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5.3 Néron–Tate height on abelian varieties . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Mordell Conjecture 91
6.1 Statement and Gap Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.1.1 Mumford’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.1.2 Mumford’s Gap Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 Vojta’s Inequality: Statement and Consequence . . . . . . . . . . . . . . . . . . . 94
6.3 Vojta divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.1 Vojta divisors and the generalized Mumford’s Formula . . . . . . . . . . . 95
6.3.2 Sections of Vojta divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



CONTENTS 5

6.4 Lower bound: Construction of a small section . . . . . . . . . . . . . . . . . . . . 97
6.4.1 A coarse lower bound for hV (P,Q) . . . . . . . . . . . . . . . . . . . . . . 97
6.4.2 Construction of a small section . . . . . . . . . . . . . . . . . . . . . . . . 98
6.4.3 Conclusion for Vojta’s Inequality under the extra hypothesis . . . . . . . 100

6.5 Lower bound: Admissible pair and conclusion . . . . . . . . . . . . . . . . . . . . 101
6.6 Proof of Proposition 6.5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.6.1 Basic setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.6.2 Push down of s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.6.3 Application of Roth’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.7 Proof of Proposition 6.5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.7.1 First step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.7.2 Local Eisenstein estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.7.3 Application of local Eisenstein estimates . . . . . . . . . . . . . . . . . . . 107



6 CONTENTS



Chapter 1

Heights on Projective and Affine
Spaces

1.1 Absolute values

1.1.1 Basic notions

Definition 1.1.1. An absolute value on a field K is a real valued function | · | on K such that

(a) |x| ≥ 0 and |x| = 0 if and only if x = 0.

(b) |xy| = |x||y|.

(c) |x+ y| ≤ |x|+ |y| (triangle inequality).

If furthermore | · | satisfies instead of (c) the stronger condition

(c’) |x+ y| ≤ max{|x|, |y|} (ultrametric triangle inequality),

then it is called non-archimedean. If (c’) fails to hold for some x, y ∈ K, then the absolute
value is called archimedean.

Example 1.1.2. (i) The trivial absolute value: |0| = 0 and |x| = 1 for all x ∈ K∗.

(ii) K = Q

• An archimedean absolute value defined by

|x|∞ = max{x,−x}.

• A non-archimedean absolute value for each prime number p defined as follows. For
any nonzero rational number x ∈ Q, there exists a unique integer ordp(x) such that
x can be written in the form

x = pordp(x)a

b
with a, b ∈ Z and p - ab.

If x = 0, then we set ordp(x) = +∞. The p-adic absolute value of x ∈ Q is the
quantity

|x|p = p−ordp(x).

Intuitively, x is p-adically small if it is divisible by a large power of p.

7
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Each absolute value |·| on K induces a topology via the metric defined by disc(x, y) = |x−y|.
If two absolute values define the same topology, they are called equivalent. Here is a basic
property.

Proposition 1.1.3. Two absolute values | · |1 and | · |2 are equivalent if and only if there exists
a positive real number s such that

|x|1 = |x|s2
for each x ∈ K.

In practice, it is more convenient to study equivalence classes of absolute values.

Definition 1.1.4. A place v is an equivalent class of non-trivial absolute values. By | · |v we
denote an absolute value in the equivalence class determined by the place v.

We say that a place v is (non-)archimedean if | · |v is.

As an example, Q has a unique archimedean place and there is a natural bijection

{non-archimedean places of Q} ↔ {all prime numbers};

see Example 1.1.2.(ii) for | · |v with each place v of Q.

Consider a field extension K/K0. For a place v of K, the restriction of | · |v to K0 is an
absolute value of K0, and hence is a representative of a place of K0. We write v|v0 if and only if
the restriction of | · |v to K0 is a representative of v0 ∈MK0 . In this case, we say that v divides
v0 or v lies over v0 or v extends v0.

Before moving on, let us look at the example of an arbitrary number field K.

Example 1.1.5. By definition, K/Q is a finite field extension, and hence any place v of K lies
over some place of Q. There are two possibilities: either v|p for a prime number p, or v|∞ for
the unique archimedean place ∞ of Q. It can be then checked that

{non-archimedean places of K} ↔ {all prime ideals of OK}

and
{archimedean places of K} ↔ {equivalence classes of embeddings K ↪→ C}.[1]

We will come back to this with a more precise description of the bijections in Example 1.1.11.

We close this subsection with the following discussion. Let K be a field with a non-
archimedean place v. The valuation ring of v is defined to be

Rv := {x ∈ K : |x|v ≤ 1}.

The definition is clearly independent of the choice of | · |v. It can be checked that Rv is local
ring with unique maximal ideal mv := {x ∈ K : |x|v < 1}. The residue field k(v) is defined to
be Rv/mv. The quotient map Rv → k(v), x 7→ x is called the reduction.

For example when K = Q and v corresponds to the prime number p, we have Rv = {x ∈
Q : p−ordp(x) ≤ 1} = {x ∈ Q : ordp(x) ≥ 0} = {ab : a and b coprime, p - b} and mv = {x ∈ Q :
ordp(x) > 0} = {ab : a and b coprime, p|a} = pRv. The residue field is Fp = Z/pZ.

The place v is called discrete if the value group |K∗|v is cyclic. Then mv is a principal ideal
and any principal generator is called a local parameter. This is the case for the example above[2]

and a local parameter is p.

[1]Two embeddings σ1, σ2 : K ↪→ C are equivalent if and only if they are conjugate (i.e. σ2(x) = σ1(x) for all
x ∈ K).

[2]This holds true for any number field and a non-archimedean place.
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1.1.2 Normalized absolute values

For each place v of K, we would like assign a well-chosen absolute value. In this subsection we
do this.

Definition-Proposition 1.1.6. For a place v of K, there exists a unique (up to isometric
isomorphisms) pair (Kv, w) with Kv/K an extension and w a place of Kv satisfying the following
properties:

(a) w|v.

(b) The topology of Kv induced by w is complete.

(c) K is dense in Kv in the above topology.

This Kv is called the completion of K with respect to v. By abuse of notation, we shall denote
the unique place w also by v.

As an example, the field Qp of p-adic numbers is the completion of Q with respect to the
place p, and the completion of Q with respect to the archimedean place is R. In general, we
have:

Theorem 1.1.7 (Ostrowski). The only complete archimedean fields are R and C.

An elementary result of the local and global degrees is the following equality. It can be
proved using the primitive element theorem.

Lemma 1.1.8. Let K0 be a field with a place v0, and let K/K0 be a finite separable extension.
Then ∑

v|v0

[Kv : K0,v0 ] = [K : K0].

With these preparations in hand, we are ready to state the following result about the unique-
ness of the extension of absolute values.

Proposition 1.1.9. Let K0 be a field which is complete with respect to an absolute value | · |v0

(i.e. K0 = K0,v0) and let K/K0 be a finite extension. Then there exists a unique extension of
| · |v0 to an absolute value | · |v of K. Furthermore, for each x ∈ K, we have

|x|v = |NK/K0
(x)|1/[K:K0]

v0

where NK/K0
is the norm. Moreover, K is complete with respect to | · |v, i.e. K = Kv.

Inspired by this proposition, we make the following constructions. Let K0 be a field with a
non-trivial absolute value | · |v0 . Let K/K0 be a finite separate extension with a place v such
that v|v0. For any x ∈ K, define

|x|v := |NKv/K0,v0
(x)|1/[Kv :K0,v0 ]

v0 (1.1.1)

and
‖x‖v := |NKv/K0,v0

(x)|v0 . (1.1.2)

The following statements are easy to verify.

• The | · |v defined above is an absolute value representing v by Proposition 1.1.9.
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• The ‖ · ‖v defined above is an absolute value representing v unless K0,v0 = R and Kv = C.

In practice, it is however often more practical to use ‖ · ‖v than | · |v.

Lemma 1.1.10. Under the assumptions and notation above, we have∑
v|v0

log ‖x‖v = [K : K0] log |x|v0 for all x ∈ K∗0 ,∑
v|v0

log ‖y‖v = log |NK/K0
(y)|v0 for all y ∈ K∗.

Example 1.1.11. Again, let us look at the case of number fields. When K = Q, set

MQ := {| · |p : p prime number or p =∞}

normalized as in Example 1.1.2.(ii).
In general for an arbitrary number field K.

• Each place v of K lying over p corresponds to a unique prime ideal p dividing p.

For each x ∈ K∗, the fractional ideal xOK can be uniquely factorized into a finite product∏
p p

ordp(x) with p running over all the prime ideals of OK . This defines a homomorphism
ordp : K∗ → Z for each p (and set ordp(0) := +∞).

Set |x|p := p−[k(p):Fp]ordp(x)/[Kv :Qp] = p−ordp(x)/ep.[3] Notice that |p|p = p−1.

We show that | · |p is precisely the absolute value | · |v from (1.1.1). Indeed, we have for
(1.1.2)

‖x‖v = |NKp/Qp(x)|p = |NKp/Qpp
ordp(x)|p = |p[k(p):Fp]ordp(x)|p = p−[k(p):Fp]ordp(x).

It is a standard fact from Algebraic Number Theory that [Kp : Qp] = ep[k(p) : Fp]. Thus

|x|v = ‖x‖1/[Kp:Qp]
v equals |x|p defined above.

Now we set
M0
K := {| · |p : p prime ideal of OK}. (1.1.3)

Then each element M0
K is a representative of a non-archimedean place of K, and all non-

archimedean places of K arises in this way.

• For an archimedean place v of K, it lies over the unique archimedean place of Q which
gives rise to the embedding Q ↪→ R. Consider all the embeddings σ : K ↪→ C; there are
exactly [K : Q] of them. Each such embedding defines an absolute value on K

|x|σ := |σ(x)|∞

where |z|∞ is the usual absolute value on R or C. It can be shown that all archimedean
places of K arise in this way.

Among the embeddings K ↪→ C there are two kinds: r1 real embeddings with σ(K) ⊆ R (call
them ρ1, . . . , ρr1) and r2 complex embeddings with σ(K) 6⊆ R (call them τ1, τ1, . . . , τr2 , τ r2).
The complex embeddings come in pairs under the complex conjugation. We have [K : Q] =
r1 +2r2. One can show that two embeddings K ↪→ C give rise to equivalent absolute values
if and only if they are conjugate.

In summary, there are r1 + r2 archimedean places of K. Set

M∞K := {| · |σ}σ∈{ρ1,...,ρr1 ,τ1,...,τr2}. (1.1.4)
[3]Recall the standard definition ep = ordp(p) from Algebraic Number Theory.
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Now set
MK = M0

K

⋃
M∞K . (1.1.5)

From now on, for a number field K we will always use MK to denote the set from
(1.1.5). Moreover, the following convention on the notation MK for a number field
K will always be used in this course.

Notation 1.1.12. It is sometimes more convenient to work with ‖ · ‖v than | · |v, and so we will
also use the following notation. By v ∈MK for a number field K, we always use | · |v to denote

the corresponding absolute value in the set from (1.1.5), and use ‖ · ‖v to denote | · |[Kv :Qp]
v for

v|p and | · |[Kv :R]
v for v|∞. Notice that when K = Q, ‖ · ‖v and | · |v coincide.

We finish this subsection by the following Product Formula.

Theorem 1.1.13 (Product Formula). Let K be a number field. Then∑
v∈MK

log ‖x‖v = 0 for each x ∈ K∗.

Proof. Let x ∈ K∗. We start with the case K = Q. In this case, x =
∏
p p

ordp(x) with p running
over all prime numbers. Then∏

v∈MQ

|x|v = |x|∞
∏
p

|x|p = |x|∞
∏
p

p−ordp(x) = 1.

So
∑

v∈MQ
log |x|v = 0.

For arbitrary K, apply Lemma 1.1.10 to K/Q and v|v0 with v0 a place of MQ. Then we
obtain

∑
v|p log ‖x‖v = 1

[K:Q] log |NK/Q(x)|v0 . So∑
v∈MK

log ‖x‖v =
∑

v0∈MQ

∑
v|v0

log ‖x‖v =
∑

v0∈MQ

log |NK/Q(x)|v0 ,

which equals 0 from the case K = Q. Hence we are done.

1.2 Height on projective spaces

In the whole section, we will use K to denote a number field.

1.2.1 Definition and basic properties

Let us start with the simplest case. Let x ∈ P1(Q). There is a unique way to write x as [a : b]
with a, b ∈ Z such that we are in one of the following two cases:

• a = 0, b = 1 or a = 1, b = 0;

• a > 0 and b 6= 0 are coprime.

Set
H(x) := max{|a|, |b|}.

Notice that H(x) ≥ 1 by definition. Also notice that any rational number x can be identified
with [x : 1] ∈ P1(Q), so we can set H(x) := H([x : 1]).
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In Height Theory, it turns out to be more convenient to work with the logarithmic height.
On P1(Q) it is h(x) := logH(x) = log max{|a|, |b|}. Then we have h(x) ≥ 0 for each x ∈ P1(Q).

For more general number fields, we will use the absolute values introduced in the previous
section (Example 1.1.11) to define the height. Let Q be an algebraic closure of Q.

Definition 1.2.1. Let x = [x0 : · · · : xn] ∈ Pn(Q). The (absolute logarithmic Weil) height
of x is defined to be

h(x) :=
1

[K : Q]

∑
v∈MK

log max{‖x0‖v, . . . , ‖xn‖v},

where K ⊆ Q is a number field such that xj ∈ K for all j.

We also set H(x) := eh(x) to be the multiplicative height.

One can check that this definition coincides with the one for P1(Q) above. More generally,
we have the following lemma.

Lemma 1.2.2. Let x = [x0 : · · · : xn] ∈ Pn(Q). Suppose the xj’s are all integers and are
coprime. Then

h(x) = log max{|x0|, . . . , |xn|}

with the usual absolute value.

Proof. Exercise class.

Lemma 1.2.3. The height function defined above satisfies the following properties.

(i) It is independent of the choice of K.

(ii) It is independent of the choice of the homogeneous coordinates.

(iii) h(x) ≥ 0 for all x ∈ Pn(Q).

Proof. Let x = [x0 : · · · : xn] ∈ Pn(Q).

For (i): Assume that each xj is in K and L for two number fields K,L ⊆ Q. We may assume
K ⊆ L. Then ∑

w∈ML

log max
j
‖xj‖w =

∑
v∈MK

∑
w|v

log max
j
‖xj‖w

=
∑
v∈MK

∑
w|v

log max
j
‖NLw/Kv(xj)‖v

=
∑
v∈MK

∑
w|v

log max
j
‖xj‖[Lw:Kv ]

v

=
∑
v∈MK

∑
w|v

[Lw : Kv] log max
j
‖xj‖v

=
∑
v∈MK

[L : K] log max
j
‖xj‖v by Lemma 1.1.8.

This establishes (i).
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For (ii): Let [x0 : · · · : xn] and [y0 : · · · : yn] be two homogeneous coordinates for a point
x ∈ Pn(Q). By part (i), we may and do assume that all coordinates are in the same number
field K. Then there exists λ ∈ K∗ such that yj = λxj for each j ∈ {0, . . . , n}. We have then∑

v∈MK

log max
j
‖yj‖v =

∑
v∈MK

log max
j
‖xj‖v +

∑
v∈MK

log ‖λ‖v =
∑
v∈MK

log max
j
‖xj‖v,

where the last equality follows from the Product Formula (Theorem 1.1.13). This establishes
(ii).

Part (iii) follows from part (ii) because we can always choose homogeneous coordinates for
x such that some coordinate is 1.

Lemma 1.2.4. The action of the Galois group Gal(Q/Q) on Pn(Q) leaves the height invariant.
More precisely, for any x ∈ Pn(Q) and any σ ∈ Gal(Q/Q), we have h(σ(x)) = h(x).

Proof. Exercise class.

The following theorem is of fundamental importance for the Height Machine.

Theorem 1.2.5 (Northcott Property). For each B ≥ 0 and D ≥ 1, the set

{x ∈ Pn(Q) : h(x) ≤ B, [Q(x) : Q] ≤ D}

is a finite set.

Proof. We start with the case D = 1. Then the set in question becomes

{x ∈ Pn(Q) : h(x) ≤ B}.

It is not hard to check that this set is finite by Lemma 1.2.2.

For general D. Write x = [x0 : · · · : xn] ∈ Pn(K) such that at least one coordinate equals 1.
Then for each v ∈MK , we have

max{‖x0‖v, . . . , ‖xn‖v} ≥ max{‖xi‖v, 1}

for each i ∈ {0, . . . , n}. So B ≥ h(x) ≥ h(xi) for each i ∈ {0, . . . , n}. Moreover, xi ∈ K, and
hence Q(xi) ⊆ Q(x) and hence [Q(xi) : Q] ≤ [Q(x) : Q] ≤ D.

It suffices to prove that there are finitely many choices for xi for each i ∈ {0, . . . , n}. Thus
it suffices to establish the following simpler finiteness result.

Claim: For each numbers B ≥ 0 and d ≥ 1, the set

{x ∈ Q : h(x) ≤ B, [Q(x) : Q] = d}

is finite.

Let us prove this claim. Write K = Q(x), and write x1 = x, . . . , xd for the Galois conjugates
of x over Q. The minimal polynomial of x over Q is

F (T ) =
d∏
j=1

(T − xj) =
d∑
r=0

(−1)rsr(x)T d−r
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with sr(x) the r-th symmetric polynomial in x1, . . . , xd. Denote by sr = sr(x); it is a number
in Q. For each v ∈MK we have

|sr|v =

∣∣∣∣∣∣
∑

1≤i1<···<ir≤d
xi1 · · ·xir

∣∣∣∣∣∣
v

≤ ε(v, r, d) max
1≤i1<···<ir≤d

|xi1 · · ·xir |v triangular inequality

≤ ε(v, r, d) max
1≤i≤d

|xi|rv.

Here one can take ε(v, r, d) = 1 if v is non-archimedean and ε(v, r, d) =
(
d
r

)
≤ 2d if v is

archimedean.
Thus we have ‖sr‖v ≤ max1≤i≤d ‖xi‖rv if v is non-archimedean, and ‖sr‖v ≤ 2d[Kv :R] max1≤i≤d ‖xi‖rv

if v is archimedean.
Consider the point s := [s0 : · · · : sd : 1] ∈ Pd+1(Q). We have

[K : Q]h(s) =
∑
v∈MK

log max
0≤r≤d

{‖sr‖v, 1}

=
∑
v∈MK

max
0≤r≤d

{log ‖sr‖v, 0}

≤
∑
v∈MK

max
0≤r≤d

max
1≤i≤d

{r log ‖xi‖v, 0}+ d
∑
v|∞

[Kv : R] log 2

≤
∑
v∈MK

d max
1≤i≤d

{log ‖xi‖v, 0}+ d
∑
v|∞

[Kv : R] log 2

≤ d
∑

1≤i≤d

∑
v∈MK

max{log ‖xi‖v, 0}+ d
∑
v|∞

[Kv : R] log 2

= d
∑

1≤i≤d
[K : Q]h(xi) + d

∑
v|∞

[Kv : R] log 2

= d[K : Q] · dh(x) + d[K : Q] log 2 by Lemma 1.2.4.

So h(s) ≤ d2h(x) + d log 2 ≤ d2B + d log 2 is bounded. But s ∈ Pd+1(Q), so by the case D = 1
there are only finitely many choices for s. So there are only finitely many choices for s0, . . . , sd,
and therefore only finitely many choices for the minimal polynomial of x over Q. Thus there are
only finitely many choices for x, and this is exactly the desired claim. We are done.

1.2.2 Height on affine spaces

In the proof of the Northcott property, we computed the height of [s0 : · · · : sd : 1] ∈ Pd+1(Q).
This point lies in Ad+1(Q) , viewed as the complement of the hypersurface with last homogeneous
coordinate being 0. It is then convenient to introduce the following notions.

Notation 1.2.6. Set
log+(x) := max{log x, 0} = log max{x, 1}

for each x > 0.

Definition 1.2.7. For each point x = (x1, . . . , xn) ∈ An(Q), define

h(x) := h([x : 1])
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with [x : 1] := [x1 : · · · : xn : 1] viewed as a point in Pn(Q).
We also set H(x) := eh(x).

We have

h(x) = max
1≤j≤n

{h(xj)} =
1

[K : Q]

∑
v∈MK

log+ max{‖x1‖v, . . . , ‖xn‖v}. (1.2.1)

The next proposition discusses the height of the sum of algebraic numbers. It will be seen
again in the discussion for heights of polynomials.

Proposition 1.2.8. Let P1, . . . , Pr ∈ An(Q). Then

h(P1 + · · ·+ Pr) ≤ h(P1) + · · ·+ h(Pr) + log r.

In the case n = 1, the left hand side is the sum of r algebraic numbers.

Proof. Write, for each k ∈ {1, . . . , r}, Pk = (x
(k)
1 , . . . , x

(k)
n ). Assume all the Pk’s are in a number

field K. Then

[K : Q]h(P1 + · · ·+ Pr) =
∑
v∈MK

max
1≤j≤n

log+ ‖x(1)
j + · · ·+ x

(r)
j ‖v.

If v is not archimedean, then ‖ · ‖v is an absolute value and hence

‖x(1)
j + · · ·+ x

(r)
j ‖v ≤ max

1≤k≤r
‖x(k)

j ‖v.

If v is archimedean, then the triangular inequality for the absolute value | · |v yields |x(1)
j + · · ·+

x
(r)
j |v ≤ |r|v max1≤k≤r |x

(k)
j |v. Hence raising both sides to the power of [Kv : R] we get

‖x(1)
j + · · ·+ x

(r)
j ‖v ≤ ‖r‖v max

1≤k≤r
‖x(k)

j ‖v

Thus

[K : Q]h(P1 + · · ·+ Pr) ≤
∑
v∈MK

max
j,k

log+ ‖x(k)
j ‖v +

∑
v|∞

log ‖r‖v

≤
∑

1≤k≤r

∑
v∈MK

max
j

log+ ‖x(k)
j ‖v +

∑
v|∞

log ‖r‖v

=
∑

1≤k≤r
[K : Q]h(Pk) + [K : Q] log r by Lemma 1.1.10.

Hence we are done.

1.2.3 Liouville’s inequality

Lemma 1.2.9. h(1/α) = h(α) for any α ∈ K∗.

Proof. By definition, h(1/α) = h([1/α : 1]) with [1/α : 1] ∈ P1(K) and similarly h(α) = h([α :
1]). So

h(1/α) = h([1/α : 1]) = h([1 : α]) = h([α : 1]) = h(α),

with h([1 : α]) = h([α : 1]) following directly from the definition of height.
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Alternatively, one can check

log |α|v = log+ |α|v − log+ |1/α|v (1.2.2)

and use the Product Formula to prove this lemma.

Proposition 1.2.10 (Fundamental Inequality). Let S ⊆MK be a finite set. For each α ∈ K∗,
we have

h(α) ≥ 1

[K : Q]

∑
v∈S

log ‖α‖v (1.2.3)

and

h(α) ≥ − 1

[K : Q]

∑
v∈S

log ‖α‖v. (1.2.4)

Proof. By the definition h(α) = 1
[K:Q]

∑
v∈MK

log+ ‖α‖v and noticing that log+ takes non-
negative values, we get the first inequality.

To prove second inequality, we apply the first inequality to 1/α and use Lemma 1.2.9.

Example 1.2.11. Consider K = Q and α = p is a prime number. Then h(p) = log p, |p|∞ = p
and |p|p = p−1. Now (1.2.3) attains equality for S = {∞}, and (1.2.4) attains equality for
S = {p}.

Now we are ready to state Liouville’s inequality. The classical formulation is in terms of the
multiplicative height H(·) = eh(·).

In the statement of Liouville’s Inequality, let K0 be a number field.

Theorem 1.2.12 (Liouville’s Inequality). Fix β ∈ K0. Let K/K0 be a finite extension and
consider a finite set S ⊆MK . For any α ∈ K with α 6= β, we have∏

v∈S
‖α− β‖v,K0 ≥ (2H(α)H(β))−[K:K0],

where ‖ · ‖v,K0 := ‖ · ‖1/[K0:Q]
v .

Before moving on to its proof, let us look at the following corollary which is closer to the
classical statement of this inequality. It has a flavor of approximating algebraic numbers by
rational numbers.

Corollary 1.2.13. Let α ∈ R be an algebraic number of degree r > 1, i.e. [Q(α) : Q] = r. Then
there exists a constant c(α) > 0 such that for the usual absolute value | · | on R, we have

|α− β| ≥ c(α)H(β)−r for all β ∈ Q.

This corollary follows immediately from Theorem 1.2.12 applied to K0 = Q, K = Q(α) and
S the archimedean place given by the natural inclusion Q(α) ⊆ R. Notice that if α ∈ C \ R,
then the same conclusion holds true with | · | replaced by | · |2.

Proof of Theorem 1.2.12. Apply Proposition 1.2.8 to n = 1, r = 2, P1 = α and P2 = −β. Then
we get h(α− β) ≤ h(α) + h(β) + log 2. So H(α− β) ≤ 2H(α)H(β).

Apply the Fundamental Inequality (1.2.4) to α− β. Then we get

h(α− β) ≥ − 1

[K : Q]

∑
v∈S

log ‖α− β‖v =
1

[K : Q]
log(

∏
v∈S
‖α− β‖v)−1.
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From this, we get∏
v∈S
‖α− β‖v,K0 = (

∏
v∈S
‖α− β‖v)1/[K0:Q] ≥ (eh(α−β))−[K:K0] = H(α− β)−[K:K0].

Now we can conclude because we have seen H(α− β) ≤ 2H(α)H(β).

1.2.4 The change of height under geometric operations

In this section, we go back to the height function on Pn(Q). We will consider several geometric
operations concerning projective spaces and see how the heights change.

Consider the Segre embedding

Sn,m : Pn × Pm → P(n+1)(m+1)−1, (x,y) 7→ x⊗ y := (xiyj)i,j (1.2.5)

and the d-uple embedding

Φd : Pn → PN , x 7→ [M0(x) : · · · : MN (x)] (1.2.6)

with N =
(
n+d
n

)
− 1 and {M0(x), . . . ,MN (x)} the complete collection of monomials of degree d

in the variables x0, . . . , xn.

Proposition 1.2.14. We have

(i) h(x⊗ y) = h(x) + h(y) for all x ∈ Pn(Q) and y ∈ Pm(Q).

(ii) h(Φd(x)) = dh(x) for all x ∈ Pn(Q).

Proof. Part (i) in Exercise class, by using maxi,j |xiyj |v = maxi |xi|v ·maxj |yj |v.
We prove part (ii). Each Mi(x) is a monomial of degree d in the variables x0, . . . , xn. It is

clear that |Mj(x)|v ≤ maxi |xi|dv for each 0 ≤ j ≤ N . Moreover since the particular monomials
xd0, . . . , x

d
n appear in the collection, we have

max
0≤j≤N

|Mj(x)|v = max
0≤i≤n

|xi|dv.

From this we can conclude.

We finish this section by a discussion on the change of heights under linear maps.

Theorem 1.2.15. Let φ : Pn → Pm be a linear map defined over Q, i.e. φ = [L0(x) : · · · : Lm(x)]
for some linear forms on Pn. Let Z ⊆ Pn be the common zero of the Li’s.

Let X ⊆ Pn be a closed subvariety such that X ∩ Z = ∅. Then

h(φ(x)) = h(x) +O(1) for all x ∈ X(Q).

More precisely, the conclusion means that there exists a constant c = c(φ,X) > 0 depending
only on φ and X such that

|h(φ(x))− h(x)| ≤ c

for all x ∈ X(Q). We remark that this bound[4] does not hold true on the whole Pn \Z, but on
any closed subvariety disjoint from Z.

[4]Or more precisely, “half” of the bound does not hold true on the whole Pn \Z as will be shown in the proof.



18 CHAPTER 1. HEIGHTS ON PROJECTIVE AND AFFINE SPACES

Proof. The proof is divided into two parts. We may and do assume that Z 6= Pn, i.e. one of the
Li’s does not vanish on the whole Pn.

Write Li(x) =
∑

0≤j≤n ai,jxj . Then [a0,0 : · · · : a0,n : · · · : am,0 : · · · : am,n] is a point in

P(n+1)(m+1)−1(Q) and is uniquely determined by φ.

Part I Prove: there exists a constant c1(φ) depending only on φ such that h(φ(x))−h(x) ≤ c1(φ)
for all x ∈ (Pn \ Z)(Q).

Let x = [x0 : · · · : xn] ∈ (Pn \ Z)(Q). Fix a number field K such that x ∈ Pn(K) and all
ai,j ’s are in K. Then for each v ∈MK , we have

|Li(x)|v = |
∑

0≤j≤n
ai,jxj |v ≤ ε(v, n+ 1)(max

j
|ai,j |v)(max

j
|xj |v)

where ε(v, k) :=

{
1 if v is non-archimedean

k if v is archimedean
. Raising both sides to the power of [Kv : Qp]

(with Q∞ = R), we get

max
i
‖Li(x)‖v ≤ ε(v, n+ 1)[Kv :Qp](max

i,j
‖ai,j‖v)(max

j
‖xj‖v).

Now we have

[K : Q]h(φ(x)) =
∑
v∈MK

log max
i
‖Li(x)‖v

≤
∑
v∈MK

log

(
ε(v, n+ 1) ·max

i,j
‖ai,j‖v ·max

j
‖xj‖v

)
≤
∑
v∈MK

(log max
i,j
‖ai,j‖v + log max

j
‖xj‖v) +

∑
v|∞

[Kv : R] log(n+ 1)

=
∑
v∈MK

log max
i,j
‖ai,j‖v + [K : Q]h(x) + [K : Q] log(n+ 1)

= [K : Q]h([a0,0 : · · · : a0,n : · · · : am,0 : · · · : am,n]) + [K : Q]h(x) + [K : Q] log(n+ 1).

Thus h(φ(x))− h(x) ≤ h([a0,0 : · · · : a0,n : · · · : am,0 : · · · : am,n]) + log(n+ 1). The first term on
the right hand side depends only on φ. So we are done for this part.
Part II Prove: there exists a constant constant c2(φ,X) such that h(φ(x)) − h(x) ≥ c2(φ,X)

for all x ∈ X(Q).
Write I(X) = (F1, . . . , Fr). SinceX∩Z = ∅, we have that the polynomials L0, . . . , Lm, F1, . . . , Fr

have no common zeros in Pn. By Hilbert Nullstellensatz, we then have the following equality of
ideals of Q[X0, . . . , Xn] √

(L0, . . . , Lm, F1, . . . , Fr) = (X0, . . . , Xn).

