apply the first inequality in Lemma|[1.3.10|to the one-variable polynomial
f(er, ... e?n=1 1), We then get

d

~1
mn i 7,91 7;9”71
Ldn/2J> mjax|f](e N )|

M (f(ewl,...,ew"*l,t)> > (
Thus we have

log (/) = [

Tn—1

log max |fj(ei91, ce eia"*l)]dm - dptn—1 — log <
J

Ldg;2J>
)

> ma [ mm@%mﬂwwwdeAA%(
J Tn—1

= maxlog M(f;) — log (Ldf;? J)

J

> m]ax log {oo(f) — Z log (Ld;%) by induction hypothesis
j=1 !

— log loo(f) — jz:log (uj?%)'

This is what we desire. We are done. O

Now we are ready to prove Gelfond’s Lemma.
Proof of Lemma[1.3.6, Recall the set-up. We have fi,..., fi € Clt1,...,t,] and f:= f1-- fim.
Let d be the sum of the partial degrees of f. We wish to prove

m

27dH£OO(fj) < loo(f) < 2dH£OO(fj>-

j=1
Write dgj), ey dg) for the partial degrees of f;.

We start with the lower bound for /o (f). The proof uses the relation between M (f) and
lo(f) established in Lemma (1.3.11} Recall that M (f) = M(f1)--- M(fn). We have

H loo(fj) < H (H (L K )M(fj)> by the second inequality in Lemma [T.3.11]

(4)
j=1 j=1 \k=1 di’ /2]
m n (4)
dy >
= ; (f)
HHQMM
() 1/2
m n d n m . ) ) )
< (H H ([diﬁ/ﬂ)) H (1 + Zd%)) loo(f) by the first inequality in Lemma [[.3.11]
j=1k=1 k=1 j=1

Then the upper bound is obtained from the following fact: Let a < A, b < B and d be non-

negative integers. Then (‘2) (]f) < (ﬁif) and (de/lzj)(d +1)1/2 < 24[b]

BIThe first follows from (1 4 )4(1 +t)? = (1 +t)**®, and the second follows from Stirling’s formula.
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Next we prove the upper bound for o (f). For this, we will establish

with
m— n
- H H (1 +dY ) < 2d, (1.3.7)
7=1 k=1
Let us explain how this C is chosen. First notice that only the degrees of the first m — 1 polyno-

mials count. This observation is in many applications important. It also gives the “Moreover”
part of Gelfond’s Lemma

Write f; = > ak Jgk = Zogklgdgj) 0<ky<d) a,(ﬁ) tkl- thn . Then
k
1T (S
j=1 j=1 k

_ 1) (m) e
- Z WGy Aymy |
e k(D 4.4 k(m) =e

Here e = (eq,...,e,) is a multi-index with n components, and each k(@) = (k‘(]) k:(j)) is also
a multi-index with n components. Moreover, we have 0 < kg 7 < dg ), .,0<Z k'q(@) < dgf).

Now we are reduced to the following claim: For each fixed e, we need to prove that the number

of monomials in )y ), . yxom Mg )) is at most C'. Notice that under this assumption,

)
Kk " Ag(m
if kM, ... k(™= are all fixed, then k( m) is also fixed. Hence we can conclude because C' is

the naive upper bound for the number of choices of the tuple (k. ... k(m=1) satisfying that
0<k&P <a? o<k <df. 0

1.3.3 Some other operations with polynomials

We have seen how to bound the height of the product of polynomials. Now we turn to other
operations.

The first is the sum of polynomials. For this, Proposition implies the following bound
rather easily.

Proposition 1.3.12. Let fi,..., fr € Q[t1,...,t,]. Then we have
h(fr+.. 4+ fr) <) h(f) +1logr.
j=1

In what follows in this subsection, let f(t) = >_; th = D v ir ]nt] Legin,

Next, we turn to the formal partial derivatives df /0ty := Zjlw-,jn: i1 jkajl.,,jntl tjk 1th 1kt

Proposition 1.3.13. Let dpyax be the mazimum of the partial degrees of f. Then

h <af> < h(f) + 10g dima.
Oty

ceopdn
k+1 t

n -
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Proof. Let K be a number field such that all the coefficients of f are in K.

Each jr # 0 appearing in the monomials of f satisfies 1 < jir < dpax- If v is non-
archimedean, then |jx|l, < 1. If v is archimedean, then |jx|ly < ||dmax|v- In summary,
l7 |0 < max{1, ||dmax]||v} for each v € M.

Notice that each coefficient of 0f /0ty is jraj, .. 4,. Thus

10F/0tk]lo < max{1, || dmax|lo }| flo,

and hence max{1, [|0f/0t|,} < max{l, |dmax]|lv} max{1, | f|l,}. So

(K : QIh(0f/0ty) = > log" |0 f /0t

vEME
< Z log™ || dmax |l + Z log™ || fll
vEMK veEMK

= [K : Qh(dmax) + [K : QIA(f).

Hence h(9f/0ty) < log dmax + h(f) because h(dmax) = 10g dmax as dmax is a positive integer. []

1.3.4 Mahler measure and algebraic number

Let us see another application of Jensen’s Lemma (Lemma @7 which establishes the relation
between the Mahler measure and the height of an algebraic number.

Proposition 1.3.14. Let o € Q and let f be the minimal polynomial of o over Z. Then we
have

log M(f) = deg(a)h(«). (1.3.8)

In particular, we have
log | Ng(a)/0(@)| < deg(a)h(a). (1.3.9)

Proof. Set d = deg(c) and write f(t) = agt? + --- + ag € Z[t]. Write oy = ., ..., oq the Galois

conjugates of a. Then f(t) = ag(t—a1)--- (t—aq). Let K C Q be the Galois closure of Q(«) over

Q, i.e. K is the smallest Galois extension over Q which contains « and all its Galois conjugate.

Write G = Gal(K/Q). Then {o(«)}scq contains every conjugate of a exactly [K : Q]/d times.
For each (non-archimedean) v € MY, Gauf’s Lemma (Lemma yields

d
max{||agllu, .. llaollo} = [I£llo = laallo [ [ max{1, [/l }.
i=1

Notice that the left hand side equals 1 because each a; € Z and ged(ag, . ..,ap) = 1. Thus

d
log [lagll + > log™ ]|y = 0 (1.3.10)
=1

for each v € M?{.

Ollog M (f) = log |aa| + Z?Zl log™ |a;| for f(t) = aq(t — a1) -+ (t — aq).
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Now we have

d

(K : Qlh(a) = LS dQ] Zh(ai) by Lemma [T.2.4]
1 . =1
=22 2 log*flaille
1=1 vEMg
1 4
T\ gl 2 el

= <log laall + Z log™ ‘041Hv> by Product Formula applied to ag.
v|oo i=1

If K, =R, then || ||, = || If Kv = C, then || - Hv = |- |>. Recall, from Algebraic Number
Theory, the basic fact that #{v : Ky =R} +24#{v: K, = C} = [K : Q]. Hence we can apply
Jensen’s Lemma (Lemma [1.3.9)) to each term on the right hand side and obtain

(K : Q]

K : QJh(a) = =

log M (f).
This yields (1.3.8]).

To prove the “In particular” part, recall from Algebraic Number Theory that Nga)/q()
Hle ;. Thus log|Ng(a)q(a)| = Zgzllog\ai\, which then < Zle log™ |a;| and hence
log M(f) by Jensen’s Lemma.

A

O

Remark 1.3.15. Let us have a quick look at the Lehmer Conjecture. If a # 0 is an algebraic
number with minimal polynomial f, the Mahler measure of « is defined to be M(«) := M(f).
Then 8) yields M (a) = H(a)8(®) . Lehmer’s conjecture predicts that there exists a contant
¢ such that M(a) > ¢ >1 forall o € Q" not a root of unity. Alternatively, h(c) > ¢/ deg(a)
for some absolute constant ¢ > 0. This conjecture is open. Currently, we have Dobrowolski’s
theorem which claims (d := deg(a))

log log d) 3

M >1
(o) > +c< log d
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Chapter 2

Siegel Lemma

The goal of this chapter is to introduce the Siegel Lemma in different grades. In general, Siegel
Lemma concerns finding small non-zero solutions to a linear system. We will explain:

- Basic version in with the goal of finding one such small solution.

- Bombieri—Vaaler’s version in with the goal of finding a basis of such small solutions.
However, we do not distinguish different solutions in this basis. In some way, we are finding
linearly independent solutions whose “average” is small.

- Faltings’s version in with the goal of finding successively such small solutions.

2.1 Basic version

We start with the very basic version of Siegel’s Lemma.

Lemma 2.1.1. Let a;j € Z withi=1,...,M and j =1,...,N. Assume that a;; are not all 0
and |a;j| < B for all i and j.
If N > M, then the homogeneous linear system

a1171 + ajoxa + -+ aiyrny =0
a2171 + a2x2 + - +aayry =0

ayix1 + aproxo + - +aynry =0

has a non-zero solution (x1,...,xN) € Z with

max |z < [(NB) ¥ |.
J

In practice, it is more convenient to denote by A = (az‘j)1§z‘§ M, 1<j<n Which is a non-zero
M x N-matrix with entries in Z. The upshot of this lemma is that the linear system Ax = 0
has a small non-zero solution provided that N > M. Here small means that the height of this
non-zero solution is bounded in terms of N, M and h(A) It should be understood that M is
the number of equations and N — M is the dimension of the space of solutions.

Here h(A) is defined to be the height of [ai;]:,; viewed as a point in PN =1(Q).

29
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Proof. We may and do assume that no row of A is identically 0. Thus M > 1. For a positive
integer k, consider the set

T:={xcZ":0<x;<k, j=1,...,N}.

Then #T = (k+ 1)V,
Next, for each i € {1,..., M}, denote by Sj the sum of the positive entries in the i-th row
of A, and by S;” the sum of the negative entries. Then

For x € T and y := Ax, we have kS; <y; < kS;" for each i. (2.1.1)

Next, set
T :={y € Z" : kS; <y; <kS; for each i}.
Then for B; := max; |a;;|, we have S;“ — S, < NB; and we can conclude that #7" <
MM, (NEB; +1).
Now take k := [[[X,(NB)YN-M)| Then NkB; +1 < NB;(k + 1) because N > M > 1,

and hence
M

M M
[[(VEB; +1) < [[NBi(k+1) = (k+ )M [[ N B:.
i=1 =1 =1

On the other hand, Hf\il(NBi)l/(N_M) <k+1. So

M
[T(VEB: + 1) < (k+ DMk + )N M = (k+ 1)V = #T.
i=1
We have seen that #7” is bounded above by the left hand side. So #T” < #T'. By the Pigeonhole
Principle and (2.1.1)), there exist two different points x’, x” € T such that Ax’ = Ax”".
Now x := x’—x" is a non-zero solution of the linear system in question such that max; |z;| <

k= LHZ.]ZI(NBZ.)U(N—M)J < L(NB)M/(N_M)J, -
This basic version self-improves to a version for number fields.

Lemma 2.1.2. Let K C C be a number field of degree d, and let |- | be the usual absolute value
on C. Let M, N € Z with 0 < M < N. Then there exist positive integers C1 and Co such that

the following property holds true: For any non-zero M x N-matrix A with entries am, € Of,
there exists x € OX \ {0} with Ax =0 and

H(x) < C1(CoNB) V-1,

where B 1= maXym n |0(amn)| with o running over all the embeddings K — C.

The constants C7 and Cy depend only K (and hence d), M and N, but they are independent
of the choice of the matrix A By the Fundamental Inequality (Proposition |1.2.10)), B can be

bounded by H(A) with A viewed as a point (@mn)m,n € @MN.

Proof. Let wq,...,wy be a Z-basis of Ok. The entries of A may be written as
d . .
G = Y aDw;i,  al) € Z. (2.1.2)
j=1

Rl fact by the proof, one can see that C2 depends only on K.
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For each x = (z1,...,2N) € O[J\(I, using , = Zgzl x%k)wk we get
)..(k)
Z Z e wn ZZ Z bl

n=1j k=1 =1 n=1j,k=1

where wjwy, = sz:1 bglk)wl. Set A’ to be the (Md) x (Nd)-matrix

d

= | 2 et

with rows indexed by (m, 1) and columns indexed by (n, k). Write y € ZN? for the vector (:U%k))

Apply the basic version of Siegel’s Lemma, Lemma to A’. Then we obtain a non-zero
integer solution y with A’y = 0 such that

M

0\ "
H(y) < (Nal2 max\a ]max\b ]) .

m,n,j

As x, = Zk 1 2Muy, for each n, we then obtain a constant C; such that H(x) < C1 H(y).

Next we wish to bound max; ]a n| in terms of maxy p, p |0(@mn)|- Let o run over the d =
[K : Q)] different embeddings K — C. Apply each o to (2.1.2). It is known from Algebraic
Number Theory that the d x d-matrix (o(wj))es,; is invertibleié“? So we obtain a constant C)
such that

max o) | < CY max | (@mn)].
J

Thus we can conclude by taking Cy := C4d? max; s, |b§lk)| O
Next, we also have the following relative version of Siegel’s Lemma.

Lemma 2.1.3 (Relative version of Siegel’s Lemma, basic version). Let K be a number field of
degree d. Then there exists a positive number C' such that the following property holds true For
any M, N € Z with 0 < dM < N and any non-zero M x N-matriz A with entries am, € Ok,
there exists x € ZN \ {0} with Ax =0 and

H(x) < [(CNB)~-av |

where B := maXym.n |0(amn)| with o running over all the embeddings K — C.

Again, by the Fundamental Inequality (Proposition|1.2.10), B can be bounded by H(A) with

A viewed as a point (amn)mn € @MN. We emphasize that the constant C' depends only on the
field K.

Proof. Let wi,...,wq be a Z-basis of O. For the entries of A = (ay,y), we have
d .
n=> adw (2.1.3)
j=1

¥ldeg(o(w;))z,; = Disc(K/Q) # 0
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for uniquely determined a,(%)n € 7. Consider the M x N-matrix AU) = (a,(%)n) for each j €
{1,...,d}. Then for x € QV, the equation Ax = 0 is equivalent to the system of equations
AWx =0 for all j =1,...,d. This new system has dM equations and N unknowns. Write A’

AW

for the dM x N-matrix : |. Since dM < N, we can apply Lemma [2.1.1{ to find a non-zero
Ald)

solution x = (z1,...,7y) € Z with

. dM
max 1] < [(N ma o)) 755
K3 n

)10,

It remains to compare max, |a7(%21| and maxg m.n |0(amn)|. We use the same argument as for
Lemma Let o run over the d = [K : Q] different embeddings K < C. Apply each o to
(2.1.3). It is known from Algebraic Number Theory that deg(a(wj))ij = Disc(K/Q) # 0. So

we obtain a constant C' such that max; |a$f121] < Cmaxy |0(amn)|.- Hence we are done. O

2.2 Arakelov height of matrices

While the basic versions of Siegel’s Lemma are sufficient for many applications, we state and
prove a generalized version. Its proof, which is by the Geometry of Numbers and in particular
uses the adelic version of Minkowski’s second main theorem, is of particular importance.

Theorem 2.2.1. Let A be an M x N-matrixz of rank M with entries in a number field K of
degree d. Then the K-vector space of solutions of Ax = 0 has a basis X1, ...,XN_pm, contained

n (’)IA{/, such that
N—M
N-—M
[T HGa) <1Dkjgl 2 Har(A),
=1

where D q is the discriminant of K over Q.

There are several things to be explained for this statement. First, H(x) = exp(h(x)) is
the multiplicative homogeneous height with x considered as a point in PV ~1(K); thus we may
assume X € (9% because we can replace any solution by a non-zero scalar multiple and this does
not change its height. Second, we need to define the Arakelov height Ha,(A) of the matrix A;
this is what we will do in this section.

Moreover, there is also a relative version for this generalized version. See Theorem [2.3.3

2.2.1 Arakelov height on PV

Recall the Weil height which we defined before. For a point x = [zg : --- : zx] € PV (K), we
have

[K : Q)h(x) = Z logmjax||xj||v—|—210gm]ax\|xj||v = Z logm;lx||xj||v+Z[Kv : R] logmjax|xj|v.

veMY v|oo veMY v|oo

There are other choices for the height function on P¥(Q). In Arakelov theory, a more nat-
ural choice is to replace the L°°-norm max; |z|, at the archimedean place by the L?-norm

N 1/2
<Zj:0 \:cﬂ%) . In other words, we define:
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Definition 2.2.2. For x = [z¢: - : zn] € PY(Q) with each z; € K, define
1/2
1

" g

N
> togma oyl + D[ : Bllog | 3 Ja
=0

veEMY v]oo

One can check that ha,(x) is independent of the choice of the homogeneous coordinates (by
the Product Formula) and of the choice of the number field K.
To ease notation, we introduce the following definition.

Definition 2.2.3. Forx =[x :...: zy] € PY(K) and v € Mk, set
Mesll = o |0 Q@] e ~
max; ||z, = max; |z;[y if v is non-archimedean,
H,(x) := N N\ V2 KuR] o ,
(ijo ]:Uj\v> if v is archimedean.
With this definition, the following holds true. For x = [zg : --- : xx] € PV(Q) with each
z; € K, we have
1
h = — log H, . 2.2.1
AI‘(X) [K : Q] Z og U(X) ( )

The following lemma will be proved in the Exercise class.
Lemma 2.2.4. On PN (Q), the height functions h and ha, differ from a bounded function.

Thus in view of the Height Machine, ha, is in the class represented by hpn o(1).

2.2.2 Height of matrices

We start by defining a height function on the Grassmannians. Let W be an M-dimensional
_ - _ (N

subspace of QN. Then AMW is a 1-dimensional subspace of AM QN ~ Q(M ) Thus we may view

W as a point Py of the projective space IP’(/\M@N).

Definition 2.2.5. The Arakelov height of W is defined to be ha, (W) := har(Pw). We also
define the multiplicative Arakelov height Har(W) := exp(ha;(Pw)).

Now we are ready to define the Arakelov height of a matrix A.

Definition 2.2.6. Let A be an N x M-matriz with entries in Q.

(i) Assume rkA = M. Then ha,(A) is defined as ha, (W), where W is the subspace of @N
spanned by the columns of A

(ii) Assume tkA = N. Then ha (A) := ha(AY) with A® the transpose of A.
We also define the multiplicative Arakelov height Hay(A) := exp(har(Pw)).

In general, A may not have the full rank. We then consider the subspace spanned by the
columns or by the rows. This will lead to hffrl and A", We omit the definitions here but the
idea will show up in the discussion of the generalized Siegel’s Lemma in the next section.

We start with the following lemma, which makes the two parts of Definition [2.2.6] more
“symmetric”.

MINotice that A defines a linear map A: R™ — RY. The subspace W is precisely the image of this map. The
assumption rkA = M is equivalent to the map A being injective.
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Lemma 2.2.7. Let A be an N x M-matriz with entries in Q. Assume tkA = N. Then ha (A)
equals the Arakelov height of the subspace of @M spanned by the rows of A.

Proof. Consider the transpose A! of A. It can be easily seen that A’ is an M x N-matrix of rank N,
and hence defines an injective linear map @N — @M, which by abuse of notation we still denote by A?.
Part (i) of Definition (applied to A") says that ha,(A") equals ha, (W) with W C @M the subspace
spanned by the columns of A?. Notice that W = Im(A?).

The matrix A defines a linear map A: (@M)* — (@N)* which is the dual of A*. Consider the
subspace Ker(A) of (@M)* Its annihilator Ker(A)+ in ((@M)*)* = @M then equals Im(A?) = W by
Linear Algebra. It is known that Ker(A)* is spanned by the rows of A, and so is W. Hence we are done
because ha,(A) = har(AY) = ha(W). O

Proposition 2.2.8. Let W be an M -dimensional subspace of@N and let W be its annihilator

in the dual (@" ) ~Q". Then hay(WL) = ha(W).
This proposition has the following immediate corollary.

Corollary 2.2.9. Let A be an N x M-matriz with tkA = N and with entries in Q. Then the
Arakelov height of the space of solutions of Ax = 0 equals hay(A).

Proof. We have ha,(A) = hat(AY) = ha(Im(AY)). But Im(AY) = Ker(A)r. So ha,(A) =
har(Ker(A)1), which then equals ha(Ker(A)) by Proposition Hence we are done. O

Proof of Proposition[2.2.8 Write V = @N. Any element z € AMV defines a linear map ¢(x): AN—M
V = ANV, y > 2 Ay, and thus an element ¢(x) € ANV @ AN=M(V*). In other words, we obtained a
map

o: AMV 5 ANV @ ANTM (),
Then ¢ is an isomorphism and (better) each element of the canonical basis of AMV is mapped to an
element of the canonical basis of ANV @ AN =M (V*) up to a sign.

Notice that ANV is a line. So it is easy to check that for any non-zero z € AMW (which is a
line), the image of ¥ (x) is ANV and the kernel of 1 (z) is the subspace of AN"MV generated by the
elements of the form w A z with w € W and z € AN"M=1V. Thus p(AMW) = ANV @ AN-M (W),
Hence the coordinates of AMW in P(AMV) are, up to a sign, equal to the coordinates of AN=M (W) in
P(AN=M(V*)). This proves the proposition. O

We finish this section by the following explicit formula for the definition of ha,(A4). Let A
be an N x M-matrix with entries in Q.

For simplicity we only consider the case tkA = M. Let I C {1,..., N} with |[I| = M. Denote
by Aj the M x M-submatrix of A formed with the i-th rows, i € I, of A. Then the point in
P(AN @M) corresponding to Im(A) is given by the coordinates det(Ay), where I ranges over all
subsets of {1,..., N} of cardinality M.

Let K C Q be a number field which contains all entries of A. For each v € M, set

(4) = max | det(AI)\LK”:Q’)] = maxy || det(A7)||» if v is non-archimedean,
! > det(AI)|3)l/2'[K“:R] = |det(A*A)\11,/2'[K“:R} = det(A*A)Hil,/2 if v is archimedean.
(2.2.2)

Here A* = A’ is the adjoint of A, and Y, |det(As)|% = |det(A*A)|, at the archimedean places
by the Binet Formula.
Under this convention, we have

hae(A) = [Kl(@] S log Hy(4). (2.2.3)

An immediate corollary of this explicit formula is:
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Corollary 2.2.10. Let G be an invertible M x M-matriz. Then ha(AG) = hay(A).
Another application of this explicit formula is:

Corollary 2.2.11. Let B and C be two complementary submatrices of A of type N x My and
M x My respectively. Then hay(A) < har(B) + har(C).

Proof. We only give a sketch. It suffices to prove H,(A) < H,(B)H,(C) for each v € Mg. If
v is non-archimedean, it follows from Laplace’s expansion. If v is archimedean, it follows from
Fischer’s inequality

Wi (BB BC
“Ne*B o

) < det(B*B) det(C*C).

Alternatively, this corollary is an immediate consequence of the important theorem of Schmidt
(independently of Struppeck—Vaaler) ha,(V + W) + ha, (VN W) < har(V) + ha (W) for any
subspaces V, W of @M. [

2.3 Generalized Siegel Lemma by Bombieri—Vaaler

The goal of this section is to have a deeper discussion of the generalized Siegel’s Lemma by
Bombieri-Vaaler (Theorem [2.2.1)); in particular we give its proof. We repeat the statement here.

Theorem 2.3.1. Let A be an M x N-matrixz of rank M with entries in a number field K of
degree d. Then the K-vector space of solutions of Ax = 0 has a basis X1, ...,XN_M, contained
in (’)%, such that

N—M N-—M
II Hx) < IDijgl 20 Har(A),
=1

where Dy q s the discriminant of K over Q.

As said below Theorem there is no deep information about the x;’s being contained
in OY.

In practice, we may not always assume that A has maximal rank M. This can be obviated.
We hereby state a corollary of Theorem which bounds the heights of the solutions by the
(multiplicative) Weil height instead of the Arakelov height.

Corollary 2.3.2. Let A be an M x N-matriz of rank R with entries in a number field K of
degree d. Then there ezists a basis Xi,...,XN_gr of the kernel Ker(A), contained in O[]\é, such
that

N—R n R
[T #0x) < [Dijol ™= (VNH(A))
=1

Here H(A) is the multiplicative Weil height of the point |a;;]; ; viewed as a point in PMN=1(K),
with a;; the entries of A.
In particular, there is a non-zero solution x € (’)% of Ax = 0 with

H(x) < | Dy g2 (mH(A))NIjR.
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2.3.1 Proof of Corollary [2.3.2] assuming Theorem [2.3.1

The “In particular” part follows clearly from the main part. So we will focus on proving the
main part.
As tkA = R, there is an R x N-submatrix A’ of A with rkA’ = R. Applying Theorem [2.3.1]

to the matrix A’ we get a basis x1,...,xy_pg of Ker(A) such that
N-R n
I #x) < [Dijgl 2@ Har(4). (2.3.1)
1=1

On the other hand, if we denote by A,, the m-th row of A, then Corollary 2.2.11] implies
that

HAr(A/) < H HAr(Am)7

where m runs over the R rows of A’. Furthermore, the following inequality clearly holds true
by definition
Hpr(Am) < VNH(A).

Now, the two inequalities above yield Ha,(A’) < (vVNH(A))E. So we can conclude by (2.3.1).
O

2.3.2 Relative Version

As for Lemma [2.1.3| with respect to Lemma [2.1.1] we also have the following relative version of
this generalized form of Siegel’s Lemma.

Theorem 2.3.3. Let K be a number field of degree d and F/K be a finite extension with
[F': K] =7r. Let A be an M x N-matriz with entries in F'.

Assume rM < N. Then there exists N — rM K-linearly independent vectors x; € O% such
that Ax; =0 for eachl € {1,...,N —rM} and

N—rM Nt M
[T Hx) < Dol 58 T] Har(Ay)'.
=1 =1

where A; is the i-th row of A.

The proof follows the guideline set up in Lemma [2.1.3

Proof. Let wy,...,w, be a basis of F/K. For the entries of A = (@), we have

r
Amn = E a%%wj
J=1

for uniquely determined a%% € K. Let AY be the M x N-matrix with entries a%%. Then

for x € K, the equation Ax = 0 is equivalent to te system of equations AWx = 0 for all
A

j=1,...,r. Write A’ for the rM x N-matrix : |. Denote by R :=rkA’.
A)
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It is attempting to apply Theorem to A’. But we need to do one more step. Let
01,...,0p be the distinct embeddings of F' into K over K. Let € be the M x rM-matrix built
up by 72 blocks of M x M-matrices €;; = 0;(w;) . By construction of A, we have

1A
A= | =04
oA
From Algebraic Number Theory, it is known that Dp/x = det(oi(w;))?. Thus € is invertible,
and its inverse is again formed by 72 blocks of multiples of Ij;. In particular, tkA” = rkA’ = R
and Ker(A"”) = Ker(A').

There exists an R x N-submatrix A" of A" with rkA” = R. Applying Theorem to A",
we get a basis x1,...,xy_pg of Ker(A”) = Ker(A’), contained in Ok, such that

N-R o
H H(x;) < |Dgjgl 2@ Har(A"),
=1

If we denote by A, the m-th row of A”, then Corollary [2.2.11] implies that

HAr(A”) < HHAr(A;;L)a

where m runs over the R rows of A”. Thus if we rearrange our basis x; by increasing height, we
have

NerM N—rM
N—rM N—-R N—-R N N—R
Il Ex)<| J] Hx) < |Dijgl 2t | [] Has(A7,) : (2.3.2)
=1 =1 m
By definition of the Arakelov height, we have Ha, takes value in [1, 00). Thus ([],, Har(Ar,)) R
H:fl Ha,(A'). Now the conclusion follows because Ha, is invariant under each o;. O

2.4 Faltings’s version of Siegel’s Lemma

In his famous paper Diophantine approximation on abelian varieties (Annals of Math.
133:549-576, 1991), Faltings proved a fancier Siegel’s Lemma. It plays a fundamental role for
his proof of the Mordell-Lang Conjecture. In this section, we discuss about this.

2.4.1 Background and statement

Recall the following basic version of Siegel’s Lemma, Lemma [2.1.1

Lemma 2.4.1. Let A = (a;j) be an M x N-matriz with entries in Z. Set B = max; j |ai;|. If
N > M, then Ker(A) contains a non-zero vector X = (x1,...,xn) € ZV such that

max |z;| < (NB) ¥
J

Let us digest this lemma in the following way. The matrix A defines a linear map o: RV —
RM such that a(ZY) C ZM, i.e a maps the lattice Z" into the lattice ZM. If N > M, then we
are able to find a non-trivial lattice point of small norm in Ker(«). As we said before, N — M
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should be understood to be dimKer(A) (although in the current formulation they may not be
the same).

Faltings’s fancier version looks not for only one, but for an arbitrary number of linearly
independent lattice points in Ker(«). To say that these lattice points are of small norm, we use
the successive minima. Moreover, it is more natural to work with arbitrary normed real vector
spaces.

Let (V.|| - ||) be a finite dimensional normed real vector space, and let A be a lattice (a
discrete subgroup of V' which spans V'). Denote by B(V) the unit ball {x € V : ||z|| < 1} in V.

Definition 2.4.2. The n-th successive minimum of (V,| -||,A) is

AV -], A) : =inf{t > 0: A contains n linearly independent vectors of norm < t}
= inf{t > 0:tB(V) contains n linearly-independent vectors of A}.

Next for two normed real vector spaces (V, || - ||v) and (W, ] - ||w), the norm of a linear map
a:V — W is defined to be

e := sup{”a(x)HW :x;zéO}. (2.4.1)

[l ]lv

We are ready to state Faltings’s version of Siegel’s Lemma.

Theorem 2.4.3. Let (V| - |lv) and (W] - |lw) be two finite dimensional normed real vector
spaces, let Ay be a lattice in V' and Aw be a lattice in W.

Let a: V. — W be a linear map with a(Ay) C Ay . Assume furthermore that there exists a
real number C' > 2 such that

(i) llall < C,
(i) Ay is generated by elements of norm < C,
(iii) every non-zero element of Ay and of Ay has norm > C~1.

Then for U := Ker(«a) with the induced norm || ||y (the restriction of ||-||yv on U) and the lattice
Ay := Ay NU, we have

. . 1/(dimU—n)
At (U |- o, Ag) < (€Y (dim V) )

for each 0 <n <dimU — 1.

Notice that the hypotheses (i)—(iii) can always be achieved by enlarging C'.
The basic version of Siegel’s Lemma (Lemma [2.4.1]), up to changing the constant, follows
from Theorem [2.4.3] with n = 0.

2.4.2 Proof of Theorem 2.4.3

The proof of Theorem [2.4.3| uses Minkowski’s Second Theorem.
Let (V.|| - |lv,Av) be a finite dimensional normed real vector space with a lattice. Set
dy := dim V. For simplicity, denote by

dy
V/IAv ={veV:iv=> XNuv;, 0< ) <1}
j=1
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where {v1,...,v4, } is a basis of Ay. Notice that V/Ay depends on the choice of the basis.

We can endow V' with a Lebesgue measure uy as follows. Fix an isomorphism ¢: V =~
R% and use p to denote the standard Lebesgue measure on R%. Then set for any Lebesgue
measurable A C RV

pv (01 (A4)) = p(A). (24.2)

Up to a constant, there is only one Lebesgue measure on V. Thus the quantity

pv (B(V))
pv (V/Av)

does not depend on the choice of uy; it clearly does not depend on the choice of the basis of Ay
in the definition of V/Ay.

Vol(V) = Vol(V, || - ||v, Av) := (2.4.3)

Theorem 2.4.4 (Minkowski’s Second Theorem). With the notation above, we have
gdv v g
i . . v

Here we used the fact that the unit ball B(V') is convex and symmetric (i.e. B(V) = —B(V)).

To apply Minkowski’s Second Theorem to prove Theorem [2.4.3] we need one last preparation
on the quotient norm. More precisely, on V /U, we consider the norm

1olly/r = inf{llv +ullv : v e U}

for each v € V. Having this norm, we can define the unit ball B(V/U). Moreover, a(Ay) is
a lattice in «(V'), which can then be viewed as a lattice in V/U by the natural isomorphism
V/U =~ a(V). So we can define Vol(V/U) := Vol(V/U, || -||v/ur, «(Av)). Recall the notation from
Theorem we naturally have the quantity Vol(U) := Vol(U, || - ||v, Av).

Lemma 2.4.5. Vol(V) < 24mUNol(U)Vol(V/U).

Proof of Theorem[2.7.3 assuming Lemma[2..5. We will identify V/U ~ «(V) in the proof.
Take w € a(Ay) \ {0}. Write w = a(v) for some v € Ay. Then

vy = inf o+ ully = L2 > 02
here the last inequality follows from hypotheses (i) and (iii). In particular, this implies that
MU vy, a(Av)) = C72,

Write dy := dim V' and dyy := dim U. Minkowski’s Second Theorem (applied to V/U) yields
M(V/U - lvyws a(Ay)) I VU Nol(V/U) < 29mV/U | Thus from the paragraph above, we get
Vol(V/U) < (202)dv—du,

Next, by hypothesis (ii), we have Ag,, (V. |- ||, Av) < C. Thus Minkowski’s Second Theorem
(applied to V) yields Vol(V') > 24vC=4v /dy\.

Apply Lemma and the volume estimates above. Then we get

Vol(U)™! < ¢3dv=2du . gy, (2.4.4)

We apply another time Minkowski’s Second Theorem (to U). For each 0 < n < dy — 1, we
then get A (U, || - [lv, Av)™ - M1 (U, | - [, Ap) ™ =" - Vol(U) < 2. But M (U, || - [lv, Av) = C
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by hypothesis (iii). So we obtain

M1 (U] - o, Ar) < (szvOl(U)*lc”)l/ o
< (2dUCn+3du—2dU .dvg)l/(den) by ([2.4.4)
< (CBdV .dV!>1/(dU7n) )
Hence we are done. O

Proof of Lemma[2.4.5. Write dy := dimU and dy := dim V.
Let py and py be the Lebesgue measures on V' and U, respectively. On V/U we have a unique
Lebesgue measure py,y determined as follows: For any py-measurable subset E2 C V', we have

pv(E) = v fe@)dpyu (o)

where fp(¥) := py {u € U : u+ v € E}); here fg(7) is independent of the representative v because uy
is translation invariant.

We compute fgvy(0) for v € V/U. If v ¢ B(V/U), then [jv|ly > 1. So v ¢ B(V) for v + u for all
u € U. Thus fgy)(¥) = 0 in this case. If v € B(V/U), then v 4+u € B(V) for some v € U. Thus
ullv < lu+ollv + lvllv < 2. So fea) (@) < pu(2B(U)) = 2% - py(B(U)) in this case. In either case,
we have

i (BOV)) < 20 - s (BU)) - vy (BOV/U)). (2.4.5)
Next we turn to fy/a, (U). Let {u1,...,uq,} be a basis of Ay = Ay NU and expand it to a ba-
sis {u1,...,Udy, V1, -« s Vdy—dy | Of Ay, Then {T1,...,04,—q,} is a basis of a(Ay). For each 7 €

(V/U)/a(Ay), we have
fviny @) =po {u €U ru+v e V/Av}) = pu(U/Av).
Otherwise fy /4, (7) = 0. So
uv (V/Av) = pu(U/Av) - pvyu (V/U) /a(Ay)) - (2.4.6)

Now the conclusion follows from the definition of the volumes Vol(V) = uy (B(V))/puy (V/Av) ete. O

2.5 Reading material: Proof of Bombieri—Vaaler’s Siegel Lemma

2.5.1 Adelic version of Minkowski’s Second Theorem

The proof of Theorem uses geometry of numbers over the adeles and Minkowski’s Second Theorem.
In this subsection, we introduce/recall these prerequisites.

Let K be a number field, v € Mk and K, be the completion of K with respect to v. It is known
that K, is a locally compact group.

The ring of adéles of K is the subring

A ={x=(z,) € H K, : z, € R, up to finitely many v}.
vEMK

of HUeMK K,.
One should be careful with the topology on Ag. It is not induced by the product topology on

IL.c . B! Rather, we consider for each finite subset S C My containing all archimedean places the

product
Hg := HKU X H R,.
veES vgS
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The product topology makes each such Hg into a locally compact topological group. The topology which
we put on Ak is the unique topology such that the groups Hg are open topological subgroups of Ax. In
fact, this makes A a locally compact topological ring.

It is known that the diagonal map K — Ak, ¢ — (2, )ver,, makes K into a discrete closed subgroup
of Ax. Moreover Ak /K is compact.

Let v|p € Mg. Then K, is a locally compact group with Haar measure uniquely determined up to a
scalar. We normalize this Haar measure as follows:

(a) if v is non-archimedean, £, denotes the Haar measure on K, normalized so that

Bu(Ro) = D, g, I3
where R, is the valuation ring of K, and Dk, g, is the discriminant;
(b) if K, =R, then S, is the usual Lebesgue measure;
(c) if K, = C, then g, is twice the usual Lebesgue measure.