In particular, for each j ∈ {0, . . . , n}, we can find polynomials Gi,j and Hi,j and an exponent
t ≥ 1, all depending only on X and φ, such that

G0,jL0 + · · ·+Gm,jLm +H1,jF1 + · · ·+Hr,jFr = Xt
j .

Moreover degGi,j = t− degLi = t− 1.
Write Gi,j =

∑
|e|=t−1 bi,j,eX

e, with e = (e0, . . . , en) a multi-index with |e| := e0 + · · · + en

and Xe = Xe0
0 · · ·Xen

n . Notice that Gi,j is the sum of at most
(
n+t−1
n

)
monomials.
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Now let x = [x0 : · · · : xn] ∈ X(Q). Evaluating the equation above at x, we get

G0,j(x)L0(x) + · · ·+Gm,j(x)Lm(x) = xtj

for each j ∈ {0, . . . , n}.
Fix a number field K such that x ∈ X(K) and all the coefficients bi,j,e are in K.
For each v ∈MK , we have

|xj |tv = |G0,j(x)L0(x) + · · ·+Gm,j(x)Lm(x)|v ≤ ε(v,m+ 1) max
0≤i≤m

|Gi,j(x)|v max
0≤i≤m

|Li(x)|v.

Thus

max
j
|xj |tv ≤ ε(v,m+ 1) max

i,j
|Gi,j(x)|v max

i
|Li(x)|v

= ε(v,m+ 1)(max
i,j
|
∑
|e|=t−1

bi,j,ex
e0
0 · · ·x

en
n |v)( max

0≤i≤m
|Li(x)|v)

≤ ε(v,m+ 1)

(
ε(v,

(
n+ t− 1

n

)
) max
i,j,e
|bi,j,e|v max

j
|xj |t−1

v

)
( max
0≤i≤m

|Li(x)|v).

Dividing both sides by maxj |xj |t−1, we get

max
j
|xj |v ≤ ε(v,m+ 1)ε(v,

(
n+ t− 1

n

)
) max
i,j,e
|bi,j,e|v max

0≤i≤m
|Li(x)|v.

Raising both sides to the power of [Kv : Qp] (with Q∞ = R), we get

max
j
‖xj‖v ≤ ε(v,m+ 1)[Kv :Qp]ε(v,

(
n+ t− 1

n

)
)[Kv :Qp] max

i,j
‖bi,j,e‖v max

i
‖Li(x)‖v.

Now we have

[K : Q]h(x) =
∑
v∈MK

max
j
‖xj‖v

≤
∑
v∈MK

log max
i,j,e
‖bi,j,e‖v +

∑
v∈MK

max
i
‖Li(x)‖v +

∑
v|∞

[Kv : R] log(m+ 1)

(
n+ t− 1

n

)

= [K : Q]h(b) + [K : Q]h(φ(x)) + [K : Q] log(m+ 1)

(
n+ t− 1

n

)
where b is the point in an appropriate projective space whose homogeneous coordinates are
bi,j,e. Notice that b is uniquely determined by the Gi,j ’s, and hence by X and φ. Now we get
the desired inequality h(φ(x))− h(x) ≥ c2(φ,X) for all x ∈ X(Q). Hence we are done.

1.3 Height of polynomials

In this section, we study the heights of polynomials. We will use the Weil height on projective
and affine spaces defined in §1.2 of this chapter.

Definition 1.3.1. The (affine) height of a polynomial

f(t1, . . . , tn) =
∑

j1,...,jn

aj1...jnt
j1
1 · · · t

jn
n =

∑
j

ajt
j

with coefficients in Q is the quantity h(a) where a = (aj)j is viewed as a point in QN
for some

N .
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In other words, if we assume each aj ∈ K for an appropriate number field K and define the
Gauß norm

‖f‖v := max
j
‖aj‖v (1.3.1)

for each v ∈MK , then we have

h(f) =
1

[K : Q]

∑
v∈MK

log+ ‖f‖v =
1

[K : Q]

∑
v∈MK

log max{‖f‖v, 1}. (1.3.2)

1.3.1 Affine height vs the Projective height

In some literature, one defines the height of f as the height of the point [aj]j viewed as a point
in an appropriate projective space. This is sometimes called the projective height of f , and is in
general smaller than the affine height we defined above.

In this course, we always use the affine height. An important advantage to take this conven-
tion is the following proposition, which is about the evaluation of a polynomial at a point. The
proof shares some similarities with the proof of Theorem 1.2.15.

Proposition 1.3.2. Let d be the sum the partial degrees of f . Let x = (x1, . . . , xn) ∈ Qn
. Then

h(f(x)) ≤ h(f) + dh(x) + min{(n+ 1) log(n+ d+ 1), (n+ d+ 1) log 2}.

As shown by the proof, this result is not correct if we use the projective height of f .

Proof. Write f(t) =
∑d

k=0

∑
|j|=k ajt

j. Set ψ(n, d) := min{(n+ d+ 1)n+1, 2n+d+1}. Then as in
the proof of Theorem 1.2.15, it is not hard to check

|
∑
|j|=k

ajx
j|v ≤ ε

(
v,

(
n+ k

n

))
max
|j|=k
{|aj|v}max

i
|xi|kv ≤ ε

(
v,

(
n+ k

n

))
max
|j|=k
{|aj|v}max{1,max

i
|xi|v}d

with ε(v,m) defined to be 1 for v non-archimedean and to be m for v archimedean. Recall that∑d
k=0

(
n+k
n

)
=
(
n+d+1
n+1

)
≤ ψ(n, d). So

|f(x)|v = |
∑
j

ajx
j|v ≤

k∑
i=0

|
∑
|j|=k

ajx
j|v ≤ ε(v, ψ(n, d)) max

j
{|aj|v}max

i
{1, |xi|v}d

and hence

max{1, |f(x)|v} ≤ ε(v, ψ(n, d)) max
j
{1, |aj|v}max

i
{1, |xi|v}d.

Raising to the power of [Kv : Qp] and taking the log, we get an upper bound for log+ ‖f(x)‖v.
Hence

[K : Q]h(f(x)) =
∑
v∈MK

log+ ‖f(x)‖v

≤
∑
v∈MK

max
j

log+ ‖aj‖v + d
∑
v∈MK

max
i

log+ ‖xi‖v +
∑
v|∞

[Kv : R] logψ(n, d)

= [K : Q]h(f) + [K : Q]dh(x) + [K : Q] logψ(n, d).

We are done.
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1.3.2 Height of product

The main result of this section is to study the height of a product of two polynomials.
First, an immediate corollary of Proposition 1.2.14.(i) is

Lemma 1.3.3. Let f(t1, . . . , tn) and g(s1, . . . , sm) be two polynomials in disjoint sets of vari-
ables. Then

h(fg) = h(f) + h(g).

However, if f and g do not have disjoint sets of variables, the estimate of h(fg) in terms of
h(f) and h(g) is more complicated. We will prove the following theorem for this estimate.

Theorem 1.3.4. Let f1, . . . , fm be polynomials in n variables with coefficients in Q. Let d be
the sum of the partial degrees of f := f1 · · · fm. Then

−d log 2 +

m∑
j=1

h(fj) ≤ h(f) ≤ d log 2 +

m∑
j=1

h(fj).

Moreover in the second inequality, one can replace d by the sum of the partial degrees of the
product f1 · · · fm−1.

To prove this theorem, one separates the non-archimedean places and the archimedean places.
For the non-archimedean places, we prove Gauß’s Lemma. For the archimedean places, we prove
Gelfond’s Lemma. Then we combine these two lemmas to conclude.

Non-archimedean places

The contribution at the non-archimedean places is not hard to study. In this case, we have the
following:

Lemma 1.3.5 (Gauß’s Lemma). If v is non-archimedean, then ‖fg‖v = ‖f‖v‖g‖v.

Proof. The direction ‖fg‖v ≤ ‖f‖v‖g‖v is not hard to obtain because v is non-archimedean.
Now we focus on proving the other direction ‖fg‖v ≥ ‖f‖v‖g‖v.

One-variable case We start with the case where both f(t) =
∑

j ajt
j and g(t) =

∑
j bjt

j are
polynomials in one variable t. Up to dividing both f and g by an appropriate element in K, we
may and do assume ‖f‖v = ‖g‖v = 1. Then ‖fg‖v ≤ 1.

Suppose ‖fg‖v < 1 and we wish to get a contradiction.
For each j, set cj =

∑
j=k+l akbl. Then fg =

∑
j cjt

j . Let j0 be the smallest integer with
‖aj0‖v = 1. Since ‖ak‖v < 1 for each k < j0, we have ‖akbj0−k‖v < 1 for each k < j0. If
‖b0‖v = 1, then ‖aj0b0‖v = 1 and hence ‖cj0‖v = ‖aj0b0 +

∑
k<j0

akbj0−k‖v = 1, contradicting
‖fg‖v < 1. Hence ‖b0‖v < 1.

Next for each l0, we prove that ‖bl0‖v < 1 by induction. Suppose we have proved for
0, . . . , l0 − 1. Consider cj0+l0 =

∑
0≤k≤j0+l0

akbj0+l0−k. For 0 ≤ k ≤ j0 − 1, we have ‖ak‖v < 1
and hence ‖akbj0+l0−k‖v < 1. For j0 + 1 ≤ k ≤ j0 + l0, we have ‖bj0+l0−k‖v < 1 by induction
hypothesis and hence ‖akbj0+l0−k‖v < 1. Thus ‖bl0‖v = 1 would yield ‖cj0+l0‖v = ‖aj0bl0‖v = 1,
contradicting ‖fg‖v < 1. Hence we can conclude ‖bl0‖v < 1.

But then ‖g‖v < 1, contradicting ‖g‖v = 1. So we can conclude that ‖fg‖v = 1 for this case.

General case Write f(x1, . . . , xn) =
∑

j ajx
j and g(x1, . . . , xn) =

∑
j bjx

j. One can reduce
the general case to the one-variable case by the following standard technique. Fix an integer
d > deg(fg), and consider the Kronecker substitution

xj := td
j−1

(j = 1, . . . , n). (1.3.3)
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Then

f(x1, . . . , xn) =
∑
j

aj(t
d0

)j1(td
1
)j2 · · · (tdn−1

)jn =
∑

0≤j1,...,jn≤d−1

aj1,...,jnt
j1+dj2+···+dn−1jn ,

and g(x1, . . . , xn) =
∑

0≤j1,...,jn≤d−1

bj1,...,jnt
j1+dj2+···+dn−1jn .

It is not hard to see that both f0(t) :=
∑

0≤j1,...,jn≤d−1 aj1,...,jnt
j1+dj2+···+dn−1jn and g0(t) :=∑

0≤j1,...,jn≤d−1 bj1,...,jnt
j1+dj2+···+dn−1jn are one-variable polynomials in simplified form. So ‖f0‖v =

maxj1,...,jn ‖aj1,...,jn‖v = ‖f‖v, ‖g0‖v = maxj1,...,jn ‖bj1,...,jn‖v = ‖g‖v, and ‖f0g0‖v = ‖fg‖v.
Hence we can conclude by the one-variable case.

Archimedean places

It is more complicated to handle the archimedean places. The goal is to prove Gelfond’s Lemma
(Lemma 1.3.6), which plays a similar role as Gauß’s Lemma for the archimedean places.

In this subsection, we consider polynomials with coefficients in C. We use | · | to denote the
usual euclidean absolute value on C.

Let f =
∑

j ajt
j ∈ C[t1, . . . , tn]. Define

`∞(f) = |f |∞ := max
j
|aj|. (1.3.4)

We also call `∞(f) the L∞-norm of f .

Now we can state the main result of this subsection.

Lemma 1.3.6 (Gelfond’s Lemma). Let f1, . . . , fm ∈ C[t1, . . . , tn] and set f := f1 · · · fm. Let d
be the sum of the partial degrees of f . Then

2−d
m∏
j=1

`∞(fj) ≤ `∞(f) ≤ 2d
m∏
j=1

`∞(fj).

Moreover in the second inequality, one can replace d by the sum of the partial degrees of the
product f1 · · · fm−1.

Before moving on, let us see how Gauß’s Lemma and Gelfond’s Lemma imply Theorem 1.3.4.

Proof of Theorem 1.3.4. We have

[K : Q]h(f) =
∑
v∈MK

log+ ‖f‖v =
∑
v∈MK

log max{‖f‖v, 1} =
∑
v∈MK

log max{‖f1 · · · fm‖v, 1}.
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To get the upper bound, we proceed as follows

[K : Q]h(f) =
∑
v∈MK

max{log ‖f1 · · · fm‖v, 0}

=
∑
v∈M0

K

max


m∑
j=1

log ‖fj‖v, 0

+
∑
v|∞

[Kv : R] log+ |f1 · · · fm|v by Gauß’s Lemma (Lemma 1.3.5)

≤
∑
v∈M0

K

m∑
j=1

log+ ‖fj‖v +
∑
v|∞

max {[Kv : R] log |f1 · · · fm|v, 0}

≤
∑

v∈M0
K

m∑
j=1

log+ ‖fj‖v +
∑
v|∞

max

[Kv : R]

 m∑
j=1

log |fj |v + d log 2

 , 0

 by Gelfond’s Lemma (Lemma 1.3.6)

=
∑
v∈M0

K

m∑
j=1

log+ ‖fj‖v +
∑
v|∞

max


m∑
j=1

log ‖fj‖v + [Kv : R]d log 2, 0


≤
∑
v∈M0

K

m∑
j=1

log+ ‖fj‖v +
∑
v|∞

max


m∑
j=1

log ‖fj‖v, 0

+
∑
v|∞

[Kv : R]d log 2

≤
∑
v∈M0

K

m∑
j=1

log+ ‖fj‖v +
∑
v|∞

m∑
j=1

log+ ‖fj‖v +
∑
v|∞

[Kv : R]d log 2

= [K : Q]

m∑
j=1

h(fj) + [K : Q]d log 2.

The “Moreover” part holds true because of the “Moreover” part of Gelfond’s Lemma.
To get the lower bound, we have

[K : Q]h(f) ≥
∑
v∈MK

log ‖f‖v

=
∑
v∈MK

log ‖f1 · · · fm‖v

=
∑
v∈M0

K

m∑
j=1

log ‖fj‖v +
∑
v|∞

[Kv : R] log |f1 · · · fm|v by Gauß’s Lemma (Lemma 1.3.5)

≥
m∑
j=1

∑
v∈M0

K

log ‖fj‖v +
∑
v|∞

[Kv : R](

m∑
j=1

log |fj |v − d log 2) by Gelfond’s Lemma (Lemma 1.3.6)

=

m∑
j=1

∑
v∈MK

log ‖fj‖v +
∑
v|∞

[Kv : R]d log 2

= [K : Q]

m∑
j=1

h(fj) + [K : Q]d log 2.

We are done.

So in the rest, we aim to prove Gelfond’s Lemma (Lemma 1.3.6).

Definition 1.3.7. The Mahler measure of f is defined to be

M(f) := exp

(∫
Tn

log |f(eiθ1 , . . . , eiθn)|dµ1 · · · dµn
)
,
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where T is the unit circle {eiθ : 0 ≤ θ < 2π} in R equipped with the standard measure dµ =
(1/2π)dθ.

The following multiplicative property of the Mahler measure is easy to check:

M(fg) = M(f)M(g). (1.3.5)

Definition 1.3.8. The L2-norm of f is defined to be

`2(f) :=

(∫
Tn
|f(eiθ1 , . . . , eiθn)|2dµ1 · · · dµn

)1/2

=

∑
j

|aj|2
1/2

.

In fact, we have given two equivalent definitions of the L2-norm above. They coincide by
Parseval’s identity.
One-variable case We start by studying the one-variable case. The following lemma is an

elementary tool to study the Mahler measure.

Lemma 1.3.9 (Jensen’s Lemma). Let f(t) = adt
d + · · · + a0 ∈ C[t]. Write α1, . . . , αd ∈ C for

the roots of f , i.e. f(t) = ad(t− α1) · · · (t− αd). Then we have

logM(f) = log |ad|+
d∑
j=1

log+ |αj |,

with log+(x) := max{log x, 0}.

Proof. We only give a sketch here.
Because Mahler measure is multiplicative, it suffices to prove logM(t − α) = log+ |α| for

each α ∈ C.
If |α| > 1, then the function log |t − α| is harmonic in the unit disk, and hence its mean

value on the unit circle is its value at the center which is log |α| = log+ |α|. If |α| < 1, then
the function log |1 − αt| is harmonic in the unit disk and coincides with log |t − α| on the unit
circle, while its value at the center is 0 = log+ |α|. Finally, the case |α| = 1 is obtained by
continuity.

The following lemma uses the Mahler measure M(f) to bound `∞(f).

Lemma 1.3.10. Let f(t) = adt
d + · · ·+ a0 ∈ C[t]. Then we have(

d

bd/2c

)−1

`∞(f) ≤M(f) ≤ `2(f) ≤ (d+ 1)1/2`∞(f).

Proof. The last inequality is easy to see because `2(f) = (
∑d

j=0 |aj |2)1/2 ≤ (d+1)1/2 maxj{|aj |} =

(d+ 1)1/2`∞(f).
To prove the first inequality, write f(t) = ad(t−α1) · · · (t−αd). Then for each r ∈ {0, . . . , d}

we have

|ad−r| = |ad|

∣∣∣∣∣∣
∑

j1<···<jr

αj1 · · ·αjr

∣∣∣∣∣∣ ≤
(
d

r

)
|ad|

d∏
j=1

max{1, |αj |}.

Thus Jensen’s Lemma above yields

|ad−r| ≤
(
d

r

)
M(f) ≤

(
d

bd/2c

)
M(f)
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for each r ∈ {0, . . . , d}. So we have `∞(f) ≤
(

d
bd/2c

)
M(f) and this is the first inequality.

To prove the inequality in the middle, we use Jensen’s inequality which applies to convex
functions. It says: If Ω is a space with a measure dµ such that dµ(Ω) =

∫
Ω dµ = 1, if g is a

real-valued µ-integrable function on Ω and ϕ is a convex function on R, then we have

ϕ

(∫
Ω
gdµ

)
≤
∫

Ω
(ϕ ◦ g)dµ. (1.3.6)

Applying this to Ω = T, dµ as in the definition of Mahler measure and L2-norm, ϕ = exp and
g(t) = 2 log |f(eiθ)|, we obtain

M(f)2 ≤
∫
T
|f(eiθ)|2dµ = `2(f)2.

Hence we are done for the middle inequality.

Multi-variable case Here is the multi-variable version of the bound of `∞(f) by M(f).

Lemma 1.3.11. Let f(t1, . . . , tn) ∈ C[t1, . . . , tn] with partial degrees d1, . . . , dn. Then

n∏
j=1

(dj + 1)−1/2M(f) ≤ `∞(f) ≤
n∏
j=1

(
dj
bdj/2c

)
M(f).

Proof. The desired inequality is equivalent to

n∏
j=1

(
dj
bdj/2c

)−1

`∞(f) ≤M(f) ≤
n∏
j=1

(dj + 1)1/2`∞(f).

The proof for the second inequality follows the same line as in the one-variable case; one uses the
L2-norm as an intermediate. More precisely, one uses Jensen’s inequality (1.3.6) to proveM(f) ≤
`2(f), and then applies the easy bound `2(f) = (

∑
1≤j≤d, 0≤ij≤dj |ai1,...,id |

2)1/2 ≤
∏n
j=1(dj +

1)1/2`∞(f).

Now we prove the first inequality
∏n
j=1

( dj
bdj/2c

)−1
`∞(f) ≤ M(f) by induction on n. The

base step n = 1 is proved in Lemma 1.3.10.
Assume the result is proved for 1, . . . , n− 1. We can write uniquely

f(t1, . . . , tn) =

dn∑
j=0

fj(t1, . . . , tn−1)tjn

for certain polynomials fj ∈ C[t1, . . . , tn−1]. Then `∞
(
f(eiθ1 , . . . , eiθn−1 , t)

)
= maxj |fj(eiθ1 , . . . , eiθn−1)|.

Fixing θ1, . . . , θn−1, we have

logM
(
f(eiθ1 , . . . , eiθn−1 , t)

)
=

∫
T

log |f(eiθ1 , . . . , eiθn)|dµn,

and thus

logM(f) =

∫
Tn

log |f(eiθ1 , . . . , eiθn)|dµ1 · · · dµn

=

∫
Tn−1

logM
(
f(eiθ1 , . . . , eiθn−1 , t)

)
dµ1 · · · dµn−1.
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Fixing θ1, . . . , θn−1, we apply the first inequality in Lemma 1.3.10 to the one-variable polynomial
f(eiθ1 , . . . , eiθn−1 , t). We then get

M
(
f(eiθ1 , . . . , eiθn−1 , t)

)
≥
(

dn
bdn/2c

)−1

max
j
|fj(eiθ1 , . . . , eiθn−1)|.

Thus we have

logM(f) ≥
∫
Tn−1

log max
j
|fj(eiθ1 , . . . , eiθn−1)|dµ1 · · · dµn−1 − log

(
dn
bdn/2c

)
≥ max

j

∫
Tn−1

log |fj(eiθ1 , . . . , eiθn−1)|dµ1 · · · dµn−1 − log

(
dn
bdn/2c

)
= max

j
logM(fj)− log

(
dn
bdn/2c

)
≥ max

j
log `∞(fj)−

n∑
j=1

log

(
dj
bdj/2c

)
by induction hypothesis

= log `∞(f)−
n∑
j=1

log

(
dj
bdj/2c

)
.

This is what we desire. We are done.

Now we are ready to prove Gelfond’s Lemma.

Proof of Lemma 1.3.6. Recall the set-up. We have f1, . . . , fm ∈ C[t1, . . . , tn] and f := f1 · · · fm.
Let d be the sum of the partial degrees of f . We wish to prove

2−d
m∏
j=1

`∞(fj) ≤ `∞(f) ≤ 2d
m∏
j=1

`∞(fj).

Write d
(j)
1 , . . . , d

(j)
n for the partial degrees of fj .

We start with the lower bound for `∞(f). The proof uses the relation between M(f) and
`∞(f) established in Lemma 1.3.11. Recall that M(f) = M(f1) · · ·M(fm). We have

m∏
j=1

`∞(fj) ≤
m∏
j=1

(
n∏
k=1

(
d

(j)
k

bd(j)
k /2c

)
M(fj)

)
by the second inequality in Lemma 1.3.11

=

m∏
j=1

n∏
k=1

(
d

(j)
k

bd(j)
k /2c

)
M(f)

≤

 m∏
j=1

n∏
k=1

(
d

(j)
k

bd(j)
k /2c

)
 n∏
k=1

1 +

m∑
j=1

d
(j)
k

1/2
 `∞(f) by the first inequality in Lemma 1.3.11.

Then the upper bound is obtained from the following fact: Let a ≤ A, b ≤ B and d be non-
negative integers. Then

(
A
a

)(
B
b

)
≤
(
A+B
a+b

)
and

(
d
bd/2c

)
(d+ 1)1/2 ≤ 2d.[5]

[5]The first follows from (1 + t)A(1 + t)B = (1 + t)A+B , and the second follows from Stirling’s formula.
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Next we prove the upper bound for `∞(f). For this, we will establish

`∞(f) ≤ C
m∏
j=1

`∞(fj)

with

C =
m−1∏
j=1

n∏
k=1

(
1 + d

(j)
k

)
≤ 2d. (1.3.7)

Let us explain how this C is chosen. First notice that only the degrees of the first m− 1 polyno-
mials count. This observation is in many applications important. It also gives the “Moreover”
part of Gelfond’s Lemma.

Write fj =
∑

k a
(j)
k tk =

∑
0≤k1≤d(j)

1 ,...,0≤kn≤d(j)
n
a

(j)
k1,...,kn

tk1
1 · · · tknn . Then

f =

m∏
j=1

fj =

m∏
j=1

(∑
k

a
(j)
k tk

)

=
∑
e

 ∑
k(1)+···+k(m)=e

a
(1)

k(1) · · · a
(m)

k(m)

 te.

Here e = (e1, . . . , en) is a multi-index with n components, and each k(j) = (k
(j)
1 , . . . , k

(j)
n ) is also

a multi-index with n components. Moreover, we have 0 ≤ k(j)
1 ≤ d(j)

1 , . . . , 0 ≤ k(j)
n ≤ d(j)

n .
Now we are reduced to the following claim: For each fixed e, we need to prove that the number

of monomials in
∑

k(1)+···+k(m) a
(1)

k(1) · · · a
(m)

k(m) is at most C. Notice that under this assumption,

if k(1), . . . ,k(m−1) are all fixed, then k(m) is also fixed. Hence we can conclude because C is
the naive upper bound for the number of choices of the tuple (k(1), . . . ,k(m−1)) satisfying that

0 ≤ k(j)
1 ≤ d(j)

1 , . . . , 0 ≤ k(j)
n ≤ d(j)

n .

1.3.3 Some other operations with polynomials

The contents below are covered in the Exercise class.
We have seen how to bound the height of the product of polynomials. Now we turn to other

operations.
The first is the sum of polynomials. For this, Proposition 1.2.8 implies the following bound

rather easily.

Proposition 1.3.12. Let f1, . . . , fr ∈ Q[t1, . . . , tn]. Then we have

h(f1 + . . .+ fr) ≤
r∑
j=1

h(fj) + log r.

In what follows in this subsection, let f(t) =
∑

j t
j =

∑
j1,...,jn

aj1...jnt
j1
1 · · · t

jn
n .

Next, we turn to the formal partial derivatives ∂f/∂tk :=
∑

j1,...,jn, jk≥1 jkaj1...jnt
j1
1 · · · t

jk−1

k−1 t
jk−1
k t

jk+1

k+1 · · · t
jn
n .

Proposition 1.3.13. Let dmax be the maximum of the partial degrees of f . Then

h

(
∂f

∂tk

)
≤ h(f) + log dmax.
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Proof. Let K be a number field such that all the coefficients of f are in K.

Each jk 6= 0 appearing in the monomials of f satisfies 1 ≤ jk ≤ dmax. If v is non-
archimedean, then ‖jk‖v ≤ 1. If v is archimedean, then ‖jk‖v ≤ ‖dmax‖v. In summary,
‖jk‖v ≤ max{1, ‖dmax‖v} for each v ∈MK .

Notice that each coefficient of ∂f/∂tk is jkaj1...jn . Thus

‖∂f/∂tk‖v ≤ max{1, ‖dmax‖v}‖f‖v,

and hence max{1, ‖∂f/∂tk‖v} ≤ max{1, ‖dmax‖v}max{1, ‖f‖v}. So

[K : Q]h(∂f/∂tk) =
∑
v∈MK

log+ ‖∂f/∂tk‖v

≤
∑
v∈MK

log+ ‖dmax‖v +
∑
v∈MK

log+ ‖f‖v

= [K : Q]h(dmax) + [K : Q]h(f).

Hence h(∂f/∂tk) ≤ log dmax +h(f) because h(dmax) = log dmax as dmax is a positive integer.

1.3.4 Mahler measure and algebraic number

Let us see another application of Jensen’s Lemma (Lemma 1.3.9)[6], which establishes the relation
between the Mahler measure and the height of an algebraic number.

Proposition 1.3.14. Let α ∈ Q and let f be the minimal polynomial of α over Z. Then we
have

logM(f) = deg(α)h(α). (1.3.8)

In particular, we have

log |NQ(α)/Q(α)| ≤ deg(α)h(α). (1.3.9)

Proof. Set d = deg(α) and write f(t) = adt
d + · · ·+ a0 ∈ Z[t]. Write α1 = α, . . . , αd the Galois

conjugates of α. Then f(t) = ad(t−α1) · · · (t−αd). Let K ⊆ Q be the Galois closure of Q(α) over
Q, i.e. K is the smallest Galois extension over Q which contains α and all its Galois conjugate.
Write G = Gal(K/Q). Then {σ(α)}σ∈G contains every conjugate of α exactly [K : Q]/d times.

For each (non-archimedean) v ∈M0
K , Gauß’s Lemma (Lemma 1.3.5) yields

max{‖ad‖v, . . . , ‖a0‖v} = ‖f‖v = ‖ad‖v
d∏
i=1

max{1, ‖αi‖v}.

Notice that the left hand side equals 1 because each ai ∈ Z and gcd(ad, . . . , a0) = 1. Thus

log ‖ad‖v +

d∑
i=1

log+ ‖αi‖v = 0 (1.3.10)

for each v ∈M0
K .

[6]logM(f) = log |ad|+
∑d
j=1 log+ |αj | for f(t) = ad(t− α1) · · · (t− αd).



1.3. HEIGHT OF POLYNOMIALS 29

Now we have

[K : Q]h(α) =
[K : Q]

d

d∑
i=1

h(αi) by Lemma 1.2.4

=
1

d

d∑
i=1

∑
v∈MK

log+ ‖αi‖v

=
1

d

∑
v|∞

d∑
i=1

log+ ‖αi‖v −
∑
v∈M0

K

log ‖ad‖v

 by (1.3.10)

=
1

d

∑
v|∞

(
log ‖ad‖v +

d∑
i=1

log+ ‖αi‖v

)
by Product Formula applied to ad.

If Kv = R, then ‖ · ‖v = | · |. If Kv = C, then ‖ · ‖v = | · |2. Recall, from Algebraic Number
Theory, the basic fact that #{v : Kv = R} + 2#{v : Kv = C} = [K : Q]. Hence we can apply
Jensen’s Lemma (Lemma 1.3.9) to each term on the right hand side and obtain

[K : Q]h(α) =
[K : Q]

d
logM(f).

This yields (1.3.8).
To prove the “In particular” part, recall from Algebraic Number Theory that NQ(α)/Q(α) =∏d

i=1 αi. Thus log |NQ(α)/Q(α)| =
∑d

i=1 log |αi|, which then ≤
∑d

i=1 log+ |αi| and hence ≤
logM(f) by Jensen’s Lemma.

Remark 1.3.15. Let us have a quick look at the Lehmer Conjecture. If α 6= 0 is an algebraic
number with minimal polynomial f , the Mahler measure of α is defined to be M(α) := M(f).
Then (1.3.8) yields M(α) = H(α)deg(α). Lehmer’s conjecture predicts that there exists a contant
c such that M(α) ≥ c > 1 for all α ∈ Q∗ not a root of unity. Alternatively, h(α) ≥ c/deg(α) for
some absolute constant c. This conjecture is open. Currently, we have Dobrowolski’s theorem
which claims (d := deg(α))

M(α) ≥ 1 + c

(
log log d

log d

)3

.
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Chapter 2

Siegel Lemma

2.1 Basic version

We start with the very basic version of Siegel’s Lemma.