For each finite subset S C M containing all archimedean places, the product measure g := [],cg 8o %
vas Bulr, is then a Haar measure on the open topological subgruop Hg of Ax. The measures g fit

together to give a Haar measure 8 on A K

Let N be a positive integer. For each (archimedean) v|oo, let S, be a non-empty convex, symmetric,
open subset of K¥; here “symmetric” means S, = —S,,. For each (non-archimedean) v € MY, let S, be
a K,-lattice in KV, i.e. a non-empty compact open R,-submodule of K. Assume that S, = RY for all
but finitely many v. Then the set

A:={xeKN:xecS8,forallve M%}

is a K-lattice in K, i.e. a finitely generated Og-module which generates K~ as a vector space.
Moreover, the image A, of A under the canonical embedding K~ < E., :=[[, ., K is an R-lattice in

EOO@

Definition 2.5.1. The n-th successive minimum of the non-empty conver symmetric open subset
Seo i= H1)|oo Sy of Es with respect to the lattice Aoy is

v|oco

A = 1nf{t > 0: tSs contains n K-linearly independent vectors of Aoo}.
Now we are ready to state (the adelic version of) Minkowski’s Second Theorem.

Theorem 2.5.2 (Minkowski’s Second Theorem, adelic form). The successive minima defined above sat-
isfy
M- an)® I Bo(S,) < 2.

vEMK

Here, the product [[,cs, B0(Sy) should be understood to be the volume of S with respect to the
Haar measure on Ak defined by the 8,’s at each v € M.

BIWith this in hand, we can shortly explain why we take the normalizations above. The Haar measure 8 on
Ak induces a Haar measure (3, /x on the compact group Ax /K, and the normalization above makes the volume
of Ak /K to be 1.

[ This is the familiar notion of a lattice, namely Ao is a discrete subgroup fo the R-vector space Es and that
E+ /A is compact.
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2.5.2 Setup for the application of Minkowski’s Second Theorem

For the purpose of proving Siegel’s Lemma in the form of Theorem we do the following preparation.
For the sets S,: First, let QY be the unit cube in K of volume 1 with respect to the Haar measure
By. More explicitly, x = (z1,...,2yx) € QY if and only if

max,, ||[z,|l, < 5 if v is real

2

maxy, |z, < if v is complex

1
2
maxy, |znlls <1  if v is non-archimedean.
Let A be an N x M-matrix with entries in K such that rkA = M. Set
S, :={ye KM Ay ¢ QN}. (2.5.1)

If v is archimedean, then S, is a non-empty convex symmetric bounded open subset of K; indeed, under
the injective linear map x — Ax, the image of S, is a linear slice of the cube Q. If v is non-archimedean,
then one can show that S, is a K,-lattice in KM and that S, = RM for all but finitely many v; in fact
in this case we have the following more precise result.

Proposition 2.5.3. Let v € MY lying over the prime number p. Then S, is a K,-lattice in KM and
S, = RM for all but finitely many v. Moreover, we have

Bu(S2) = Dic, g, " (mae || det(An) )

where I runs over all subsets of {1,..., N} of cardinality M, and Ay is the M x M-matriz formed by the
i-th rows of A with i € I.

Proof. Choose a subset J C {1,...,N} of cardinality M such that || det(Ay)|l, = maxy | det(Ar)|,-
Without loss of generality, we may assume J = {1,...,M}. Then W := AA}1 is of the form

w= ().
For any subset I C {1,..., N} of cardinality M, we have || det(W7)||, <1 by choice of J. In particular,
taking I ={1,...,1—1,1+1,...,.M, M + j} we get

lwar4jalle = || det(Wr)lly < 1.
Thus all entries of W are in the valuation ring R, and this proves
A;S, ={y e KM : Wy eQY}=RM. (2.5.2)

This proves that S, is a K,-lattice in KM and that S, = RM for all but finitely many v
It remains to compute §,(S,). It is known that under the linear transformation y — A;ly on KM,
the volume transforms by the factor || det(Ay)||;*. Thus

Bu(Su) = || det(A)[1Bu(RY") = || det(A))5 1D, o, "
which is what we desire. O
We also need to bound $,(S,) from below for v archimedean. For this purpose, we have
Proposition 2.5.4. Let v € Mg with v|oo. Then
Bo(Sy) = || det(A"A)||, /2

where A* = A' is the adjoint of A.



2.5. READING MATERIAL: PROOF OF BOMBIERI-VAALER’S SIEGEL LEMMA 43

Proof. The proof uses Vaaler’s cube-slicing theorem, which we state here without proof.

Vaaler’s cube-slicing theorem. Let N = nj +---+n, be a partition. Let Qn := Bjn,) X+ X Byn, ),
where each B, () is the closed ball of volume 1 in R™ centered at 0 For a real N x M-matrix B of

rank M, we have
det(B*B)~'/2 < Vol ({y e RM : By € Qn}). (2.5.3)
An easier way to understand this volume bound is as follows. Let L := Im(B) C R¥ which is an M-

dimensional subspace. Then (2.5.3) is equivalent to 1 < Vol(Qx N L), i.e. the volume of a slice through
the center of a product of balls of volume 1 is bounded below by 1.

Now we go back to the proof of Proposition If K, = R, then this is for r = N and
ny=--=ny =1 Assume K, = C. Write A =U ++/—1V and y = u+ /—1v for real U, V,u, v. Thus
KM ~ R2M vy sy (u,v). Similarly we have KY ~ R?Y. Now, the linear map y — Ay is given by the
real 2N x 2M-matrix

, (U =V
A= (V U
and )
Qf)v_{(u,v)ER2N:u?+v32-< 27T}
By (2.5.3) for ny = --- = ny = 2, we then have

By(S,) > det(AA)1/2,

Since A — A’ is a ring homomorphism from the complex N x M-matrices to the real 2N x 2M-matrices,
we have det(AtA’) = det((A*A)’) = det(A* A)?. Hence we can conclude. O

2.5.3 Proof of Theorem [2.3.1]

With the preparation from last subsection, we prove Bombieri—Vaaler’s Siegel Lemma in this subsection.
We start with:

Proposition 2.5.5. Let A be an N x M -matriz of rank M with entries in K. Then the image of A has

a basis x1,...,xXp with
Ms

M 2\ o
T] Hexn) < () Dol Has(4)
m=1

71'
where s is the number of complex places of K and d = [K : Q).

Proof. By Proposition [2.5.3| and Proposition [2.5.4] we have

-1

I 55v) = TT 1Pkoe, 372 | 1 maxlidetAn)o - [T lldes(A™ )2

vEMK veMY veMY v|oo

By (2.2.3)), this becomes

IT sutsv) = | 11 1Dxosa,lp'? | Har(A)~7

vEMp veM?,

It is known, from Algebraic Number Theory, that [Dy/glp = [I,, [Px,/q,|p for each prime number p.
Thus the Product Formula implies |Dg /q| ™ = HUGM?{ |Dk, /q,lp- So the inequality above becomes

[T Bu(Sv) = 1Dk ol ™2 Har(A)~7.
vEMg

[M1So the radius of By, is p(ng) = 720 (ny /2 + 1)V
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Thus, Minkowski’s Second Theorem, Theorem yields
M A < 2M D oM H AL (A). (2.5.4)

It remains to use the successive minima find the desired basis. For the specific sets S, constructed in
[2.5.1), recall the K-lattice A = {x € K : x € S, for all v € M%} which is identified with its image
A under the canonical embedding K~ « E,, = HU‘OO KYN. Let y € KM be a lattice point in A\Ss, for

some A > 0 and let x = Ay. Then the definition of Soo =[], Sv yields max;, |lzn[l» < A/2if v is real,
max, ||z,|l, < A?/27 if v is complex, and max,, ||z, ||, < 1 if v € M%. Thus we have

A /2 s/d
H(Ay) < = <> . (2.5.5)
2 \m
By the definition of successive minima, there are linearly independent lattice points yi,...,yyu € KM
such that y,, € A\nSe for each m € {1,...,M}. Then we obtain the desired basis from (2.5.4) and
(2.5.5), with x,, = Ay,. O

Proof of Theorem[2.3.1l For the M x N-matrix A of rank M, its transpose A’ is an N x M-matrix of
rank M. It is attempting to apply Proposition directly to A?, but we need to do more.

We wish to find a basis of Ker(A) of small height. To do this, we first of all take an arbitrary
basis y1,...,yn—n of Ker(A), and let A" := (y1 yM). Then A’ is an N x (N — M)-matrix with
rank N — M, and Im(A’) = Ker(A). Recall that ha,(4) = har(Ker(A)) by Corollary Hence
har(A") = ha(A).

Apply Proposition to A’. Then we get a basis x1,...,xy_p of Im(A") = Ker(A) such that

N-M
H H(x;) < <72r
=1

But 2/ < 1. So we are done because Ha,(A') = Har(A). O

(N—M)s/d N
> ‘DK/Q| 2d HAr(A/).



Chapter 3

Roth’s Theorem

3.1 Historical background (Liouville, Thue, Siegel, Gelfond, Dyson,
Roth)

3.1.1 From Liouville to Thue

In Chapter 1, we proved the following Liouville’s inequality on approximating algebraic numbers
by rational numbers. The following statement is a reformulated version of Corollary [1.2.13

Theorem 3.1.1 (Liouville). Let o € R be an algebraic number of degree d > 1 over Q. Then
there exists a constant c(a) > 0 such that for all rational numbers p/q (¢ > 1), we have

_p| o)
e q‘z A (3.1.1)

In Chapter 1, we used the Fundamental Inequality (Proposition to deduce this bound.
In this chapter, we give another proof. This new proof sets up a prototype for various improve-
ments on approximations of algebraic numbers by rational numbers, and will eventually lead to
the deep Roth’s Theorem and even more.

Proof. We will divide the proof into several steps.

Step I: Construct an auxiliary polynomial‘ Let f(z) € Z[z] be the minimal polynomial of «
over (Q with relatively prime integral coeflicients. In particular, f is irreducible over @ and has
degree d.

‘ Step II: Non-vanishing at the rational point ‘ If p/q € Q, then we have f(p/q) # 0.

‘ Step III: Lower bound (Liouville) ‘ By Step II, we then have |f(p/q)| > 1/q¢¢ since deg f = d.

‘Step 1V: Upper bound‘ As f(a) = 0 and f is the minimal polynomial of a, we can write
f(z) = (x — a)g(z) with g(a) # 0. Thus
(@)
a—=|-lgl=]].
q q

/(G-

Notice that g has d — 1 roots, and € := ming |8 — a| > 0 and § := maxg |8 — o] > 0 with g
running over all the roots of g. If |p/q — a| < ¢, then g(p/q) # 0. Moreover, for any root 3 of g,

we have [p/q — B| < |B—al + |p/q — o < 25. Hence 0 # |g(p/q)| = [15Ip/q — Bl < (20)* if
|p/q — a| < €. Notice that € and 0 are both determined by a.

45
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Step V: Comparison of the two bounds‘ The lower bound and the upper bound yield the fol-

lowing alternative: Either |a —p/q| > ¢ > ¢/q?, or

Pl 1 1
a—=|>—= .
|~ g% (20)"
Thus it suffices to take c(a) = min{e, 1/(20)%1} > 0. O

Before moving on, let us see an application. By this theorem of Liouville, one can see that

1+ 132, + 133! + ﬁ + .-+ is a transcendental number since it has good rational approximations.

Improvements of Liouville’s approximation above require sharpening the exponent on the
right hand side of (3.1.1]). The first improvement was obtained by Thue, replacing d by %—i— 1+e.

Theorem 3.1.2 (Thue). Let a € R be an algebraic number of degree d > 3 over Q and let
e > 0. Then there are only finitely many rational numbers p/q (with p,q coprime and ¢ > 1)
such that

b ‘ <1 (3.1.2)
q§+1+e

Later on, Siegel improved this approximation by sharpening the exponent % + 1+ € to
2v/d + €, which was further improved to v2d + € by Gelfond and Dyson. The culminant of this
approximation result is Roth’s Theorem, replacing the exponent % + 14 € above by 2+ ¢. Later
on, a more general formulation of Roth’s Theorem, concerning not only one but finitely many
places, was obtained by Ridout over Q and by Lang over an arbitrary number field.

The proofs of these improvements follow the guideline set up above. In Liouville’s work, the
auxiliary polynomial from Step I comes for free and the polynomial has 1 variable. In general,
we need to construct a polynomial such that the lower bound from Step III and the upper
bound from Step IV repel each other This construction of the auxiliary polynomial is often
by application of a suitable version of Siegel’s Lemma discussed in Chapter 2. Thue and Siegel
worked with polynomials in 2 variables. Roth obtained the drastic improvement by constructing
a polynomial in m variables. However, the non-vanishing of this auxiliary polynomial at a
“special” point from Step II is a crucial point of the construction and it is a major difficulty
for the generalization of the approach. Solving this problem requires suitable zero estimates
and even the more general multiplicity estimates, which themselves are an important topic of
Diophantine Geometry.

Before moving on, let us see an example on how Thue’s Theorem above can be applied to
Diophantine equations. Stronger results on the finiteness of integer points on (certain) smooth
affine curves can be obtained by applying Siegel’s and Roth’s Theorems.

Theorem 3.1.3. Let F(x,y) € Z[z,y] be a homogeneous polynomial of degree d with at least 3
non-proportional linear factors over C. Then for every non-zero m € Z, the equation F(z,y) =
m has only finitely many integer solutions.

Proof. We prove this by contradiction. First assume that F' is irreducible over Q. Consider the

decomposition over C
F(x,l> = aq (x—041> (x—ad>.
Y Yy Yy

['We will see more precise meaning of this in later sections; a notion of “index” will be used.
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Then F(z,y) = m becomes

X xr m
oal® ) ()=
Y Yy Yy

If it has infinitely many integer solutions (z,,%y), then |y,| — co and hence m/y¢ — 0. Thus
up to passing to a subsequence, we may and do assume that z,/y, — «a; for some j. Notice
that |z, /yn — a;| > € for some € depending only on F for all i # j. Thus we obtain infinitely
many integral solutions to |a; — p/g| < Cq~? for some constant C' > 0. This contradicts Thue’s
Theorem above since d > 3.

Next we pass to the general case. Let Fi,...,F, be the distinct non-constant irreducible
polynomials in Z[z, y] dividing F'. By a linear change of coordinates, we may and do assume that
the polynomial y does not divide F'. Assume F'(z,y) = m has infinitely many integer solutions.
By the Pigeonhole Principle, there exist divisors mz,...,m, of m with the following property:
the system Fi(x,y) = mu,..., F.(x,y) = m, has infinitely integer solutions (x,,y,). As in the
previous case, up to passing to a subsequence we may and do assume that x, /y, converges to
a root of Fj(z,1) for each j € {1,...,r}. But the F}’s have distinct roots since each Fj is the
minimal polynomial of each one of its roots. So r = 1. By the assumption that F' has at least
3 non-proportional linear factors over C, we then have deg F} > 3. Thus the conclusion follows
from the irreducible case applied to Fi(z,y) = m;. O

3.1.2 Statement of Roth’s Theorem

The original version of Roth’s Theorem, which we will prove in this chapter, is as follows.

Theorem 3.1.4 (Roth’s Theorem). Let a € R be an algebraic number and let € > 0. Then
there are only finitely many rational numbers p/q (with p,q coprime and q > 1) such that

(3.1.3)

A more general version by Lang is as follows. The statement uses the multiplicative height
H.

Theorem 3.1.5. Let K be a number field and let S C Mg a finite subset. For eachv € S, take
ay € K,y which is K-algebraic, i.e. o, € K, is a root of a polynomial with coefficients in K.
Then for each € > 0, there are only finitely many § € K such that

[ minf1, o, — B} < H(B)~ 3. (3.1.4)

vES

Implication of Theorem[3.1.7] by Theorem[3.1.5 Take K = Q and S = {oo}. Then (3.1.4)
implies that there are only finitely many rational numbers p/q such that min{1, | — p/q|} <

H(p/q)~3*9. Recall that H(p/q) > 1. So if min{l,|a — p/q|} < H(p/q)~?*9, then |a —
p/q| < 1. Therefore, there are only finitely many rational numbers p/q (with p, ¢ coprime and
q > 1) such that |o — p/q| < max{|p|, ¢} =T = min{|p|~ 9, ¢~ C*+I)} < =+ This proves
Theorem [3.1.4] O
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3.2 Index and preparation of the construction of the auxiliary
polynomial

In the Thue—Siegel method and Roth’s proof of his big theorem, it is important to construct
a polynomial of rapid decreasing degrees, for the purpose of making the lower bound and the
upper bound repel each other. Then, in order to say that the polynomial vanishes at high order,
we need a suitable notion of index.

Let F be a field. Let P € Flxi,...,z,] be a polynomial in m variables. Let d =
(di,...,dn) be an m-uple (warning: the d;’s may not be the partial degrees of P). Denote
by x = (z1,...,%m).

To ease notation, we introduce the following abbreviation. For two m-uples n = (n1,...,ny)
and p = (u1,. .., m) of non-negative integers, set

n _m nj

) =12
5 _ 1 o \" o \Mm
= () ()

n
0,x" = xPTH,
# <u>

The following lemma is useful. It will be proved in the Exercise class.

and

Then

Lemma 3.2.1. h(0,P) < h(P) + (deg P)log2 where deg P is the sum the partial degrees of P.
Now let us define the index.

Definition 3.2.2. For a point a = (aq,...,qn), the index of P at a with respect to d is
defined to be

ind(P;d; ) ;= min{ - + . 4+ E™ 9, P(a) £0 . (3.2.1)
] dl dm

Another way to see the index is by writing P to be P =3_  bu(z1 — 1) -+ (2 — o)™,
and then ind(P;d; ) = min{> 7, S—j tby # 0},
Lemma 3.2.3. The following properties hold true.
(i) ind(P + @Q;d; ) > min{ind(P; d; o), ind(Q; d; @) };
(ii) ind(PQ;d; ) = ind(P;d; @) + ind(Q; d; ) ;
(i) ind(OpP;d; @) > ind(Pyds ) — G2 — - — B2
Proof. For (i): Assume that ind(P +Q;d; «) is achieved at some p = (1, ..., fim), then 0, (P +

Q)(a) #0. So 0, P(ax) + 0,Q(cx) # 0, and therefore either 9, P(a) # 0 or 9,Q(ax) # 0. By
definition of the index, we then have: either ) Z—; > ind(P;d;a) or ) ’é—j > ind(Q; d; @). Thus
ind(P+ @Q;d; o) = > ’é—j > min{ind(P; d; o), ind(Q; d; ) }.

For (ii): Assume that ind(PQ;d;«) is achieved at some p = (p1,...,4y). We have
Ou(PQ) = > 11+ pa—p Cnaopa (O P) (9, Q) for some positive integers Cm,uz Thus there

Iy fact, it can be checked that each Cpq,pe is equal to 1.
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exists p1 and pg such that b1+ p2 =, O, Pla) # .0 and Jp,Q(a) # 0. Thus the defi-
nition of index yields }, “j—y’? > ind(P;d; ) and ), % > ind(Q;d; ). So ind(PQ;d;ax) =
> 7M1’jd+ju2j > ind(P;d; @) + ind(Q; d; ).

To get the other direction, let us look at the set of p1’s such that

O P(a) #0 and  ind(P;d; o) Z 'ul’].

Consider the smallest such m-uple, ordered by the lexicographic order, which we call vq. Simi-
larly take vo for ). Set v = v1 + vo. Then

(PQ)( ) - V1 Vza (a) ’ 8V2Q(a)

because all the other terms vanish! Thus ind(PQ;d;a) <37, 5 VJ =>; % = ind(P;d; )+

ind(Q; d; «). Hence we are done by the previous paragraph.
For (iii): Assume that ind(d,P;d; ) is achieved at some v = (v1, ..., V). Then 0, (9, P) (o) #
0, and hence 0,4, P(ax) # 0. So Zj VJ:{% > ind(P;d; ). Hence ind(0,P;d; o) = Zj Z—; >

ind(P;d;e) — -, Z—j

O

Our purpose is to find a polynomial of large index and of small height. The result is as
follows. Set, for each t > 0,

V() ={xeR" a1+ +z, <t, 0<z; <1},
and V,,(t) to be the volume of V,,(t) with respect to the usual Lebesgue measure on R™.

Lemma 3.2.4. Let o € R be an algebraic number, and set o = (v, ..., ) € R™. Let r = [Q(«) :
Q]. Lett > 0 be such that rV,,(t) < 1. Then, for all sufficiently large integers dy,...,dy,, there
exists a polynomial P € Q[x1, ..., x| of partial degrees at most dy, ..., d,, such that:

(i) ind(P;d; ) > t;
(i1) as dj — oo for all j € {1,...,m}, we have

m

Z a) 4 log 2+ o(1))d;.

]=1

P) < 1 —rV

Proof. The key ingredient to prove this lemma is by applying Siegel’s Lemma (and it suffices
to apply the basic relative version, Lemma . Let us explain what the parameters and the
linear system from Siegel’s Lemma are in the current situation.

Write P(x) = . pyx”’ for the polynomial. Then any P with ind(P;d; ) > ¢ lies in the set
of P satisfying

9;P(a) =0 forall - ...4m oy (3.2.2)
d1 dpm
with I = (41,...,%4y,). Notice that we may assume i, < di for each k € {1,...m} because

otherwise the partial derivative will be identically 0. Now all the equations from define

a linear system A in the coefficients py of P which we wish to solve in Q.
Each entry in this linear system A is of the form (}7) a’~! and thus H(A) < 291t +dm [ (q)dittdm
The number N of unknowns is N = (dy +1)---(dp + 1). Notice that N ~ d;---d, as

dj — oo for all j € {1,...,m}.
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The number M of equations is M = #(I' N V,,(t)) for the lattice T' = dl Zx - ~7. We
claim that M ~ V,,(t)d ---dy, as d; — oo for all j € {1,...,m}. Indeed, V,,(t )d1 d <M
because we can associate to each lattice point in I' the parallelopiped [in/d1, (i1 +1)/dq] x -+ X
[im/dm, (im + 1) /dp]. On the other hand, for each (i1/d1,...,im/dmn) € I NV (t), we have

i1 +1 im +1 1 1 .
<t+ — — d ¢, +1<d;+1.
& +--+ . +d1 + - —i—dm and 1;+1<4d;+

Thus if we rescale V,,(t) by the factor 1+ max{1,¢t"'}(1/dy + --- + 1/d,,), then the rescaled
domain contains all the parallelopipeds associated to the points in I' NV, (¢). In summary, we
have

1 m
Vin(t)dy -+ - dpy < M < V() <1+max{1 =1 (d cee d>> di--dm.
1 m
Thus M ~ V,,(t)dy - - dy, as dj — oo for all j € {1,...,m}.
Now we are ready to apply Siegel’s Lemma. As d; — oo for all j € {1,...,m}, we have

N ~ dy---dy > rM because rV,,(t) < 1. Thus by Lemma and the comment below
(which relates the right hand side of the height bound to the height of the matrix by using the
Fundamental Inequality Proposition , there is a non-zero solution to the linear system
defined by , and hence a non-zero polynomial P satisfying hypothesis (i), such that (for
some constant C' depending only on «)

Vi (t)dy - - dp,

h(P) < log(Cdy ---dnH(A
( )_dl---dm—er(t)dl---dm og(Cds (4))
< ——
< 1—7~v Zlogd + (h() +log?2) E:: +logC
as dj — oo for all j € {1,...,m}. Hence we are done. O

Next we give an estimate of the volume in question.

Lemma 3.2.5. If0 < e <1/2, then

1
Vin <<2 - e> m> < e~ 6me?

1 if 0
s . Then x(z) < e=** for every A > 0. Thus for each A > 0, we have

0 ifz>0

Vtm(< ) ) / $1+---+xm+me)dx1---dxm

1
2

/ —)\(me-&-z r])dxl dl‘m

Proof. Set x(z) = {

m\»—A

Nl
ol

_1
2

e
—1

2

— efmU()\)7

w\»—A

where U(\) = e)\—logw But sinh(u)/u = 14+u?/3!+u*/5! +- - < 1+u?/6+ (u?/6)2/2!+--- =
e4’/6. So we can conclude by setting A = 12e. O

u

Blsinh(u) = £ =
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3.2.1 Why does it help to have more variables in the construction of auxiliary
polynomial?

Let a € R be an algebraic number of degree d. We wish to show that o cannot be well approximated by
rational numbers. In more vigorous terms, this means that we wish to obtain a result of the following
type: There are only finitely many rational numbers p/q such that |a — 2| < Z; here & is a constant
and we wish to give the best possible k. Now let us see how the Law of Large Numbers yields the
following philosophy: For the construction of the auxiliary polynomial P € Z[x1, ..., 2] (for example as
in Lemma, when m — oo the exponent x becomes better. And in the end, we see why 2 + € is the
best possible exponent in this theoretical way. This is via the indez.

Assume we find P € Z[zy,...,x,] such that P(a, -+ ,a) = 0 and P(p1/q1,...,Pm/qm) # 0 with
| — pi/ai| < 1/qf. Assume P has partial degrees at most d = (dy,...,dn).

Let us study the index ind(P,d; ) where @ = (c,..., ), using the comment below . A
monomial in &1 — o, ..., %y, — « is an m-tuple pp = (1, .., tm) with 0 < p; < d;. For each j, roughly
half of the possible p;s satisfy Z—JJ > % and the other half satisfy ’;—j < % Moreover, the possible values
of % are evenly distributed in [0, 1]. Therefore, for a randomly chosen p, the expected value of > Z—j is

. So the (weak) Law of Large Numbers yields: For each ¢ > 0, we have

#{p: D < 2(1- )
(@ 1) (o 1)

—0 asm— oo. (3.2.3)

Thus when m gets larger and larger, there are more and more polynomials of partial degrees at most
(di,...,d,,) whose index at (c,...,) is > (1 —€'). This also explains the parameter chosen for the
volume estimate in Lemma [3.2.5 In later sections, we will see that the desired x is expected to be
m/% (1 — €'), which is then of the form 2 + € for some € > 0.

3.3 Proof of Roth’s Theorem assuming zero estimates

In this section, we prove Roth’s Theorem (Theorem [3.1.4)) assuming zero estimates. The result
for zero estimates which we will cite is Roth’s Lemma.
We start by restating Roth’s Theorem.

Theorem 3.3.1 (Roth’s Theorem). Let a € R be an algebraic number and let ¢ > 0. Then
there are only finitely many rational numbers p/q (with p,q coprime and q > 1) such that

(3.3.1)

We will divide the proof into several step, outlined as for Theorem [3.1.1

3.3.0 Step 0: Choosing independent solutions.

Assume the conclusion is wrong. Then there exists & € R an algebraic number with infinitely
many rational approximations p/q to « satisfying . Then, for any positive integer m and
any large constants L and M, we can find m such rational approximations p;/q; to « (with
g; > 1) such that

loggr > L and loggqjt1 > M logg;

for each j € {1,...,m — 1}. Namely, we consider large solutions which satisfy a Gap Principle.
Such a sequence will be called (L, M)-independent.
Fix ¢ € (0,1/6).
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3.3.1 Step 1: Construction of an auxiliary polynomial.

Let D be a large real number which we will fix later on. For each j € {1,...,m}, set

dj :=|D/logg;].

In this step, we wish to construct a polynomial P(x) € Z[x] = Z[z1,...,zy] of partial degrees
dy,...,dn, vanishing to a (weighted) high order at @ = (a,..., ). More precisely, we will

apply Lemma to construct a polynomial P of large index at a with respect to d. More
precisely, Lemma implies Vi, ((1/2 — ¢')m) < e=5™ | If we choose

_ log 2[%6(;) : Q]’

then [Q(a) : Q]Vin(t) < 1/2. Thus Lemma yields a polynomial P of partial degrees at
most di,...,d,, such that:

(3.3.2)

(i) ind(P;d; ) > (1/2 — €')m, or equivalently for any g = (u1, ..., i) with
B (1_a>m
dy dm 2
satisfies 0, P(ar) = 0;
(ii) As d; — oo for all j € {1,...,m}, we have
h(P) < i(h(a) +log2+0(1))d; < C(di + -+ dp) (3.3.3)
j=1

with C a suitable constant depending only on o and m.

3.3.2 Step 2: Non-vanishing at the rational points.

This is the most difficult step. Before Roth’s work, one could only do for m = 1 and m = 2.
Roth proved, for this step, the following lemma as a consequence of Roth’s Lemma. It is in
this step that we need the parameter M; see . Notice also that all the conditions for the
parameters (m, L, M and D) are summarized in the hypotheses of this lemma.

Lemma 3.3.2. Suppose p1/q1,-..,Pm/qm are (L, M)-independent with

-1

m > log(2[Q(a) : Q) /(6¢%) and L > (C+4)me 2" and M >272" .

Then for every sufficiently large D, there exists a polynomial Q € Zxi,...,xn] with partial
degrees at most d; = | D/logq;]| such that

(i) ind(Q;d; @) > (3 — 3¢/) m;
(i1i) h(Q) < CimD/L for a constant C1 depending only on o and m.

In fact, this @) is a suitable derivative of the P constructed from Step 1.

[“'Which itself is a suitable application of Siegel’s Lemma.
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3.3.3 Step 3: Lower bound (Liouville).

Since Q(p1/qi,---,Pm/qm) # 0 and @ has partial degrees at most di,...,d,,, we have the
obvious bound (Liouville bound)

10g |Q(p1/q1, -+ sPm/qm)| > loga; -+ g™ = —(dilog g1 + ... + dim 10g gm).
The choice d; = | D/logg;]| implies D —logq; < djloggq; < D. Thus
log |Q(p1/q1,- -, pm/qm)| = —mD.
3.3.4 Step 4: Upper bound.
Consider the Taylor expansion of @ at («,...,«). Since ind(Q;d; o) > (% — 36’) m, we get
Qp1/a1, - pm/am) = > 0uQ()(p1/q1 — @) - (P /G — @)™ (3.3.4)

with u = (u1,. .., ) running over all possibilities with Zj pi/d; > (1/2 — 3€¢’)m. Then the
(2+¢€)

assumption |o —p;/q;| < q; implies

Hj —(2+€)d;
log (Ip1 /a1 — ol -+ Ipm fam — ) < 37 B log gy ¢+
; )
J

< (apetog @) 3 1

< (2+¢€)(1/2 -3¢ )m fjnjax{—dj log q;}
=—2+¢(1/2—- 36’)mmjindj log g

< —@+9(1/2 = 3¢)m(D — log gm).

Now let us estimate log|0,Q(a)|. We use Lemma and Proposition to get

h0,Q(e)) < h(Q) + (log2) Z d; + h(a) Z d; + (m + Z dj +1)log2

J

mD
< ClT + (h(a) +log4) Zdj + (m +1)log 2.

The Fundamental Inequality, Proposition [1.2.10] yields log |0,Q(c)| < h(0,Q(cx)). As d; =
|D/logq;| < D/logq; < D/logqi < D/L (recall that loggq; > logq; > L), we have

D
log |9,Q ()| < (C1 + h(a) + log 4)”’“T + (m+1)log2.

Notice that the number of terms in the expression of Q(p1/q1,- ., Pm/qm) from (3.3.4) is poly-
nomial in dy, . .., d,, and hence the contribution of this number to log |Q(p1/q1, ..., Dm/qm)]| is
o(dy +---+dp) =o(mD/L). Thus

mD 1
log|Q(p1/q1,- -, Pm/am)| < C/T +(m+1)log2 — (2 + 6)(5 — 3¢ Ym(D —log q,)

for a suitable constant C’ depending only on a and m.
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3.3.5 Step 5: Comparison of the two bounds.

Now the two bounds from Step 3 and Step 4 together imply

1 D
mD > (2+¢) (2 — 36/) m(D —log ¢m) — o=

T (m +1)log2.

Dividing both sides by mD, we get

1 log qm ! 1)log2
12 2o (5-a¢) (1- ) - - e
m

Recall that g, is fixed. Now let ¢ — 0, D — oo and L — co. Then we get 1 > 1+ ¢/2. This is
a contradiction. Hence we are done. O

Remark 3.3.3. In this proof, we gave an explicit bound for d; = |D/loggq;], i.e. D —loggq; <
djlogq; < D. But in fact, for ¢ < --- < ¢ and g, fized, we have limD_,ooD/%quj =1
Hence for D large enough, d; and D/logq; are very close to each other and in later estimates,
it suffices to use D/logq;. We will write dj ~ D /log q; for D large enough for this.

3.4 Zero estimates: Roth’s Lemma

In this section, we state Roth’s Lemma, use it to prove Lemma (Step 2 of the proof of
Roth’s Theorem), and prove Roth’s Lemma.

Lemma 3.4.1 (Roth’s Lemma). Let P € Q[z,... s Tm), not identically zero, of partial degrees
at most dy,...,dy, and d; > 1. Let & = (&1,...,ém) € Q" and let 0 < o < % Assume that

(i) the weights dy,...,dy, are rapidly decreasing, i.e.

djy1/dj < o

(ii) the point (&1,...,&mn) has components with large height, i.e.

min d;h(&;) > o~ (R(P) + 4mdy).
J

Then we have

ind(P;d; &) < 2me /2" (3.4.1)

3.4.1 Proof of Lemma by Roth’s Lemma

We will apply Roth’s Lemma to the polynomial P constructed in (Step 1 of the proof of
Roth’s Theorem) and & = (p1/q1,- -, Pm/qm)- Let us explain the parameters.

Fix 0 = €2"" € (0,1/2] (recall our choice € € (0,1/6) in Step 0 of the proof of Roth’s
Theorem).

Recall our choices d; = |D/logq;| ~ D/logq; for D large enough and log g1 > M logg;.
Thus hypothesis (i) of Roth’s Lemma is verified if we set

M >20"' and D large enough. (3.4.2)
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Next, using djh(pj/q;) > djlogqj ~ D, dy, < --- < dy < D/logqi < D/L and the height bound
on P given by (3.3.3]), we see that hypothesis (ii) of Roth’s Lemma is verified if we set

D>o O+ 4)m%
with C' the constant depending only on a and m from (|3.3.3)).

Now we choose M and D as in and L > ¢~ 1(C + 4)m. Then we can apply Roth’s
Lemma to P and & = (p1/q1,---,Pm/qm) to get ind(P;d; &) < 2mal/2" ™" = 2me’. So there
exists p such that 9, P(§) # 0 and 37", Z—j < 2me.

We claim that @ := 0, P is what we desire. Let us check the conclusions for Lemma
Part (ii) is done. For part (i), it suffices to apply Lemma(iii), the construction ind(P; d; o) >
(1/2—€)m for P and 377", Z—; < 2me’. For (iii), we use Lemma and the height bound on

P to get
hQ) = h(@,P) < h(P) + (log2) > d; < &1 3 d;

where C' depends only on a and m, when all d; — oo. Again by using d;jlogq; ~ D and
log gj > logq1 > L, we can conclude. ]

3.4.2 Proof of Roth’s Lemma

We prove Roth’s Lemma by induction on m. Notice that for the base step m = 1, we in fact
prove a stronger bound.
For the base step m = 1, we will prove the better bound

ind(P;d1; &) < o. (3.4.3)

By definition of the index, we have that (z; — 51)ind(P;d“51)d1 divides P. Thus we can apply
Theorem to get

h(P) > —dylog2 + ind(P;dy;&1)dy - h(z1 — &) > —dy log 2 + ind(P; dy; &1)dy - h(&1).
Thus
ind(P; dl;fl) < (h(P) + d; log 2)/d1h(§1) <o.

So we are done for the base step. Notice that hypothesis (ii) for m = 1 can be weakened to be
dih(&1) > o7 (h(P) +1log2 - dy).

Now we do the induction step. Assume that Roth’s Lemma is proved for 1,...,m — 1. We
wish to prove it for m.
We will use the Wronskian criterion for linear independence.

Proposition 3.4.2. Let ©1,...,p, be polynomials in Q[x1,...,2m]. Then @1,...,¢n are lin-
early independent over Q if and only if some generalized Wronskian

am ¥1 am Y2 am ¥n
Wi (1) o= det | et Oz Ouain |

with |p;| = ,ugi) + ug) +e u,(f@) <i—1, is not identically zero.
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We will finish the proof of Roth’s Lemma assuming Proposition [3.4.2l To perform the
splitting of the Wronskian, we write the polynomial P € Q|x1, ..., 2] in the form

P=> filz1,. .. xm-1)gj(xm)
=0

with s < dp, and where the f;’s (similarly the g;’s) are linearly independent polynomials over
Q.
Set
U(xi,. . &Tmy) 1= det(amfj)i,jzo,.,,,s
with p; = (ugi),ugi), - ,u,(fl)fl) such that |p;| < s < d,,, and
V(.’L‘m) = det(c‘)l,gj),,J:o,._,,s.
By Proposition [3.4.2] we may choose such U and V that they are both not identically 0. Set
W(z1,...,2m) =det(Op, ,P) =U(z1,...,Tm,)V(Zm).

We wish to apply the induction hypothesis to U and V. Thus we need to analyse the their
degrees and heights.

For degrees, it is easy to see that the partial degrees of U are at most (s+1)dy, ..., (s+1)dp—1,
and deg V' < (s + 1)dy,.

Since dj+1/dj < o < 1/2 by hypothesis (i), we have dq + ...+ dy, < 2d;.