Lemma 2.1.1. Let aij ∈ Z with i = 1, . . . ,M and j = 1, . . . , N . Assume that aij are not all 0
and |aij | ≤ B for all i and j.

If N > M , then the homogeneous linear system

a11x1 + a12x2 + · · ·+ a1NxN = 0

a21x1 + a22x2 + · · ·+ a2NxN = 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
aM1x1 + aM2x2 + · · ·+ aMNxN = 0

has a non-zero solution (x1, . . . , xN ) ∈ ZN with

max
j
|xj | ≤ b(NB)

M
N−M c.

In practice, it is more convenient to denote by A = (aij)1≤i≤M, 1≤j≤N which is a non-zero
M × N -matrix with entries in Z. The upshot of this lemma is that the linear system Ax = 0
has a small non-zero solution provided that N > M . Here small means that the height of this
non-zero solution is bounded in terms of N , M and h(A).[1] It should be understood that M is
the number of equations and N −M is the dimension of the space of solutions.

Proof. We may and do assume that no row of A is identically 0. Thus M ≥ 1. For a positive
integer k, consider the set

T := {x ∈ ZN : 0 ≤ xj ≤ k, j = 1, . . . , N}.

Then #T = (k + 1)N .
Next, for each i ∈ {1, . . . ,M}, denote by S+

i the sum of the positive entries in the i-th row
of A, and by S−i the sum of the negative entries. Then

For x ∈ T and y := Ax, we have kS−i ≤ yi ≤ kS
+
i for each i. (2.1.1)

Next, set
T ′ := {y ∈ ZN : kS−i ≤ yi ≤ kS

+
i for each i}.

[1]Here h(A) is defined to be the height of [aij ]i,j viewed as a point in PMN−1(Q).
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Then for Bi := maxj |aij |, we have S+
i − S−i ≤ NBi and we can conclude that #T ′ ≤∏M

i=1(NkBi + 1).

Now take k := b
∏M
i=1(NBi)

1/(N−M)c. Then NkBi + 1 < NBi(k + 1) because N ≥ M > 1,
and hence

M∏
i=1

(NkBi + 1) <
M∏
i=1

NBi(k + 1) = (k + 1)M
M∏
i=1

NBi.

On the other hand,
∏M
i=1(NBi)

1/(N−M) ≤ k + 1. So

M∏
i=1

(NkBi + 1) < (k + 1)M (k + 1)N−M = (k + 1)N = #T.

We have seen that #T ′ is bounded above by the left hand side. So #T ′ < #T . By the Pigeonhole
Principle and (2.1.1), there exist two different points x′,x′′ ∈ T such that Ax′ = Ax′′.

Now x := x′−x′′ is a non-zero solution of the linear system in question such that maxj |xj | ≤
k = b

∏M
i=1(NBi)

1/(N−M)c ≤ b(NB)M/(N−M)c.

This basic version self-improves to a version for number fields.

Lemma 2.1.2. Let K ⊆ C be a number field of degree d, and let | · | be the usual absolute value
on C. Let M,N ∈ Z with 0 < M < N . Then there exist positive integers C1 and C2 such that
the following property holds true: For any non-zero M × N -matrix A with entries amn ∈ OK ,
there exists x ∈ ONK \ {0} with Ax = 0 and

H(x) ≤ C1(C2NB)
M

N−M ,

where B := maxσ,m,n |σ(amn)| with σ running over all the embeddings K ↪→ C.

The constants C1 and C2 depend only K (and hence d), M and N , but they are independent
of the choice of the matrix A.[2] By the Fundamental Inequality (Proposition 1.2.10), B can be

bounded by H(A) with A viewed as a point (amn)m,n ∈ QMN
.

Proof. Let ω1, . . . , ωd be a Z-basis of OK . The entries of A may be written as

amn =
d∑
j=1

a(j)
mnωj , a(j)

mn ∈ Z. (2.1.2)

For each x = (x1, . . . , xN ) ∈ ONK , using xn =
∑d

k=1 x
(k)
n ωk we get

(Ax)m =
N∑
n=1

d∑
j,k=1

a(j)
mnωjωkx

(k)
n =

d∑
l=1

N∑
n=1

d∑
j,k=1

a(j)
mnb

(l)
jkx

(k)
n ωl,

where ωjωk =
∑d

l=1 b
(l)
jkωl. Set A′ to be the (Md)× (Nd)-matrix

A′ :=

 d∑
j=1

a(j)
mnb

(l)
jk


[2]In fact by the proof, one can see that C2 depends only on K.
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with rows indexed by (m, l) and columns indexed by (n, k). Write y ∈ ZNd for the vector (x
(k)
n ).

Apply the basic version of Siegel’s Lemma, Lemma 2.1.1, to A′. Then we obtain a non-zero
integer solution y with A′y = 0 such that

H(y) ≤
(
Nd2 max

m,n,j
|a(j)
mn|max

j,k,l
|b(l)jk |

) M
N−M

.

As xn =
∑d

k=1 x
(k)
n ωk for each n, we then obtain a constant C1 such that H(x) ≤ C1H(y).

Next we wish to bound maxj |a(j)
mn| in terms of maxσ,m,n |σ(amn)|. Let σ run over the d =

[K : Q] different embeddings K ↪→ C. Apply each σ to (2.1.2). It is known from Algebraic
Number Theory that the d × d-matrix (σ(ωj))σ,j is invertible.[3] So we obtain a constant C ′2
such that

max
j
|a(j)
mn| ≤ C ′2 max

σ
|σ(amn)|.

Thus we can conclude by taking C2 := C ′2d
2 maxj,k,l |b

(l)
jk |.

Next, we also have the following relative version of Siegel’s Lemma.

Lemma 2.1.3 (Relative version of Siegel’s Lemma, basic version). Let K be a number field of
degree d. Then there exists a positive number C such that the following property holds true For
any M,N ∈ Z with 0 < dM < N and any non-zero M ×N -matrix A with entries amn ∈ OK ,
there exists x ∈ ZN \ {0} with Ax = 0 and

H(x) ≤ b(CNB)
dM

N−dM c

where B := maxσ,m,n |σ(amn)| with σ running over all the embeddings K ↪→ C.

Again, by the Fundamental Inequality (Proposition 1.2.10), B can be bounded by H(A) with

A viewed as a point (amn)m,n ∈ QMN
. We emphasize that the constant C depends only on the

field K.

Proof. Let ω1, . . . , ωd be a Z-basis of OK . For the entries of A = (amn), we have

amn =

d∑
j=1

a(j)
mnωj (2.1.3)

for uniquely determined a
(j)
mn ∈ Z. Consider the M × N -matrix A(j) = (a

(j)
mn) for each j ∈

{1, . . . , d}. Then for x ∈ QN , the equation Ax = 0 is equivalent to the system of equations
A(j)x = 0 for all j = 1, . . . , d. This new system has dM equations and N unknowns. Write A′

for the dM ×N -matrix

A
(1)

...

A(d)

. Since dM < N , we can apply Lemma 2.1.1 to find a non-zero

solution x = (x1, . . . , xN ) ∈ ZN with

max
i
|xi| ≤ b(N max

m,n,j
|a(j)
mn|)

dM
N−dM c.

It remains to compare maxm,n,j |a(j)
mn| and maxσ,m,n |σ(amn)|. We use the same argument as for

Lemma 2.1.2. Let σ run over the d = [K : Q] different embeddings K ↪→ C. Apply each σ to
(2.1.3). It is known from Algebraic Number Theory that deg(σ(ωj))

2
σ,j = Disc(K/Q) 6= 0. So

we obtain a constant C such that maxj |a(j)
mn| ≤ C maxσ |σ(amn)|. Hence we are done.

[3]deg(σ(ωj))
2
σ,j = Disc(K/Q) 6= 0.
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2.2 Faltings’s version of Siegel’s Lemma

In his famous paper Diophantine approximation on abelian varieties (Annals of Math.
133:549–576, 1991), Faltings proved a fancier Siegel’s Lemma. It plays a fundamental role for
his proof of the Mordell–Lang Conjecture. In this section, we discuss about this.

2.2.1 Background and statement

Recall the following basic version of Siegel’s Lemma, Lemma 2.1.1.

Lemma 2.2.1. Let A = (aij) be an M ×N -matrix with entries in Z. Set B = maxi,j |aij |. If
N > M , then Ker(A) contains a non-zero vector x = (x1, . . . , xN ) ∈ ZN such that

max
j
|xj | ≤ (NB)

M
N−M .

Let us digest this lemma in the following way. The matrix A defines a linear map α : RN →
RM such that α(ZN ) ⊆ ZM , i.e α maps the lattice ZN into the lattice ZM . If N > M , then we
are able to find a non-trivial lattice point of small norm in Ker(α). As we said before, N −M
should be understood to be dim Ker(A) (although in the current formulation they may not be
the same).

Faltings’s fancier version looks not for only one, but for an arbitrary number of linearly
independent lattice points in Ker(α). To say that these lattice points are of small norm, we use
the successive minima. Moreover, it is more natural to work with arbitrary normed real vector
spaces.

Let (V, ‖ · ‖) be a finite dimensional normed real vector space, and let Λ be a lattice (a
discrete subgroup of V which spans V ). Denote by B(V ) the unit ball {x ∈ V : ‖x‖ ≤ 1} in V .

Definition 2.2.2. The n-th successive minimum of (V, ‖ · ‖,Λ) is

λn(V, ‖ · ‖,Λ) : = inf{t > 0 : Λ contains n linearly independent vectors of norm ≤ t}
= inf{t > 0 : tB(V ) contains n linearly-independent vectors of Λ}.

Next for two normed real vector spaces (V, ‖ · ‖V ) and (W, ‖ · ‖W ), the norm of a linear map
α : V →W is defined to be

‖α‖ := sup

{
‖α(x)‖W
‖x‖V

: x 6= 0

}
. (2.2.1)

We are ready to state Faltings’s version of Siegel’s Lemma.

Theorem 2.2.3. Let (V, ‖ · ‖V ) and (W, ‖ · ‖W ) be two finite dimensional normed real vector
spaces, let ΛV be a lattice in V and ΛW be a lattice in W .

Let α : V → W be a linear map with α(ΛV ) ⊆ ΛW . Assume furthermore that there exists a
real number C ≥ 2 such that

(i) ‖α‖ ≤ C,

(ii) ΛV is generated by elements of norm ≤ C,

(iii) every non-zero element of ΛV and of ΛW has norm ≥ C−1.
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Then for U := Ker(α) with the induced norm ‖·‖U (the restriction of ‖·‖V on U) and the lattice
ΛU := ΛV ∩ U , we have

λn+1(U, ‖ · ‖U ,ΛU ) ≤
(
C3 dimV · (dimV )!

)1/(dimU−n)

for each 0 ≤ n ≤ dimU − 1.

Notice that the hypotheses (i)–(iii) can always be achieved by enlarging C.
The basic version of Siegel’s Lemma (Lemma 2.2.1), up to changing the constant, follows

from Theorem 2.2.3 with n = 0.

2.2.2 Proof of Theorem 2.2.3

The proof of Theorem 2.2.3 uses Minkowski’s Second Theorem.
Let (V, ‖ · ‖V , λV ) be a finite dimensional normed real vector space with a lattice. Set

dV := dimV . For simplicity, denote by

V/ΛV := {v ∈ V : v =

dV∑
j=1

λjvj , 0 ≤ λj < 1}

where {v1, . . . , vdV } is a basis of ΛV . Notice that V/ΛV depends on the choice of the basis.
We can endow V with a Lebesgue measure µV as follows. Fix an isomorphism ψ : V '

RdV and use µ to denote the standard Lebesgue measure on RdV . Then set for any Lebesgue
measurable A ⊆ RdV

µV (ψ−1(A)) = µ(A). (2.2.2)

Up to a constant, there is only one Lebesgue measure on V . Thus the quantity

Vol(V ) = Vol(V, ‖ · ‖V ,ΛV ) :=
µV (B(V ))

µV (V/ΛV )
(2.2.3)

does not depend on the choice of µV ; it clearly does not depend on the choice of the basis of ΛV
in the definition of V/ΛV .

Theorem 2.2.4 (Minkowski’s Second Theorem). With the notation above, we have

2dV

dV !
≤

dV∏
n=1

λn(V, ‖ · ‖V ,ΛV ) ·Vol(V ) ≤ 2dV .

Here we used the fact that the unit ball B(V ) is convex and symmetric (i.e. B(V ) = −B(V )).

To apply Minkowski’s Second Theorem to prove Theorem 2.2.3, we need one last preparation
on the quotient norm. More precisely, on V/U , we consider the norm

‖v‖V/U := inf{‖v + u‖V : u ∈ U}

for each v ∈ V . Having this norm, we can define the unit ball B(V/U). Moreover, α(ΛV ) is
a lattice in α(V ), which can then be viewed as a lattice in V/U by the natural isomorphism
V/U ' α(V ). So we can define Vol(V/U) := Vol(V/U, ‖·‖V/U , α(ΛV )). Recall the notation from
Theorem 2.2.3; we naturally have the quantity Vol(U) := Vol(U, ‖ · ‖U ,ΛU ).

Lemma 2.2.5. Vol(V ) ≤ 2dimUVol(U)Vol(V/U).
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Proof of Theorem 2.2.3 assuming Lemma 2.2.5. We will identify V/U ' α(V ) in the proof.
Take w ∈ α(ΛV ) \ {0}. Write w = α(v) for some v ∈ ΛV . Then

‖w‖V/U = inf
u∈U
‖v + u‖V ≥

‖α(v)‖W
‖α‖

≥ C−2;

here the last inequality follows from hypotheses (i) and (iii). In particular, this implies that
λ1(V/U, ‖ · ‖V/U , α(ΛV )) ≥ C−2.

Write dV := dimV and dU := dimU . Minkowski’s Second Theorem (applied to V/U) yields
λ1(V/U, ‖ · ‖V/U , α(ΛV ))dimV/U · Vol(V/U) ≤ 2dimV/U . Thus from the paragraph above, we get

Vol(V/U) ≤ (2C2)dV −dU .
Next, by hypothesis (ii), we have λdV (V, ‖·‖V ,ΛV ) ≤ C. Thus Minkowski’s Second Theorem

(applied to V ) yields Vol(V ) ≥ 2dV C−dV /dV !.
Apply Lemma 2.2.5 and the volume estimates above. Then we get

Vol(U)−1 ≤ C3dv−2dU · dV !. (2.2.4)

We apply another time Minkowski’s Second Theorem (to U). For each 0 ≤ n ≤ dU − 1, we
then get λ1(U, ‖ · ‖U ,ΛU )n · λn+1(U, ‖ · ‖U ,ΛU )dU−n ·Vol(U) ≤ 2dU . But λ1(U, ‖ · ‖U ,ΛU ) ≥ C−1

by hypothesis (iii). So we obtain

λn+1(U, ‖ · ‖U ,ΛU ) ≤
(

2dUVol(U)−1Cn
)1/(dU−n)

≤
(

2dUCn+3dv−2dU · dV !
)1/(dU−n)

by (2.2.4)

≤
(
C3dV · dV !

)1/(dU−n)
.

Hence we are done.

Proof of Lemma 2.2.5. Write dU := dimU and dV := dimV .
Let µV and µU be the Lebesgue measures on V and U , respectively. On V/U we have a unique

Lebesgue measure µV/U determined as follows: For any µV -measurable subset E ⊆ V , we have

µV (E) =

∫
V/U

fE(v)dµV/U (v)

where fE(v) := µU ({u ∈ U : u+ v ∈ E}); here fE(v) is independent of the representative v because µU
is translation invariant.

We compute fB(V )(v) for v ∈ V/U . If v 6∈ B(V/U), then ‖v‖V > 1. So v 6∈ B(V ) for v + u for all
u ∈ U . Thus fB(V )(v) = 0 in this case. If v ∈ B(V/U), then v + u ∈ B(V ) for some u ∈ U . Thus

‖u‖U ≤ ‖u+ v‖V + ‖v‖V ≤ 2. So fB(V )(v) ≤ µU (2B(U)) = 2dU · µU (B(U)) in this case. In either case,
we have

µV (B(V )) ≤ 2dU · µU (B(U)) · µV/U (B(V/U)) . (2.2.5)

Next we turn to fV/ΛV
(v). Let {u1, . . . , udU } be a basis of ΛU = ΛV ∩ U and expand it to a ba-

sis {u1, . . . , udU , v1, . . . , vdV −dU } of ΛV . Then {v1, . . . , vdV −dU } is a basis of α(ΛV ). For each v ∈
(V/U)/α(ΛV ), we have

fV/ΛV
(v) = µU ({u ∈ U : u+ v ∈ V/ΛV }) = µU (U/ΛU ).

Otherwise fV/ΛV
(v) = 0. So

µV (V/ΛV ) = µU (U/ΛU ) · µV/U ((V/U)/α(ΛV )) . (2.2.6)

Now the conclusion follows from the definition of the volumes Vol(V ) = µV (B(V ))/µV (V/ΛV ) etc.
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2.3 Arakelov height of matrices

While the basic versions of Siegel’s Lemma are sufficient for many applications, we state and
prove a generalized version. Its proof, which is by the Geometry of Numbers and in particular
uses the adelic version of Minkowski’s second main theorem, is of particular importance.

Theorem 2.3.1. Let A be an M × N -matrix of rank M with entries in a number field K of
degree d. Then the K-vector space of solutions of Ax = 0 has a basis x1, . . . ,xN−M , contained
in ONK , such that

N−M∏
l=1

H(xl) ≤ |DK/Q|
N−M

2d HAr(A),

where DK/Q is the discriminant of K over Q.

There are several things to be explained for this statement. First, H(x) = exp(h(x)) is
the multiplicative homogeneous height with x considered as a point in PN−1(K); thus we may
assume x ∈ ONK because we can replace any solution by a non-zero scalar multiple and this does
not change its height. Second, we need to define the Arakelov height HAr(A) of the matrix A;
this is what we will do in this section.

Moreover, there is also a relative version for this generalized version. See Theorem 2.4.3.

2.3.1 Arakelov height on PN

Recall the Weil height which we defined before. For a point x = [x0 : · · · : xN ] ∈ PN (K), we
have

[K : Q]h(x) =
∑
v∈M0

K

log max
j
‖xj‖v+

∑
v|∞

log max
j
‖xj‖v =

∑
v∈M0

K

log max
j
‖xj‖v+

∑
v|∞

[Kv : R] log max
j
|xj |v.

There are other choices for the height function on PN (Q). In Arakelov theory, a more nat-
ural choice is to replace the L∞-norm maxj |xj |v at the archimedean place by the L2-norm(∑N

j=0 |xj |2v
)1/2

. In other words, we define:

Definition 2.3.2. For x = [x0 : · · · : xN ] ∈ PN (Q) with each xj ∈ K, define

hAr(x) :=
1

[K : Q]

 ∑
v∈M0

K

log max
j
‖xj‖v +

∑
v|∞

[Kv : R] log

 N∑
j=0

|xj |2v

1/2
 .

One can check that hAr(x) is independent of the choice of the homogeneous coordinates (by
the Product Formula) and of the choice of the number field K.

To ease notation, we introduce the following definition.

Definition 2.3.3. For x = [x0 : . . . : xN ] ∈ PN (K) and v ∈MK , set

Hv(x) :=

maxj ‖xj‖v = maxj |xj |
[Kv :Qp]
v if v is non-archimedean,(∑N

j=0 |xj |2v
)1/2·[Kv :R]

if v is archimedean.
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With this definition, the following holds true. For x = [x0 : · · · : xN ] ∈ PN (Q) with each
xj ∈ K, we have

hAr(x) =
1

[K : Q]

∑
v∈MK

logHv(x). (2.3.1)

The following lemma will be proved in the Exercise class.

Lemma 2.3.4. On PN (Q), the height functions h and hAr differ from a bounded function.

Thus in view of the Height Machine, hAr is in the class represented by hPN ,O(1).

2.3.2 Height of matrices

We start by defining a height function on the Grassmannians. Let W be an M -dimensional

subspace of QN
. Then ∧MW is a 1-dimensional subspace of ∧MQN ' Q(NM)

. Thus we may view

W as a point PW of the projective space P(∧MQN
).

Definition 2.3.5. The Arakelov height of W is defined to be hAr(W ) := hAr(PW ). We also
define the multiplicative Arakelov height HAr(W ) := exp(hAr(PW )).

Now we are ready to define the Arakelov height of a matrix A.

Definition 2.3.6. Let A be an N ×M -matrix with entries in Q.

(i) Assume rkA = M . Then hAr(A) is defined as hAr(W ), where W is the subspace of QN

spanned by the columns of A.[4]

(ii) Assume rkA = N . Then hAr(A) := hAr(A
t) with At the transpose of A.

We also define the multiplicative Arakelov height HAr(A) := exp(hAr(PW )).

In general, A may not have the full rank. We then consider the subspace spanned by the
columns or by the rows. This will lead to hcol

Ar and hrow
Ar . We omit the definitions here but the

idea will show up in the discussion of the generalized Siegel’s Lemma in the next section.
We start with the following lemma, which makes the two parts of Definition 2.3.6 more

“symmetric”.

Lemma 2.3.7. Let A be an N ×M -matrix with entries in Q. Assume rkA = N . Then hAr(A)

equals the Arakelov height of the subspace of QM
spanned by the rows of A.

Proof. Consider the transpose At of A. It can be easily seen that At is an M × N -matrix of rank N ,

and hence defines an injective linear map QN → QM , which by abuse of notation we still denote by At.

Part (i) of Definition 2.3.6 (applied to At) says that hAr(A
t) equals hAr(W ) with W ⊆ QM the subspace

spanned by the columns of At. Notice that W = Im(At).

The matrix A defines a linear map A : (QM )∗ → (QN )∗ which is the dual of At. Consider the

subspace Ker(A) of (QM )∗. Its annihilator Ker(A)⊥ in ((QM )∗)∗ = QM then equals Im(At) = W by
Linear Algebra. It is known that Ker(A)⊥ is spanned by the rows of A, and so is W . Hence we are done
because hAr(A) = hAr(A

t) = hAr(W ).

Proposition 2.3.8. Let W be an M -dimensional subspace of QN
and let W⊥ be its annihilator

in the dual (QN
)∗ ' QN

. Then hAr(W
⊥) = hAr(W ).

[4]Notice that A defines a linear map A : RM → RN . The subspace W is precisely the image of this map. The
assumption rkA = M is equivalent to the map A being injective.
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This proposition has the following immediate corollary.

Corollary 2.3.9. Let A be an N ×M -matrix with rkA = N and with entries in Q. Then the
Arakelov height of the space of solutions of Ax = 0 equals hAr(A).

Proof. We have hAr(A) = hAr(A
t) = hAr(Im(At)). But Im(At) = Ker(A)⊥. So hAr(A) =

hAr(Ker(A)⊥), which then equals hAr(Ker(A)) by Proposition 2.3.8. Hence we are done.

Proof of Proposition 2.3.8. Write V = QN . Any element x ∈ ∧MV defines a linear map ψ(x) : ∧N−M
V → ∧NV , y 7→ x ∧ y, and thus an element ϕ(x) ∈ ∧NV ⊗ ∧N−M (V ∗). In other words, we obtained a
map

ϕ : ∧M V → ∧NV ⊗ ∧N−M (V ∗).

Then ϕ is an isomorphism and (better) each element of the canonical basis of ∧MV is mapped to an
element of the canonical basis of ∧NV ⊗ ∧N−M (V ∗) up to a sign.

Notice that ∧NV is a line. So it is easy to check that for any non-zero x ∈ ∧MW (which is a
line), the image of ψ(x) is ∧NV and the kernel of ψ(x) is the subspace of ∧N−MV generated by the
elements of the form w ∧ z with w ∈ W and z ∈ ∧N−M−1V . Thus ϕ(∧MW ) = ∧NV ⊗ ∧N−M (W⊥).
Hence the coordinates of ∧MW in P(∧MV ) are, up to a sign, equal to the coordinates of ∧N−M (W⊥) in
P(∧N−M (V ∗)). This proves the proposition.

We finish this section by the following explicit formula for the definition of hAr(A). Let A
be an N ×M -matrix with entries in Q.

For simplicity we only consider the case rkA = M . Let I ⊆ {1, . . . , N} with |I| = M . Denote
by AI the M ×M -submatrix of A formed with the i-th rows, i ∈ I, of A. Then the point in

P(∧NQM
) corresponding to Im(A) is given by the coordinates det(AI), where I ranges over all

subsets of {1, . . . , N} of cardinality M .
Let K ⊆ Q be a number field which contains all entries of A. For each v ∈MK , set

Hv(A) :=

{
maxI |det(AI)|

[Kv:Qp]
v = maxI ‖ det(AI)‖v if v is non-archimedean,(∑

I |det(AI)|2v
)1/2·[Kv:R]

= |det(A∗A)|1/2·[Kv:R]
v = ‖ det(A∗A)‖1/2v if v is archimedean.

(2.3.2)

Here A∗ = A
t

is the adjoint of A, and
∑

I |det(AI)|2v = | det(A∗A)|v at the archimedean places
by the Binet Formula.

Under this convention, we have

hAr(A) =
1

[K : Q]

∑
v∈MK

logHv(A). (2.3.3)

An immediate corollary of this explicit formula is:

Corollary 2.3.10. Let G be an invertible M ×M -matrix. Then hAr(AG) = hAr(A).

Another application of this explicit formula is:

Corollary 2.3.11. Let B and C be two complementary submatrices of A of type N ×M1 and
M ×M2 respectively. Then hAr(A) ≤ hAr(B) + hAr(C).

Proof. We only give a sketch. It suffices to prove Hv(A) ≤ Hv(B)Hv(C) for each v ∈ MK . If
v is non-archimedean, it follows from Laplace’s expansion. If v is archimedean, it follows from
Fischer’s inequality

det

(
B∗B B∗C
C∗B C∗C

)
≤ det(B∗B) det(C∗C).

Alternatively, this corollary is an immediate consequence of the important theorem of Schmidt
(independently of Struppeck–Vaaler) hAr(V + W ) + hAr(V ∩W ) ≤ hAr(V ) + hAr(W ) for any

subspaces V , W of QM
.
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2.4 Generalized Siegel Lemma by Bombieri–Vaaler

The goal of this section is to have a deeper discussion of the generalized Siegel’s Lemma by
Bombieri–Vaaler (Theorem 2.3.1); in particular we give its proof. We repeat the statement here.

Theorem 2.4.1. Let A be an M × N -matrix of rank M with entries in a number field K of
degree d. Then the K-vector space of solutions of Ax = 0 has a basis x1, . . . ,xN−M , contained
in ONK , such that

N−M∏
l=1

H(xl) ≤ |DK/Q|
N−M

2d HAr(A),

where DK/Q is the discriminant of K over Q.

As said below Theorem 2.3.1, there is no deep information about the xi’s being contained
in ONK .

In practice, we may not always assume that A has maximal rank M . This can be obviated.
We hereby state a corollary of Theorem 2.4.1, which bounds the heights of the solutions by the
(multiplicative) Weil height instead of the Arakelov height.

Corollary 2.4.2. Let A be an M × N -matrix of rank R with entries in a number field K of
degree d. Then there exists a basis x1, . . . ,xN−R of the kernel Ker(A), contained in ONK , such
that

N−R∏
l=1

H(xl) ≤ |DK/Q|
N−R

2d

(√
NH(A)

)R
.

Here H(A) is the multiplicative Weil height of the point [aij ]i,j viewed as a point in PMN−1(K),
with aij the entries of A.

In particular, there is a non-zero solution x ∈ ONK of Ax = 0 with

H(x) ≤ |DK/Q|
1
2d

(√
NH(A)

) R
N−R

.

2.4.1 Proof of Corollary 2.4.2 assuming Theorem 2.4.1

The “In particular” part follows clearly from the main part. So we will focus on proving the
main part.

As rkA = R, there is an R×N -submatrix A′ of A with rkA′ = R. Applying Theorem 2.4.1
to the matrix A′, we get a basis x1, . . . ,xN−R of Ker(A) such that

N−R∏
l=1

H(xl) ≤ |DK/Q|
N−R

2d HAr(A
′). (2.4.1)

On the other hand, if we denote by Am the m-th row of A, then Corollary 2.3.11 implies
that

HAr(A
′) ≤

∏
m

HAr(Am),

where m runs over the R rows of A′. Furthermore, the following inequality clearly holds true
by definition

HAr(Am) ≤
√
NH(A).

Now, the two inequalities above yield HAr(A
′) ≤ (

√
NH(A))R. So we can conclude by (2.4.1).
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2.4.2 Relative Version

As for Lemma 2.1.3 with respect to Lemma 2.1.1, we also have the following relative version of
this generalized form of Siegel’s Lemma.

Theorem 2.4.3. Let K be a number field of degree d and F/K be a finite extension with
[F : K] = r. Let A be an M ×N -matrix with entries in F .

Assume rM < N . Then there exists N − rM K-linearly independent vectors xl ∈ ONK such
that Axl = 0 for each l ∈ {1, . . . , N − rM} and

N−rM∏
l=1

H(xl) ≤ |DK/Q|
N−rM

2d

M∏
i=1

HAr(Ai)
r,

where Ai is the i-th row of A.

The proof follows the guideline set up in Lemma 2.1.3.

Proof. Let ω1, . . . , ωr be a basis of F/K. For the entries of A = (amn), we have

amn =

r∑
j=1

a(j)
mnωj

for uniquely determined a
(j)
mn ∈ K. Let A(j) be the M × N -matrix with entries a

(j)
mn. Then

for x ∈ KN , the equation Ax = 0 is equivalent to te system of equations A(j)x = 0 for all

j = 1, . . . , r. Write A′ for the rM ×N -matrix

A
(1)

...

A(r)

. Denote by R := rkA′.

It is attempting to apply Theorem 2.4.1 to A′. But we need to do one more step. Let
σ1, . . . , σr be the distinct embeddings of F into K over K. Let Ω be the rM × rM -matrix built
up by r2 blocks of M ×M -matrices Ωij = σi(ωj)IM . By construction of A′, we have

A′′ :=

σ1A
...

σrA

 = ΩA′.

From Algebraic Number Theory, it is known that DF/K = det(σi(ωj))
2. Thus Ω is invertible,

and its inverse is again formed by r2 blocks of multiples of IM . In particular, rkA′′ = rkA′ = R
and Ker(A′′) = Ker(A′).