For heights, Theorem yields h(W) > h(U) + (V) — (s + 1)(d1 + -+ + dy) log2 >
h(U)+ h(V)—(s+1)(2log2)d; > h(U) + h(V) — (s + 1)d;. We claim that

h(W) < (s + 1)(h(P) + 3dy). (3.4.4)

Indeed, by expansion, the determinant W is a sum of (s + 1)! terms, each of which is the
product of s + 1 polynomials of the form 0y, ,P for some p; and v. Thus by the proof of

Proposition |1.3.12] Theorem and Lemma we hav
W) <(s+1)(h(P)+ (di + ...+ dmn)log2) + (di + ...+ dn)log2 + log(s + 1)

Hence we can establish because dy + ...+ dy, < 2d; and log(s+1)! < (s+1)log(s+1) <
(s+1)log(dm + 1) < (s + 1)dm < (s + 1)dy1 /2.

From the previous paragraph, we can conclude h(U) < (s + 1)(h(P) + 4d;) and h(V) <
(s + 1)(h(P) + 4dy), because both heights are non-negative by definition. Now hypothesis (ii)
of Roth’s Lemma implies

mjin(sﬂ)djh(gj) > o L (WU)+4(m—1)(s+1)dy) and  (s+1)dpnh(En) > o H(W(V)+4(s+1)dyy,).

So we can apply the induction hypothesis to U, ((s +1)d1,...,(s + 1)dm—1) and (&1,...,Em—1)
(resp. to V, (s + 1)d,, and &) to get

ind(U; (dy, ..., dm-1); €1y me1)) < 2(m—1)(s+1)02" " and  ind(Vidm; &) < (s+1)o. (3.4.5)

B10One cannot directly apply Proposition here. Instead, one goes into its proof, which is essentially the
proof of Proposition Notice that all the ||x§k>||v’s at the end of that proof has the same upper bound in
terms of P (because they are all derivatives of P), so in the long inequalities at the of that proof there is not need
to take the sum ), _, .
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Here for V, we have used the better bound obtained in the base step m = 1. Therefore
ind(W; d; &) = ind(U; (dy, . .., dm—1); (€1, -+, Em—1)) +ind(V;dm: €m) < 2(m — 1)(s + 1)o/2" > + (s + 1)o.  (3.4.6)

It remains to relate the index of P with the index of W. To ease notation, we use ind(-) to
denote ind(-;d; &). For each p; and v, Lemma (iii) yields

ind(0y, ,P) > ind(P Z dL
j=1 di
> ind(P) — d_l_di smce,ug)—l—...+,u£n)_1gz—lgsgdm
> ind( )—dL—O'

This bound can be automatically improved since the index is always non-negative. So

ind (0, P) > max {ind(P) - dL’ 0} —o.

Again, we expand the determinant W. We can write W explicitly in the following way: W =
p | H Opy (i) With 7 running over all permutation of the set {0,...,s}. Thus we can apply

parts (i) and ( ) of Lemmato get ind(W) > min, (37 ,ind(9 m(i)P)). So we have
ind(W) > rnﬂin; (max {ind(P) - 7;(:, 0} - a>

_ z; <maX {ind(P) - dfn,o} _ 0’>
> (s + 1) min {;ind(P), ;ind(P)2} —(s+1)o

where the last step comes from s < d,,, and the elementary inequality

E i 1,1
Z231113u< {t - 5,0} > (s+ 1)m1n{2t 2t2}
Combined with (3.4.6)), this lower bound of ind(W) yields
min{ind(P), ind(P)?} < 4(m — 1)o¥/2" " + 20.
But ind(P) < m by definition. So we have
ind(P)2 <m (4(m — 1)t 20) < 4m20t/2"
Hence we are done. O

3.4.3 Proof of Proposition [3.4.2]

We start with <. Assume ¢1,...,p, are linearly dependent over Q. Then all generalized
Wronskians vanish. Indeed, we have ci¢1 + -+ - + cppp, = 0 for some ci,...,¢, € Q not all
zero. Applying the operators d,, to this relation, we obtain a linear system in the coefficients
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c¢; and its determinant mush vanish. This determinant is precisely the generalized Wronskian
Wt oo (T15 -+ Ty B

Let us prove =. Assume @1, ..., @, are linearly independent over Q

We assume the following lemma, which is a particular case of the proposition but itself is a
classical result.

Lemma 3.4.3. Let f1,..., fn € Q[t] be n polynomials in 1 variable. Then fi,..., fn are linearly
independent over Q if and only if the Wronskian

1<4,5<n
s not identically zero.

We will reduce Proposition [3.4.2] to the situation of this lemma by using the Kronecker
substitution which we have seen in the proof of Gauf3’s Lemma. _

Fix an integer d which is large than the partial degrees of the ¢;’s. Set z; := t¥7 for
j€{l,...,n}. Then ¢1,..., ¢, are linearly independent over Q if and only if the polynomials

®;(t) == (t,t4, ...t
are linearly independent over Q. Thus the lemma above implies that the polynomial
a4\t
W(t) = — D
o= (() )
1<4,5<n
is not identically 0. But
a\! =
(dt> Oj= > auilt;d,m)dup;(t, . ")
|ul<i—1

for some universal polynomials a,, ;(t;d, m) € Q[t]. Thus W (t) is a linear combination of gener-
alized Wronskians W, .. (¢, 14, ... 9771 with |pi) < i — 1. Since W (t) is not identically 0,
some generalized Wronskian is not identically zero. Hence we are done. O

Proof of Lemma[3.4.3 The direction < is easy. Let us prove the direction = by induction on n. The
base step n =1 is clearly true.

Assume = is proved for 1,...,n — 1. For n and the polynomials fi,..., f,, assume that W(t) is
identically 0. For each j € {1,...,n}, set W;(t) to be the Wronskian of the n—1 polynomials by omitting
fj. Then by expanding the determinant W (t) by the last row, we get W(t) = Y7, W (%)7171 fi=

Z;;l ij;nfl). Here we change the notation and denote by f;i) the i-th derivative of f;. Thus

0.

WD 4 W

We claim that W1 f1 +--- 4+ W, f,, = 0. Indeed, the left hand side is the determinant of the n X n-matrix
f fo e fn

fl(n.,g) fg(n'72) ﬂ(ln.,g) , by the expansion along the last row. Similarly we have Zj W; f]@ =0
bil fao o fn
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for each i € {1,...,n —2}. Thus we obtain a system of n equalities of polynomials

Wifi+- +Wofn=0
Wifi+- -+ Wuf, =0

Wlfl(n—l) N Wn.fr(bnfl) =0

Differentiating each of the first n — 1 equality and subtracting the next following one, we get the following
new system

Wifi+ - +Wofn=0
Wifi+-+Wif, =0

WA e WY =0

Next multiplying the i-th equality (i = 1,2,...,n — 1) by the minor of W,, corresponding to fl(ifl) and
adding the equalities thus obtained together, we get

WIW, — W, W, =0.

If Wi =0, then fs,..., f, are linearly dependent over Q by induction hypothesis, and so are fi,..., fn.
Suppose W; # 0. Then we can divide both sides by W2 (notice that W; is a polynomial and hence has

only finitely many zeros) and get
4 (Wa) _
e \wy /)

Thus W,, = ¢;W; for some constant ¢; € Q. Similarly we have W,, = c;Wj foreach j € {2,...,n—1} or
the conclusion already holds true. Thus either the conclusion holds true, or

Wn(clfl +...+ Cnflfnfl + fn) =0.

Again either W,, = 0 (and hence the conclusion holds true), or ¢1 f1 + ...+ ¢n—1fn-1+ fn =0 (and hence
the conclusion holds true)@ So in either case we are done for the induction step. O

3.5 An alternative approach to the zero estimates: Dyson’s
Lemma

In this section, we explain an alternative approach to the zero estimates.

In the proof of Roth’s Theorem presented in previous sections of this chapter, we used Roth’s
Lemma (Lemma to do the zero estimates and found a polynomial P having large index at
a = (a,...,a) but small index at (p1/qi1,...,Pm/qm). Roth’s Lemma is arithmetic in nature:
the polynomial P has coefficients in Q, we are interested in its order of vanishing at an algebraic
point, and a hypothesis (hypothesis (ii)) on the given data is about the heights.

An alternative approach to establish the small index of P(p1/qi,...,Pm/qm), developed by
Esnault—Viehweg building upon previous work of Dyson, Bombieri and Viola, is the so-called
Dyson’s Lemma. It is a geometric approach (and hence works over any algebraically closed
field of characteristic 0) and the philosophy is as follows. Suppose that whichever P we have
constructed with large index at « also has large index at (p1/q1, - .., Pm/qm). Then certain linear
conditions on the space of all polynomials of partial degree dy,...,d,, fail to be independent.
Thus in order to get a contradiction, it suffices to establish this independence.

[SINotice that the zeros of W, are isolated if W, % 0.
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To state Dyson’s Lemma, recall the notation V,(t) == {x €e R™ 1 x1 + - + 2, < ¢, 0 <
xj < 1} and Vi, (t) the volume of V,(t) with respect to the usual Lebesgue measure on R™.
We set V,,(t) = 0 for t < 0. The arithmetic meaning of V;,,(t) was explained in the proof of
Lemma [3:2.4k In the linear system related to constructing a polynomial of index >t at a given
point (with respect to the partial degrees dy, ..., dy,), di - dmVin(t) is asymptotically the number
of equations.

Theorem 3.5.1 (Dyson’s Lemma). Let d = (dy,...,dy) be such that dy > de > -+ -d,, > 1 are
positive integers.

Let {1 = (dl),..., 7(7%)),...,(7«4_1 o (drﬂ),..., fgﬂ)) be r + 1 points in C™ such that
¢ £ for all k€ {1,...,m} and all i # 57

Let P € Clxy,...,xn] of partial degrees at most dy, . ..,dy,, and denote by t; := ind(P;d; {;)
foralli e {1,...,r+1}. Then we have

r+1 m m
dy
N < r_ — .9.
d Valt) <[ (1+0" =2 > 7 (3.5.1)
i=1 j=1 l=j+1

where r' := max{r + 1,2}.

The field C in the statement can be replaced by any algebraically closed field of characteristic

We will not prove Theorem but only see how Theorem |3.5.1| can be used to prove
Roth’s Theorem.
We need the following technical lemma.

Lemma 3.5.2. Let r > 2 be an integer and let € > 0. Then there exists an integer mg =
mo(r,€') > 2 with the following property. For all m > my, there exist a real number T > 1 such
that

Vi (7) <1 <1V (1) + Vi (1) and 2+ €) (7 —1) > m. (3.5.2)
Proof. We prove the lemma by taking 7 such that
1
m(T)=1— —.
Vi (7) S

Indeed, such a 7 exists, and the first inequality in (3.5.2]) holds true because V;,,(1) = 1/ml.
Let us prove (24 €')(r — 1) > m. We start by trying to solve the inequality

\/logr—log(l—le!)_i_1<1 1

6m m 2 2+4€

Since the left hand side tends to 0 as m — oo, there exists an integer mg > 2 such that this
inequality holds true for all m > mg. Let us show that (2+¢")(7—1) > m for all these m. Recall
Vi ((1/2—=m)m) < e=6mn” by Lemma for all 0 <n < 1/2. Take n such that (1/2—n)m = .
Then we have

1
0 < logr—log(l—m)<1_ 1 _i‘
6m 2 24€ m
So
r—1 1 11
m 2 T m T 24é
This yields (2 + €)(7 — 1) > m. We are done. O

[MNamely, if we look at the projection to the k-th component, then we still get r + 1 different points in C.
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Now let us sketch the proof of Roth’s Theorem by using Dyson’s Lemma instead of Roth’s
Lemma.

Proof of Theorem[3.3.1f Let o € R and € > 0 be as in Roth’s Theorem. Assume that there
are infinitely rational approximations. Then for each m, L and M, we can find rational ap-
proximations p;/q; (j € {1,...,m} and ¢; > 1), i.e. |a —p;/q;| < q; (2+6), such that they are
(L, M)-independent, i.e. loggi > L and loggj+1 > Mlogg; for each j. This is the same as
Step 0.

Now let us do Step 1, i.e. construct an auxiliary polynomial P of large index at a and of
small height.

Set r = [Q(«) : Q]. Write aq = «, aa,. .., for the Galois conjugates of a.

Let ¢ > 0, m and 7 be from Lemma Then

—1> .
4 2+¢€

Take another parameter D, and set d; = | D/loggq;] for each j.
By Lemma and the choice that rV;,(7) < 1, there exists a polynomial P € Z[z, ..., Tpn]
of large index at a and of small height. More precisely,

(i) ind(P;d; ) > 75
(ii) As dj — oo for all j € {1,...,m}, we have

D
h(P) < C-2m!(dy + -+ +dp) < C- 2m!mT (3.5.3)

with C a suitable constant depending only on o and m.

Condition (i) is equivalent to: For each g = (p1,. .., tm) with > Z—; < 7, we have 0, P(a) =
0. Since P has integer coefficients, applying the Galois action yields d,P(a;) = 0 for each
j € {1,...,r} and each such p, where a; = (a;j,...,a;). Hence ind(P;d;ca;) > 7 for all
jed{tl,... r}
Now we use Dyson’s Lemma to accomplish Step 2 (non-vanishing at the rational point).
Choose the parameter M in the following way: by Lemma|3.5.2] we can find an M > 1 such

that
= 1
l—j+1
Since log gj+1 > M loggq; for all j and d]- ~ D/logq; for D large enough, the inequality above

can be translated into (for sufficiently large D)

m

) > % . (3.5.5)

TV (T) H (r—1)
=

Apply Dyson’s Lemma (Theorem [3.5.1)) to the points aq,...,a,,& = (p1/q1,- -, Pm/qm)-
Then we get

Vi (7) + Vi (ind(P; d; £)) ﬁ (r—1) Z ﬂ . (3.5.6)
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Comparing (3.5.5) and (3.5.6)), we get

ind(P;d;§) < 1.
Take p be such that 0,P(§) # 0 and that ) Z—j =ind(P;d;§) < 1. Set Q = 0, P. Then
(i) ind(Q;d; @) > ind(P;d;ex) — > S—j >7—1> 5%
(i) Qp1/ar,-- - pm/am) # 0;
(il)) R(Q) < C"-2mImL.

Here (i) uses Lemma (iii), and (iii) uses Lemma
Then one repeats the argument as in Step 3, 4 and 5 of and eventually get

1>2—|—€ C’"-2m!  (m+1)log2
—24¢ L mD '

This gives a contradiction by letting ¢ — 0, L — oo and D — co. O



Chapter 4

The Schinzel-Zassenhaus Conjecture

4.1 Statement

At the end of Chapter 1, we stated the following widely open Lehmer Conjecture.

Conjecture 4.1.1 (Lehmer Conjecture). There exists a constant ¢ > 0 such that each algebraic
number o € Q, which is not a root of unity, satisfies

h(a) >

c
deg(a)’ (4.1.1)

The assumption of the conjecture is reasonable: h(a) = 0 if « is 0 or a root of unity.

A similar but weaker conjecture is the Schinzel-Zassenhaus Conjecture.

Let a € Q be an algebraic integer, and f € Z[X] be the minimal polynomial of a with
leading coefficient 1. Denote by d := deg(a) = [Q(«) : Q], and write a3 = v, ...,y € C for the
Galois conjugates of a. Then f(X) = (X —aq) - (X — aqg).

Definition 4.1.2. The house of «, denote by [a], is maxle ||
Now we are ready to state the Schinzel-Zassenhaus Conjecture, recently proved by Dimitrov.

Theorem 4.1.3. There exists a constant ¢ > 0 such that each algebraic integer o € @*, which
s not a root of unity, satisfies

log [a] > (4.1.2)

c
deg(ar)
In fact, Dimitrov’s proof shows that one can take ¢ = log2/4.

The goal of this chapter is to present the proof of Theorem Before doing this, let
us start by explaining how the Lehmer Conjecture implies the Schinzel-Zassenhaus Conjecture.
Roughly speaking, h(a) is the average of log™ |a;|, while log[a] is the mazimum of log™ |ay].
Here, log™ (+) is defined to be max{log(-),0}.

Proof of Conjecture implying Theorem[{.1.3. Let o € Q be an algebraic integer which is
not a root of unity. Let f € Z[X] be its minimal polynomial with leading coefficient 1. Denote
by d = deg(c). Let the real number ¢ > 0 be from Conjecture [4.1.1]

We claim that ch'l:1 log™ |a;| > ¢. To show this, we use the Mahler measure By Propo-

sition [1.3.14] we have deg(a)h(a) = log M (f). By Jensen’s Lemma (Lemma [1.3.9), we have
log M(f) = Zle log™ |o;|. Thus ([4.1.1]) yields the desired lower bound.

M This is an overkill. One only needs some argument from the proof of Proposition to achieve this.
Nevertheless since we had much discussion on the Mahler measure in Chapter 1, we present the proof in this
way which looks “cleaner”. Moreover, this is a good recall the of link of the current formulation of the Lehmer
Conjecture to the one in most references where the Mahler measure is involved.

63
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Up to sign, |a; - -+ - ay| is the constant term of f € Z[X]. So oy -+~ ag| > 1 since a # 0.
So there exists i € {1,...,d} such that log|a;| > 0. Thus log [@] = maxj<;<qlog™ |a;].
The previous two paragraphs then imply that dlog [a] > ¢. Hence we are done. ]

We close this section by a simple property of the house.
Lemma 4.1.4. Let a« € Q" be an algebraic integer. Then we have
(i) [al > 1;
(ii) Tal = 1 if and only if « is a root of unity.

Proof. Up to sign, |ay - -+« - aql is the constant term of f € Z[X]. So |ag -+ - ayq| > 1 since
a # 0. Thus [@] = max|«a;| > 1. This proves (i).

For (ii), the “if” direction is clearly true. Now we prove the “only if” direction. Assume [a] =
1. Then || = 1 for each i € {1,...,d}. For each positive integer k, set fi(X) := Hle(X—af).
The Galois conjugates of the algebraic integer o are precisely o/f sy as. Hence fi € Z[X].
Thus the absolute value of each coefficient of f, is < 2¢ because |a¥| = 1 for each i and k. As
d is independent of k, the set {fx : k € Zso} is a finite set. So {a* : k € Z-} is a finite set.
Hence a! =1 for some [ € Z~q. We are done. O

4.2 Transfinite diameter
Let K C C be a non-empty compact set.

4.2.1 Basic definition and properties

The diameter of K, denoted by da(K), is defined to be max;, .,cx |21 — 22|. We extend this

notion now. Let n > 2. For zy,..., 2, € K, denote by
1 21 - Z;Ir-l_l
n—1
z2 DR 22
V(z1,...,2,) = det : .| = H (25 — 2)
: : 1<i<j<n
1 2z, zZn

Definition 4.2.1. Forn > 2, define

do(K) = max |V(z1,...,2)" ).

21402 €K

In other words, d,(K) is the maximum of the geometric mean of the distances of n points
in K. This observation leads to the following lemma, whose proof we leave to the exercise class.

Lemma 4.2.2. We have do(K) > d3(K) > -+ > dp(K) > --- > 0.
Thus the limit lim,—,~ d,,(K) exists.
Definition 4.2.3. The transfinite diameter of K is defined to be

doo(K) := lim d,(K).

Example 4.2.4. (i) If K is a finite set, then doo(K) = 0. Indeed, dy1(K) = 0.
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(ii) The converse of (i) is not true. Let K = {0} U{% :n € Zoo}. As the geometric mean is
at most the arithmetic mean, it is not hard to show that dy,(K) — 0. Hence doo(K) = 0.

To get a better feeling of the transfinite diameter, let us compute a slightly more complicated
example.

Lemma 4.2.5. Consider the unit circle S* = {€"? : 0 < § < 21} C C. We have ds(S?) = 1.

Proof. Let us show that doo (S1) > 1. Let ¢, be a primitive n-th root of unity. Then V (1, ¢, ...,(7 1) #
0 by definition. Next V(1,(p,...,¢" 1) is an algebraic integer because by the determinant ex-
pansion it is a sum of products of algebraic integers. Moreover, V(1,(p, ..., 1) € Q since
it is invariant under the Galois group. Thus V(1,(n,...,¢("!) € Z and is non-zero. Thus
V(1,6 €Y > 1. So dn(SY) > V(1,6 ., €212/ > 1. This implies doo (S1) > 1.

Now let us show that doo(S!) < 1. For any 21,..., 2, € S', by the determinant expansion we
have |V (z1, ... ,zn)lz/”(”*l) < (2n!)2/”(”*1) < (2n™)2/nn=1) = p2/(n=1)92/n(n=1)  Thys dn(Sh) <

n?/(n=1)22/n(n=1) " Taking n — oo, we get doo(S?) < 1. O

Remark 4.2.6. (i) One can show that d,(S') is attained at the points 1,(p,...,¢7 L.

(i) The second part of the proof also works for K = D(0,1), the closed unit disk. Then
combined with the first part, we also have ds(D(0,1)) = 1.

(iii) The last observation is not a coincidence. In fact, as a consequence of the mazximum
principal, we have dso(K) = doo(0K) for any non-empty compact region K C C.

It is a natural question to compute d ([0, 1]) for the real interval [0, 1]. It turns out that the
analysis involved is quite complicated. In this course, we do this computation by relating the
transfinite diameter to the Chebyshev constant introduced later on (Definition-Lemma [4.2.9)).

We end this subsection with some properties of the transfinite diameter.
Lemma 4.2.7. We have:
(i) doo(AK) = |Ndoo(K) for each X € C;
(ii) doo(A + K) = doo(K) for each X € C;
(i11) doo(K') < doo(K) if K' C K

In fact, the same statements hold true if dy, is replaced by d,, for any n > 2. The proof of
this lemma is an easy observation.

In this course, we also need the following lemma for the proof of the Polya—Bertrandias
theorem. It allows to replace K by a “nicer” compact subset of C.

Lemma 4.2.8. For each € >0, set K. :={w € C: |w — z| <€ for some z € K}. Then

N doo (Ke) = dao(K).

e—0

The following inequality is useful to prove Lemma For positive numbers § and ay,...,a,, we
have H?:1(aj +4)— H?:1 a; < (A+6)" — A™ where A = max; a;.
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4.2.2 Transfinite diameter and Chebyshev constant

For each positive integer n, set

1/n
K):= i P . 4.2.1
D= e mone, 28 P! (#21)
deg P=n

Definition-Lemma 4.2.9. The limit
7(K) = lim 7,(K)

n—oo

exists. It is called the Chebyshev constant of K.

Proof. Let a :=liminf, >; 7,,(K) and b := limsup,,~; 7,(K). Our goal is to show that a = b.

Let € > 0. Then there exists n > 1 such that 7,,(K) < a + €. So there exists a monic
polynomial P € C[X] with deg P = n such that |P(z)| < (a+¢€)" for all z € K. Now fix zp € K,
and let Q(z) := (2 — 20)'P(2)*. Then |Q(2)| < do(K)! (a4 €)™ for all z € K. But Q € C[X] is
a monic polynomial of degree [ + nk. So

Tt ()T < do (K (a + €)™ (4.2.2)

for all non-negative integres [ and k.
Next, there exists an increasing sequence {n; € Zso};>1 such that b = lim;_,c 7, (K) = b.
Write n; = I; + nk; with I; € {0,...,n —1}. Then (4.2.2) yields
l; n;—1l;
o (K) < do(K) ™ (a4 ) 7
Notice that I; is bounded when i — oo. Hence letting ¢ — oo we obtain b < a+e¢€. Ase > 0 is
arbitrary, we then have b = a. Now we are done. ]

Proposition 4.2.10. 7(K) = d(K).
Proof. We prove this in two steps.
First, let us establish the following inequality: For each positive integer n, we have
n(n+1)

dny1(K) 2

e < (4 D (K™ (4.2.3)

dn(K)
By definition of d,, 11 (recall that K is compact), dpy1(K) = [V (21,..., 20e1)[?" D for some
Z1y...,2n4+1 € K. By definition of 7, there exists a monic P € C[X] with deg P = n such that
Tn(K)" = max,ck |P(z)|. Now we have

T (K)" <

1 oz - z?i 27
dn+1(K)n(n2H) = |V(21,...,2n+1)| = |det Lo z;l:_ “
1 oz, - zﬁ‘_l 2y
(1 2 - 2771 P(z)
= |det S Z;L.il @)
_i zn e zﬁ;l P(zy)
S|PV (2255 2ng1)| + oo + [Plang) [[V (215 - 20))
n(n—1)

<(n+ 1)1 (K)"d,(K) =



4.2. TRANSFINITE DIAMETER 67

This shows the second inequality in . For the first inequality, by definition of d,, (recall
that K is compact), dn(K) = |V (21,...,2,) 2™V for some z1,...,2, € K. Take P(X) :=
[[-1(X — z). Then P is monic and has degree n. So 7,(K)"™ < max,cx |P(z)|. Take zg € K
such that |P(zp)| = max,cx |P(z)]; such a zy exists since K is compact. Then

n(n+1) n(n—1)

dn+1(K) 2 > |V(21, vy Zn, Zo)‘ = ‘P(Z())HV(Zl, - ,zn)\ > Tn(K)ndn(K) 2
Next, take the log of (4.2.3) and sum up from 2 to n. We then obtain

ey <log(n + 1)+ log do(K) + éilogn(ff)>

ﬁ <logd2(K) +;ZlOgTz(K)> < 10gdn+1(K) < %

When n — oo, ﬁlog da(K) — 0, and ﬁ log(n+1)! < ﬁlog(n—k )"t — 0. And it

is not hard to check that ﬁ o oilogTi(K) — log7(K). Hence we are done. O

This proposition yields the following corollary, which is useful to compute the transfinite
diameter.

Lemma 4.2.11. For each P € C[X]\ C monic, we have
doo (P(K)) = duo (K)4e8 7.

Proof. Write d = deg P. By Proposition we only need to prove 7(P(K)) = 7(K)®.

For >. Forn > 1, let @ € C[X] be monic of degree n such that 7,(P(K))" = max,cp(x) |Q(2)]-
Then 7,q(K)™ < max.cx |Q(P(2))] = 7,(P(K))". Therefore 7,q(K)? < 7,(P(K)). As d is
fixed, letting n — oo yields 7(K)? < 7(P(K)).

For <. For n > 2, there exists Q € C[X] monic of degree n such that 7,,(K)" = max.cx |Q(z)].
Write z1,. .., 2z, € C for the roots of Q. Take any w € P(K), and set g, (w) := [[;;(w — P(z)).
Write wq, ..., wq for the roots of the polynomial P(X) —w € C[X]. Then we have

n d n

[T(w; —z) =[] [](ws = 20) = (0[] [] (2 — wy) = (1) ] [(P(2:) — w).

j=117=1 i=17j=1 i=1j=1 =1

Hence H;l:l Q(w;) = (—1)"g,(w). Since g, € C[X] is monic of degree n, we have

d
n _ ) n\d
(PK)" s max lan(w)] = max jHlQ(wa) < (m(K)")
Thus 7(P(K)) < 7(K)? by letting n — oc. O
Corollary 4.2.12. d(]0,1]) = 1/4.
Proof. Consider K := [—2,2] and the polynomial P(X) = X2 —2. We have P~!(K) = K. Thus
Lemma [4.2.11] yield doo(K) = doo(K)'/2. Hence doo(K) € {0,1}. Thus du([0,1]) € {0,1/4} by

Lemma [4.2.7}(i) and (ii).
It remains to show that d.([0,1]) > 0. For each n > 2, consider the n points 0,1/(n —
1),...,(n—=2)/(n—1),1. We have

et () () () -
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Set hy = ((”_1)!"'5!_1!1)2/n(n+1) for each n > 2. Then h, € [0,1] and hence {h,} contains a

convergent subsequence. Let A be the limit of this convergent subsequence. It is easy to check

n+2 n %
that hzzl = ()" () Taking the limit yield

nn n2 .

A2 (1) (nl)w1
An n—oo Nt n?

A2 =

Stirling’s Formula says that n! ~ v/27n(n/e)” when n — co. Thus A = e~%/2 > 0.
By definition, we have d, ([0, 1]) > h,,. Hence d(]0,1]) > A > 0. Hence we are done. O

In Dimitrov’s proof of the Schinzel-Zassenhaus conjecture, the following hedgehog plays
an important role. Let z1,...,2z, € C*. The hedgehog with vertices zi,...,z,, denoted by
K(z1,...,2n), is defined to be |J;[0, 1]z;. A theorem of Dubini asserts that

doo(K (21, ..., 22)) < 47" max |z (4.2.4)
1<i<n

We shall not prove this result in our course. Instead, let us see an example. Let (,, be a primitive
n-th root of unity, for example ¢, = e*™/". Then P(K (Cy, . ..,¢")) = [0,1] where P = X™. Thus

by Lemma [4.2.11 and Corollary [4.2.12, we have doo (K (Cn, ..., C0)) = 471/7.

4.3 Rationality of power series

In this section, we discuss when a power series (i.e. an element in C[[X]]) is rational (i.e.
lies in C[X](x), in other words, is the quotient of two polynomials). The goal is to prove the
Polya—Bertrandias theorem over C.

Let us look at a baby example. Supposer that f = > .,a, X" € Z[[X]] converges for
all z € C, and that f is represented by a holomorphic function on D(0,7) with » > 1. Then
limsup,, |an|'/™ < r~! < 1. Therefore f is a polynomial.

4.3.1 Criterion in terms of determinant
Let f = ano a, X™ € C[[X]].

Definition 4.3.1. For each integer k > 0, define

agp a1 e ag
ay  az o gyl

Ap(f) = | . : | € Mat(ei1)x(k+1)(C).
ak Qg1 ccc o Qg

Theorem 4.3.2. f is rational if and only if det Ax(f) =0 for all k > 1.

Proof. We start with “only if”. Let f = P/Q with P,Q € C[X]. Write Q = ¢oX?+ --- + qq
with gogq # 0. Then Qf = P, and the coefficient of X%tF is Z?:o Qd—i0d—i+k, which equals 0 if
d+ k > deg P. Therefore det Ag(f) =0 for all k£ > deg P.

Conversely let us prove the “if” part. If f = 0 we are done. If f # 0, then leet m be the
smallest non-negative integer such that a,, # 0. Then f is rational if and only if > <, antm X"
is rational. Therefore by replacing f with > -, @ntm X", we may and do assume ag # 0. Then

det Ao(f) 75 0.
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Let d > 0 be the largest integer with det Ay(f) # 0. Then det Ag(f) =0 for all &k > d + 1.
q0

There exists q = | - | € C¥2\ {0} such that Agy1(f)q = 0. Thus Z?Ié g;jai+j = 0 for all
dd
1

ie€{0,...,d+1}.
Set Ly, := z;@; gjag+j. Let Q == goX?+ -+ g4 Then fQ =P+ XPLy+ XPHLy +--.
with P a polynomial of degree < d — 1. Thus we can conclude by the following lemma. O

Lemma 4.3.3. Ly =0 for all k > 0.

Proof. We prove this lemma by induction on k. By choice of q, the lemma holds true for
k<d+1.

For k > d+ 1. Assume Ly =--- = Li_1 = 0. We wish to show that L; = 0. We have
[ Qg1 o ap |
Aa(f) :
a2d+1 - Qd+k
A =
k(f) a2d+2 " Qd+1+k
N . .

L Ad+1+k - a2k |

Add to the (k 4 1)-th column the previous d + 1 columns with weight qq,...,qq, then the

(k + 1)-th column becomes [Lk_d_l ceo Lp_y Lp - Lgk_d_l]T. Then add to the k-
th column the previous d + 1 columns with weight qg,...,qq4, then the k-th column becomes
[Lk,d,g - Lo Lg.q --- Lgk,d,g]T. Continuing this process, we get
[ Lo -+ Lg—a 1
Aa(f) : :
Ly - Lp
det Ay (f) = det Lgy1 -+ Lipaa Ly,
. : :
Ly -+ % Logp—2
i Ly - % Lo q-1]

The upper right part is 0 by induction hypothesis. The lower right part has 0 as entries above the
skew-diagonal whose entries are all L. Thus det Ag(f) = £ det Ad(f)L’,z_d. Since Ag(f) =0
and Ag(f) # 0, we then have Ly = 0. O

4.3.2 The Polya—Bertrandias Theorem over C

Theorem 4.3.4. Let K C C be a non-empty compact set such that C\ K is connected. Assume
that f € Z[[X]] satisfies:

(i) f converges on D(0,¢€) for some e > 0,
(i) z v+ f(z71) extends to a holomorphic map on C\ K.

If dw(K) < 1, then f is rational, i.e. f = P/Q with P,Q € C[X].
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For various reasons, it is more convenient to work with C := C U {o0}, the compactified
complex plane.

There exists a version for f € F[[X]] for a number field F, for which do(K) < 1 is replaced
by a condition involving all places of F'. We will include this version as reading material at the
end of this chapter.

Proof. By Lemma doo(Ke) = doo(K) when € — 07. Fix € > 0 such that do(K¢) < 1.
Next we cover K/, by disks of radius € /2, so that we get a compact set K’ C C with

i Ke/2 C K’ C K,
o doo(K') <1,
e both 0K’ and K’ are semi-algebraic and piecewise C'*.

Replace K by K’. Then 0K has nice properties, and f(z!) is defined and bounded on 0K.
Thus we are able to do the integral
F(=1)dz
0K

For n > 1, let P,, be monic of degree n such that 7,,(K)" = max.ex |P.(z)|. Write, for each m,
pg,?) the coefficient of X™ for P,. Then pq(@n) =1 for all n and pﬁlf) =0 for all m > n.

For each 14, j, let us compute Resqo f(2~ )H(z)P](z)

On the one hand, Ress f(271) P;(2) Pj(z) = Resoz 2f( )
of the term z~! in the expansion of z72f(2)P;(z 1) Pj(z !

P;(z7 1) Pj(271) equals the coefficient
) (here we need hypothesis (i)), and

thus equals >, ;. anp,(j)pl(j ). Therefore we have

a]. a2 e a/k
_ az  as T Akt
[Resoof(z Y Pi(2)Py(z )] 1<ij<k = B} . . : By,
ag  Qg+1 -0 G2k—1

where By = |p\7)
k vt Jo<i,i<k—1

of the right hand side is Ag_q (f;(ao). Hence

is upper triangular with diagonal entries 1. The matrix in the middle

f—ao
X

det Ap_1 < > = det [Resoof(z_l)Pi(z)Pj(z)]1Si’jgk (4.3.1)

and Hadamard’s Inequality yields
1/2

detAk_1<f_a0)‘§ I | D Reswaf(z"Pi(2)Pi(2) . (4.3.2)

X . ,
1<i<k \1<5<k

On the other hand, we have

1

Resoe f(=~)P2) Py (2) = 5

7{ F(zHPi(2)Pj(2)dz.
0K

PIReseog := Resoz 2g(z71).
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Notice that f(z~!) is bounded on dK, and |P,(2)|"/" < 7,(K) = doo(K) < 1 when n — oo (see
Proposition [4.2.10]). Write § := dw(K) < 1 for simplicity. For fix & > 1, we have

O(6%) ifi>1

Z [Resoo f(27)Pi(2) Py ()] = {0(1) if not

1<j<k

Thus one gets, by (4.3.2), )det Ap_1 (%)‘ <1lfork>1 AsdetA,_; (f;(“‘)) € 7Z, we thus
have

f—ao
X

Hence f;(& is rational by Theorem So f is rational. 0

det Ap_q < >‘ =0 forall k> 1.

For our purpose, we will use the following equivalent version of Theorem

Theorem 4.3.4'. Let K C C be a non-empty compact set such that C\K s connected. Assume
that f =3 ,sganX ™" € Z[[X 1)) satisfies:

(i) f converges on {z € C: |z| > M} for M > 1,
(i) z— f(z) extends to a holomorphic map on C\ K.
If doo(K) < 1, then f is rational, i.e. f = P/Q with P,Q € C[X].

4.4 Proof of Schinzel-Zassenhaus

Let a # 0 be an algebraic integer of degree d > 1. Let a1 = «,...,aq € C be its Galois
conjugates. Then the Z-minimal polynomial of o is f(X) := (X — 1) -+ (X — ag).
Recall that the house of «v is [@] := max; |oy|.

4.4.1 Congruence condition

Let p be a prime number. Write X = (X1,...,Xy). Let €;(X) be the elementary symmetric

polynomial in X of degree j. Write X? = (X7,..., X¥).
Define

¢ (X)P — ¢)(X?)

p

)i (X) = € Z[X]. (4.4.1)

Lemma 4.4.1. For any positive integer k, we have

k

e;(X)P" = ¢;(XP") + p;(X)P" " (mod p?).

Proof. We prove the lemma by induction on k. The base step k = 1 is by definition of ;.
Assume the lemma is proved for £k — 1 > 1. We wish to prove it for k. We have

Y

<.
—
o
~
bS]

11

(ej(kail) + pi; (X)pk%)p (mod p?) by induction hypothesis
= ej(ka) —i—pwj(kaA) (mod p?) by the case k=1

k k—1
= e;(XP) + py; (X)P (mod p?).

Hence we are done. O
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Now set fi, := (X —af) - (X — k) € Z[X]. Write @ = (a1, ...,qq) and o = (af, ..., of).
Lemma 4.4.2. We have:
(i) ej(apk) = e;j(a?) (mod p?) for each j.
(ii) fpr = fp (mod p?).
What we need in the proof of the Schinzel-Zassenhaus conjecture is fy = fo (mod 4).