There exists an R×N -submatrix A′′′ of A′ with rkA′′′ = R. Applying Theorem 2.4.1 to A′′′,
we get a basis x1, . . . ,xN−R of Ker(A′′′) = Ker(A′), contained in OK , such that

N−R∏
l=1

H(xl) ≤ |DK/Q|
N−R

2d HAr(A
′′′),

If we denote by Am the m-th row of A′′, then Corollary 2.3.11 implies that

HAr(A
′′) ≤

∏
m

HAr(A
′′
m),
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where m runs over the R rows of A′′. Thus if we rearrange our basis xl by increasing height, we
have

N−rM∏
l=1

H(xl) ≤

(
N−R∏
l=1

H(xl)

)N−rM
N−R

≤ |DK/Q|
N−rM

2d

(∏
m

HAr(A
′′
m)

)N−rM
N−R

. (2.4.2)

By definition of the Arakelov height, we haveHAr takes value in [1,∞). Thus (
∏
mHAr(A

′′
m))

N−rM
N−R ≤∏rM

i=1HAr(A
′′
i ). Now the conclusion follows because HAr is invariant under each σi.

Below is reading material. It will not be covered in the main lectures or in the Exercise class.

2.4.3 Adelic version of Minkowski’s Second Theorem

The proof of Theorem 2.4.1 uses geometry of numbers over the adèles and Minkowski’s Second Theorem.
In this subsection, we introduce/recall these prerequisites.

Let K be a number field, v ∈ MK and Kv be the completion of K with respect to v. It is known
that Kv is a locally compact group.

The ring of adèles of K is the subring

AK := {x = (xv) ∈
∏

v∈MK

Kv : xv ∈ Rv up to finitely many v}.

of
∏
v∈MK

Kv.
One should be careful with the topology on AK . It is not induced by the product topology on∏

v∈MK
Kv! Rather, we consider for each finite subset S ⊆ MK containing all archimedean places the

product

HS :=
∏
v∈S

Kv ×
∏
v 6∈S

Rv.

The product topology makes each such HS into a locally compact topological group. The topology which
we put on AK is the unique topology such that the groups HS are open topological subgroups of AK . In
fact, this makes AK a locally compact topological ring.

It is known that the diagonal map K → AK , x 7→ (xv)v∈MK
, makes K into a discrete closed subgroup

of AK . Moreover AK/K is compact.

Let v|p ∈MQ. Then Kv is a locally compact group with Haar measure uniquely determined up to a
scalar. We normalize this Haar measure as follows:

(a) if v is non-archimedean, βv denotes the Haar measure on Kv normalized so that

βv(Rv) = |DKv/Qp
|1/2p

where Rv is the valuation ring of Kv and DKv/Qp
is the discriminant;

(b) if Kv = R, then βv is the usual Lebesgue measure;

(c) if Kv = C, then βv is twice the usual Lebesgue measure.

For each finite subset S ⊆MK containing all archimedean places, the product measure βS :=
∏
v∈S βv ×∏

v 6∈S βv|Rv
is then a Haar measure on the open topological subgruop HS of AK . The measures βS fit

together to give a Haar measure β on AK .[5]

Let N be a positive integer. For each (archimedean) v|∞, let Sv be a non-empty convex, symmetric,
open subset of KN

v ; here “symmetric” means Sv = −Sv. For each (non-archimedean) v ∈M0
K , let Sv be

[5]With this in hand, we can shortly explain why we take the normalizations above. The Haar measure β on
AK induces a Haar measure βAK/K on the compact group AK/K, and the normalization above makes the volume
of AK/K to be 1.
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a Kv-lattice in KN
v , i.e. a non-empty compact open Rv-submodule of KN

v . Assume that Sv = RNv for all
but finitely many v. Then the set

Λ := {x ∈ KN : x ∈ Sv for all v ∈M0
K}

is a K-lattice in KN , i.e. a finitely generated OK-module which generates KN as a vector space.
Moreover, the image Λ∞ of Λ under the canonical embedding KN ↪→ E∞ :=

∏
v|∞KN

v is an R-lattice in

E∞.[6]

Definition 2.4.4. The n-th successive minimum of the non-empty convex symmetric open subset
S∞ :=

∏
v|∞ Sv of E∞ with respect to the lattice Λ∞ is

λn := inf{t > 0 : tS∞ contains n K-linearly independent vectors of Λ∞}.

Now we are ready to state (the adelic version of) Minkowski’s Second Theorem.

Theorem 2.4.5 (Minkowski’s Second Theorem, adelic form). The successive minima defined above sat-
isfy

(λ1 · · ·λN )d
∏

v∈MK

βv(Sv) ≤ 2dN .

Here, the product
∏
v∈MK

βv(Sv) should be understood to be the volume of S with respect to the
Haar measure on AK defined by the βv’s at each v ∈MK .

2.4.4 Setup for the application of Minkowski’s Second Theorem

For the purpose of proving Siegel’s Lemma in the form of Theorem 2.4.1, we do the following preparation.

For the sets Sv: First, let QNv be the unit cube in KN
v of volume 1 with respect to the Haar measure

βv. More explicitly, x = (x1, . . . , xN ) ∈ QNv if and only if
maxn ‖xn‖v < 1

2 if v is real

maxn ‖xn‖v < 1
2π if v is complex

maxn ‖xn‖v ≤ 1 if v is non-archimedean.

Let A be an N ×M -matrix with entries in K such that rkA = M . Set

Sv := {y ∈ KM
v : Ay ∈ QNv }. (2.4.3)

If v is archimedean, then Sv is a non-empty convex symmetric bounded open subset of KN
v ; indeed, under

the injective linear map x 7→ Ax, the image of Sv is a linear slice of the cube QNv . If v is non-archimedean,
then one can show that Sv is a Kv-lattice in KM

v and that Sv = RMv for all but finitely many v; in fact
in this case we have the following more precise result.

Proposition 2.4.6. Let v ∈ M0
K lying over the prime number p. Then Sv is a Kv-lattice in KM

v and
Sv = RMv for all but finitely many v. Moreover, we have

βv(Sv) = |DKv/Qp
|M/2
p

(
max
I
‖ det(AI)‖v

)−1

,

where I runs over all subsets of {1, . . . , N} of cardinality M , and AI is the M ×M -matrix formed by the
i-th rows of A with i ∈ I.

[6]This is the familiar notion of a lattice, namely Λ∞ is a discrete subgroup fo the R-vector space E∞ and that
E∞/Λ∞ is compact.
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Proof. Choose a subset J ⊆ {1, . . . , N} of cardinality M such that ‖ det(AJ)‖v = maxI ‖det(AI)‖v.
Without loss of generality, we may assume J = {1, . . . ,M}. Then W := AA−1

J is of the form

W =

(
IM
W ′

)
.

For any subset I ⊆ {1, . . . , N} of cardinality M , we have ‖ det(WI)‖v ≤ 1 by choice of J . In particular,
taking I = {1, . . . , l − 1, l + 1, . . . ,M,M + j} we get

‖wM+j,l‖v = ‖ det(WI)‖v ≤ 1.

Thus all entries of W are in the valuation ring Rv and this proves

AJSv = {y ∈ KM
v : Wy ∈ QNv } = RMv . (2.4.4)

This proves that Sv is a Kv-lattice in KM
v and that Sv = RMv for all but finitely many v

It remains to compute βv(Sv). It is known that under the linear transformation y 7→ A−1
J y on KM

v ,
the volume transforms by the factor ‖ det(AJ)‖−1

v . Thus

βv(Sv) = ‖det(AJ)‖−1
v βv(R

M
v ) = ‖ det(AJ)‖−1

v |DKv/Qp
|M/2
p

which is what we desire.

We also need to bound βv(Sv) from below for v archimedean. For this purpose, we have

Proposition 2.4.7. Let v ∈MK with v|∞. Then

βv(Sv) ≥ ‖det(A∗A)‖−1/2
v

where A∗ = A
t

is the adjoint of A.

Proof. The proof uses Vaaler’s cube-slicing theorem, which we state here without proof.

Vaaler’s cube-slicing theorem. Let N = n1 + · · ·+nr be a partition. Let QN := Bρ(n1)×· · ·×Bρ(nr),

where each Bρ(nj) is the closed ball of volume 1 in Rnj centered at 0.[7] For a real N ×M -matrix B of
rank M , we have

det(BtB)−1/2 ≤ Vol
(
{y ∈ RM : By ∈ QN}

)
. (2.4.5)

An easier way to understand this volume bound is as follows. Let L := Im(B) ⊆ RN which is an M -
dimensional subspace. Then (2.4.5) is equivalent to 1 ≤ Vol(QN ∩ L), i.e. the volume of a slice through
the center of a product of balls of volume 1 is bounded below by 1.

Now we go back to the proof of Proposition 2.4.7. If Kv = R, then this is (2.4.5) for r = N and
n1 = · · · = nN = 1. Assume Kv = C. Write A = U +

√
−1V and y = u +

√
−1v for real U, V,u,v. Thus

KM
v ' R2M , y 7→ (u,v). Similarly we have KN

v ' R2N . Now, the linear map y 7→ Ay is given by the
real 2N × 2M -matrix

A′ =

(
U −V
V U

)
and

QNv =

{
(u,v) ∈ R2N : u2

j + v2
j <

1

2π

}
.

By (2.4.5) for n1 = · · · = nN = 2, we then have

βv(Sv) ≥ det(A′tA′)−1/2.

Since A 7→ A′ is a ring homomorphism from the complex N ×M -matrices to the real 2N × 2M -matrices,
we have det(A′tA′) = det((A∗A)′) = det(A∗A)2. Hence we can conclude.

[7]So the radius of Bρ(nj) is ρ(nj) = π−1/2Γ(nj/2 + 1)1/nj .
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2.4.5 Proof of Theorem 2.4.1

With the preparation from last subsection, we prove Bombieri–Vaaler’s Siegel Lemma in this subsection.
We start with:

Proposition 2.4.8. Let A be an N ×M -matrix of rank M with entries in K. Then the image of A has
a basis x1, . . . ,xM with

M∏
m=1

H(xm) ≤
(

2

π

)Ms
d

|DK/Q|
M
2dHAr(A)

where s is the number of complex places of K and d = [K : Q].

Proof. By Proposition 2.4.6 and Proposition 2.4.7, we have

∏
v∈MK

βv(SV ) ≥
∏

v∈M0
K

|DKv/Qp
|M/2
p

 ∏
v∈M0

K

max
I
‖ det(AI)‖v ·

∏
v|∞

‖ det(A∗A)‖1/2v

−1

.

By (2.3.3), this becomes

∏
v∈MK

βv(SV ) ≥

 ∏
v∈M0

K

|DKv/Qp
|M/2
p

HAr(A)−d.

It is known, from Algebraic Number Theory, that |DK/Q|p =
∏
v|p |DKv/Qp

|p for each prime number p.

Thus the Product Formula implies |DK/Q|−1 =
∏
v∈M0

K
|DKv/Qp

|p. So the inequality above becomes∏
v∈MK

βv(SV ) ≥ |DK/Q|−M/2HAr(A)−d.

Thus, Minkowski’s Second Theorem, Theorem 2.4.5, yields

λ1 · · ·λM ≤ 2M |DK/Q|M/2dHAr(A). (2.4.6)

It remains to use the successive minima find the desired basis. For the specific sets Sv constructed in
(2.4.3), recall the K-lattice Λ = {x ∈ KN : x ∈ Sv for all v ∈ M0

K} which is identified with its image
Λ∞ under the canonical embedding KN ↪→ E∞ =

∏
v|∞KN

v . Let y ∈ KM be a lattice point in λS∞ for

some λ > 0 and let x = Ay. Then the definition of S∞ =
∏
v|∞ Sv yields maxn ‖xn‖v < λ/2 if v is real,

maxn ‖xn‖v < λ2/2π if v is complex, and maxn ‖xn‖v ≤ 1 if v ∈M0
K . Thus we have

H(Ay) <
λ

2

(
2

π

)s/d
. (2.4.7)

By the definition of successive minima, there are linearly independent lattice points y1, . . . ,yM ∈ KM

such that ym ∈ λmS∞ for each m ∈ {1, . . . ,M}. Then we obtain the desired basis from (2.4.6) and
(2.4.7), with xm = Aym.

Proof of Theorem 2.4.1. For the M × N -matrix A of rank M , its transpose At is an N ×M -matrix of
rank M . It is attempting to apply Proposition 2.4.8 directly to At, but we need to do more.

We wish to find a basis of Ker(A) of small height. To do this, we first of all take an arbitrary
basis y1, . . . ,yN−M of Ker(A), and let A′ :=

(
y1 · · · yM

)
. Then A′ is an N × (N −M)-matrix with

rank N − M , and Im(A′) = Ker(A). Recall that hAr(A) = hAr(Ker(A)) by Corollary 2.3.9. Hence
hAr(A

′) = hAr(A).
Apply Proposition 2.4.8 to A′. Then we get a basis x1, . . . ,xN−M of Im(A′) = Ker(A) such that

N−M∏
l=1

H(xl) ≤
(

2

π

)(N−M)s/d

|DK/Q|
N−M

2d HAr(A
′).

But 2/π < 1. So we are done because HAr(A
′) = HAr(A).
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Chapter 3

Roth’s Theorem

3.1 Historical background (Liouville, Thue, Siegel, Gelfond, Dyson,
Roth)

3.1.1 From Liouville to Thue

In Chapter 1, we proved the following Liouville’s inequality on approximating algebraic numbers
by rational numbers. The following statement is a reformulated version of Corollary 1.2.13.

Theorem 3.1.1 (Liouville). Let α ∈ R be an algebraic number of degree d > 1 over Q. Then
there exists a constant c(α) > 0 such that for all rational numbers p/q (q ≥ 1), we have∣∣∣∣α− p

q

∣∣∣∣ ≥ c(α)

qd
. (3.1.1)

In Chapter 1, we used the Fundamental Inequality (Proposition 1.2.10) to deduce this bound.
In this chapter, we give another proof. This new proof sets up a prototype for various improve-
ments on approximations of algebraic numbers by rational numbers, and will eventually lead to
the deep Roth’s Theorem and even more.

Proof. We will divide the proof into several steps.

Step I: Construct an auxiliary polynomial Let f(x) ∈ Z[x] be the minimal polynomial of α
over Q with relatively prime integral coefficients. In particular, f is irreducible over Q and has
degree d.

Step II: Non-vanishing at the rational point If p/q ∈ Q, then we have f(p/q) 6= 0.

Step III: Lower bound (Liouville) By Step II, we then have |f(p/q)| ≥ 1/qd since deg f = d.

Step IV: Upper bound As f(α) = 0 and f is the minimal polynomial of α, we can write

f(x) = (x− α)g(x) with g(α) 6= 0. Thus∣∣∣∣f (pq
)∣∣∣∣ =

∣∣∣∣α− p

q

∣∣∣∣ · ∣∣∣∣g(pq
)∣∣∣∣ .

Notice that g has d − 1 roots, and ε := minβ |β − α| > 0 and δ := maxβ |β − α| > 0 with β
running over all the roots of g. If |p/q−α| < ε, then g(p/q) 6= 0. Moreover, for any root β of g,
we have |p/q − β| ≤ |β − α| + |p/q − α| ≤ 2δ. Hence 0 6= |g(p/q)| =

∏
β |p/q − β| ≤ (2δ)d−1 if

|p/q − α| < ε. Notice that ε and δ are both determined by α.

47
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Step V: Comparison of the two bounds The lower bound and the upper bound yield the fol-

lowing alternative: Either |α− p/q| ≥ ε ≥ ε/qd, or∣∣∣∣α− p

q

∣∣∣∣ ≥ 1

qd
1

(2δ)d−1
.

Thus it suffices to take c(α) = min{ε, 1/(2δ)d−1} > 0.

Before moving on, let us see an application. By this theorem of Liouville, one can see that
1 + 1

102! + 1
103! + 1

104! + · · · is a transcendental number since it has good rational approximations.

Improvements of Liouville’s approximation above require sharpening the exponent on the
right hand side of (3.1.1). The first improvement was obtained by Thue, replacing d by d

2 +1+ε.

Theorem 3.1.2 (Thue). Let α ∈ R be an algebraic number of degree d ≥ 3 over Q and let
ε > 0. Then there are only finitely many rational numbers p/q (with p, q coprime and q ≥ 1)
such that ∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q
d
2

+1+ε
. (3.1.2)

Later on, Siegel improved this approximation by sharpening the exponent d
2 + 1 + ε to

2
√
d+ ε, which was further improved to

√
2d+ ε by Gelfond and Dyson. The culminant of this

approximation result is Roth’s Theorem, replacing the exponent d
2 + 1 + ε above by 2 + ε. Later

on, a more general formulation of Roth’s Theorem, concerning not only one but finitely many
places, was obtained by Ridout over Q and by Lang over an arbitrary number field.

The proofs of these improvements follow the guideline set up above. In Liouville’s work, the
auxiliary polynomial from Step I comes for free and the polynomial has 1 variable. In general,
we need to construct a polynomial such that the lower bound from Step III and the upper
bound from Step IV repel each other.[1] This construction of the auxiliary polynomial is often
by application of a suitable version of Siegel’s Lemma discussed in Chapter 2. Thue and Siegel
worked with polynomials in 2 variables. Roth obtained the drastic improvement by constructing
a polynomial in m variables. However, the non-vanishing of this auxiliary polynomial at a
“special” point from Step II is a crucial point of the construction and it is a major difficulty
for the generalization of the approach. Solving this problem requires suitable zero estimates
and even the more general multiplicity estimates, which themselves are an important topic of
Diophantine Geometry.

Before moving on, let us see an example on how Thue’s Theorem above can be applied to
Diophantine equations. Stronger results on the finiteness of integer points on (certain) smooth
affine curves can be obtained by applying Siegel’s and Roth’s Theorems.

Theorem 3.1.3. Let F (x, y) ∈ Z[x, y] be a homogeneous polynomial of degree d with at least 3
non-proportional linear factors over C. Then for every non-zero m ∈ Z, the equation F (x, y) =
m has only finitely many integer solutions.

Proof. We prove this by contradiction. First assume that F is irreducible over Q. Consider the
decomposition over C

F

(
x

y
, 1

)
= ad

(
x

y
− α1

)
· · ·
(
x

y
− αd

)
.

[1]We will see more precise meaning of this in later sections; a notion of “index” will be used.
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Then F (x, y) = m becomes

ad

(
x

y
− α1

)
· · ·
(
x

y
− αd

)
=
m

yd
.

If it has infinitely many integer solutions (xn, yn), then |yn| → ∞ and hence m/ydn → 0. Thus
up to passing to a subsequence, we may and do assume that xn/yn → αj for some j. Notice
that |xn/yn − αi| > ε for some ε depending only on F for all i 6= j. Thus we obtain infinitely
many integral solutions to |αj − p/q| ≤ Cq−d for some constant C > 0. This contradicts Thue’s
Theorem above since d ≥ 3.

Next we pass to the general case. Let F1, . . . , Fr be the distinct non-constant irreducible
polynomials in Z[x, y] dividing F . By a linear change of coordinates, we may and do assume that
the polynomial y does not divide F . Assume F (x, y) = m has infinitely many integer solutions.
By the Pigeonhole Principle, there exist divisors m1, . . . ,mr of m with the following property:
the system F1(x, y) = m1, . . . , Fr(x, y) = mr has infinitely integer solutions (xn, yn). As in the
previous case, up to passing to a subsequence we may and do assume that xn/yn converges to
a root of Fj(x, 1) for each j ∈ {1, . . . , r}. But the Fj ’s have distinct roots since each Fj is the
minimal polynomial of each one of its roots. So r = 1. By the assumption that F has at least
3 non-proportional linear factors over C, we then have degF1 ≥ 3. Thus the conclusion follows
from the irreducible case applied to F1(x, y) = m1.

3.1.2 Statement of Roth’s Theorem

The original version of Roth’s Theorem, which we will prove in this chapter, is as follows.

Theorem 3.1.4 (Roth’s Theorem). Let α ∈ R be an algebraic number and let ε > 0. Then
there are only finitely many rational numbers p/q (with p, q coprime and q ≥ 1) such that∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q2+ε
. (3.1.3)

A more general version by Lang is as follows. The statement uses the multiplicative height
H.

Theorem 3.1.5. Let K be a number field and let S ⊆MK a finite subset. For each v ∈ S, take
αv ∈ Kv which is K-algebraic, i.e. αv ∈ Kv is a root of a polynomial with coefficients in K.
Then for each ε > 0, there are only finitely many β ∈ K such that∏

v∈S
min{1, |αv − β|v} ≤ H(β)−(2+ε). (3.1.4)

Implication of Theorem 3.1.4 by Theorem 3.1.5. Take K = Q and S = {∞}. Then (3.1.4)
implies that there are only finitely many rational numbers p/q such that min{1, |α − p/q|} ≤
H(p/q)−(2+ε). Recall that H(p/q) ≥ 1. So if min{1, |α − p/q|} ≤ H(p/q)−(2+ε), then |α −
p/q| ≤ 1. Therefore, there are only finitely many rational numbers p/q (with p, q coprime and
q ≥ 1) such that |α− p/q| ≤ max{|p|, q}−(2+ε) = min{|p|−(2+ε), q−(2+ε)} ≤ q−(2+ε). This proves
Theorem 3.1.4.
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3.2 Index and preparation of the construction of the auxiliary
polynomial

In the Thue–Siegel method and Roth’s proof of his big theorem, it is important to construct
a polynomial of rapid decreasing degrees, for the purpose of making the lower bound and the
upper bound repel each other. Then, in order to say that the polynomial vanishes at high order,
we need a suitable notion of index.

Let F be a field. Let P ∈ F [x1, . . . , xm] be a polynomial in m variables. Let d =
(d1, . . . , dm) be an m-uple (warning: the dj ’s may not be the partial degrees of P ). Denote
by x = (x1, . . . , xm).

To ease notation, we introduce the following abbreviation. For two m-uples n = (n1, . . . , nm)
and µ = (µ1, . . . , µm) of non-negative integers, set(

n

µ

)
=

m∏
j=1

(
nj
µj

)
and

∂µ =
1

µ1! · · ·µm!

(
∂

∂x1

)µ1

· · ·
(

∂

∂xm

)µm
.

Then

∂µxn =

(
n

µ

)
xn−µ.

The following lemma is useful. It will be proved in the Exercise class.

Lemma 3.2.1. h(∂µP ) ≤ h(P ) + (degP ) log 2 where degP is the sum the partial degrees of P .

Now let us define the index.

Definition 3.2.2. For a point α = (α1, . . . , αm), the index of P at α with respect to d is
defined to be

ind(P ; d;α) := min
µ

{
µ1

d1
+ · · ·+ µm

dm
: ∂µP (α) 6= 0

}
. (3.2.1)

Lemma 3.2.3. The following properties hold true.

(i) ind(P +Q; d;α) ≥ min{ind(P ; d;α), ind(Q; d;α)};

(ii) ind(PQ; d;α) = ind(P ; d;α) + ind(Q; d;α);

(iii) ind(∂µP ; d;α) ≥ ind(P ; d;α)− µ1

d1
− · · · − µm

dm
.

Proof. For (i): Assume that ind(P +Q; d;α) is achieved at some µ = (µ1, . . . , µm), then ∂µ(P +
Q)(α) 6= 0. So ∂µP (α) + ∂µQ(α) 6= 0, and therefore either ∂µP (α) 6= 0 or ∂µQ(α) 6= 0. By
definition of the index, we then have: either

∑ µj
dj
≥ ind(P ; d;α) or

∑ µj
dj
≥ ind(Q; d;α). Thus

ind(P +Q; r;α) =
∑ µj

dj
≥ min{ind(P ; d;α), ind(Q; d;α)}.

For (ii): Assume that ind(PQ; d;α) is achieved at some µ = (µ1, . . . , µm). We have
∂µ(PQ) =

∑
µ1+µ2=µCµ1,µ2(∂µ1P )(∂µ2Q) for some positive integers Cµ1,µ2 .[2] Thus there

exists µ1 and µ2 such that µ1 + µ2 = µ, ∂µ1P (α) 6= 0 and ∂µ2Q(α) 6= 0. Thus the defi-
nition of index yields

∑
j
µ1,j

dj
≥ ind(P ; d;α) and

∑
j
µ2,j

dj
≥ ind(Q; d;α). So ind(PQ; d;α) =∑

j
µ1,j+µ2,j

dj
≥ ind(P ; d;α) + ind(Q; d;α).

[2]In fact, it can be checked that each Cµ1,µ2 is equal to 1.
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To get the other direction, let us look at the set of µ1’s such that

∂µ1P (α) 6= 0 and ind(P ; d;α) =
∑
j

µ1,j

dj
.

Consider the smallest such m-uple, ordered by the lexicographic order, which we call ν1. Simi-
larly take ν2 for Q. Set ν = ν1 + ν2. Then

∂ν(PQ)(α) = Cν1,ν2∂ν1P (α) · ∂ν2Q(α)

because all the other terms vanish! Thus ind(PQ; d;α) ≤
∑

j
νj
dj

=
∑

j
ν1,j+ν2,j

dj
= ind(P ; d;α)+

ind(Q; d;α). Hence we are done by the previous paragraph.

For (iii): Assume that ind(∂µP ; d;α) is achieved at some ν = (ν1, . . . , νm). Then ∂ν(∂µP )(α) 6=
0, and hence ∂ν+µP (α) 6= 0. So

∑
j
νj+µj
dj
≥ ind(P ; d;α). Hence ind(∂µP ; d;α) =

∑
j
νj
dj
≥

ind(P ; d;α)−
∑

j
µj
dj

.

Our purpose is to find a polynomial of large index and of small height. The result is as
follows. Set, for each t > 0,

Vm(t) := {x ∈ Rm : x1 + · · ·+ xm ≤ t, 0 ≤ xj ≤ 1},

and Vm(t) to be the volume of Vm(t) with respect to the usual Lebesgue measure on Rm.

Lemma 3.2.4. Let α ∈ R be an algebraic number, and set α = (α, . . . , α) ∈ Rm. Let r = [Q(α) :
Q]. Let t > 0 be such that rVm(t) < 1. Then, for all sufficiently large integers d1, . . . , dm, there
exists a polynomial P ∈ Q[x1, . . . , xm] of partial degrees at most d1, . . . , dm such that:

(i) ind(P ; d;α) ≥ t;

(ii) as dj →∞ for all j ∈ {1, . . . ,m}, we have

h(P ) ≤ rVm(t)

1− rVm(t)

m∑
j=1

(h(α) + log 2 + o(1))dj .

Proof. The key ingredient to prove this lemma is by applying Siegel’s Lemma (and it suffices
to apply the basic relative version, Lemma 2.1.3). Let us explain what the parameters and the
linear system from Siegel’s Lemma are in the current situation.

Write P (x) =
∑
pJxJ for the polynomial. Then any P with ind(P ; d;α) ≥ t lies in the set

of P satisfying

∂IP (α) = 0 for all
i1
d1

+ · · ·+ im
dm

< t (3.2.2)

with I = (i1, . . . , im). Notice that we may assume ik ≤ dk for each k ∈ {1, . . .m} because
otherwise the partial derivative will be identically 0. Now all the equations from (3.2.2) define
a linear system A in the coefficients pJ of P which we wish to solve in Q.

Each entry in this linear systemA is of the form
(
J
I

)
αJ−I , and thusH(A) ≤ 2d1+···+dmH(α)d1+···+dm .

The number N of unknowns is N = (d1 + 1) · · · (dm + 1). Notice that N ∼ d1 · · · dm as
dj →∞ for all j ∈ {1, . . . ,m}.

The number M of equations is M = #(Γ ∩ Vm(t)) for the lattice Γ = 1
d1
Z × · · · 1

dm
Z. We

claim that M ∼ Vm(t)d1 · · · dm as dj → ∞ for all j ∈ {1, . . . ,m}. Indeed, Vm(t)d1 · · · dm ≤ M
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because we can associate to each lattice point in Γ the parallelopiped [i1/d1, (i1 + 1)/d1]× · · · ×
[im/dm, (im + 1)/dm]. On the other hand, for each (i1/d1, . . . , im/dm) ∈ Γ ∩ Vm(t), we have

i1 + 1

d1
+ · · ·+ im + 1

dm
≤ t+

1

d1
+ · · ·+ 1

dm
and ij + 1 ≤ dj + 1.

Thus if we rescale Vm(t) by the factor 1 + max{1, t−1}(1/d1 + · · · + 1/dm), then the rescaled
domain contains all the parallelopipeds associated to the points in Γ ∩ Vm(t). In summary, we
have

Vm(t)d1 · · · dm ≤M ≤ Vm(t)

(
1 + max{1, t−1}

(
1

d1
+ · · ·+ 1

dm

))m
d1 · · · dm.

Thus M ∼ Vm(t)d1 · · · dm as dj →∞ for all j ∈ {1, . . . ,m}.
Now we are ready to apply Siegel’s Lemma. As dj → ∞ for all j ∈ {1, . . . ,m}, we have

N ∼ d1 · · · dm > rM because rVm(t) < 1. Thus by Lemma 2.1.3 and the comment below
(which relates the right hand side of the height bound to the height of the matrix by using the
Fundamental Inequality Proposition 1.2.10), there is a non-zero solution to the linear system
defined by (3.2.2), and hence a non-zero polynomial P satisfying hypothesis (i), such that (for
some constant C depending only on α)

h(P ) ≤ rVm(t)d1 · · · dm
d1 · · · dm − rVm(t)d1 · · · dm

log(Cd1 · · · dmH(A))

≤ rVm(t)

1− rVm(t)

 m∑
j=1

log dj + (h(α) + log 2)
m∑
j=1

dj + logC


as dj →∞ for all j ∈ {1, . . . ,m}. Hence we are done.

Next we give an estimate of the volume in question.

Lemma 3.2.5. If 0 ≤ ε ≤ 1/2, then

Vm

((
1

2
− ε
)
m

)
≤ e−6mε2 .

Proof. Set χ(x) =

{
1 if x < 0

0 if x ≥ 0
. Then χ(x) < e−λx for every λ > 0. Thus for each λ > 0, we have

Vm

((
1

2
− ε
)
m

)
=

∫ 1
2

− 1
2

· · ·
∫ 1

2

− 1
2

χ(x1 + · · ·+ xm +mε)dx1 · · · dxm

≤
∫ 1

2

− 1
2

· · ·
∫ 1

2

− 1
2

e−λ(mε+
∑
xj)dx1 · · · dxm

=

(∫ 1
2

− 1
2

e−λ(ε+x)dx

)m
= e−mU(λ),

where U(λ) = ελ− log sinh(λ/2)
λ/2 .[3] But sinh(u)/u = 1+u2/3!+u4/5!+ · · · ≤ 1+u2/6+(u2/6)2/2!+ · · · =

eu
2/6. So we can conclude by setting λ = 12ε.