Proof. Tt is clear that (i) implies (ii). Let us prove (i).

First, ¢j(a) € Z as it is an algebraic integer which is invariant under Gal(Q/Q). Thus
Fermat’s Little Theorem implies wj(a)p]%l = 1j(a) (mod p).

Next ej(a) € Z as it is an algebraic integer which is invariant under Gal(Q/Q). Thus

Fermat’s Little Theorem implies ej(a)? = ej(a) (mod p). Hence ej(a)f”lC =...= ej(a)Y"2 =
ej(a)P (mod p?).
Now (i) follows from Lemma and the previous two paragraphs. O

4.4.2 Proof of Schinzel-Zassenhaus

Now we are ready to prove the Schinzel-Zassenhaus conjecture, Theorem with ¢ = log2/4.

Assume does not hold true for a # 0, i.e. [a] < 21741, We wish to show that « is a
root of unity.

We prove this by induction on d.

If d = 1, then it is clearly true that a = +1.

Assume the theorem is proved for 1,...,d —1 > 1. Now we prove it for d > 2. Use the
notation of Lemma [1.4.2] By part (ii) of the said lemma, there exists A € Z[X] such that
f1 = fo+4A. By looking at the leading coefficients of f; and fo, we see that deg A < d.

We start by showing that

X X — ot
i;lEX; =1 5 . (4.4.2)

1<i<d
is a square in Q(X). For this purpose, we will apply the Polya—Bertrandias theorem.
1/2
Set T := A/ fs. Let f be the Taylor expansion in T' of (%) =(1+ 4T)1/2. Then f is a

power series in T', and has coefficient in Z since (1 + 47)~/2 € Z[[T]] (it is here that we need
the coefficient 4).

To see that f is a power series in Z[[X]] or Z[[X~!]], we use the following trick. For each
polynomial P(X) = c¢[[;(X — ), its reciprocal polynomial is defined to be P*(X) = c¢[[;(1 —
B;X) or equivalently P*(X) = X9 P P(1/X). In particular, P is monic if and only if P*(0) = 1.

Then
(X) _ SiUX) _ QX AAYX) L AX)
RX) - BA/X) 0 - %) ITcsea(l — %)

Hence T' = Lx)ag € Z[[ X1
[li<i<al—%)
Now we have that f € Z[[X~!]] by the previous two paragraphs.
We are ready to apply the Polya-Bertrandias Theorem, Theorem to f. The rel-

evant compact set K is the Hedgehog K (aZ,... ,afl,o/ll,...,ozﬁ). Its transfinite diameter is

< (max{[@*, @3} /4)"/". Then our assumption [@] < 2'/4¢ implies that du(K) < 1. And f
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is clearly a holomorphic map on C \ K. Thus Theorem implies that f € Q(X). So f1/f2
is a square in Q(X).
Thus the polynomial terms appearing in the product on the right hand side of (4.4.2)) cannot
2

be all different. So either oz% = a;* for some 7 and j, or af = a]z for some ¢ #£ j.

If o? = oz? for some ¢ and 7, then by applying elements in the Galois group we can see that
{a2,...,a2} and {af,...,a}} are the same set. So [@? = [@*. So [@ = 1 since a # 0. Thus a
is a root of unity by part (ii) of Lemma m

If o? = ajz for some i # j, then [Q(a?) : Q] < d = [Q() : Q]. Thus we can apply the
induction hypothesis to conclude that a? is a root of unity. Hence «; is a root of unity, and thus
« is a root of unity.

Now we are done.
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Chapter 5

Height Machine

5.1 Construction and basic properties of the Height Machine

In this section, we define the height function on projective varieties and the height machine.
Let X be an irreducible projective variety defined over Q. Denote by RX(@ the set of

functions X (Q) — R, and by O(1) the subset of bounded functions.
The Height Machine associates to each line bundle L € Pic(X) a unique class of functions

RX@/0(1), i.e. a map

hy: Pic(X) —» R¥X@/0(1), L hx,. (5.1.1)
Let hx r: X(Q) — R a representative of the class hx 1; it is called a height function associated
with (X, L).

Construction 5.1.1. One can construct hx 1, as follows. In each case below, hx 1 depends on
some extra data and hence is not unique. However, it can be shown that any two choices differ

by a bounded functions on X(Q), and thus the class of hx 1, is well-defined.

(i) If L is very ample, then the global sections of L give rise to a closed immersion v: X — P"
for some n, such that *O(1) ~ L. Set hx = ho, with h the Weil height on P" from

Definition [1.2.1].

(i) If L is ample, then L¥™ is very ample for some m > 1. Set hx = (1/m)hx pom.

(iii) For an arbitrary L, there exist ample line bundles Ly and Ly on X such that L ~ Ly ®LS§_1
by general theory of Algebraic Geometry. Set hx = hx,r, — hx L,

Here is how we will arrange to show that the class of hx 1, is well-defined in each one of the
cases above. For (i), it follows immediately from the following Lemma For (ii) and (iii),
it will be proved in the course of proving Proposition (ii).

Lemma 5.1.2. Assume ¢: X — P and 1: X — P™ are two morphisms defined over Q such

that ¢*Opn (1) ~ *Opm(1). Then as functions on X (Q) we have
hpn 0 ¢ — hpm 0 = O(1)

where hpn (resp. hpm ) is the Weil height on P" (resp. on P™) from Definition [1.2.1]

This O(1) depends on X, ¢ and 1, but is independent on the point of X (Q).

75
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Proof of Lemma[5.1.3 Denote by L := ¢*Opn (1) ~ 1)*Opm (1) the line bundle on X. Choose a
basis {hq,...,hn} of H°(X, L). Then there are linear combinations

N
fi= Zaijhj,() <i<n,
j=0
N
gk =Y brjhj,0 <k <m,
=0
with a;; € Q and by € Q, such that
¢=1[fo:---:ful and P =lgo:---:gml.
Set A :=1[hg : -+ : hy]: X — PV; then ) is a closed immersion. The matrix (a;j)o<i<n, 0<j<N

gives rise to a linear map A: PV — P", and the matrix (bkj)o<k<m, 0<j<n gives rise to a linear
map B: PN — P™. Notice Ao\ = ¢ and Bo XA = 1. So both A and B are well-defined over
A(X). Hence we can apply Theorem [1.2.15( and obtain

h(@(x)) = h(AA(z))) = h(A(2)) + O(1) and h(P(z)) = h(B(A(x))) = h(A(z)) + O(1)

for all z € X(Q). Taking the difference of these two equalities, we get the desired equality. [

Here are some basic properties of the Height Machine. These properties, or more precisely
properties (i)—(iii), also uniquely determine ([5.1.1)).

Proposition 5.1.3. We have
(i) (Normalization) Let h be the Weil height from Definition |1.2.1. Then for all x € P*(Q),

we have

hP",O(l) (X) = h(X) + O(l)
(ii) (Additivity) Let L and M be two line bundles on X. Then for all x € X(Q), we have

hX,L®M(SU) = hXJJ(I‘) + hX,M(l‘) + O(l)

(iii) (Functoriality) Let ¢: X — Y be a morphism of irreducible projective varieties and let L

be a line bundle on Y. Then for all x € X(Q), we have
hx.¢r(x) = hy,r(¢(x)) + O(1).
(iv) (Positivity) If s € H*(X, L) is a global section, then for all x € (X \ div(s))(Q) we have
hx.r(x) > O(1).

(v) (Northcott property) Assume L is ample. Let Ky be a number field on which X is defined.
Then for any d > 1 and any constant B, the set

{:L’ GX(K) : [K : Ko] <d, hX7L(.T) < B}

is a finite set.
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The O(1)’s that appear in the proposition depend on the varieties, line bundles, morphisms,
and the choices of the representatives in the classes of height functions. But they are independent
of the points on the varieties.

Proof of Proposition[5.1.3, Part (i) follows from the definition and the fact that zo,...,z, is a
basis of H(P", O(1)). Notice that Lemma is implicitly used.

Next we check (ii). We start with the case where both L and M are very ample. Then the
global sections of L (resp. of M) give rise to a closed immersion ¢, : X — P" (resp. ¢: X — P™).
Composing with the Segre embedding Sy, : P* x P — PV (with N = (n+1)(m+1) — 1) from
, we obtain

oL@ X =P,z ¢r(z) @ dur(a).

Recall that Sy; . Opn (1) ~ O(1,1) by general theory of Algebraic Geometry. So (¢r®@¢n)*Opn (1)
L®M. So hx remv(z) = hpn (¢1(2) @¢ar(z)), which equals hpn (¢r,(x)) +hpm (Par(x)) by Propo-
sition [1.2.14] (i), and hence equals hx,r(x) + hx,a(z) + O(1).

At this stage, we are ready to establish case (ii) of Construction Suppose L is ample.
If m and n satisfy that L™ and L®" are very ample, then L®™" is very ample. Apply Propo-
sition (ii) to L®™ (n times), then we get hy pemn = nhy pom + O(1). Similarly (apply
Proposition (ii) to L¥" (m times)) we have hx pemn = mhx ren +O(1). Thus up to O(1),
we have %hX7L®m = %thLm. Hence hy , is well-defined up to O(1) if L is ample.

Now Proposition [5.1.3] (ii) for the case where both L and M are ample follows from the very
ample case and the definition of the height function in this case.

For arbitrary L and M, write L = L; ® L' and M = My ® M$™! with Ly, Ly, M
and Ms ample. Then Ly ® My and Lo ® My are ample line bundles on X, with L ® M ~
(L1 ® M1) @ (Lo ® M2)®~1. Thus up to O(1), we have

hx rom = hx piovm — hx,L.oM, = hx,r +hx v, —hxp, —hx v = hxo +hx g

Notice that this also establishes case (iii) of Construction (that hx r, is well-defined up to
O(1) for an arbitrary L).

For (iii): By (ii) it suffices to prove the assertion for L very ample. Let ¢1,: Y — P™ be a closed
immersion given by global sections of L; then ¢j O(1) ~ L. In particular, hpnotr, = hy,;, +Oy (1)
by part (i). There exists some very ample M on X such that ¢*L ® M is very ample by
general theory of Algebraic Geometry. The global sections of M give rise to a closed immersion
tpr: X — P™. Hence we have a morphism (vp 00, tp7): X — P™ x P, which composed with the
Segre embedding gives a closed immersion ¢: X — P¥. One can check that :*O(1) ~ ¢*L @ M.
So as in the proof of part (ii), we have up to Ox(1)

hx.¢ oM = hpx 0t = hpn ot 0 ¢+ hpm 0 Lar = hy,L 0 ¢+ hx .

Hence we are done by part (ii).

For (iv): There exist a positive integer k and a very ample line bundle M on X such
that L®* ® M is very ample on X by general theory of Algebraic Geometry. Notice that
sk e HO(X,L®%). Let {fo,..., fm} be a basis of H°(X, M); then we have a closed immersion
i o= [fo:: fm]: X — P™. One can complete s* fy, . .., s* f,,, to a basis {skfj,gi}ogjgmlgign
of H(X, L®* @ M), and thus obtain a closed immersion ¢: X — PY. Now up to O(1), hy per =
hpn ot — hpm o 1y by part (ii). For any x € (X \ div(s))(Q), we have tp(x) = [fo(z) : -+ :
Tm(@)] = [s(x)* fo(x) : - : s(2)k frn(2)] € P™(Q), and so

1
(K : Q]

hpn o 1(z) — hpm o tpr(x) =
vEMK

~

j<x>||,u)

> (logmax{mjax||s<x>’ffj<x>|,u,mgx||gi<x>||v} ~ logmax ()" f
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for an appropriate number field K, and hence is > 0. Hence we are done.
For (v), it suffices to prove for L very ample. Then the conclusion follows immediately from
the Northcott Property for Weil height (Theorem [1.2.5)). 0

5.2 Normalized Height after Néron and Tate

Let X be an irreducible projective variety defined over Q.

The Height Machine associates to each line bundle L € Pic(X) a height function hy: X (Q) —
R. However, these height functions are well-defined only up to O(1). It is sometimes desirable
to find particular representatives.

While one can always fix a representative by fixing every operation needed to define hy, (for
example, the basis of HY(X, L) giving the embedding of X into some PV if L is very ample),
for some particular (X, L) we have some more canonical choices. In this section, we discuss one
case developed by Néron and Tate.

Assume that ¢: X — X is a morphism satisfying ¢*L ~ L®% for some integer o > 1.

Theorem 5.2.1. There exists a unique height function
hxor: X(Q) — R
with the following properties.
(i) hxorn(x) =hxp(z)+O(1) for all z € X(Q),
(ii) iALX7¢’L(¢(x)) = aizx,d,’L(w) for all x € X(Q).

The height function iLX7¢’L depends only on the isomorphism class of L. Moreover, it can be
computed as the limait

hxgr(z) = lim LhXL(qﬁ"(x)) (5.2.1)

n—oo

with ¢" the n-fold iterate of ¢.

Property (i) says that fALX7¢,L is in the class of heights of hx . The height function is
sometimes called the canonical height function.
Here is an example of the application of Theorem Let ¢: P* — P™ be given by

homogeneous polynomials of degree d > 1, then ¢*O(1) ~ O(d) = O(1)®%. If ¢([xg : - - - : xp)) =
[d :---: 2], then one can check that hpn 6, 0(1) is precisely the Weil height.

A more important example for the Tate Limit Process (5.2.1)) is the definition of the Néron—
Tate heights on abelian varieties. This height turns out to be extremely useful. We will come
back to this in the next section.

Before moving on to the proof, let us have a digest. The morphism ¢ induces a Z-linear map
¢*: Pic(X) — Pic(X) Tensoring with R gives a linear map ¢*: Pic(X) ®z R — Pic(X) ®z R of real
vector spaces of finite dimension. Say L is non-trivial. Then the assumption ¢*L ~ L®® implies that L
is an eigenvector for the eigenvalue a. The assumption « > 1 guarantees that the Tate Limit Process
(5.2.1) will work in the end.

Proof of Theorem[5.2.1. Applying Proposition (iii) to the relation ¢*L ~ L®* we get a constant
C such that

|hx,(¢(y)) —ahx(y)] <C forall y € X(Q).

MThe “addition” on the group Pic(X) is ®.
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Notice that C depends on X, L, ¢ and the choice of the height function hx ..

Claim: For any z € X(Q), the sequence o "hx 1,(¢"(z)) converges.
We prove this by Cauchy. The proof uses the telescoping sum. Let n > m and compute

n

a "hx (¢"(z)) — a_th}L(q’)m(x))’ = Z a”? (hX,L(q/)i(x)) — ahX7L(q§i_1(x))) (telescoping sum)

1=m-+1
< Z o hx, (¢ (2)) — ahx,L(¢" " (x))| (triangle inequality)
1=m-+1
< Z a~'C  from above with y = ¢"~!(x).
1=m-+1
So
n n o " a ™ —q "
|a hX,L(Q5 (:Z:)) -« hX,L(¢ (I))| < ﬁc (522)

But %C — 0asn > m — oo. Thus the sequence o "hx (¢"(x)) is Cauchy, and hence converges.

So we can define hx 4 1 (2) as in (5.2.1)).
Now we verify the properties (i) and (ii). For (i), take m = 0 and let n — oo in the inequality (5.2.2)).

We then get

5 C
hx,e,L(@) = hx,L(z)| < a1 (5.2.3)

And this gives (a more explicit form of) property (i).
Property (ii) follows directly from the computation

o2 (6()) = Jim ——har (67(6(2))

n—oo

_ 1 @ +1
=i, e ha (@)

= a}ALX’QL (l’)

It remains to prove the uniqueness. Suppose h and A’ are two functions with properties (i) and (ii). Set
g:=h—h'. Then (i) implies that g is bounded, say |g(z)| < C’ for all x € X(Q). Property (ii) implies
that g o = ag and thus g o ¢™ = g for all n > 1. Hence

lg(a)| = 9@ O oo,y

am am
Thus g = 0 and hence h = k. We are done. O

Proposition 5.2.2. Assume furthermore that L is ample. Then
(i) hxorn(x) >0 for all z € X(Q);

(ii) hxp(x) =0 if and only if = is preperiodic for ¢, i.c. O(‘;(x) = {z, ¢(x), d*(x),...} is
a finite set.

Proof. For (i): As L is ample, L®™ is very ample for some m > 1. Take a basis {s1,...,sx} of
HO(X, L®™), then ﬂf’zl div(s;) = 0. By Proposition (iv) applied to each s;, we can choose a

representative hx jom with hx rem(x) > 0 for allz € X(Q). Thus hx r(z) = (1/m)hx pom(x) >
0 for all z € X(Q). So hx g (z) > 0 for all z € X(Q) by (5-2.1).

Let us prove property (ii). Take z € X (Q). For <: It is clear that hx 1(¢"(x)) is bounded
because O;(az) is a finite set. So a™"hx (¢"(x)) = 0asn — oo. Thus hx 4 1 (z) = 0 by (5.2.1).
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It remains to prove = of property (ii). Take a number field K such that X, L, ¢ are defined
over K and x € X(K). Suppose hx 4 r(x) = 0. Then for any n > 1, we have

hx, (8" (x)) = hx,0(¢"(2)) + O(1) = a”hx 6,0 (x) + O(1) = O(1).

Here the constant O(1) depends only on X and L. As all ¢"(x) are in X(K), we obtain a
constant B such that
Of () C {y € X(K) : hx r(y) < B}.

Thus O(;L (x) is a finite set by the Northcott property (Proposition (v)). We are done. [

This proposition is important when we study the canonical heights on abelian varieties in

the next section.
Here is an application.

Corollary 5.2.3 (Kronecker’s Theorem). Consider the Weil height h on Q = AY(Q). Let ¢ € Q. Then
h(¢) = 0 if and only if ¢ is a root of unity.

Proof. Consider the morphism ¢: P! — P!, [z : 21] — [23 : 23]. Then h(z) = hp1 4 o(1)([1 : 2]) for all

z € Q. For =, suppose h(¢) = 0. By Proposition (ii), {[1:¢),[1: ¢%,[1:¢Y,.. .} is a finite set. So
(%" = ¢% for some i # j. Thus C is a root of unity. For <, suppose (" = 1. Fermat’s Little Theorem

implies 22(™) = 1 (mod n) for the Euler-¢ function. Thus {[1: ¢],[1:¢?],[1:¢%],...} is a finite set, and
hence h(¢) = hp1 4 01)([1 : ¢]) = 0 by Proposition (ii). O

5.3 Néron—Tate height on abelian varieties

In this section, we discuss about normalized height functions on abelian varieties.
Let A be an abelian variety defined over Q. Let L € Pic(A) be a line bundle such that
L ~ [-1]*L (we call such an L even). We shall use without proof the following fact:

[n]*L ~ L& (5.3.1)

for all n € Z.
Let us apply Theorem to [2]: A — A and L. Then we obtain the normalized height
function

har: A@Q) —R. (5.3.2)

This function is called the Néron—Tate hetight on A with respect to L. Compared to the
notation in the last section, we omitted the map [2] in the subscript. This is justified by the
following proposition, which implies that we can replace [2] by any [n] with n > 2 in the definition
of h A,L-

Proposition 5.3.1. For each N € Z, we have ha 1([N]z) = N?ha p(z) for all z € AQ). In
particular, we have

; _ o har((Nz)

hap(e) = lim =20

Proof. We have [N]*L ~ AL®N * by (5.3.1). Thus (i) and (iii) of Proposition (applied to the
height function h) yield ha r([N]y) = hanp-r(y) +O(1) = ALEN? (y) +O(1) = N?har(y) +

O(1) for all y € A(Q), where O(1) is a constant depending on A and L. In particular let
y = [2"]z, then we have

harn([2"][N]z) = N?ha r([2"z) + O(1) = N?4"h 1(z) + O(1)
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where the last equality follows from Theorem M(u) Dividing both sides by 4™ and letting
n — oo, we get ha ([N]z) = N?ha r(z).
For the “In particular” part, we know (Theorem (1)) that }ALA7L =ha, +O(1). Thus
ha([N]z) har(NJz) +0(1) _;

lim ——————= = 1i =h .
Ngnoo N2 Ngnoo N2 A7L(x)

We are done. O
Proposition 5.3.2. Assume L is ample. Then

(i) har(z) >0 for all x € A(Q);

(1) iAlA7L(a:) =0 if and only if x is a torsion point, i.e. [N|xz =0 for some integer N # 0;

Proof. Part (i) follows immediately from Proposition [5.2.2}(i).

For (ii), we use Proposition (ii). Assume hz(z) = 0. Then {[2"]z : n > 1} is a finite
set by Proposition [5.2.2](ii). Thus [2"]z = [2™]z for some m > n. Thus [2™ — 2"]z = 0 and
2 — 2™ £ (), and hence z is a torsion point. Conversely assume [N]z = 0 with N # 0. Then
the set O['JFV] (z) = {x,[N]z,[N?]z,---} is a finite set. So Proposition (ii) implies that

ﬁA7[N]7L(w) = 0. But BA,[N],L = iLAJ; by Proposition Hence we are done. O

We finish this section by the following discussion.
Take a finitely generated subgroup I' of A(Q). By linearity, the Néron-Tate height ha r,
gxtends to a function I'g := I' ®z R — R. By abuse of notation we still denote this function by

har.

Proposition 5.3.3. For each finitely generated subgroup T' of A(Q), fLAJ; is a quadratic form
on I'r which is furthermore positive definite.

Proof. In view of Proposition (i), in order to prove that h AL is a quadratic form on A(Q),
it suffices to show that the pairing

(nr: AQ) x AQ) = R, (a,b)— % (ﬁA,L(a +b) —haz(a) — EA,L(b)) (5.3.3)

is bilinear. This easily follows from the theorem of the square because h ArL(z) = h A:r(0) for

all z € A(Q).
Notice that h 4, is then a quadratic form on I'g by linearity.
To show that h4 r is positive definite on I'r, we need to prove two things by Lemma |5.3.4

In order to distinguish h A, on I and on I'g, we denote the latter by g. We use T to denote the
image of I' — I'g; it is isomorphic to I' mod the torsion points.

(a) If 0 # v € T lies in T, then ¢(y) > 0.
(b) For every C > 0, the set {y € T : ¢(y) < C} is finite.

For (a), it easily follows from (i) and (ii) of the current proposition. For (b), suppose 7 is the
image of some z € T'. Then () < C = har(z) < C. As T is finitely generated, there exists a
number field K such that T' C A(K). Thus we are looking at {z € A(K) : har(x) < C}, which
is a finite set by the Northcott property (Proposition [5.1.3}(v)). So (b) is also established. We
are done. O
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Lemma 5.3.4. Let M be a finitely generated abelian group and let q: M — R be a quadratic
form. Set qr: Mg := M ®z R — R to be the quadratic form defined by linearity. Then qr s
positive definite if and only if the following two conditions are satisfied:

(a) q(x) >0 for all z € M \ {0}, where M is the image of M — Mg;
(b) For every C > 0, the set {x € M : qr(z) < C} is finite.

Part (b) is necessary as is shown by the following example. Suppose « is a transcendental
number in R, then the quadratic form in R? given by g¢(x1,72) := (z1 — axs)? is not positive
definite since ¢(a, 1) = 0, but g(z1,x2) > 0 for all (z1,z2) € @2 \ {0}

Proof. The direction = is easy. We prove <. Assume gg is not positive definite. Then there exists
y € Mg \ {0} such that ¢r(y) = 0.

We claim that y € Mg = Mg. Indeed if y € Mg, then Ny € M \ {0} for some 0 # N € N. Then
q(Ny) > 0 by (a). But ¢ is quadratic, so ¢(Ny) = N2q(y) > 0. This contradicts the choice of y.

Choose a basis {x1,...,2,} of M; it is also a basis of Mg. For any n € N, there exists y, € M such
that the coordinates of y,, — ny are in the interval [0,1]. Thus y,, — ny is contained in the compact cube
{7 1 0 < a; <1} But qr(yn) = qr(yn — ny) (since gr(y) = 0) and hence is bounded on the
cube, say by C. Since y & Mg, the set {y,, : n € N} is infinite and is contained in {x € M : gr(z) < C}.
This contradicts (b). Hence we are done. O

[IThis can be seen from (for example) the bilinear pairing associated with the quadratic form gg.



Chapter 6

Integral points on elliptic curves

Let K be a number field, let O be its ring of integers, and let S C Mg be a finite set which
contains M.

Let Ok s denote the ring of S-integers, i.e. Og g ={z € K : |z|, <1 for all v ¢ S}.

The goal of this chapter is to prove the theorem of Siegel.

Theorem 6.0.1. The equation Y? = X3 + aX + b, with a,b € Ok,s such that 4a® +270% # 0,
has only finitely many solutions in C’)%ﬂ g-

A fancier and perhaps more intrinsic way of this theorem is: Each elliptic curve (E,O)
defined over K has only finitely many O g-points with respect to the divisor {O}.

6.1 Background on elliptic curves

Let us start with an abstract definition of elliptic curves and then explain how to link it with
the equation in Theorem [6.0.1]

Definition 6.1.1. An elliptic curve is a smooth projective curve E of genus one together with
a prescribed point O € E. We say that the elliptic curve is defined over K if E is defined over
K as a curve and O € E(K).

Usually the point O is well understood, so we simply call £ an elliptic curve. Indeed, by
theory of curves of genus 1, over the field of complex numbers C, we have E(C) ~ C/A for a
lattice A C C and O is the image of 0 € C under the natural uniformization C — C/A.

The group (C,+;0) induces a natural (abelian) group structure on F, with O being the
identity element.

For E/K, set

E(K):={P e E(C):0(P)=P forall 0 € Aut(C/K)}.

It is not hard to check that O € E(K) and that E(K) is an abelian group. The following
Mordell-Weil theorem is of fundamental importance in the theory of elliptic curves.

Theorem 6.1.2 (Mordell-Weil Theorem). The abelian group E(K) is finitely generated.
In this course, we only need a weak version of this theorem, namely

Theorem 6.1.3 (Weak Mordell-Weil Theorem). For each positive integer m € Z, the group
E(K)/mE(K) is finite.

83
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Next we turn to a more concrete description of elliptic curves. Using the Weierstrafl -
function, one can prove the following proposition. It can also be obtained as an application of
the Riemann—Roch Theorem.

Proposition 6.1.4. Let E be an elliptic curve defined over K.
(i) There exist functions z,y € K(FE) such that the map
¢: E—P?, P [z(P):y(P):1]

gives an isomorphism of E onto a curve in P? such that ¢(O) = [0 : 1 : 0] and that
d(E\{O}) is given by
Y%= X3+aX +0, (6.1.1)

in the affine coordinate [X : Y : 1], for some a,b € K. Moreover 4a® + 27b* # 0.

(ii) Conversely, each curve defined by an equation in the form (6.1.1)) such that 4a>+27b% # 0
is an elliptic curve defined over K with O =[0:1:0].

(iii) Given E, the choice of the equation (6.1.1) is not unique. But any two such choices are
related by a change of variables of the form (X,Y) — (u?>X,u3Y) for some u € K*.

The equation (6.1.1]) is called the Weierstrafs form of E. We sometimes use the following
notation
E/K: Y =X34+aX+b

to mean that FE is an elliptic curve defined over K in its Weierstraf§ form. By Proposi-
tion [6.1.4] (iii), the Weierstra$} form of E is not unique.

The group law on E under the Weierstral form can be made explicit. Here we only need
the following observation. For P = [z : y : 1] € E, the negation —P = [z : —y : 1].

Given an elliptic curve E/K, Theorem says that any Weierstra form has only finitely many
solutions in (9%{’ g However, one can show that two different Weierstrafl forms of £/K may not have the
same number of solutions in 0% ¢, and by varying the Weierstra form the number of solutions in (9%7 g

may not have an upper bound

6.2 Link with Roth’s Theorem

We will prove Theorem [6.0.1 as an application of Roth’s Theorem. Let us repeat the statement
of Roth’s Theorem here. Here we need a version which is more general than Theorem but
less general than Theorem [3.1.5

Let v € Mg and let o, € K, be K-algebraic, i.e. a, € K, is a root of a polynomial with
coefficients in K. Then for each ¢ > 0,

log o, — Bl > —(2+ €)h(8) (6.2.1)

for all but finitely many 8 € K. In the case of K = Q and v = oo, this is precisely Theorem 3.1.4

Let E/K : Y%= X34 aX + b be an elliptic curve defined over K in its Weierstraf§ form.
We need to understand the analogous inequality of (6.2.1)) for E. The right hand side is height,
and the left hand side is a suitable distance.

M1y fact, such an upper bound exists if and only if F(K) has rank 0.
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6.2.1 Height on F

Define the finite morphism

' 1 [:y: 1]~ [x:1]
fE=E, {[0:1:0]H[1:0]. (6.2.2)
If we set [1: 0] € P! to be oo, then f([z:y:1]) =2 and f(O) = oo.
Set
L= f"Op1(1). (6.2.3)

Since f is a finite morphism, we have that L is ample on E.
Lemma 6.2.1. Let [-1]: E — E be the multiplication-by-—1 map on E. Then

L~ [-1]*L.
In particular, we have the Néron—Tate height hy,: E(Q) — Rxg from (5.3.2).
Proof. For each P =[x :y:1] € E, we have —P = [z : —y : 1]. Thus f(P)= f(—P) for all P €
E. Thus f = fo[-1]. Hence L = f*Op1(1) = (fo [-1])*Op1 (1) = [-1]*f*Op (1) = [-1]*L. O
6.2.2 Distance function on F

Let @ € E. Take tg to be a local uniformizer at @, i.e. tg € K(F) such that Q is a zero of
tg of order 1. Such a tq exists; for example if Q = [zg : yo : 1] with yg # 0, then we can take
tg = x — xop.

Definition 6.2.2. Let v € My. Let P € E(K,). The v-adic distance between P and Q with
respect to tq is defined to be

dv(Pa tQ) = min{|tQ(P)|’Ua 1}
If P is a pole of tg, then we naturally set d,(P,tg) = 1.

Notice that d,(P,tg) depends on the choice of the local uniformizer tg at Q. However, for
our purpose we only need to understand this distance in the limit process with P € E(K,)
approaches () in the v-adic topology.

Lemma 6.2.3. Let t’Q € K(F) be such that Q is a zero of t’Q of order e > 1. Then we have

. / 1/e
i log min{[t;, (P)[»'", 1} _
PeE(K,), P3Q log dy (P, tq)

Proof. Let ¢ =ty /t € K(E). Then @ is neither a zero nor a pole of ¢. Hence when P is
sufficiently close to @, |¢(P)|, is bounded away from 0 and co. Thus

log min{|¢,, (P 1/6,1 1 p)|i/e
i cemindlfoP) L loge(P)l

=1
PEE(K,), PQ log dy(P, Q) PeB(K,), P2 108 du(P,tq)

We are done. O
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Because of this lemma, we will write

d'U (P7 Q)

for d,(P,tg) when P € E(K,) approaches () in the v-adic topology.
The following result is then a corollary of Roth’s Theorem.

Corollary 6.2.4. Let L be the ample line bundle on E defined by (6.2.3). Then

log d,, (P,
lim inf 7ogd( Q)

= > —2.
PeE(K), P>Q  hr(P)

Proof. Recall the morphism f: B — P! given by (6.2.2) - By Height Machine ((i) and (iii) of
)

Proposition [5.1.3), we have hy(P) = hpo_,1)(P) = ho_,0)(f(P)) + O(1) = h(f(P)) + O(1)
where h: P1(Q) — R is the Weil height.

The function f — f(Q) is an element in K (F) which vanishes at @), whose vanishing order
we denote by e > 1. Then by Lemma [6.2.3] we can take

dy(P,Q) = min{|f(P) — f(Q)[+/*,1}.

Thus

ogd,(P.Q) _1 . loglf(P)~ J(@l

lim inf —_— = - lim inf
PeB(K), P2q  hi(P) € PeE(K), P5Q h(f(P))

By (6.2.1) with 8 = f(P) and a,, = f(Q), we then have

. log |[f(P) — f(Q)]v
1 f
PeEzfr?),H;%Q h(f(P)) -

—(2+¢€)
for any € > 0. Hence we are done. ]

6.3 Conclusion of Siegel’s Theorem

Now we are ready to prove Theorem [6.0.1] the main theorem of this chapter.
Let E/K : Y?= X3+ aX +b be an elliptic curve. Let L be the ample line bundle on E
defined by (6.2.3). For each v € Mg, use the distance function defined above Corollary [6.2.4 -

Theorem 6.3.1 (Siegel). Assume #E(K)=o00. Fiz Q € E(K) and let v € M. Then

. logdy(P, Q)
llm —_—— =
PEE(K), h(P)—»oo  hp(P)

6.3.1 Proof of Theorem [6.3.1 implying Theorem |6.0.1

For each P € E(K) \ {O}, denote by [z(P) : y(P) : 1] its coordinates. Then by definition of L
and the Height Machine ((i) and (iii) of Proposition , we have

hi(P) = hyo,,1)(P) = ho,, 1) (f(P)) +O(1) = h([z(P) : 1]) + O(1)
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for each P € E(K)\{O}, where O(1) is a bounded function. Here the last step is the definition
of f: E— P! (6.2.2). Thus by definition of the Weil height, we have

h(P)= g 2 To” (Pl + O().

UEMK

If z(P) € Ok,g, then ||z(P)|, = |x(P)|£,K”:Q”] <1forallv ¢ S. Notice that [K, : Q] < [K : Q).
Thus we have

x(P) € Og.s = hy(P Zlog”x Mo +0(1) < logla(P)|y +O(1).  (6.3.1)

UES vES

We claim that there are only finitely many P € E(K) \ {O} with z(P) € Og,s. Notice
that this suffices to conclude for Theorem Assume otherwise, then there is a sequence
of distinct points Py, P,... € E(K) with z(P,) € Ok g for each n. By Northcott property

(Proposition (v)), hr(P,) = co. By (6.3.1), up to taking a subsequence there exists v € S
with
hi(P,) < #S -log|z(Py)|, for all n. (6.3.2)

The function z has a pole of order 2 at the point O € E(K). Therefore we may take
dy(Py, 0) = min{|z(P,)[;"/?,1}

by Lemma Thus (6.3.2)) implies
*logdv(anO) > 1
hi(Pa) — — 2#5
However, as ﬁL(Pn) — 00, this contradicts Theorem with @ = O. Hence we obtain a

contradiction. Therefore there are only finitely many P € E(K) \ {O} with z(P) € Oggs.
Hence we are done.

6.3.2 Proof of Theorem [6.3.1]

Choose a sequence of distinct points P, € E(K) such that

m log dU(PTH Q) — hm lnf log dU(P7 Q) .
n—oo  hr(P,) PEE(K), hp(P)=oo  hr(P)

Call this limit L. Since dy(P,, Q) < 1 by definition of d,, and h(P,) > 0 by Proposition [5.3.2}(i),
we have L <0.

Now it remains to show L > 0.

Let m € Z be a positive integer. By the weak Mordell-Weil Theorem (Theorem ,
E(K)/mE(K) is finite. Thus there exists R € E(K) such that mE(K) + R (which is a coset of
mE(K) in E(K)) contains infinitely many points in the sequence { P, }. Replacing the sequence
by this subsequence, we may assume P, € mE(K) + R for all n. Write for each n

P,=[m]P, +R

with P! € E(K). Then Proposition 1| yields

m%L(P,;) = hy([m)P.) = hy (P, — R).
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By Proposition and the Polarization Identity, we have hr,(P,+R)+hr(P,—R) = 2hy(P,)+
2hr(R). Therefore by Proposition (i), we have

m2h(P.) < 2hp(Py,) + 2hr(R). (6.3.3)

Next we work with the v-adic distance. Notice that up to taking a subsequence, we may
assume P, % Q; otherwise log d,(P,, Q) is bounded and clearly L = 0. Hence [m]P! % Q — R,
and therefore at least one of the m? possible m-th roots of Q — R is an accumulation point of

the sequence {P)}. Again by taking a subsequence, there exists Q' € E(Q) such that
v

Pl =Q and Q=[m]Q +R.

Up to replacing K by a finite extension and by replacing v with a place above, we may assume

Q' € E(K).
Now we need a result from Algebraic Geometry: the morphism ¢: E — E, P — [m]P + R,
is everywhere unramified. We claim that

- dv(Pn, Q)
n—oo log dy (P, Q')

Assuming (6.3.4)). Then (6.3.3]) yields

n=oe hp(P)  n7% im2hi(P)) — hi(R)

~1. (6.3.4)

Now we apply Corollary to the right hand side of this inequality. Then we obtain
L > —4/m?.

This is true for any positive integer m. Therefore L > 0. We are done.

Now it remains to prove (6.3.4). Let to € K(E) be such that Q is a zero of ¢ of order 1. Then
Q' is a zero of the rational function tg o ¢ € K(E). Moreover, since ¢ is unramified at @', the
order of @’ is 1 (as a zero of tg o). Therefore we can take dy(P;,, Q") = min{|tq(¢(P}))|v, 1} =
min{|tq(Py)|v, 1}, which is precisely d,(Py,Q). Hence holds true.
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