[3]sinh(u) = eu−e−u

2
.
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3.3 Proof of Roth’s Theorem assuming zero estimates

In this section, we prove Roth’s Theorem (Theorem 3.1.4) assuming zero estimates. The result
for zero estimates which we will cite is Roth’s Lemma.

We start by restating Roth’s Theorem.

Theorem 3.3.1 (Roth’s Theorem). Let α ∈ R be an algebraic number and let ε > 0. Then
there are only finitely many rational numbers p/q (with p, q coprime and q ≥ 1) such that∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q2+ε
. (3.3.1)

We will divide the proof into several step, outlined as for Theorem 3.1.1.

3.3.0 Step 0: Choosing independent solutions.

Assume the conclusion is wrong. Then there exists α ∈ R an algebraic number with infinitely
many rational approximations p/q to α satisfying (3.3.1). Then, for any positive integer m and
any large constants L and M , we can find m such rational approximations pj/qj to α (with
qj ≥ 1) such that

log q1 > L and log qj+1 > M log qj

for each j ∈ {1, . . . ,m− 1}. Namely, we consider large solutions which satisfy a Gap Principle.
Such a sequence will be called (L,M)-independent.
Fix ε′ ∈ (0, 1/6).

3.3.1 Step 1: Construction of an auxiliary polynomial.

Let D be a large real number which we will fix later on. For each j ∈ {1, . . . ,m}, set

dj := bD/ log qjc.

In this step, we wish to construct a polynomial P (x) ∈ Z[x] = Z[x1, . . . , xm] of partial degrees
d1, . . . , dm, vanishing to a (weighted) high order at α = (α, . . . , α). More precisely, we will
apply Lemma 3.2.4[4] to construct a polynomial P of large index at α with respect to d. More
precisely, Lemma 3.2.5 implies Vm((1/2− ε′)m) ≤ e−6mε′2 . If we choose

m >
log 2[Q(α) : Q]

6ε′2
, (3.3.2)

then [Q(α) : Q]Vm(t) ≤ 1/2. Thus Lemma 3.2.4 yields a polynomial P of partial degrees at
most d1, . . . , dm such that:

(i) ind(P ; d;α) ≥ (1/2− ε′)m, or equivalently for any µ = (µ1, . . . , µm) with

µ1

d1
+ · · ·+ µm

dm
<

(
1

2
− ε′

)
m

satisfies ∂µP (α) = 0;

(ii) As dj →∞ for all j ∈ {1, . . . ,m}, we have

h(P ) ≤
m∑
j=1

(h(α) + log 2 + o(1))dj ≤ C(d1 + · · ·+ dm) (3.3.3)

with C a suitable constant depending only on α and m.
[4]Which itself is a suitable application of Siegel’s Lemma.
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3.3.2 Step 2: Non-vanishing at the rational points.

This is the most difficult step. Before Roth’s work, one could only do for m = 1 and m = 2.
Roth proved, for this step, the following lemma as a consequence of Roth’s Lemma. It is in
this step that we need the parameter M ; see (3.4.2). Notice also that all the conditions for the
parameters (m, L, M and D) are summarized in the hypotheses of this lemma.

Lemma 3.3.2. Suppose p1/q1, . . . , pm/qm are (L,M)-independent with

m > log(2[Q(α) : Q])/(6ε′2) and L ≥ (C + 4)mε′−2m−1
and M ≥ 2ε′−2m−1

.

Then for every sufficiently large D, there exists a polynomial Q ∈ Z[x1, . . . , xm] with partial
degrees at most dj = bD/ log qjc such that

(i) ind(Q; d;α) ≥
(

1
2 − 3ε′

)
m;

(ii) Q(p1/q1, . . . , pm/qm) 6= 0;

(iii) h(Q) ≤ C1mD/L for a constant C1 depending only on α and m.

In fact, this Q is a suitable derivative of the P constructed from Step 1.

3.3.3 Step 3: Lower bound (Liouville).

Since Q(p1/q1, . . . , pm/qm) 6= 0 and Q has partial degrees at most d1, . . . , dm, we have the
obvious bound (Liouville bound)

log |Q(p1/q1, . . . , pm/qm)| ≥ log q−d1
1 · · · q−dmm = −(d1 log q1 + . . .+ dm log qm).

The choice dj = bD/ log qjc implies D − log qj ≤ dj log qj ≤ D. Thus

log |Q(p1/q1, . . . , pm/qm)| ≥ −mD.

3.3.4 Step 4: Upper bound.

Consider the Taylor expansion of Q at (α, . . . , α). Since ind(Q; d;α) ≥
(

1
2 − 3ε′

)
m, we get

Q(p1/q1, . . . , pm/qm) =
∑

∂µQ(α)(p1/q1 − α)µ1 · · · (pm/qm − α)µm (3.3.4)

with µ = (µ1, . . . , µm) running over all possibilities with
∑

j µj/dj ≥ (1/2 − 3ε′)m. Then the

assumption |α− pj/qj | ≤ q−(2+ε)
j implies

log (|p1/q1 − α|µ1 · · · |pm/qm − α|µm) ≤
∑
j

µj
dj

log q
−(2+ε)dj
j

≤ (max
j

log q
−(2+ε)dj
j )

∑
j

µj
dj

≤ (2 + ε)(1/2− 3ε′)mmax
j
{−dj log qj}

= −(2 + ε)(1/2− 3ε′)mmin
j
dj log qj

≤ −(2 + ε)(1/2− 3ε′)m(D − log qm).



3.4. ZERO ESTIMATES: ROTH’S LEMMA 55

Now let us estimate log |∂µQ(α)|. We use Lemma 3.2.1 and Proposition 1.3.2 to get

h(∂µQ(α)) ≤ h(Q) + (log 2)
∑
j

dj + h(α)
∑
j

dj + (m+
∑
j

dj + 1) log 2

≤ C1
mD

L
+ (h(α) + log 4)

∑
dj + (m+ 1) log 2.

The Fundamental Inequality, Proposition 1.2.10, yields log |∂µQ(α)| ≤ h(∂µQ(α)). As dj =
bD/ log qjc ≤ D/ log qj ≤ D/ log q1 < D/L (recall that log qj ≥ log q1 > L), we have

log |∂µQ(α)| ≤ (C1 + h(α) + log 4)
mD

L
+ (m+ 1) log 2.

Notice that the number of terms in the expression of Q(p1/q1, . . . , pm/qm) from (3.3.4) is poly-
nomial in d1, . . . , dm, and hence the contribution of this number to log |Q(p1/q1, . . . , pm/qm)| is
o(d1 + · · ·+ dm) = o(mD/L). Thus

log |Q(p1/q1, . . . , pm/qm)| ≤ C ′mD
L

+ (m+ 1) log 2− (2 + ε)(
1

2
− 3ε′)m(D − log qm)

for a suitable constant C ′ depending only on α and m.

3.3.5 Step 5: Comparison of the two bounds.

Now the two bounds from Step 3 and Step 4 together imply

mD ≥ (2 + ε)

(
1

2
− 3ε′

)
m(D − log qm)− C ′mD

L
− (m+ 1) log 2.

Dividing both sides by mD, we get

1 ≥ (2 + ε)

(
1

2
− 3ε′

)(
1− log qm

D

)
− C ′

L
− (m+ 1) log 2

mD
.

Recall that qm is fixed. Now let ε′ → 0, D →∞ and L→∞. Then we get 1 ≥ 1 + ε/2. This is
a contradiction. Hence we are done.

Remark 3.3.3. In this proof, we gave an explicit bound for dj = bD/ log qjc, i.e. D − log qj ≤
dj log qj ≤ D. But in fact, for q1 ≤ · · · ≤ qm and qm fixed, we have limD→∞

dj
D/ log qj

= 1.

Hence for D large enough, dj and D/ log qj are very close to each other and in later estimates,
it suffices to use D/ log qj. We will write dj ∼D/ log qj for D large enough for this.

3.4 Zero estimates: Roth’s Lemma

In this section, we state Roth’s Lemma, use it to prove Lemma 3.3.2 (Step 2 of the proof of
Roth’s Theorem), and prove Roth’s Lemma.

Lemma 3.4.1 (Roth’s Lemma). Let P ∈ Q[x1, . . . , xm], not identically zero, of partial degrees
at most d1, . . . , dm and dj ≥ 1. Let ξ = (ξ1, . . . , ξm) ∈ Qm

and let 0 < σ ≤ 1
2 . Assume that

(i) the weights d1, . . . , dm are rapidly decreasing, i.e.

dj+1/dj ≤ σ;
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(ii) the point (ξ1, . . . , ξm) has components with large height, i.e.

min
j
djh(ξj) ≥ σ−1(h(P ) + 4md1).

Then we have
ind(P ; d; ξ) ≤ 2mσ1/2m−1

. (3.4.1)

3.4.1 Proof of Lemma 3.3.2 by Roth’s Lemma

We will apply Roth’s Lemma to the polynomial P constructed in §3.3.1 (Step 1 of the proof of
Roth’s Theorem) and ξ = (p1/q1, . . . , pm/qm). Let us explain the parameters.

Fix σ = ε′2
m−1 ∈ (0, 1/2] (recall our choice ε′ ∈ (0, 1/6) in Step 0 of the proof of Roth’s

Theorem).
Recall our choices dj = bD/ log qjc ∼ D/ log qj for D large enough and log qj+1 ≥ M log qj .

Thus hypothesis (i) of Roth’s Lemma is verified if we set

M ≥ 2σ−1 and D large enough. (3.4.2)

Next, using djh(pj/qj) ≥ dj log qj ∼ D, dm ≤ · · · ≤ d1 ≤ D/ log q1 < D/L and the height bound
on P given by (3.3.3), we see that hypothesis (ii) of Roth’s Lemma is verified if we set

D ≥ σ−1(C + 4)m
D

L

with C the constant depending only on α and m from (3.3.3).
Now we choose M and D as in (3.4.2) and L ≥ σ−1(C + 4)m. Then we can apply Roth’s

Lemma to P and ξ = (p1/q1, . . . , pm/qm) to get ind(P ; d; ξ) ≤ 2mσ1/2m−1
= 2mε′. So there

exists µ such that ∂µP (ξ) 6= 0 and
∑m

j=1
µj
dj
≤ 2mε′.

We claim that Q := ∂µP is what we desire. Let us check the conclusions for Lemma 3.3.2.
Part (ii) is done. For part (i), it suffices to apply Lemma 3.2.3.(iii), the construction ind(P ; d;α) ≥
(1/2− ε′)m for P and

∑m
j=1

µj
dj
≤ 2mε′. For (iii), we use Lemma 3.2.1 and the height bound on

P (3.3.3) to get

h(Q) = h(∂µP ) ≤ h(P ) + (log 2)
∑

dj ≤ C1

∑
dj

where C depends only on α and m, when all dj → ∞. Again by using dj log qj ∼ D and
log qj ≥ log q1 > L, we can conclude.

3.4.2 Proof of Roth’s Lemma

We prove Roth’s Lemma by induction on m. Notice that for the base step m = 1, we in fact
prove a stronger bound.

For the base step m = 1, we will prove the better bound

ind(P ; d1; ξ1) ≤ σ. (3.4.3)

By definition of the index, we have that (x1 − ξ1)ind(P ;d1;ξ1)d1 divides P . Thus we can apply
Theorem 1.3.4 to get

h(P ) ≥ −d1 log 2 + ind(P ; d1; ξ1)d1 · h(x1 − ξ1) ≥ −d1 log 2 + ind(P ; d1; ξ1)d1 · h(ξ1).

Thus
ind(P ; d1; ξ1) ≤ (h(P ) + d1 log 2)/d1h(ξ1) ≤ σ.
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So we are done for the base step. Notice that hypothesis (ii) for m = 1 can be weakened to be
d1h(ξ1) ≥ σ−1(h(P ) + log 2 · d1).

Now we do the induction step. Assume that Roth’s Lemma is proved for 1, . . . ,m − 1. We
wish to prove it for m.

We will use the Wronskian criterion for linear independence.

Proposition 3.4.2. Let ϕ1, . . . , ϕn be polynomials in Q[x1, . . . , xm]. Then ϕ1, . . . , ϕn are lin-
early independent over Q if and only if some generalized Wronskian

Wµ1,...,µn(x1, . . . , xm) := det


∂µ1ϕ1 ∂µ1ϕ2 · · · ∂µ1ϕn
∂µ2ϕ1 ∂µ2ϕ2 · · · ∂µ2ϕn
· · · · · ·

∂µnϕ1 ∂µnϕ2 · · · ∂µnϕn

 ,

with |µi| = µ
(i)
1 + µ

(i)
2 + · · ·+ µ

(i)
m ≤ i− 1, is not identically zero.

We will finish the proof of Roth’s Lemma assuming Proposition 3.4.2. To perform the
splitting of the Wronskian, we write the polynomial P ∈ Q[x1, . . . , xm] in the form

P =
s∑
j=0

fj(x1, . . . , xm−1)gj(xm)

with s ≤ dm and where the fj ’s (similarly the gj ’s) are linearly independent polynomials over
Q.

Set
U(x1, . . . , xm1) := det(∂µifj)i,j=0,...,s

with µi = (µ
(i)
1 , µ

(i)
2 , . . . , µ

(i)
m−1) such that |µi| ≤ s ≤ dm, and

V (xm) := det(∂νgj)ν,j=0,...,s.

By Proposition 3.4.2, we may choose such U and V that they are both not identically 0. Set

W (x1, . . . , xm) := det(∂µi,νP ) = U(x1, . . . , xm1)V (xm).

We wish to apply the induction hypothesis to U and V . Thus we need to analyse the their
degrees and heights.

For degrees, it is easy to see that the partial degrees of U are at most (s+1)d1, . . . , (s+1)dm−1,
and deg V ≤ (s+ 1)dm.

For heights, Lemma 1.3.3 yields h(W ) = h(U) + h(V ). We claim that

h(W ) ≤ (s+ 1)(h(P ) + 4d1). (3.4.4)

Indeed, by expansion, the determinant W is a sum of (s + 1)! terms, each of which is the
product of s + 1 polynomials of the form ∂µi,νP for some µi and ν. Thus by the proof of
Proposition 1.3.12, Theorem 1.3.4 and Lemma 3.2.1, we have[5]

h(W ) ≤ (s+ 1) (h(P ) + (d1 + . . .+ dm) log 2) + (d1 + . . .+ dm) log 2 + log(s+ 1)!.

[5]One cannot directly apply Proposition 1.3.12 here. Instead, one goes into its proof, which is essentially the
proof of Proposition 1.2.8. Notice that all the ‖x(k)

j ‖v’s at the end of that proof has the same upper bound in
terms of P (because they are all derivatives of P ), so in the long inequalities at the of that proof there is not need
to take the sum

∑
1≤k≤r.
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Since dj+1/dj ≤ σ ≤ 1/2 by hypothesis (i), we have d1 + . . . + dm ≤ 2d1. On the other hand,
log(s+ 1)! ≤ (s+ 1) log(s+ 1) ≤ (s+ 1) log(dm + 1) ≤ (s+ 1)dm ≤ (s+ 1)d1/2. Hence we can
establish (3.4.4).

From the previous paragraph, we can conclude h(U) ≤ (s + 1)(h(P ) + 4d1) and h(V ) ≤
(s + 1)(h(P ) + 4d1), because both heights are non-negative by definition. Now hypothesis (ii)
of Roth’s Lemma implies

min
j

(s+1)djh(ξj) ≥ σ−1(h(U)+4(m−1)(s+1)d1) and (s+1)dmh(ξm) ≥ σ−1(h(V )+4(s+1)dm).

So we can apply the induction hypothesis to U , ((s+ 1)d1, . . . , (s+ 1)dm−1) and (ξ1, . . . , ξm−1)
(resp. to V , (s+ 1)dm and ξm) to get

ind(U ; (d1, . . . , dm−1); (ξ1, . . . , ξm−1)) ≤ 2(m−1)(s+1)σ1/2m−2

and ind(V ; dm; ξm) ≤ (s+1)σ. (3.4.5)

Here for V , we have used the better bound obtained in the base step m = 1. Therefore

ind(W ;d; ξ) = ind(U ; (d1, . . . , dm−1); (ξ1, . . . , ξm−1)) + ind(V ; dm; ξm) ≤ 2(m− 1)(s+ 1)σ1/2m−2
+ (s+ 1)σ. (3.4.6)

It remains to relate the index of P with the index of W . To ease notation, we use ind(·) to
denote ind(·; d; ξ). For each µi and ν, Lemma 3.2.3.(iii) yields

ind(∂µi,νP ) ≥ ind(P )−
m−1∑
j=1

µ
(i)
j

dj
− ν

dm

≥ ind(P )− dm
dm−1

− ν

dm
since µ

(i)
1 + . . .+ µ

(i)
m−1 ≤ i− 1 ≤ s ≤ dm

≥ ind(P )− ν

dm
− σ.

This bound can be automatically improved since the index is always non-negative. So

ind(∂µi,νP ) ≥ max

{
ind(P )− ν

dm
, 0

}
− σ.

Again, we expand the determinant W . We can write W explicitly in the following way: W =∑
π

∏s
i=0 ∂µi,π(i)P with π running over all permutation of the set {0, . . . , s}. Thus we can apply

parts (i) and (ii) of Lemma 3.2.3 to get ind(W ) ≥ minπ
(∑s

i=0 ind(∂µi,π(i)P )
)
. So we have

ind(W ) ≥ min
π

s∑
i=0

(
max

{
ind(P )− π(i)

dm
, 0

}
− σ

)

=

s∑
i=0

(
max

{
ind(P )− i

dm
, 0

}
− σ

)
≥ (s+ 1) min

{
1

2
ind(P ),

1

2
ind(P )2

}
− (s+ 1)σ

where the last step comes from s ≤ dm and the elementary inequality

s∑
i=0

max

{
t− i

s
, 0

}
≥ (s+ 1) min

{
1

2
t,

1

2
t2
}
.

Combined with (3.4.6), this lower bound of ind(W ) yields

min{ind(P ), ind(P )2} ≤ 4(m− 1)σ1/2m−2
+ 2σ.
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But ind(P ) ≤ m by definition. So we have

ind(P )2 ≤ m
(

4(m− 1)σ1/2m−2
+ 2σ

)
≤ 4m2σ1/2m−2

.

Hence we are done.

3.4.3 Proof of Proposition 3.4.2

We start with ⇐. Assume ϕ1, . . . , ϕn are linearly dependent over Q. Then all generalized
Wronskians vanish. Indeed, we have c1ϕ1 + · · · + cnϕn = 0 for some c1, . . . , cn ∈ Q not all
zero. Applying the operators ∂µi to this relation, we obtain a linear system in the coefficients
cj and its determinant mush vanish. This determinant is precisely the generalized Wronskian
Wµ1,...,µn(x1, . . . , xm).

Let us prove ⇒. Assume ϕ1, . . . , ϕn are linearly independent over Q
We assume the following lemma, which is a particular case of the proposition but itself is a

classical result.

Lemma 3.4.3. Let f1, . . . , fn ∈ Q[t] be n polynomials in 1 variable. Then f1, . . . , fn are linearly
independent over Q if and only if the Wronskian

W (t) := det

((
d

dt

)i−1

fj

)
1≤i,j≤n

is not identically zero.

We will reduce Proposition 3.4.2 to the situation of this lemma by using the Kronecker
substitution which we have seen in the proof of Gauß’s Lemma.

Fix an integer d which is large than the partial degrees of the ϕj ’s. Set xj := td
j−1

for
j ∈ {1, . . . , n}. Then ϕ1, . . . , ϕn are linearly independent over Q if and only if the polynomials

Φj(t) := ϕj(t, t
d, . . . , td

m−1
)

are linearly independent over Q. Thus the lemma above implies that the polynomial

W (t) = det

((
d

dt

)i−1

Φj

)
1≤i,j≤n

is not identically 0. But(
d

dt

)i−1

Φj =
∑
|µ|≤i−1

aµ,i(t; d,m)∂µϕj(t, t
d, . . . , td

m−1
)

for some universal polynomials aµ,i(t; d,m) ∈ Q[t]. Thus W (t) is a linear combination of gener-

alized Wronskians Wµ1,...,µn(t, td, . . . , td
m−1

) with |µi| ≤ i − 1. Since W (t) is not identically 0,
some generalized Wronskian is not identically zero. Hence we are done.

Proof of Lemma 3.4.3. The direction ⇐ is easy. Let us prove the direction ⇒ by induction on n. The
base step n = 1 is clearly true.

Assume ⇒ is proved for 1, . . . , n − 1. For n and the polynomials f1, . . . , fn, assume that W (t) is
identically 0. For each j ∈ {1, . . . , n}, set Wj(t) to be the Wronskian of the n−1 polynomials by omitting
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fj . Then by expanding the determinant W (t) by the last row, we get W (t) =
∑n
j=1Wj

(
d
dt

)n−1
fj =∑n

j=1Wjf
(n−1)
j . Here we change the notation and denote by f

(i)
j the i-th derivative of fj . Thus

W1f
(n−1)
1 + · · ·+Wnf

(n−1)
n ≡ 0.

We claim that W1f1 + · · ·+Wnfn ≡ 0. Indeed, the left hand side is the determinant of the n× n-matrix
f1 f2 · · · fn
· · · · · ·

f
(n−2)
1 f

(n−2)
2 · · · f

(n−2)
n

f1 f2 · · · fn

, by the expansion along the last row. Similarly we have
∑
jWjf

(i)
j ≡ 0

for each i ∈ {1, . . . , n− 2}. Thus we obtain a system of n equalities of polynomials

W1f1 + · · ·+Wnfn ≡ 0

W1f
′
1 + · · ·+Wnf

′
n ≡ 0

· · ··

W1f
(n−1)
1 + · · ·+Wnf

(n−1)
n ≡ 0

Differentiating each of the first n−1 equality and subtracting the next following one, we get the following
new system

W ′1f1 + · · ·+W ′nfn ≡ 0

W ′1f
′
1 + · · ·+W ′nf

′
n ≡ 0

· · ··

W ′1f
(n−1)
1 + · · ·+W ′nf

(n−1)
n ≡ 0

Next multiplying the i-th equality (i = 1, 2, . . . , n − 1) by the minor of Wn corresponding to f
(i−1)
1 and

adding the equalities thus obtained together, we get

W ′1Wn −W1W
′
n ≡ 0.

If W1 ≡ 0, then f2, . . . , fn are linearly dependent over Q by induction hypothesis, and so are f1, . . . , fn.
Suppose W1 6≡ 0. Then we can divide both sides by W 2

1 (notice that W1 is a polynomial and hence has
only finitely many zeros) and get

d

dt

(
Wn

W1

)
≡ 0.

Thus Wn ≡ c1W1 for some constant c1 ∈ Q. Similarly we have Wn ≡ cjWj for each j ∈ {2, . . . , n− 1} or
the conclusion already holds true. Thus either the conclusion holds true, or

Wn(c1f1 + . . .+ cn−1fn−1 + fn) ≡ 0.

Again either Wn ≡ 0 (and hence the conclusion holds true), or c1f1 + . . .+ cn−1fn−1 + fn ≡ 0 (and hence
the conclusion holds true)[6]. So in either case we are done for the induction step.

3.5 An alternative approach to the zero estimates: Dyson’s
Lemma

In this section, we explain an alternative approach to the zero estimates.
In the proof of Roth’s Theorem presented in previous sections of this chapter, we used Roth’s

Lemma (Lemma 3.4.1) to do the zero estimates and found a polynomial P having large index at
α = (α, . . . , α) but small index at (p1/q1, . . . , pm/qm). Roth’s Lemma is arithmetic in nature:

[6]Notice that the zeros of Wn are isolated if Wn 6≡ 0.
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the polynomial P has coefficients in Q, we are interested in its order of vanishing at an algebraic
point, and a hypothesis (hypothesis (ii)) on the given data is about the heights.

An alternative approach to establish the small index of P (p1/q1, . . . , pm/qm), developed by
Esnault–Viehweg building upon previous work of Dyson, Bombieri and Viola, is the so-called
Dyson’s Lemma. It is a geometric approach (and hence works over any algebraically closed
field of characteristic 0) and the philosophy is as follows. Suppose that whichever P we have
constructed with large index at α also has large index at (p1/q1, . . . , pm/qm). Then certain linear
conditions on the space of all polynomials of partial degree d1, . . . , dm fail to be independent.
Thus in order to get a contradiction, it suffices to establish this independence.

To state Dyson’s Lemma, recall the notation Vm(t) := {x ∈ Rm : x1 + · · · + xm ≤ t, 0 ≤
xj ≤ 1} and Vm(t) the volume of Vm(t) with respect to the usual Lebesgue measure on Rm.
We set Vm(t) = 0 for t < 0. The arithmetic meaning of Vm(t) was explained in the proof of
Lemma 3.2.4: In the linear system related to constructing a polynomial of index ≥ t at a given
point (with respect to the partial degrees d1, . . . , dm), d1 · · · dmVm(t) is asymptotically the number
of equations.

Theorem 3.5.1 (Dyson’s Lemma). Let d = (d1, . . . , dm) be such that d1 ≥ d2 ≥ · · · dm ≥ 1 are
positive integers.

Let ζ1 = (ζ
(1)
1 , . . . , ζ

(1)
m ), . . . , ζr+1 = (ζ

(r+1)
1 , . . . , ζ

(r+1)
m ) be r + 1 points in Cm such that

ζ
(i)
k 6= ζ

(j)
k for all k ∈ {1, . . . ,m} and all i 6= j.[7]

Let P ∈ C[x1, . . . , xm] of partial degrees at most d1, . . . , dm, and denote by ti := ind(P ; d; ζi)
for all i ∈ {1, . . . , r + 1}. Then we have

r+1∑
i=1

Vm(ti) ≤
m∏
j=1

1 + (r′ − 2)
m∑

l=j+1

dl
dj

 (3.5.1)

where r′ := max{r + 1, 2}.

The field C in the statement can be replaced by any algebraically closed field of characteristic
0.

We will not prove Theorem 3.5.1, but only see how Theorem 3.5.1 can be used to prove
Roth’s Theorem.

We need the following technical lemma.

Lemma 3.5.2. Let r ≥ 2 be an integer and let ε′ > 0. Then there exists an integer m0 =
m0(r, ε′) ≥ 2 with the following property. For all m ≥ m0, there exist a real number τ > 1 such
that

rVm(τ) < 1 < rVm(τ) + Vm(1) and (2 + ε′)(τ − 1) > m. (3.5.2)

Proof. We prove the lemma by taking τ such that

rVm(τ) = 1− 1

2m!
.

Indeed, such a τ exists, and the first inequality in (3.5.2) holds true because Vm(1) = 1/m!.
Let us prove (2 + ε′)(τ − 1) > m. We start by trying to solve the inequality√

log r − log
(
1− 1

2m!

)
6m

+
1

m
<

1

2
− 1

2 + ε′
.

[7]Namely, if we look at the projection to the k-th component, then we still get r + 1 different points in C.
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Since the left hand side tends to 0 as m → ∞, there exists an integer m0 ≥ 2 such that this
inequality holds true for all m ≥ m0. Let us show that (2+ε′)(τ−1) > m for all these m. Recall
Vm((1/2−η)m) ≤ e−6mη2

by Lemma 3.2.5, for all 0 ≤ η ≤ 1/2. Take η such that (1/2−η)m = τ .
Then we have

η ≤

√
log r − log

(
1− 1

2m!

)
6m

<
1

2
− 1

2 + ε′
− 1

m
.

So
τ − 1

m
=

1

2
− η − 1

m
>

1

2 + ε′
.

This yields (2 + ε′)(τ − 1) > m. We are done.

Now let us sketch the proof of Roth’s Theorem by using Dyson’s Lemma instead of Roth’s
Lemma.

Proof of Theorem 3.3.1. Let α ∈ R and ε > 0 be as in Roth’s Theorem. Assume that there
are infinitely rational approximations. Then for each m, L and M , we can find rational ap-

proximations pj/qj (j ∈ {1, . . . ,m} and qj ≥ 1), i.e. |α − pj/qj | ≤ q
−(2+ε)
j , such that they are

(L,M)-independent, i.e. log q1 > L and log qj+1 > M log qj for each j. This is the same as
Step 0.

Now let us do Step 1, i.e. construct an auxiliary polynomial P of large index at α and of
small height.

Set r = [Q(α) : Q]. Write α1 = α, α2, . . . , αr for the Galois conjugates of α.

Let ε′ > 0, m and τ be from Lemma 3.5.2. Then

τ − 1 >
m

2 + ε′
.

Take another parameter D, and set dj = bD/ log qjc for each j.

By Lemma 3.2.4 and the choice that rVm(τ) < 1, there exists a polynomial P ∈ Z[x1, . . . , xm]
of large index at α and of small height. More precisely,

(i) ind(P ; d;α) ≥ τ ;

(ii) As dj →∞ for all j ∈ {1, . . . ,m}, we have

h(P ) ≤ C · 2m!(d1 + · · ·+ dm) < C · 2m!
mD

L
(3.5.3)

with C a suitable constant depending only on α and m.

Condition (i) is equivalent to: For each µ = (µ1, . . . , µm) with
∑ µj

dj
< τ , we have ∂µP (α) =

0. Since P has integer coefficients, applying the Galois action yields ∂µP (αj) = 0 for each
j ∈ {1, . . . , r} and each such µ, where αj = (αj , . . . , αj). Hence ind(P ; d;αj) ≥ τ for all
j ∈ {1, . . . , r}.

Now we use Dyson’s Lemma to accomplish Step 2 (non-vanishing at the rational point).

Choose the parameter M in the following way: by Lemma 3.5.2, we can find an M � 1 such
that

rVm(τ) + Vm(1) >

m∏
j=1

1 + (r − 1)

m∑
l=j+1

1

M l−j

 . (3.5.4)
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Since log qj+1 > M log qj for all j and dj ∼ D/ log qj for D large enough, the inequality above
can be translated into (for sufficiently large D)

rVm(τ) + Vm(1) >
m∏
j=1

1 + (r − 1)
m∑

l=j+1

dl
dj

 . (3.5.5)

Apply Dyson’s Lemma (Theorem 3.5.1) to the points α1, . . . ,αr, ξ := (p1/q1, . . . , pm/qm).
Then we get

rVm(τ) + Vm(ind(P ; d; ξ)) ≤
m∏
j=1

1 + (r − 1)
m∑

l=j+1

dl
dj

 . (3.5.6)

Comparing (3.5.5) and (3.5.6), we get

ind(P ; d; ξ) < 1.

Take µ be such that ∂µP (ξ) 6= 0 and that
∑ µj

dj
= ind(P ; d; ξ) < 1. Set Q = ∂µP . Then

(i) ind(Q; d;α) ≥ ind(P ; d;α)−
∑ µj

dj
> τ − 1 > m

2+ε′ ;

(ii) Q(p1/q1, . . . , pm/qm) 6= 0;

(iii) h(Q) ≤ C ′ · 2m!mDL .

Here (i) uses Lemma 3.2.3.(iii), and (iii) uses Lemma 3.2.1.
Then one repeats the argument as in Step 3, 4 and 5 of §3.3 and eventually get

1 ≥ 2 + ε

2 + ε′
− C ′ · 2m!

L
− (m+ 1) log 2

mD
.

This gives a contradiction by letting ε′ → 0, L→∞ and D →∞.
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Chapter 4

Abelian Varieties

4.1 Algebraic curves

The goal of this section is to gather some results for algebraic curves. Below, by k we always
mean an algebraic closed field of characteristic 0. Typical examples are k = C or k = Q.

For simplicity, by a curve, we always mean an irreducible projective variety of dimension 1
defined over k.

4.1.1 Basic definitions

Definition 4.1.1. Let V ⊆ An be a variety, P ∈ V , and assume I(V ) = (f1, . . . , fm). Then the
rank of the m× n matrix

(∂fi/∂Xj(P ))1≤i≤m,1≤j≤n

is constant outside a proper Zariski closed subset of V . The dimension of V , denoted by
dimV , is defined to be n minus this rank.

We say that V is non-singular (or smooth) at P if the rank of the matrix above evaluated
at P is n− dimV .

This definition is local. If V ⊆ Pn and P ∈ V , then to define the smoothness of V at P we
take any affine chart in which P lies. We also say that V is non-singular (or smooth) if V is
smooth at every point.

Definition-Proposition 4.1.2. Let C be a curve and P ∈ C a smooth point. Then OC,P is a
discrete valuation ring.

Denote by mP the maximal ideal of OC,P . The (normalized) valuation on OC,P is given
by

ordP : OC,P → {0, 1, 2, . . .} ∪ {∞}
f 7→ max{d ∈ Z : f ∈ md

P }.

Using ordP (f/g) = ordP (f)−ordP (g), we extend this function ordP to k(C) (the field of rational
functions on C)

ordP : k(C)→ Z ∪ {∞}. (4.1.1)

A uniformizer for C at P is a function t ∈ k(C) with ordP (t) = 1, i.e. a generator of mP .

Example 4.1.3. Suppose that K = C and f ∈ k(C) is a meromorphic function on C. Then
ordP (f) = 0 if and only if P is neither a zero nor a pole of f . On the other hand, if P is a zero
of f , then ordP (f) > 0; if P is a pole of f , then ordP (f) < 0.

65
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More concretely, consider the curve C ⊆ P2 whose intersection with A2 is

y2 = x3 − x = x(x+ 1)(x− 1).

Let P = (0, 0). Then C is smooth at P . It is not hard to see that mP is generated by x, y and
m2
P is generated by x2, xy, y2. Thus x = x3 − y2 ≡ 0 (mod m2

P ).[1] One can check for example

ordP (y) = 1, ordP (x) = 2, ordP (2y2 − x) = 2.

4.1.2 Divisors

Definition 4.1.4. A divisor D on a curve C is a formal sum

D =
∑
P∈C

nP [P ]

with nP ∈ Z and nP = 0 for all but finitely many P ∈ C. The degree of D is defined to be
degD :=

∑
P∈C nP .

The support of D is {P ∈ C : nP 6= 0}.
The set of all divisors on C is denoted by Div(C); it is a free abelian group (which is generated

by the points of C). We will call it the divisor group of C.

A particular type of divisors on C is constructed in the following way. Assume C is smooth
and let f ∈ k(C)∗. Then we can associated with f a divisor

div(f) :=
∑
P∈C

ordP (f)[P ].

Proposition 4.1.5. Let C be a smooth curve and let f ∈ k(C)∗. Then deg div(f) = 0. More-
over, div(f) = 0 if and only if f ∈ k∗.

Definition 4.1.6. A divisor D ∈ Div(C) is principal if it equals div(f) for some f ∈ k(C)∗.
Two divisors D1, D2 are linearly equivalent, denoted D1 ∼ D2, if D1 −D2 is a principal

divisor.

In particular, linearly equivalent divisors have the same degree. We define the divisor class
group of C to be Cl(C) := Div(C)/ ∼.

Example 4.1.7. Consider the curve in C ⊆ P2 whose intersection with A2 is

y2 = x3 − x = x(x+ 1)(x− 1).

One can check that C is smooth and it has a single point at infinity, which we denote by ∞. Set
P1 = (0, 0), P2 = (1, 0) and P3 = (−1, 0). Then (see the end of Example 4.1.3)

div(x) = 2[P1]− 2[∞] and div(Y ) = [P1] + [P2] + [P3]− 3[∞].

A partial order on Div(C) can be put as follows.

Definition 4.1.8. A divisor D =
∑
nP [P ] ∈ Div(C) is effective, denoted by D ≥ 0, if nP ≥ 0

for every P ∈ C.
If D1, D2 ∈ Div(C), then we write D1 ≥ D2 if D1 −D2 ≥ 0.

[1]In order words, mP /m
2
P is generated by y.



4.1. ALGEBRAIC CURVES 67

Remark 4.1.9. Divisorial inequalities are a useful tool for describing poles and zeros of func-
tions. Let us see the following example.

Let f ∈ k(C)∗ be a function which has a pole of order at most n at a point P ∈ C and is
regular everywhere else. This requirement on f is equivalent to div(f) ≥ −n[P ].

If furthermore we require f to have a zero at a point Q ∈ C, then the requirement becomes
div(f) ≥ [Q]− n[P ].

Definition-Proposition 4.1.10. Let D ∈ Div(C). We associate to D the set of functions

L(D) := {f ∈ k(C)∗ : div(f) ≥ −D} ∪ {0}.

Then L(D) is a finite-dimensional k-vector space. Denote its dimension by

`(D) := dimk L(D). (4.1.2)

Lemma 4.1.11. Let D ∈ Div(C).

(i) If deg(D) < 0, then `(D) = 0.

(ii) `(0) = 1.

(iii) If D′ ∈ Div(C) is linearly equivalent to D, then L(D) ' L(D′) and so `(D) = `(D′).

Proof. For (i): Suppose there exists 0 6= f ∈ L(D). Then 0 = deg div(f) ≥ deg(−D) = −degD.
Hence degD ≥ 0.

For (ii): For each f ∈ k(C)∗, we have f ∈ L(0) ⇔ div(f) ≥ 0. So f ∈ L(0) if and only if f
is a regular function on C. But C is projective, so f must be a constant. So dimk L(0) = 1.

For (iii): Suppose D′ = D+ div(g) for g ∈ k(C)∗. Then the map L(D′)→ L(D), f 7→ fg, is
an isomorphism.

4.1.3 Differentials and canonical divisor

Definition 4.1.12. The space of (meromorphic) differential forms on C, denoted by
ΩC , is the k(C)-vector space generated by symbols of the form dx for x ∈ k(C) satisfying the
following properties:

(i) d(x+ y) = dx+ dy for all x, y ∈ k(C);

(ii) d(xy) = xdy + ydx for all x, y ∈ k(C);

(ii) da = 0 for all a ∈ K.

The following proposition is a first step to understand ΩC .

Proposition 4.1.13. dimk(C) ΩC = 1.

Like for functions in k(C)∗, one can associate to each ω ∈ ΩC a divisor as guaranteed by the
following proposition.

Proposition 4.1.14. Let P ∈ C and let t ∈ k(C) be such that ordP (t) = 1.

(i) For each ω ∈ ΩC , there exists a unique function g ∈ k(C), depending on ω and t, such
that ω = gdt. We denote g by ω/dt.

(ii) Assume f ∈ k(C) is regular at P , i.e. ordP (f) ≥ 0. Then df/dt is also regular at P .
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(iii) The quantity ordP (ω/dt) depends only on ω and P ; it is independent of the choice of t.
Thus we can and will denote this quantity by ordP (ω).

(iv) Assume x, f ∈ k(C) with x(P ) = 0. Then ordP (fdx) = ordP (f) + ordP (x)− 1.

(v) For all but finitely many P ∈ C, we have ordP (ω) = 0.

Thus we can make the following construction of divisors.

Definition 4.1.15. Let ω ∈ ΩC . The divisor associated with ω is

div(ω) :=
∑
P∈C

ordP (ω)[P ] ∈ Div(C).

Any such divisor, with ω 6= 0, is called a canonical divisor.

The terminology “canonical divisor” is reasonable: Since dimk(C) ΩC = 1, each two canonical
divisors are equivalent to each other.

Example 4.1.16. Take the example from Example 4.1.7. Using dx = d(x− 1) = d(x+ 1) and
dx = −x2d(1/x), we get

div(dx) = [P1] + [P2] + [P3]− 3[∞].

This is a canonical divisor of C. Notice that div(dx/y) = 0. So 0 is also a canonical divisor for
C.

We finish this subsection by the following definition.

Definition 4.1.17. A differential ω ∈ ΩC is said to be regular (or holomorphic) if div(ω) ≥ 0,
i.e. ordP (ω) ≥ 0 at all P ∈ C. By convention we say that 0 is a regular differential.

Example 4.1.18. Let t be a coordinate function on P1. It can be shown (Exercise class) that
div(dt) = −2[∞]. Thus degKP1 = −2 < 0 and hence P1 has no regular differentials.

4.1.4 Genus and the Riemann–Roch Theorem

In this subsection, we assume C to be smooth.
Let KC ∈ Div(C) be a canonical divisor on C, i.e. KC = div(ω) for some ω ∈ ΩC . We have

the following important invariant of C

Definition-Proposition 4.1.19. The dimension `(KC) is independent of the choice of KC .
This dimension is called the genus of the curve and is denoted by g(C) (or simply g).

Proof. To see that `(KC) is independent of the choice of KC , it suffices to prove the following
isomorphism of k-vector spaces:

L(KC) ' {ω′ ∈ ΩC : ω′ is regular}. (4.1.3)

Let 0 6= f ∈ L(KC), then div(f) ≥ −div(ω), and hence div(fω) ≥ 0. Therefore fω ∈ ΩC is
regular. We have thus established a map L(KC) → {ω′ ∈ ΩC : ω′ is regular} ∪ {0}, which is
easily seen to be injective.

Let us prove the surjectivity. Since dimk(C) ΩC = 1, each differential ω′ on C has the form
fω for some f ∈ k(C). If ω′ is regular, then div(fω) ≥ 0 and hence f ∈ L(KC). Hence ω′ is the
image of f ∈ L(KC) under the map defined above. Thus we have established the surjectivity.



4.1. ALGEBRAIC CURVES 69

Example 4.1.20. By Example 4.1.18, the curve P1 has genus 0.

Example 4.1.21. Take the example from Example 4.1.7 and Example 4.1.16. As 0 is a canon-
ical divisor, we have g(C) = `(0) = 1 by Lemma 4.1.11.(ii).

Theorem 4.1.22 (Riemann–Roch for curves). For each D ∈ Div(C), we have

`(D)− `(KC −D) = degD − g + 1.

As a corollary of the Riemann–Roch Theorem (applied to D = KC) and Lemma 4.1.11.(ii),
we have:

Corollary 4.1.23. degKC = 2g − 2.

When the field k = C, a more intuitive way to see the genus g is as follows. In this case, the
smooth curve C is a Riemann surface, and g equals 1

2rankZH1(C,Z).

4.1.5 A result of Weil

Let C be a curve of genus g ≥ 1.

Lemma 4.1.24 (Weil). Let 1 ≤ d ≤ g be an integer. There exists a Zariski open dense subset
U ⊆ Cd such that `(

∑d
j=1[Pj ]) = 1 for all (P1, . . . , Pd) ∈ U . Equivalently, L(

∑d
j=1[Pj ]) = k for

all (P1, . . . , Pd) ∈ U .

Proof. We start with the following preparation.
Claim 1: Let D be a divisor on C. Then `(D − [P ]) ≥ `(D)− 1 for all P ∈ C.

Indeed, it is easy to check that L(D − [P ]) ⊆ L(D). Assume f1, f2 ∈ L(D) \ L(D − [P ]).
Then ordP (f1) = ordP (f2) which we assume to be m. Take a uniformizer t at P (i.e. a function
t ∈ k(C)∗ such that ordP (t) = 1). Then locally at P we have f1 = a1t

m + higher terms and
f2 = a2t

m + higher terms for some a1, a2 ∈ k∗. Thus ordP (f1 − (a1/a2)f2) ≥ m+ 1. By looking
at all the points in supp(D), we then find that f1 − (a1/a2)f2 ∈ L(D − [P ]). Thus we can
conclude.
Claim 2: Let D be a divisor on C such that `(D) ≥ 1. Then `(D − [P ]) = `(D) − 1 for all P
in a Zariski open dense subset of C.

Indeed, if we fix a function 0 6= f ∈ L(D), then

`(D − [P ]) = `(D)⇒ L(D − [P ]) = L(D) since L(D − [P ]) ⊆ L(D)

⇒ f ∈ L(D − [P ])

⇒ div(f) +D − [P ] ≥ 0

⇒ P ∈ supp(D) or f(P ) = 0.

Thus {P ∈ C : `(D − [P ]) = `(D)} is contained in supp(D)
⋃
V (f) which is a finite set (since

f 6= 0). So we can conclude by Claim 1.

Claim 3: Let D be a divisor on C. For each d ∈ {1, . . . , g}, there exists a Zariski open dense
subset U of Cd such that `(D −

∑d
j=1[Pj ]) = `(D)− d for all (P1, . . . , Pd) ∈ U .

Indeed, let U ′ = C \ supp(D). Consider all points (P1, . . . , Pd) ∈ (U ′)d with the Pj ’s two-by-
two distinct. We have the following exact sequence

0→ L

D − d∑
j=1

[Pj ]

→ L(D)→ kd
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where the second map is the natural inclusion and the last map is the evaluation f 7→ (f(P1), . . . , f(Pd)).
Take a basis {f1, . . . , fn} of L(D). We have `(D−

∑d
j=1[Pj ]) = `(D)− d if and only if this eval-

uation is surjective, and hence if and only if det(fi(Pj))i∈I, 1≤.j≤d 6= 0 for some I ⊆ {1, . . . , n} of
cardinality d. This defines a Zariski open subset U of (U ′)d, which is furthermore a Zariski open
subset of Cd. Moreover U is non-empty by applying Claim 2 successively. Hence U is Zariski
open dense, and we have established this claim.

Applying Claim 3 to the divisor KC , we get a Zariski open dense subset U of Cd such
that `(KC −

∑d
j=1[Pj ]) = `(KC) − d = g − d for all (P1, . . . , Pd) ∈ U , and Riemann–Roch for

curves (Theorem 4.1.22) implies `(
∑d

j=1[Pj ]) = `(KC −
∑d

j=1[Pj ]) + d − g + 1 = 1 for all such
(P1, . . . , Pd). Now we are done.

4.2 Curves and Jacobians

In this section, all varieties are defined over C unless otherwise stated.

By a curve, we mean an irreducible smooth projective curve.

Let C be a curve of genus g. It is a Riemann surface of genus g, i.e. rankZH1(C,Z) = 2g.

4.2.1 Periods

We will use H0(C,Ω1
C) to denote the set of holomorphic differentials; it is a C-vector space of

dimension g by (4.1.3).

Let γ be a path on the Riemann surface C and let ω ∈ H0(C,Ω1
C), then one can compute

the integral
∫
γ ω.

Example 4.2.1. Take the example from Example 4.1.16 (y2 = x(x+ 1)(x− 1) = x3 − x). We
have seen that g = g(C) = 1, and thus ω := dx/y is a basis of H1(C,Ω1

C) by the discussion in
the example.

Let γ be a path on C going from (a,
√
a3 − a) to (b,

√
b3 − b). Then the integral

∫
γ ω on the

Riemann surface C gives a precise meaning to the multivalued integral
∫ b
a 1/
√
t3 − tdt; it is the

choice of the path γ which has eliminated the indeterminacy.

A better way to understand the dependence of the integral on the path is via the homology.
Take a basis {γ1, . . . , γg, γg+1, . . . , γ2g} of H1(C,Z), which we assume to satisfy γi · γj+g = δij
for each 1 ≤ i, j ≤ g. If P and Q are two points in C, and γ and γ′ are two paths joining P and
Q, then γ′−1 ◦ γ is a closed path, and so is homologous to

∑
miγi for some integers mi. Thus

for any ω ∈ H0(C,Ω1
C), we have

∫
γ
ω −

∫
γ′
ω =

2g∑
i=1

mi

∫
γi

ω.

Now take a basis {ω1, . . . , ωg} of H1(C,Ω1
C). Then we have a g × 2g matrix

Ω = (Ω1 Ω2) =

(∫
γi

ωj

)
1≤i,j≤g

(∫
γg+i

ωj

)
1≤i,j≤g

 . (4.2.1)

We call Ω a period matrix of C, and let LΩ be the Z-module generated by the columns of Ω.

An important result is the following Riemann’s period relations.
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Theorem 4.2.2 (Riemann’s period relations). We have

Ω1Ωt
2 = Ω2Ωt

1 and −
√
−1(Ω1Ωt

2 − Ω2Ωt
1) > 0.

Here we write M > 0 for a g × g matrix to mean that M is positive definite (and hence
symmetric).

A corollary of Riemann’s period relations is that Ω1 is invertible. Indeed, to see this, it
suffices to prove: Ωt

1Y = 0⇒ Y = 0.
Thus we can change the basis of H0(C,Ω1

C) to transform Ω1 into the identity matrix Ig
and Ω2 into the matrix τ := Ω−1

1 Ω2. Thus we have a new period matrix Ωnor = (Ig τ), and
Riemann’s relations say that τ is symmetric with positive definite imaginary part Im(τ). Under
this new basis, we have LΩnor = Zg + τZg. Notice that LΩ is then Ω1(Zg + τZg). In particular,
we have:

Corollary 4.2.3. LΩ is a lattice in Cg.

4.2.2 Jacobians

Definition 4.2.4. The Jacobian of a curve C, denoted by Jac(C), is the complex torus J(C) :=
Cg/LΩ, with LΩ defined in the previous subsection.

In fact, by the discussion at the end of the previous subsection, it suffices to take LΩ to be
Zg + τZg, because the g × g invertible matrix Ω1 : Cg → Cg is an isomorphism of Cg, which
induces an isomorphism of complex tori Cg/(Zg + τZg) ∼−→ Cg/Ω1(Zg + τZg). In particular,
J(C) is independent of the choice of the basis of H0(C,Ω1

C).
A more intrinsic formulation of the Jacobian is as follows. We can identify H1(C,Z) as a

lattice in H0(C,Ω1
C)∨, the dual of the C-vector space H0(C,Ω1

C), via the map

H1(C,Z)→ H0(C,Ω1
C)∨, γ 7→

(
γ 7→

∫
γ
ω

)
.

Then the Jacobian of C is equal to

Jac(C) = H0(C,Ω1
C)∨/H1(C,Z). (4.2.2)

For each P ∈ C, we can define a holomorphic map (called the Abel–Jacobi embedding via
P )

jP : C → Jac(C), Q 7→
(∫ Q

P
ω1, . . . ,

∫ Q

P
ωg

)
mod LΩ. (4.2.3)

The map jP extends by linearity to Div(C) → Jac(C),
∑
nQ[Q] 7→

∑
nQjP (Q). It should

be understood that the sum on the right hand side is the sum on the complex torus (induced
by the sum on Cg), while the sum on the left hand side is just a formal sum. When restricted
to Div0(C), the set of divisors on C of degree 0, the map thus obtained

Φ: Div0(C)→ Jac(C)

is independent of the choice of P .

Theorem 4.2.5 (Abel–Jacobi). The map Φ defined above is a surjective group homomorphism,
and KerΦ is precisely the subgroup of principal divisors. Thus Cl0(C) ' Jac(C), where Cl0(C)
is the divisor class group of divisors of degree 0.
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So far, we have seen that Jac(C) is a complex torus. An important result is:

Theorem 4.2.6. Jac(C) is a projective variety, i.e. Jac(C) is an algebraic subvariety of PN
for some N . If g(C) ≥ 1, then each jP is a closed immersion.

These theorems allow us to construct Jac(C) and the Abel–Jacobi map jP in another way:
We define Jac(C) := Cl0(C) and jP : C → Jac(C), Q 7→ cl([Q]−[P ]). An advantage of this point
of view is that these construction then generalize from over k = C to over an arbitrary field k
of characteristic 0. For example if k ⊆ C, then the group Aut(C/k) acts on Jac(CC) = Cl0(CC)
and this endows Cl0(C) = Jac(C) with the structure of a projective variety defined over k. In
particular, this applies to k = Q.

To prove that Jac(C) is a projective variety, one can use the knowledge on Riemann forms.
Here we take a more algebro-geometric point of view. Let us temporarily assume that g =
g(C) ≥ 2. Then for each r, one can define the r-fold sum

Wr = Wr(C) := jP (C) + · · ·+ jP (C) = {jP (Q1) + . . .+ jP (Qr) : Q1, . . . , Qr ∈ C}. (4.2.4)

It can be checked that dimWr = min{r, g}. In particular, dimWg−1 = g−1. This Wg−1, usually
called a Theta divisor and denoted by Θ, gives rise to an embedding of Jac(C) into some PN .
To understand this, we need to discuss about divisors on an arbitrary algebraic variety. This
will be the content of the next section.

4.3 Weil and Cartier Divisors

The goal of this section is to gather some results for Weil and Cartier divisors on an arbitrary
(quasi-projective) algebraic variety. Below, by k we always mean an algebraic closed field of
characteristic 0. Typical examples are k = C or k = Q.

All algebraic varieties are assumed to be defined over k. We also make the following conven-
tion: algebraic varieties are assumed to be irreducible.

4.3.1 Weil divisors

Definition 4.3.1. Let X be an algebraic variety. A Weil divisor on X is a finite formal sum
of the form D =

∑
nY [Y ], where nY ∈ Z and the Y ’s are subvarieties of X of codimension 1.

The degree of the Weil divisor D above is defined to be degD :=
∑

Y nY .

The support of the Weil divisor D above, denoted by supp(D), is defined to be
⋃
nY 6=0 Y .

A Weil divisor D as above is said to be effective, denoted by D ≥ 0, if nY ≥ 0 for all Y .

For example when X is a projective curve, then the Y ’s are points; when X is a surface,
then the Y ’s are irreducible curves.

When X satisfies some extra hypothesis (for example if X is non-singular or if X is normal),
then one can define principal divisors (and hence the Weil divisor class group Cl(X)) as for the
case of smooth curves. We shall not go into details of this construction but simply say that they
exist.

4.3.2 Cartier divisors

In general, it is often more convenient to work with another kind of divisors, called the Cartier
divisors. Before giving the definition, let us see an example.
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Example 4.3.2. Consider the curve P1. It is covered by the Zariski open subsets U0 := {[1 : t] :
t ∈ k} and U1 := {[t′ : 1] : t′ ∈ k}. We use [x : y] to denote the homogeneous coordinates of P1.

Consider the divisor D = −[1 : 0] + [1 : 2] + [0 : 1].[2] When restricted to U0, it becomes
D|U0 = −[1 : 0] + [1 : 2] and is the divisor associated with the rational function f0 := (2x− y)/x.
When restricted to U1, the divisor becomes D|U1 = [1 : 2] + [0 : 1] and hence is the divisor
associated with the rational function f1 := y(2x− y).

Notice that on U0 ∩ U1 = {[x : y] : xy 6= 0}, we have f0f
−1
1 = 1/xy has no zeros or

poles on U0 ∩ U1. Thus on U0 ∩ U1, we have div(f0f
−1
1 )|U0∩U1 = 0, and hence div(f0)|U0∩U1 =

div(f1)|U0∩U1.
In other words, the divisor D can be recovered by the data {(U0, f0), (U1, f1)}.

Definition 4.3.3. A Cartier divisor on an algebraic variety X is an equivalence class of
collections of pairs {(Ui, fi) : i ∈ I} satisfying the following conditions:

(i) The Ui’s are Zariski open subsets that cover X.

(ii) The fi’s are non-zero rational functions fi ∈ k(X)∗.

(iii) For each i, j ∈ I, fif
−1
j has no zeros or poles on Ui ∩ Uj. In other words, fif

−1
j is an

invertible regular function on Ui ∩ Uj.

Two collections {(Ui, fi) : i ∈ I} and {(Vj , gj) : j ∈ J} are said to be equivalent if fig
−1
j has no

zeros or poles on Ui ∩ Vj for each i ∈ I and j ∈ J .

The sum of two Cartier divisors is defined by

{(Ui, fi) : i ∈ I}+ {(Vj , gj) : j ∈ J} := {(Ui ∩ Vj , figj) : (i, j) ∈ I × J}.

With this operation, the Cartier divisors form a group which we denote by CaDiv(X). The
support of a Cartier divisor D is the set of zeros of poles of the fi’s. A Cartier divisor D is said
to be effective, denoted by D ≥ 0, if it can be defined by a collection {(Ui, fi) : i ∈ I} with
each fi having no poles on Ui.

Using the language of Cartier divisors, it is easy to define the principal divisors. Associated
to each f ∈ k(X)∗, we can associate the Cartier divisor

div(f) := {(X, f)}.

Definition 4.3.4. A Cartier divisor D ∈ CaDiv(X) is principal if it equals div(f) for some
f ∈ k(X)∗.

Two Cartier divisors D1, D2 are linearly equivalent, denoted D1 ∼ D2, if D1 − D2 is a
principal Cartier divisor.

The Cartier divisor class group of X, denoted by CaCl(X), is the group of Cartier
divisors modulo linear equivalence.

One can also define, for each Cartier divisor D, the k-vector space

L(D) := {f ∈ k(X)∗ : D + div(f) ≥ 0} ∪ {0}, (4.3.1)

and check that `(D) := dimk L(D) depends only on the Cartier divisor class.
As for Weil divisors on curves, it is not hard to check that D ∼ D′ ⇒ `(D) = `(D′).

[2]If we identify U0 with A1 in the usual way and use ∞ to denote the point [0 : 1], then D = −[0] + [2] + [∞].
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Theorem 4.3.5. There exist natural group homomorphisms[3]

CaDiv(X)→ Div(X) and CaCl(X)→ Cl(X).

Moreover, they are isomorphisms if X is non-singular.

Thus for smooth varieties, we will freely identify Weil and Cartier divisors in the rest of the
course.

Cartier divisor class groups behave well under pullback.

Proposition 4.3.6. Let f : X → Y be a morphism of varieties. Then there is a natural homo-
morphism f∗ : CaCl(Y )→ CaCl(X).

Sketch. Let Cl(D) ∈ CaCl(Y ) be represented by D ∈ CaDiv(Y ). The Moving Lemma says
that there exists some D′ = {(Ui, fi) : i ∈ I} ∈ CaDiv(Y ) such that D′ ∼ D and f(X) 6⊆
supp(D′). We can then define a Cartier divisor

f∗D′ := {(f−1(Ui), fi ◦ f) : i ∈ I} ∈ CaDiv(X).

Then we set f∗Cl(D) to be the class of f∗D′ in CaCl(X).[4]

4.3.3 Theta divisor on Jacobians

Let C be a curve of genus g ≥ 1 and P0 ∈ C. Use J to denote the Jacobian Jac(C), and let
jP0 : C → J , P 7→ cl([P ] − [P0]) be the Abel–Jacobi embedding via P0. For each d ≥ 1, define
the map

Φd : Cd → J, (P1, . . . , Pd) 7→ cl

(
d∑
i=1

[Pi]− d[P0]

)
=

d∑
i=1

jP0(Pi).

Let Θ be the image of Φg−1. Then it has dimension g − 1, and hence is a Weil divisor on J .
Denote by Θ− := [−1]∗Θ;[5] as a variety it is −jP0(C)− · · · − jP0(C) (g− 1 copies). Both Θ and
Θ− are effective Weil divisors.

Since J is a smooth algebraic variety, by Theorem 4.3.5, one can identify Div(J) ' CaDiv(J).
Thus we will not distinguish Weil divisors and Cartier divisors on J . Similar on C.

Proposition 4.3.7. There exists a Zariski open dense subset U of Cg satisfying the following
property: (P1, . . . , Pg) ∈ U ⇒

∑g
i=1[Pi] ∼ j∗Φg(P1,...,Pg)(Θ

−) as divisors on C, where ja : C → J

is defined by P 7→ jP0(P )− a.

Sketch of proof. By Lemma 4.1.24, there exists a Zariski open dense subset U ⊆ Cg such that
L(
∑g

i=1[Pi]) = k for all (P1, . . . , Pg) ∈ U . Shrink U such that each (P1, . . . , Pg) ∈ U satisfies
that Pi 6= Pj for all i 6= j.

Let a ∈ Φg(U) ⊂ J ' Cl0(C). Let Da ∈ Div0(C) be such that cl(Da) = a. Then cl(Da) =
cl(
∑g

i=1[Pi]− g[P0]) for some (P1, . . . , Pg) ∈ Cg, and hence g[P0] +Da ∼
∑g

i=1[Pi].

Suppose (P ′1, . . . , P
′
g) ∈ U also satisfies g[P0]+Da ∼

∑g
i=1[Pi]

′ (equivalently Φg(P
′
1, . . . , P

′
g) =

a). Then as divisors on C we have
∑g

i=1[Pi] −
∑g

i=1[P ′i ] = div(f) for some f ∈ k(C)∗. But

[3]Some extra conditions need to be put on X for the second map.
[4]For this construction to be well-defined, one uses the following fact: If D,D′ ∈ CaDiv(Y ) are linearly

equivalent such that f(X) 6⊆ Supp(D) ∪ Supp(D′), then f∗D ∼ f∗D′.
[5]Recall that over C, we have J = Cg/LΩ for some lattice LΩ in Cg. The map [−1] : J → J is induced by the

multiplication by −1 on Cg.
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then f−1 ∈ L(
∑g

i=1[Pi]−
∑g

i=1[P ′i ]) ⊆ L(
∑g

i=1[Pi]) = k. So f is a non-zero constant and hence∑g
i=1[Pi] =

∑g
i=1[P ′i ].

Therefore we have the following conclusion: for all a ∈ Φg(U), g[P0]+Da is linearly equivalent
to exactly one effective divisor

∑g
i=1[Pi] on C; moreover the Pi’s two by two distinct.

Now let us show that a ∈ Φg(U) ⇒
∑g

i=1[Pi] ∼ j∗a(Θ−) as divisors on C. Let P ∈
supp(j∗aΘ−). We have cl([P ] − [P0]) − a = ja(P ) ∈ Θ− = −jP0(C) − · · · − jP0(C). Let
Da ∈ Div0(C) be such that cl(Da) = a. Then [P ]− [P0]−Da ∼ −

∑g−1
i=1 [P ′i ]+(g−1)[P0] for some

(P ′1, . . . , P
′
g−1) ∈ Cg−1, and so [P ] +

∑g−1
i=1 [P ′i ] ∼ g[P0] + Da. Thus we have [P ] +

∑g−1
i=1 [P ′i ] =∑g

i=1[Pi] (this is an equality!). So P ∈ {P1, . . . , Pg}. One also needs to check that each [Pi]
appears exactly once in j∗aΘ. We omit its proof but simply point out that it follows from an
argument using the tangent spaces and the fact that the Pi’s are two by two distinct.

4.4 Line bundles and ampleness

The goal of this section is to gather some results for line bundles on an arbitrary (quasi-
projective) algebraic variety. Below, by k we always mean an algebraic closed field of char-
acteristic 0. Typical examples are k = C or k = Q.

All algebraic varieties are assumed to be defined over k. We also make the following conven-
tion: algebraic varieties are assumed to be irreducible.

4.4.1 Line bundles

Definition 4.4.1. A line bundle on a variety X is an algebraic variety L endowed with a
morphism p : L → X with the following two properties:

(i) Each fiber Lx = p−1(x) is a k-vector space of dimension 1.

(ii) The fibration p is locally trivial. More precisely, for each x ∈ X, there exists an open
neighborhood U of x such that there exists the following commutative diagram

L|U := p−1(U)
φU
∼
//

p

��

U × A1

p1
ww

U

The maps φU are called the local trivializations of L.

An easy example is the trivial line bundle X × A1 → X on X.

Example 4.4.2. Here is an example of non-trivial line bundle over Pn. View Pn as the set of
lines in An+1 passing through 0. Define

O(−1) := {(x, v) ∈ Pn × An+1 : v lies in the line x}.

Then the projection onto the first factor p : O(−1) → Pn gives O(−1) the structure of a line
bundle. Indeed, condition (i) is clear. For (ii), the fibration p can be trivialized over each
standard affine open chart Uj := Pn \ V (Xj), with the trivialization given by

Uj × A1 → L|Uj , (x, λ) 7→
(
x,

(
λx0

xj
, . . . ,

λxn
xj

))
.
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Definition 4.4.3. A morphism between two line bundles p : L → X and p′ : L′ → X on X
is a morphism Φ: L → L′ such that p = p′ ◦ Φ and that the map Φx : Lx → L′x is a linear
transformation of A1 for each x ∈ X.

With this definition, we can define isomorphism classes line bundles on X, the set of
which is denoted by Pic(X).

Next we describe how to construct line bundles by gluing locally trivial line bundles. The
basic observation is that a line bundle L and local trivializations φU fit into the following
commutative diagram

L|Ui∩Uj
φUi
∼
//

p
''

(Ui ∩ Uj)× A1

��

L|Ui∩Uj
φUj

∼
oo

p
ww

Ui ∩ Uj

We thus obtain isomorphisms φUj ◦ φ
−1
Ui

: (Ui ∩ Uj) × A1 → (Ui ∩ Uj) × A1 that must be of the
shape (x, v) 7→ (x, gji(x)(v)), with gji being a regular function on Ui ∩Uj . These gji’s are called
the transition functions. The following identities are immediate:

gii = id and gijgjk = gik on Ui ∩ Uj ∩ Uk.

The set of gji’s determines the line bundle L. Conversely, any set of gji’s satisfying these
identities can be used to construct a line bundle by gluing together (local) trivial line bundles.

From this construction, one can define:

(i) The dual of a line bundle L to be L⊗−1 whose fibers are the dual vector spaces.

(ii) The tensor product of two line bundle L and L′ to be L⊗L′ whose fibers are the tensor
products of the fibers of L and of L′.

(iii) The pullback of a line bundle p : L → X by a morphism f : Y → X to be the fiber product

f∗L := Y ×X L = {(y, v) ∈ Y × L : f(y) = p(v)}.

In particular, f∗(X × A1) = Y × A1.

Remark 4.4.4. The tensor product and the dual endow Pic(X) with the structure of abelian
groups. So we call Pic(X) the group of isomorphism classes of line bundles on X.

Definition 4.4.5. Let p : L → X be a line bundle. A section of L is a morphism s : X → L
such that p ◦ s = idX . Similarly a rational section of L is a rational map s : X // L such
that p ◦ s = idX .

The set of sections of a line bundle L will be denoted by H0(X,L); it is a k-vector space of
finite dimension.

Remark 4.4.6. A more concrete way to understand sections s of L is as follows. Write
φUi : L|Ui ' Ui × A1 for the local trivializations with the transition functions gji’s. Then s
can be identified with a collection {si : Ui → A1 with gjisi = sj on Ui ∩ Uj}i∈I . Locally on each
Ui, φUi ◦ s|Ui : Ui → Ui × A1 is then x 7→ (x, si(x)).

For example, H0(X,X ×A1) = A1 for any projective variety X. For Example 4.4.2, one can
check H0(Pn,O(−1)) = 0.

For any morphism f : Y → X and any line bundle L on X, there is a natural morphism

H0(X,L)→ H0(Y, f∗L), s 7→ (y 7→ (y, s ◦ f(y))) . (4.4.1)
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4.4.2 Line bundles and Cartier divisors

To each Cartier divisor D = {(Ui, fi) : i ∈ I}, one can associate a line bundle O(D) → X by
gluing the trivial line bundle Ui × A1 → Ui via the transition functions gji = fjf

−1
i

(Ui ∩ Uj)× A1 → (Ui ∩ Uj)× A1, (x, λ) 7→ (x, λ · (fjf−1
i )(x)).

Since replacing the fi’s by fif does not affect this construction, we obtain a homomorphism
CaCl(X)→ Pic(X).

Theorem 4.4.7. The homomorphism CaCl(X) → Pic(X) induced by D 7→ O(D) above is an
isomorphism. More precisely, O(D +D′) = O(D)⊗O(D′) and O(−D) = O(D)∨.

Moreover, O(f∗D) = f∗O(D) for any morphism f : Y → X of varieties.

To recover the Cartier divisor from a line bundle L, one takes a rational section s of L and
set D = div(s).

Proposition 4.4.8. With the setting of the language in Theorem 4.4.7, there exists a natural
bijection between H0(X,O(D)) and L(D).

Sketch. Write D = {(Ui, fi) : i ∈ I} for the Cartier divisor.
Take 0 6= f ∈ L(D). Let us explain how to construct to the section sf ∈ H0(X,O(D))

associated with f . The local trivializations of O(D) are φUi : O(D)|Ui ' Ui × A1. Let si : Ui →
LUi be the composite of Ui → Ui × A1, x 7→ (x, (ffi)(x)), and φ−1

Ui
. Since D + div(f) ≥ 0

by definition of L(D), the product ffi has no poles on Ui. By Remark 4.4.6, these si’s patch
together into sf ∈ H0(X,O(D)).

Conversely for 0 6= s ∈ H0(X,O(D)), the rational function fs ∈ k(X)∗ is constructed as
follows. By Remark 4.4.6 s corresponds to {si : Ui → A1}i∈I such that fjf

−1
i si = sj . Thus the

functions f−1
i si’s patch together into a function in k(X)∗. This is the desired fs.

Example 4.4.9. Let H be a hyperplane in Pn, and use O(1) to denote the associated line bundle.
Then O(1) is the dual of O(−1) defined in Example 4.4.2. We have

H0(Pn,O(1)) = kX0 ⊕ · · · ⊕ kXn = {homogeneous polynomials of degree 1}.

For each d ∈ N, let O(d) := O(1)⊗ · · · ⊗ O(1) (d-times). Then

H0(Pn,O(d)) = {homogeneous polynomials of degree d}.

4.4.3 Polynomials viewed as sections of line bundles

In Example 4.4.9, we saw that homogeneous polynomials of degree d in n + 1 variables are
precisely the sections of the line bundle O(d) on Pn. This is an important point of view to
understand polynomials and it deserves further discussion.

Now let us consider a bi-homogeneous polynomial P ∈ k[X0, . . . , Xn;Y0, . . . , Ym] of bi-degree
(d1, d2). Consider the following line bundle on Pn×Pm. Let π1 : Pn×Pm → Pn and π2 : Pn×Pm →
Pm be the natural projections. Then π∗1O(d1) ⊗ π∗2O(d2) is a line bundle on Pn × Pm, which
we denote by O(d1, d2). Then H0(Pn × Pm,O(d1, d2)) can be identified with the set of bi-
homogeneous polynomials in (n+ 1,m+ 1) variables of bi-degree (d1, d2).

This discussion can be generalized to an arbitrary product of projective spaces. Let

P := Pn1 × · · · × Pnr .
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Let πj : P→ Pnj be the natural projection to the j-th factor. For any d1, . . . , dr positive integers,
we define the line bundle O(d1, . . . , dr) on P to be

⊗r
j=1 π

∗
jO(dj). Then H0(P,O(d1, . . . , dr))

can be identified with the set of multi-homogeneous polynomials in (n1 +1, . . . , nr +1) variables
of multi-degree (d1, . . . , dr).

This can be applied to an arbitrary polynomial f ∈ k[X1, . . . , Xr] of partial degrees d1, . . . , dr
in the following way. Notice that f is a regular function on the affine variety kr. We can embed

kr into (P1)r using the natural embedding k ⊆ P1, t 7→ [t : 1]. Now, if we use [Y
(j)

0 : Y
(j)

1 ]
to denote the coordinates of the j-th P1, then f gives rise to a multi-homogeneous polynomial

F ∈ k[Y
(1)

0 , Y
(1)

1 ; . . . ;Y
(r)

0 , Y
(r)

1 ] of multi-degree (d1, . . . , dr), and we have seen that F is a section

of the line bundle O(d1, . . . , dr) on (P1)r. To recover f from F , it suffices to set all the Y
(j)

1 ’s to
be 1. In other words, every polynomial can be seen as a section of an appropriate line bundle
on a product of projective spaces.

Another application of the discussion above is the following lemma. We leave the proof as
an exercise.

Lemma 4.4.10. For the Segre embedding (1.2.5) Sn,m : Pn × Pm → P(n+1)(m+1)−1, (x,y) 7→
x⊗ y := (xiyj)i,j, we have S∗n,mO(1) ' O(1, 1).

4.4.4 Ampleness

Let L be a line bundle on X. Take a basis {s0, . . . , sn} of the k-vector space H0(X,L) (of
dimension n+ 1). Then we obtain a rational map

φL : X // Pn, x 7→ [s0(x) : · · · : sn(x)].

Definition 4.4.11. The line bundle L is said to be very ample if φL is an immersion with
L ' φ∗LO(1), and is said to be ample if L⊗N is very ample for some N ≥ 1.

Notice that the map φL depends on the choice of the basis, but the property of L being
(very) ample or not is independent of such choices.

We have a similar definition for divisors. Let D be a Cartier divisor. It is said to be (very)
ample if and only if O(D) is. We also use φD to denote φO(D).

Example 4.4.12. For example, O(1) is very ample on Pn and an immersion can be obtained
by taking φO(1) : Pn → Pn to be the identity map, and O(d) is very ample on Pn for all d ≥ 1

with the immersion φO(d) : Pn → PN being the d-uple embedding.

Proposition 4.4.13. Let ι : Y → X be a finite morphism (for example, an immersion) and let
L ∈ Pic(X) be an ample line bundle. Then ι∗L is ample on Y .

Proposition 4.4.14. Let L and M be two line bundles on X. Assume that M is ample. Then
there exists N � 1 such that L ⊗M⊗N is ample.

Corollary 4.4.15. Each line bundle L on a quasi-projective variety X can be written as L1⊗L∨2
for some ample line bundles L1 and L2 on X.

Here is an important ampleness result concerning Jacobians and Theta divisors. Let C be
a curve of genus g ≥ 1 and P0 ∈ C. Use J to denote the Jacobian Jac(C), and let jP0 : C → J ,
P 7→ cl([P ]− [P0]) be the Abel–Jacobi embedding via P0. Let Θ := jP0(C) + · · ·+ jP0(C) (g− 1
copies). Then it has dimension g−1, and hence is a Weil divisor on J . Denote by Θ− := [−1]∗Θ;
as a variety it is −jP0(C)−· · ·−jP0(C) (g−1 copies). Both Θ and Θ− are effective Weil divisors.
Since J is a smooth algebraic variety, by Theorem 4.3.5 Θ and Θ− are also Cartier divisors.
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Theorem 4.4.16. Both Θ and Θ− are ample on J .

Here only the ampleness of Θ needs to be proved; then one uses Proposition 4.4.13 (applied
to [−1] : J → J) to deduce the ampleness of Θ−.

4.5 Abelian varieties

In this section, we gather some properties for the general abstract theory of abelian varieties.
An important example is the Jacobians of curves.

Let k be an algebraically closed field of characteristic 0. Typical examples are k = C and
k = Q.

All algebraic varieties are assumed to be defined over k. We also make the following conven-
tion: algebraic varieties are assumed to be irreducible.

4.5.1 Abstract definition and abelian varieties over C

Let G be an algebraic variety.

Definition 4.5.1. The variety G is called an algebraic group (over k) if there exist

• a morphism m : G×G→ G (multiplication);

• a morphism ι : G→ G (inverse);

• a point ε ∈ G (identity);

such that G is a group with multiplication, inverse, identity induced by m, ι, ε.

Example 4.5.2. Let J = Cg/LΩ be a Jacobian defined over C. It is known that J is an
algebraic variety. Moreover, J has a natural structure of groups induced by the addition on Cg,
the negation on Cg, and the origin 0 ∈ Cg. Thus J is an algebraic group (over C).

For arbitrary k, if J = Cl0(C) is a Jacobian defined over k, then J is also an algebraic group
over k.

Definition 4.5.3. An abelian variety is a projective irreducible algebraic group.

This definition is too abstract, although the requirements are easy to say. By this definition
and the example above, each Jacobian is an abelian variety.

By knowledge of Lie groups, one can show:

Proposition 4.5.4. Any abelian variety over C is a complex torus, i.e. equals Cg/Λ for some
lattice Λ ⊆ Cg.

The converse of this proposition is not true unless g = 1, that is, when g ≥ 2, then there exist
lattices Λ such that Cg/Λ does not admit a complex-analytic embedding into some projective
space PN (C) (for any N). In fact, we have the following theorem.

Theorem 4.5.5. Let Λ be a lattice in Cg. Then Cg/Λ is an abelian variety if and only if there
exists a positive definite Hermitian form H : Cg ×Cg → C such that its imaginary part satisfies
Im(H)(Λ× Λ) ⊆ Z.
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Let A = Cg/Λ be an abelian variety over C. For each n ∈ Z, the multiplication n· : Cg → Cg,
x 7→ nx, induces a morphism A→ A which we denote by

[n] : A→ A. (4.5.1)

It is not hard to check that [n] is a group homomorphism, which is surjective and has kernel
isomorphic to Z2g/nZ2g.

For a general k, one possible way to understand an abelian variety A over k is as follows.
Let us stick to the case k = Q ⊆ C. By definition, A ⊆ PN (Q) for some N ≥ 1. Then there
exist homogeneous polynomials f1, . . . , fm with coefficients in Q such that A is the zero locus
V (f1, . . . , fm). Denote by A(C) the C-solutions to the system f1 = · · · = fm = 0. Then A(C) is
an abelian variety over C, and then we using the action of Aut(C/Q) to go back to A.

For example, let A be an abelian variety defined over Q. For each n ∈ Z, we have defined
above a morphism [n] : A(C)→ A(C). One can check that this morphism is invariant under the
action of Aut(C/Q) on A(C). Thus we obtain a morphism

[n] : A→ A, (4.5.2)

which is again a group homomorphism. It is still surjective whose kernel is isomorphic to
Z2g/nZ2g.

Each abelian variety A is smooth. Hence we will not distinguish Weil divisors and Cartier
divisors on A by Theorem 4.3.5.

4.5.2 Theorem of the cube

Let A be an abelian variety.
For each subset I ⊆ {1, 2, 3}, set

sI : A×A×A→ A, (x1, x2, x3) 7→
∑
i∈I

xi.

For example, if I = {1}, then s1 is the projection to the first factor; if I = {1, 2}, s12(x1, x2, x3) = x1 +x2;
if I = {1, 2, 3}, then s123 = x1 + x2 + x3.

Theorem 4.5.6. Let L ∈ Pic(A) be a line bundle on A. Then s∗123L⊗ s∗12L
⊗−1 ⊗ s∗13L

⊗−1 ⊗ s∗23L
⊗−1 ⊗

s∗1L⊗ s∗2L⊗ s∗3L is isomorphic to the trivial line bundle on A×A×A.

In the language of divisors (see Theorem 4.4.7 for the translation), the theorem is equivalent to: Let
D be a divisor on A. Then s∗123D−s∗12D−s∗13D−s∗23D+s∗1D+s∗2D+s∗3D ∼ 0 as divisors on A×A×A.

Corollary 4.5.7. Let V be an arbitrary variety, and let f, g, h : V → A be three morphisms. Then for any
L ∈ Pic(A), the line bundle (f+g+h)∗L⊗(f+g)∗L⊗−1⊗(f+h)∗L⊗−1⊗(g+h)∗L⊗−1⊗f∗L⊗g∗L⊗h∗L
is isomorphic to the trivial line bundle on V .

Proof. Denote by cube(L) := s∗123L⊗s∗12L
⊗−1⊗s∗13L

⊗−1⊗s∗23L
⊗−1⊗s∗1L⊗s∗2L⊗s∗3L as in Theorem 4.5.6.

Then for the morphism (f, g, h) : V → A×A×A, we have

(f + g + h)∗L⊗ (f + g)∗L⊗−1 ⊗ (f + h)∗L⊗−1 ⊗ (g + h)∗L⊗−1 ⊗ f∗L⊗ g∗L⊗ h∗L ' (f, g, h)∗cube(L).

But cube(L) is isomorphic to the trivial line bundle (A× A× A)× A1 by Theorem 4.5.6. Hence we are
done.

Corollary 4.5.8. Let L ∈ Pic(A), and denote by L− := [−1]∗L. Then we have

[n]∗L ' L⊗
n2+n

2 ⊗ L⊗
n2−n

2
− , for all n ∈ Z.
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As usual, we set L⊗0 to be the trivial line bundle.

Proof. Apply Corollary 4.5.7 to V = A, f = [n], g = [1], and h = [−1]. Then we have

[n+ 1]∗L⊗ [n− 1]∗L⊗ [n]∗L⊗−2 ' L⊗ [−1]∗L.

Now the conclusion follows from an induction, both upwards and downwards, from n = 0.

4.5.3 Theorem of square

Let A be an abelian variety. For each a ∈ A, set

ta : A→ A, x 7→ a+ x.

Then ta is a morphism of algebraic varieties. It is called the translation by a.

Theorem 4.5.9 (Theorem of the square). For all D ∈ Div(A), a, b ∈ A, we have

t∗a+bD +D ∼ t∗aD + t∗bD

as divisors on A.

Proof. Apply Corollary 4.5.7 to L = O(D), V = A, f(x) = x, g(x) = a and h(x) = b. Then we have that
t∗a+bO(D)⊗O(D) ' t∗aO(D)⊗ t∗bO(D). Hence we are done.

An application of the theorem of the square is the following result regarding Theta divisors
on Jacobians.

Let C be a curve of genus g ≥ 1 and P0 ∈ C. Use J to denote the Jacobian Jac(C), and let
jP0 : C → J , P 7→ cl([P ] − [P0]) be the Abel–Jacobi embedding via P0. For each d ≥ 1, define
the map

Φd : Cd → J, (P1, . . . , Pd) 7→ cl

(
d∑
i=1

[Pi]− d[P0]

)
=

d∑
i=1

jP0(Pi). (4.5.3)

Let Θ be the image of Φg−1. Then it has dimension g − 1, and hence is a Weil divisor on
J . Denote by Θ− := [−1]∗Θ; as a variety it is −jP0(C) − · · · − jP0(C) (g − 1 copies). By
Theorem 4.4.16 Θ and Θ− are ample divisors on J .

Proposition 4.5.10. For all (P1, . . . , Pg) ∈ Cg, we have the equivalence of divisors on C

g∑
i=1

[Pi] ∼ j∗Φg(P1,...,Pg)(Θ
−)

with jΦg(P1,...,Pg) : C → J , P 7→ jP0(P )− Φg(P1, . . . , Pg).

Proof. By Proposition 4.3.7, there exists a Zariski open dense subset U of Cg satisfying the
following property: (P1, . . . , Pg)⇒

∑g
i=1[Pi] ∼ j∗Φg(P1,...,Pg)(Θ

−) as divisors on C, where ja : C →
J is defined by P 7→ jP0(P )− a.

It can be shown using general algebraic geometry knowledge that Φg(U) contains a Zariski
open dense subset V of J (by looking at dimensions, for example). Hence we are done.

Now we prove the desired conclusion. First, notice that V + V − V = J , i.e. the morphism
V × V × V → J , (a, b, c) 7→ a + b − c, is surjective. Indeed, the map (b, c) 7→ b − c is already
surjective because for all x ∈ J , we have (V − x) ∩ V 6= and hence x = v − u for some u, v ∈ V .
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Next for each (P1, . . . , Pg) ∈ Cg, write a = Φg(P1, . . . , Pg). Then a = a1 + a2 − a3 with
al ∈ V ⊆ Φg(U). Then by Theorem 4.5.9, we have[6]

t∗−aΘ
− = t∗−a1−a2+a3

Θ− ∼ t∗−a1
Θ− + t∗−a2

Θ− − t∗−a3
Θ−.

Since ja = t−a ◦ jP0 for all a ∈ J , applying j∗P0
to the linear equivalence above we obtain

j∗aΘ− ∼ j∗a1
Θ− + j∗a2

Θ− − j∗a3
Θ−.

Since al ∈ Φg(U), we can write al = Φg(P
(l)
1 , . . . , P

(l)
g ) for l ∈ {1, 2, 3}. Then the conclusion for

the points in Φg(U) yields
∑g

i=1[P
(l)
i ] ∼ j∗al(Θ

−) for each l ∈ {1, 2, 3}. Hence

j∗aΘ− ∼
g∑
i=1

[P
(1)
i ] +

g∑
i=1

[P
(2)
i ]−

g∑
i=1

[P
(3)
i ]. (4.5.4)

But Φg(P1, . . . , Pg) = a = a1+a2−a3 = Φg(P
(1)
1 , . . . , P

(1)
g )+Φg(P

(2)
1 , . . . , P

(2)
g )−Φg(P

(3)
1 , . . . , P

(3)
g ).

In view of the definition of Φg, this means

g∑
i=1

[Pi]− g[P0] ∼

(
g∑
i=1

[P
(1)
i ]− g[P0]

)
+

(
g∑
i=1

[P
(2)
i ]− g[P0]

)
−

(
g∑
i=1

[P
(3)
i ]− g[P0]

)
.

So
∑g

i=1[Pi] ∼
∑g

i=1[P
(1)
i ] +

∑g
i=1[P

(2)
i ]−

∑g
i=1[P

(3)
i ]. Combined with (4.5.4), we are done.

4.5.4 Poincaré divisor class

Let C be a curve of genus g ≥ 1. Let P0 ∈ C. Let jP0 : C → J be the Abel–Jacobi embedding
via P0. Let Θ be the theta divisor on J defined under (4.5.3).

Let ∆ ⊆ C × C be the diagonal. Then ∆ is a Weil divisor on C × C. By Theorem 4.3.5 it
can be viewed as a Cartier divisor.

We define three morphisms J × J → J : m(x, y) = x+ y, p1(x, y) = x, and p2(x, y) = y.

Set δ := m∗Θ− p∗1Θ− p∗2Θ, which is a divisor on J × J .

The goal of this subsection is to prove the following theorem. It will play an important role
in the proof of Faltings’s Theorem at the end of this course.

Theorem 4.5.11. As divisors on C×C, we have (jP0×jP0)∗δ ∼ −∆+(C×{P0})+({P0}×C).

We need some preparation. The first is to relate the divisors Θ and Θ− := [−1]∗Θ. Let KC

be an effective canonical divisor. Then degKC = 2g − 2 by Corollary 4.1.23, and KC can be
obtained from a point in C2g−2. Let κ := Φ2g−2(KC) ∈ J with Φ2g−2 defined in (4.5.3). Notice
that κ depends only on the divisor class.

Proposition 4.5.12. Θ− = t∗κΘ.

Proof. Let a ∈ Θ. Then there exists (P1, . . . , Pg−1) ∈ Cg−1 such that a = Φg−1(P1, . . . , Pg−1).

Set D =
∑g−1

i=1 [Pi] ∈ Div(C). Then the Riemann–Roch Theorem (Theorem 4.1.22) implies

`(KC −D) = `(D).

[6]For example we can apply Theorem 4.5.9 3 times to get: t∗−a1−a2+a3Θ− ∼ t∗−a1−a2Θ− + t∗a3Θ− − Θ−,
t∗−a1−a2Θ− ∼ t∗−a1Θ− + t∗−a2Θ− −Θ−, and 2Θ− = t∗a3−a3Θ− + Θ− ∼ t∗a3Θ− + t∗−a3Θ−.
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Since k ⊆ L(D) (as D ≥ 0), we then have `(KC −D) ≥ 1. So there exists f ∈ k(C)∗ such that
D′ := KC −D + div(f) ≥ 0. As degKC = 2g − 2 and degD = g − 1, we have degD′ = g − 1.
As an effective divisor of degree g − 1, D′ =

∑g−1
i=1 [P ′i ] for some (P ′1, . . . , P

′
g−1) ∈ Cg−1. Thus

a = Φg−1(P1, . . . , Pg−1) = Φ2g−2(KC +div(f))−Φg−1(P ′1, . . . , P
′
g−1) = κ−Φg−1(P ′1, . . . , P

′
g−1) ∈

Θ− + κ.
Hence Θ ⊆ Θ− + κ. But both Θ and Θ− are irreducible subvarieties of dimension g − 1. So

Θ = Θ− + κ. In terms of divisors, we then have Θ− = t∗κΘ.

Next we state without proving the Seesaw Principle.

Lemma 4.5.13. Let X and Y be two algebraic varieties, let L ∈ Pic(X × Y ). Define for each
x ∈ X the map ix : Y → X × Y , y 7→ (x, y). Let p1 : X × Y → X be the natural projection.

(i) If i∗xL is the trivial line bundle on Y for all x ∈ X, then there exists L′ ∈ Pic(X) such that
L ' p∗1L′.

(ii) If furthermore L|X×{y0} is trivial for some y0 ∈ Y , then L is trivial on X × Y .

Proof of Theorem 4.5.11. We are studying divisors on C×C. By the seesaw principle (Lemma 4.5.13),
it suffices to prove that these two divisors are linearly equivalent when restricted to each slice
{P} ×C and C × {P} (for all P ∈ C). By symmetry it suffices to use the slices {P} ×C for all
P ∈ C. Let iP : C → C × C be the map iP (Q) = (P,Q).

We want to apply Proposition 4.5.10 in the following way. It is known by Algebraic Geometry
(looking at dimensions) that Φg is surjective. Hence Proposition 4.5.10 is equivalent to: j∗aΘ− ∼
Da + g[P0] for all a ∈ J = Cl0(C), where Da ∈ Div(C) such that cl(Da) = a.

It is not hard to check: For each P 6= P0, we have

i∗P (−∆ + (C × {P0}) + ({P0} × C)) = −[P ] + [P0].

Denote for simplicity j = jP0 . Then it remains to prove

i∗P ◦ (j × j)∗δ ∼ −[P ] + [P0]. (4.5.5)

To compute i∗P (j × j)∗δ, we compute each term separately. Notice that p1 ◦ (j × j) ◦ iP is
constant and p2 ◦ (j × j) ◦ iP = j. Thus

i∗P ◦ (j × j)∗ ◦ p∗1Θ ∼ 0 and i∗P ◦ (j × j)∗ ◦ p∗2Θ = j∗Θ.

For each a ∈ J , by Proposition 4.5.12 we have j∗aΘ = j∗at
∗
−κΘ− = j∗a−κΘ−. Thus j∗Θ ∼ j∗−κΘ−,

which is linearly equivalent to −KC + g[P0] by the reinterpretation of Proposition 4.5.10 above.
Similarly, (m ◦ (j × j) ◦ iP )(Q) = j(P ) + j(Q) = jj(P )(Q). So

i∗P ◦ (j × j)∗ ◦m∗Θ = j∗j(P )Θ ∼ g[P0]− ([P ]− [P0])−KC .

Thus we obtain (4.5.5) by linearity.

4.6 Rationality

In this section, we give a brief discussion about rationality.
Through the whole section, we let K be a number field and fix K ⊆ Q ⊆ C.
Let X be a projective algebraic variety defined over K. This means that X ⊆ PNK for some

N such that X = V (f1, . . . , fm) with f1, . . . , fm homogeneous polynomials with coefficients in
K.
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We have a natural inclusion PN (K) ⊆ PN (Q). Denote by

X(Q) := {x ∈ PN (Q) : f1(x) = · · · = fm(x) = 0}.

In other words, X(Q) is the zero set of f1, . . . , fm viewed as polynomials with coefficients in Q.
Any point in X(Q) is called a Q-point of X.

We will use XQ to denote the subvariety of PNQ viewed as a variety over Q.

Since all coefficients of the fj ’s are in K, the Galois group Gal(Q/K) acts naturally on X(Q).
We call x ∈ X(Q) a K-point if Gal(Q/K)x = x, i.e. the Galois action fixes the point x. The
set of K-points of X is denoted by X(K). It can be shown that

X(K) := {x ∈ PN (K) : f1(x) = · · · = fm(x) = 0},

i.e. each K-point is a K-solution to the system defined by the polynomials f1, . . . , fm (which
have coefficients in K).

Let us look at the example of a curve embedded into its Jacobian. Let C be a projective
irreducible smooth curve defined over K.

Previously, we constructed the Jacobian Jac(CQ) as Cl0(CQ). We have seen that Jac(CQ)

is a projective variety, i.e. Jac(CQ) ⊆ PNQ for some N . It turns out that the natural action of

Gal(Q/K) on PNQ preserves Jac(CQ), i.e. for any σ ∈ Gal(Q/K), we have σ(Jac(CQ)) = Jac(CQ).

Thus Jac(CQ) is defined over K. We use Jac(C) to denote the Jacobian of C viewed as a variety
defined over K.

Let P0 ∈ C(K). Then the Abel–Jacobi embedding jP0 : C → Jac(C) is a morphism defined
over K in the same way as above. Thus jP0(C) is a subvariety of Jac(C) defined over K. In
particular, we have

jP0(C(K)) ⊆ Jac(C)(K). (4.6.1)

We end this section with the following theorem. Let A be an abelian variety defined over K.
Then A(K) has a natural structure of abelian groups.

Theorem 4.6.1 (Mordell–Weil Theorem). As an abelian group A(K) is finitely generated, i.e.
A(K) ' Zρ ⊕ (

⊕
Z/niZ) for finitely many integers ni.



Chapter 5

Height Machine

5.1 Construction and basic properties of the Height Machine

In this section, we define the height function on projective varieties and the height machine.
Let X be an irreducible projective variety defined over Q. Denote by RX(Q) the set of

functions X(Q)→ R, and by O(1) the subset of bounded functions.
The Height Machine associates to each line bundle L ∈ Pic(X) a unique class of functions

RX(Q)/O(1), i.e. a map

hX : Pic(X)→ RX(Q)/O(1), L 7→ hX,L. (5.1.1)

Let hX,L : X(Q)→ R a representative of the class hX,L; it is called a height function associated
with (X,L).

Construction 5.1.1. One can construct hX,L as follows. In each case below, hX,L depends on
some extra data and hence is not unique. However, it can be shown that any two choices differ
by a bounded functions on X(Q), and thus the class of hX,L is well-defined.

(i) If L is very ample, then the global sections of L give rise to a closed immersion ι : X → Pn
for some n, such that ι∗O(1) ' L. Set hX,L = h ◦ ι, with h the Weil height on Pn from
Definition 1.2.1.

(ii) If L is ample, then L⊗m is very ample for some m� 1. Set hX,L = (1/m)hX,L⊗m.

(iii) For an arbitrary L, there exist ample line bundles L1 and L2 on X such that L ' L1⊗L⊗−1
2 ;

see Corollary 4.4.15. Set hX,L = hX,L1 − hX,L2.

Here is how we will arrange to show that the class of hX,L is well-defined in each one of the
cases above. For (i), it follows immediately from the following Lemma 5.1.2. For (ii) and (iii),
it will be proved in the course of proving Proposition 5.1.3.(ii).

Lemma 5.1.2. Assume φ : X → Pn and ψ : X → Pm are two morphisms defined over Q such
that φ∗OPn(1) ' ψ∗OPm(1). Then as functions on X(Q) we have

hPn ◦ φ− hPm ◦ ψ = O(1)

where hPn (resp. hPm) is the Weil height on Pn (resp. on Pm) from Definition 1.2.1.

This O(1) depends on X, φ and ψ, but is independent on the point of X(Q).

85
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Proof of Lemma 5.1.2. Denote by L := φ∗OPn(1) ' ψ∗OPm(1) the line bundle on X. Choose a
basis {h0, . . . , hN} of H0(X,L). Then there are linear combinations

fi =
N∑
j=0

aijhj ,0 ≤ i ≤ n,

gk =

N∑
j=0

bkjhj ,0 ≤ k ≤ m,

with aij ∈ Q and bkj ∈ Q, such that

φ = [f0 : · · · : fn] and ψ = [g0 : · · · : gm].

Set λ := [h0 : · · · : hN ] : X → PN ; then λ is a closed immersion. The matrix (aij)0≤i≤n, 0≤j≤N
gives rise to a linear map A : PN → Pn, and the matrix (bkj)0≤k≤m, 0≤j≤N gives rise to a linear
map B : PN → Pm. Notice A ◦ λ = φ and B ◦ λ = ψ. So both A and B are well-defined over
λ(X). Hence we can apply Theorem 1.2.15 and obtain

h(φ(x)) = h(A(λ(x))) = h(λ(x)) +O(1) and h(ψ(x)) = h(B(λ(x))) = h(λ(x)) +O(1)

for all x ∈ X(Q). Taking the difference of these two equalities, we get the desired equality.

Here are some basic properties of the Height Machine. These properties, or more precisely
properties (i)–(iii), also uniquely determine (5.1.1).

Proposition 5.1.3. We have

(i) (Normalization) Let h be the Weil height from Definition 1.2.1. Then for all x ∈ Pn(Q),
we have

hPn,O(1)(x) = h(x) +O(1).

(ii) (Additivity) Let L and M be two line bundles on X. Then for all x ∈ X(Q), we have

hX,L⊗M (x) = hX,L(x) + hX,M (x) +O(1).

(iii) (Functoriality) Let φ : X → Y be a morphism of irreducible projective varieties and let L
be a line bundle on Y . Then for all x ∈ X(Q), we have

hX,φ∗L(x) = hY,L(φ(x)) +O(1).

(iv) (Positivity) If s ∈ H0(X,L) is a global section, then for all x ∈ (X \ div(s))(Q) we have

hX,L(x) ≥ O(1).

(v) (Northcott property) Assume L is ample. Let K0 be a number field on which X is defined.
Then for any d ≥ 1 and any constant B, the set

{x ∈ X(K) : [K : K0] ≤ d, hX,L(x) ≤ B}

is a finite set.
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The O(1)’s that appear in the proposition depend on the varieties, line bundles, morphisms,
and the choices of the representatives in the classes of height functions. But they are independent
of the points on the varieties.

Proof of Proposition 5.1.3. Part (i) follows from the definition and the fact that x0, . . . , xn is a
basis of H0(Pn,O(1)). Notice that Lemma 5.1.2 is implicitly used.

Next we check (ii). We start with the case where both L and M are very ample. Then the
global sections of L (resp. ofM) give rise to a closed immersion φL : X → Pn (resp. ψ : X → Pm).
Composing with the Segre embedding Sn,m : Pn×Pm → PN (with N = (n+ 1)(m+ 1)−1) from
(1.2.5), we obtain

φL ⊗ φM : X → PN , x 7→ φL(x)⊗ φM (x).

Recall that S∗n,mOPN (1) ' O(1, 1) by Lemma 4.4.10. So (φL ⊗ φM )∗OPN (1) ' L ⊗ M . So
hX,L⊗M (x) = hPN (φL(x)⊗φM (x)), which equals hPn(φL(x))+hPm(φM (x)) by Proposition 1.2.14.(i),
and hence equals hX,L(x) + hX,M (x) +O(1).

At this stage, we are ready to establish case (ii) of Construction 5.1.1. Suppose L is ample.
If m and n satisfy that L⊗m and L⊗n are very ample, then L⊗mn is very ample. Apply Propo-
sition 5.1.3.(ii) to L⊗m (n times), then we get hX,L⊗mn = nhX,L⊗m + O(1). Similarly (apply
Proposition 5.1.3.(ii) to L⊗n (m times)) we have hX,L⊗mn = mhX,L⊗n +O(1). Thus up to O(1),
we have 1

mhX,L⊗m = 1
nhX,L⊗n . Hence hX,L is well-defined up to O(1) if L is ample.

Now Proposition 5.1.3.(ii) for the case where both L and M are ample follows from the very
ample case and the definition of the height function in this case.

For arbitrary L and M , write L = L1 ⊗ L⊗−1
2 and M = M1 ⊗ M⊗−1

2 with L1, L2, M1

and M2 ample. Then L1 ⊗ M1 and L2 ⊗ M2 are ample line bundles on X, with L ⊗ M '
(L1 ⊗M1)⊗ (L2 ⊗M2)⊗−1. Thus up to O(1), we have

hX,L⊗M = hX,L1⊗M1 − hX,L2⊗M2 = hX,L1 + hX,M1 − hX,L2 − hX,M2 = hX,L + hX,M .

Notice that this also establishes case (iii) of Construction 5.1.1 (that hX,L is well-defined up to
O(1) for an arbitrary L).

For (iii): By (ii) it suffices to prove the assertion for L very ample. Let ιL : Y → Pn be a closed
immersion given by global sections of L; then ι∗LO(1) ' L. In particular, hPn ◦ιL = hY,L+OY (1)
by part (i). There exists some very ample M on X such that φ∗L ⊗ M is very ample; see
Proposition 4.4.14. The global sections of M give rise to a closed immersion ιM : X → Pm. Hence
we have a morphism (ιL ◦ φ, ιM ) : X → Pn × Pm, which composed with the Segre embedding
gives a closed immersion ι : X → PN . One can check that ι∗O(1) ' φ∗L⊗M . So as in the proof
of part (ii), we have up to OX(1)

hX,φ∗L⊗M = hPN ◦ ι = hPn ◦ ιL ◦ φ+ hPm ◦ ιM = hY,L ◦ φ+ hX,M .

Hence we are done by part (ii).
For (iv): There exist a positive integer k and a very ample line bundle M on X such

that L⊗k ⊗M is very ample on X; see Proposition 4.4.14. Notice that sk ∈ H0(X,L⊗k). Let
{f0, . . . , fm} be a basis of H0(X,M); then we have a closed immersion ιM := [f0 : · · · : fm] : X →
Pm. One can complete skf0, . . . , s

kfm to a basis {skfj , gi}0≤j≤m,1≤i≤n of H0(X,L⊗k ⊗M), and
thus obtain a closed immersion ι : X → PN . Now up to O(1), hX,L⊗k = hPN ◦ ι − hPm ◦ ιM by

part (ii). For any x ∈ (X \ div(s))(Q), we have ιM (x) = [f0(x) : · · · : fm(x)] = [s(x)kf0(x) : · · · :
s(x)kfm(x)] ∈ Pm(Q), and so

hPN ◦ ι(x)− hPm ◦ ιM (x) =
1

[K : Q]

∑
v∈MK

(
log max

{
max
j
‖s(x)kfj(x)‖v,max

i
‖gi(x)‖v

}
− log max

j
‖s(x)kfj(x)‖v

)
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for an appropriate number field K, and hence is ≥ 0. Hence we are done.
For (v), it suffices to prove for L very ample. Then the conclusion follows immediately from

the Northcott Property for Weil height (Theorem 1.2.5).

5.2 Normalized Height after Néron and Tate

Let X be an irreducible projective variety defined over Q.
The Height Machine associates to each line bundle L ∈ Pic(X) a height function hL : X(Q)→

R. However, these height functions are well-defined only up to O(1). It is sometimes desirable
to find particular representatives.

While one can always fix a representative by fixing every operation needed to define hL (for
example, the basis of H0(X,L) giving the embedding of X into some PN if L is very ample),
for some particular (X,L) we have some more canonical choices. In this section, we discuss one
case developed by Néron and Tate.

Assume that φ : X → X is a morphism satisfying φ∗L ' L⊗α for some integer α > 1.

Theorem 5.2.1. There exists a unique height function

ĥX,φ,L : X(Q)→ R

with the following properties.

(i) ĥX,φ,L(x) = hX,L(x) +O(1) for all x ∈ X(Q),

(ii) ĥX,φ,L(φ(x)) = αĥX,φ,L(x) for all x ∈ X(Q).

The height function ĥX,φ,L depends only on the isomorphism class of L. Moreover, it can be
computed as the limit

ĥX,φ,L(x) = lim
n→∞

1

αn
hX,L(φn(x)) (5.2.1)

with φn the n-fold iterate of φ.

Property (i) says that ĥX,φ,L is in the class of heights of hX,L. The height function is
sometimes called the canonical height function.

Here is an example of the application of Theorem 5.2.1. Let φ : Pn → Pn be given by
homogeneous polynomials of degree d > 1, then φ∗O(1) ' O(d) = O(1)⊗d. If φ([x0 : · · · : xn]) =
[xd0 : · · · : xdn], then one can check that ĥPn,φ,O(1) is precisely the Weil height.

A more important example for the Tate Limit Process (5.2.1) is the definition of the Néron–
Tate heights on abelian varieties. This height turns out to be extremely useful. We will come
back to this in the next section.

Before moving on to the proof, let us have a digest. The morphism φ induces a Z-linear map
φ∗ : Pic(X) → Pic(X).[1] Tensoring with R gives a linear map φ∗ : Pic(X) ⊗Z R → Pic(X) ⊗Z R of real
vector spaces of finite dimension. Say L is non-trivial. Then the assumption φ∗L ' L⊗α implies that L
is an eigenvector for the eigenvalue α. The assumption α > 1 guarantees that the Tate Limit Process
(5.2.1) will work in the end.

Proof of Theorem 5.2.1. Applying Proposition 5.1.3.(iii) to the relation φ∗L ' L⊗α, we get a constant
C such that

|hX,L(φ(y))− αhX,L(y)| ≤ C for all y ∈ X(Q).

[1]The “addition” on the group Pic(X) is ⊗.
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Notice that C depends on X,L, φ and the choice of the height function hX,L.

Claim: For any x ∈ X(Q), the sequence α−nhX,L(φn(x)) converges.

We prove this by Cauchy. The proof uses the telescoping sum. Let n ≥ m and compute

∣∣α−nhX,L(φn(x))− α−mhX,L(φm(x))
∣∣ =

∣∣∣∣∣
n∑

i=m+1

α−i
(
hX,L(φi(x))− αhX,L(φi−1(x))

)∣∣∣∣∣ (telescoping sum)

≤
n∑

i=m+1

α−i
∣∣hX,L(φi(x))− αhX,L(φi−1(x))

∣∣ (triangle inequality)

≤
n∑

i=m+1

α−iC from above with y = φi−1(x).

So ∣∣α−nhX,L(φn(x))− α−mhX,L(φm(x))
∣∣ ≤ α−m − α−n

α− 1
C. (5.2.2)

But α−m−α−n

α−1 C → 0 as n > m→∞. Thus the sequence α−nhX,L(φn(x)) is Cauchy, and hence converges.

So we can define ĥX,φ,L(x) as in (5.2.1).
Now we verify the properties (i) and (ii). For (i), take m = 0 and let n→∞ in the inequality (5.2.2).

We then get ∣∣∣ĥX,φ,L(x)− hX,L(x)
∣∣∣ ≤ C

α− 1
. (5.2.3)

And this gives (a more explicit form of) property (i).
Property (ii) follows directly from the computation

ĥX,φ,L(φ(x)) = lim
n→∞

1

αn
hX,L (φn(φ(x)))

= lim
n→∞

α

αn+1
hX,L(φn+1(x))

= αĥX,φ,L(x).

It remains to prove the uniqueness. Suppose ĥ and ĥ′ are two functions with properties (i) and (ii). Set

g := ĥ − ĥ′. Then (i) implies that g is bounded, say |g(x)| ≤ C ′ for all x ∈ X(Q). Property (ii) implies
that g ◦ φ = αg and thus g ◦ φn = αng for all n ≥ 1. Hence

|g(x)| = |g(φn(x))|
αn

≤ C ′

αn
n→∞−−−−→ 0.

Thus g ≡ 0 and hence ĥ = ĥ′. We are done.

Proposition 5.2.2. Assume furthermore that L is ample. Then

(i) ĥX,φ,L(x) ≥ 0 for all x ∈ X(Q);

(ii) ĥX,φ,L(x) = 0 if and only if x is preperiodic for φ, i.e. O+
φ (x) := {x, φ(x), φ2(x), . . .} is

a finite set.

Proof. For (i): As L is ample, L⊗m is very ample for some m� 1. Take a basis {s1, . . . , sk} of
H0(X,L⊗m), then

⋂k
i=1 div(si) = ∅. By Proposition 5.1.3.(iv) applied to each si, we can choose a

representative hX,L⊗m with hX,L⊗m(x) ≥ 0 for all x ∈ X(Q). Thus hX,L(x) = (1/m)hX,L⊗m(x) ≥
0 for all x ∈ X(Q). So ĥX,φ,L(x) ≥ 0 for all x ∈ X(Q) by (5.2.1).

Let us prove property (ii). Take x ∈ X(Q). For ⇐: It is clear that hX,L(φn(x)) is bounded

because O+
φ (x) is a finite set. So α−nhX,L(φn(x))→ 0 as n→∞. Thus ĥX,φ,L(x) = 0 by (5.2.1).
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It remains to prove ⇒ of property (ii). Take a number field K such that X, L, φ are defined
over K and x ∈ X(K). Suppose ĥX,φ,L(x) = 0. Then for any n ≥ 1, we have

hX,L(φn(x)) = ĥX,φ,L(φn(x)) +O(1) = αnĥX,φ,L(x) +O(1) = O(1).

Here the constant O(1) depends only on X and L. As all φn(x) are in X(K), we obtain a
constant B such that

O+
φ (x) ⊆ {y ∈ X(K) : hX,L(y) ≤ B}.

Thus O+
φ (x) is a finite set by the Northcott property (Proposition 5.1.3.(v)). We are done.

This proposition is important when we study the canonical heights on abelian varieties in
the next section.

Here is an application.

Corollary 5.2.3 (Kronecker’s Theorem). Consider the Weil height h on Q = A1(Q). Let ζ ∈ Q∗. Then
h(ζ) = 0 if and only if ζ is a root of unity.

Proof. Consider the morphism φ : P1 → P1, [x0 : x1] 7→ [x2
0 : x2

1]. Then h(x) = ĥP1,φ,O(1)([1 : x]) for all

x ∈ Q. For ⇒, suppose h(ζ) = 0. By Proposition 5.2.2.(ii), {[1 : ζ], [1 : ζ2], [1 : ζ4], . . .} is a finite set. So

ζ2i

= ζ2j

for some i 6= j. Thus ζ is a root of unity. For ⇐, suppose ζn = 1. Fermat’s Little Theorem
implies 2φ(n) ≡ 1 (mod n) for the Euler-φ function. Thus {[1 : ζ], [1 : ζ2], [1 : ζ4], . . .} is a finite set, and

hence h(ζ) = ĥP1,φ,O(1)([1 : ζ]) = 0 by Proposition 5.2.2.(ii).

5.3 Néron–Tate height on abelian varieties

In this section, we discuss about normalized height functions on abelian varieties.
Let A be an abelian variety defined over Q. Let L ∈ Pic(A) be a line bundle such that

L ' [−1]∗L (we call such an L even). By Corollary 4.5.8, we have

[n]∗L ' L⊗n2
(5.3.1)

for all n ∈ Z.
Let us apply Theorem 5.2.1 to [2] : A → A and L. Then we obtain the normalized height

function
ĥA,L : A(Q)→ R. (5.3.2)

This function is called the Néron–Tate height on A with respect to L. Compared to the
notation in the last section, we omitted the map [2] in the subscript. This is justified by the
following proposition, which implies that we can replace [2] by any [n] with n ≥ 2 in the definition
of ĥA,L.

Proposition 5.3.1. For each N ∈ Z, we have ĥA,L([N ]x) = N2ĥA,L(x) for all x ∈ A(Q). In
particular, we have

ĥA,L(x) = lim
N→∞

hA,L([N ]x)

N2
.

Proof. We have [N ]∗L ' L⊗N2
by (5.3.1). Thus (ii) and (iii) of Proposition 5.1.3 (applied to the

height function ĥ) yield ĥA,L([N ]y) = ĥA,[N ]∗L(y) + O(1) = ĥ
A,L⊗N2 (y) + O(1) = N2ĥA,L(y) +

O(1) for all y ∈ A(Q), where O(1) is a constant depending on A and L. In particular let
y = [2n]x, then we have

ĥA,L([2n][N ]x) = N2ĥA,L([2n]x) +O(1) = N24nĥA,L(x) +O(1)
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where the last equality follows from Theorem 5.2.1.(ii). Dividing both sides by 4n and letting
n→∞, we get ĥA,L([N ]x) = N2ĥA,L(x).

For the “In particular” part, we know (Theorem 5.2.1.(i)) that ĥA,L = hA,L +O(1). Thus

lim
N→∞

hA,L([N ]x)

N2
= lim

N→∞

ĥA,L([N ]x) +O(1)

N2
= ĥA,L(x).

We are done.

Proposition 5.3.2. Assume L is ample. Then

(i) ĥA,L(x) ≥ 0 for all x ∈ A(Q);

(ii) ĥA,L(x) = 0 if and only if x is a torsion point, i.e. [N ]x = 0 for some integer N 6= 0;

Proof. Part (i) follows immediately from Proposition 5.2.2.(i).
For (ii), we use Proposition 5.2.2.(ii). Assume ĥA,L(x) = 0. Then {[2n]x : n ≥ 1} is a finite

set by Proposition 5.2.2.(ii). Thus [2n]x = [2m]x for some m > n. Thus [2m − 2n]x = 0 and
2m − 2n 6= 0, and hence x is a torsion point. Conversely assume [N ]x = 0 with N 6= 0. Then
the set O+

[N ](x) := {x, [N ]x, [N2]x, · · · } is a finite set. So Proposition 5.2.2.(ii) implies that

ĥA,[N ],L(x) = 0. But ĥA,[N ],L = ĥA,L by Proposition 5.3.1. Hence we are done.

We finish this section by the following discussion.
Take a finitely generated subgroup Γ of A(Q). By linearity, the Néron–Tate height ĥA,L

extends to a function ΓR := Γ⊗Z R→ R. By abuse of notation we still denote this function by
ĥA,L.

Proposition 5.3.3. For each finitely generated subgroup Γ of A(Q), ĥA,L is a quadratic form
on ΓR which is furthermore positive definite.

Proof. In view of Proposition 5.3.2.(i), in order to prove that ĥA,L is a quadratic form on A(Q),
it suffices to show that the pairing

〈·, ·〉L : A(Q)×A(Q)→ R, (a, b) 7→ 1

2

(
ĥA,L(a+ b)− ĥA,L(a)− ĥA,L(b)

)
(5.3.3)

is bilinear. This easily follows from the theorem of the square (Theorem 4.5.9) because ĥA,L(x) =

ĥA,t∗xL(0) for all x ∈ A(Q).

Notice that ĥA,L is then a quadratic form on ΓR by linearity.

To show that ĥA,L is positive definite on ΓR, we need to prove two things by Lemma 5.3.4.

In order to distinguish ĥA,L on Γ and on ΓR, we denote the latter by q. We use Γ to denote the
image of Γ→ ΓR; it is isomorphic to Γ mod the torsion points.

(a) If 0 6= γ ∈ ΓR lies in Γ, then q(γ) > 0.

(b) For every C > 0, the set {γ ∈ Γ : q(γ) ≤ C} is finite.

For (a), it easily follows from (i) and (ii) of the current proposition. For (b), suppose γ is the
image of some x ∈ Γ. Then q(γ) ≤ C ⇒ ĥA,L(x) ≤ C. As Γ is finitely generated, there exists a

number field K such that Γ ⊆ A(K). Thus we are looking at {x ∈ A(K) : ĥA,L(x) ≤ C}, which
is a finite set by the Northcott property (Proposition 5.1.3.(v)). So (b) is also established. We
are done.



92 CHAPTER 5. HEIGHT MACHINE

Lemma 5.3.4. Let M be a finitely generated abelian group and let q : M → R be a quadratic
form. Set qR : MR := M ⊗Z R → R to be the quadratic form defined by linearity. Then qR is
positive definite if and only if the following two conditions are satisfied:

(a) q(x) > 0 for all x ∈M \ {0}, where M is the image of M →MR;

(b) For every C > 0, the set {x ∈M : qR(x) ≤ C} is finite.

Part (b) is necessary as is shown by the following example. Suppose α is a transcendental
number in R, then the quadratic form in R2 given by q(x1, x2) := (x1 − αx2)2 is not positive

definite since q(α, 1) = 0, but q(x1, x2) > 0 for all (x1, x2) ∈ Q2 \ {0}!

Proof. The direction ⇒ is easy. We prove ⇐. Assume qR is not positive definite. Then there exists
y ∈MR \ {0} such that qR(y) = 0.

We claim that y 6∈ MQ = MQ. Indeed if y ∈ MQ, then Ny ∈ M \ {0} for some 0 6= N ∈ N. Then
q(Ny) > 0 by (a). But q is quadratic, so q(Ny) = N2q(y) > 0. This contradicts the choice of y.

Choose a basis {x1, . . . , xr} of M ; it is also a basis of MR. For any n ∈ N, there exists yn ∈M such
that the coordinates of yn − ny are in the interval [0, 1]. Thus yn − ny is contained in the compact cube
{
∑r
i=1 αixi : 0 ≤ αi ≤ 1}. But qR(yn) = qR(yn − ny) (since qR(y) = 0)[2] and hence is bounded on the

cube, say by C. Since y 6∈MQ, the set {yn : n ∈ N} is infinite and is contained in {x ∈M : qR(x) ≤ C}.
This contradicts (b). Hence we are done.

[2]This can be seen from (for example) the bilinear pairing associated with the quadratic form qR.



Chapter 6

Mordell Conjecture

6.1 Statement and Gap Principle

The goal of this chapter is to prove the famous Falting’s Theorem, also known as the Mordell
Conjecture.

Theorem 6.1.1. Let C be an irreducible projective smooth curve defined over a number field
K. If the genus of C (denoted by g) is ≥ 2, then C(K) is a finite set.

This is a very strong result. The genus g is a topological invariant of C, and the set of
rational points C(K) is arithmetic information.

For the proof, we will follow Vojta’s approach and take Bombieri’s simplification.
Let J = Jac(C) be the Jacobian of C. Fix P0 ∈ C(K), and let

j = jP0 : C → J, P 7→ cl([P ]− [P0])

be the Abel–Jacobi embedding via P0. Then j is defined over K. Notice that at this step,
we assumed C(K) 6= ∅. This does not cause problem for the purpose of proving Mordell’s
Conjecture, because otherwise we simply have #C(K) = 0.

6.1.1 Mumford’s Formula

Let Θ := jP0(C) + · · ·+ jP0(C) (g− 1 copies). Then it has dimension g− 1, and hence is a Weil
divisor on J . Denote by Θ− := [−1]∗Θ; as a variety it is −jP0(C)− · · · − jP0(C) (g − 1 copies).
Both Θ and Θ− are ample divisors; see Theorem 4.4.16.

Lemma 6.1.2. We have:

(i) [2]∗Θ = 3Θ + Θ−;

(ii) As divisors on C, we have j∗Θ− ∼ g[P0].

Proof. Part (i) follows immediately from Corollary 4.5.8 applied to n = 2 and L = O(Θ). Part
(ii) follows immediately from Proposition 4.5.10 applied to the point (P0, . . . , P0) ∈ Cg, because
j(P0) = 0.

In practice, it is more natural to work with symmetric line bundles or symmetric divisors
on J . Thus we consider the divisor Θ + Θ−, which clearly satisfies [−1]∗(Θ + Θ−) = Θ + Θ−.
It is ample. Thus for the associated line bundle O(Θ + Θ−), the associated Néron–Tate height

93
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ĥO(Θ+Θ−) : J(Q) → R≥0 is a quadratic form, which by Proposition 5.3.3 extends linearly to a

positive definite quadratic form [1]

ĥΘ+Θ− : J(K)R := J(K)⊗Z R→ R≥0.

Then J(K)R, which is a finite-dimensional R-vector space by the Mordell–Weil Theorem (The-

orem 4.6.1), is endowed with a norm given by | · | := ĥ
1/2
Θ+Θ− . We can then define the angle

between each z, w ∈ J(K)R. More precisely, let 〈·, ·〉 : J(K)R × J(K)R → R be the bilinear
pairing associated with ĥΘ+Θ− , i.e.

〈z, w〉 =
1

2

(
ĥΘ+Θ−(z + w)− ĥΘ+Θ−(z)− ĥΘ+Θ−(w)

)
. (6.1.1)

Then the angle α between z and w is given by cosα = 〈z, w〉/|z||w|.
The bilinear pairing (6.1.1) can be seen as a height on J × J as follows. Recall the Poincaré

divisor δ := m∗Θ − p∗1Θ − p∗2Θ on J × J , where pi is the natural projection to the i-th factor
and m is the addition

J × J p1 //

p2

��

m

""

J

J J.

Lemma 6.1.3. We have ĥδ(a, a) = ĥΘ+Θ−(a) for all a ∈ J(Q)⊗R. As a consequence, ĥδ(a, b) =
〈a, b〉 for all a, b ∈ J(K)R.

Proof. For the diagonal embedding ∆J : J → J × J , we have

∆∗Jδ = (m ◦∆J)∗Θ− (p1 ◦∆J)∗Θ− (p2 ◦∆J)∗Θ = [2]∗Θ− 2Θ = Θ + Θ−

where the last equality follows from Lemma 6.1.2.(i). So

ĥδ(a, a) = ĥδ(∆J(a)) = ĥ∆∗Jδ
(a) = ĥΘ+Θ−(a).

And ĥδ(a, b) = 〈a, b〉 since ĥδ(a+ b, a+ b) = ĥδ(a, a) + ĥδ(b, b) + 2ĥδ(a, b).

Now we are ready to prove Mumford’s Formula. Before doing this, recall that

(j × j)∗δ ∼ −∆ + (C × {P0}) + ({P0} × C) (6.1.2)

as divisors on C × C by Theorem 4.5.11. Here ∆ is the diagonal on C × C.

Proposition 6.1.4 (Mumford’s Formula). We have, for all P,Q ∈ C(Q),

hC×C,∆(P,Q) =
1

2g
|j(P )|2 +

1

2g
|j(Q)|2 − 〈j(P ), j(Q)〉+O(|j(P )|+ |j(Q)|+ 1). (6.1.3)

[1]By Theorem 4.4.7, we are allowed to identify (Cartier) divisor classes and isomorphism classes of line bundles.
So for each (Cartier) divisor D, we use hD to denote the height function hO(D).
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Proof. Denote by z = j(P ) and w = j(Q). We have

〈z, w〉 = ĥJ×J,δ(z, w) by Lemma 6.1.3

= hC×C,(j×j)∗δ(P,Q) +O(1) by Proposition 5.1.3.(iii)

= hC×C,O({P0}×C+C×{P0}−∆)(P,Q) +O(1) by (6.1.2)

= hC×C,O({P0}×C)(P,Q) + hC×C,O(C×{P0})(P,Q)− h∆(P,Q) +O(1) by Proposition 5.1.3.(ii)

= hC,[P0](P ) + hC,[P0](Q)− hC×C,∆(P,Q) +O(1) by Proposition 5.1.3.(iii)[2]

=
1

g
hC,j∗Θ−(P ) +

1

g
hC,j∗Θ−(Q)− hC×C,∆(P,Q) +O(1) by Lemma 6.1.2.(ii) and Proposition 5.1.3.(iii)

=
1

g
ĥJ,Θ−(z) +

1

g
ĥJ,Θ−(w)− hC×C,∆(P,Q) +O(1) by Proposition 5.1.3.(iii)

=
1

2g

(
ĥJ,Θ+Θ−(z)− ĥJ,Θ−Θ−(z)

)
+

1

2g

(
ĥJ,Θ+Θ−(w)− ĥJ,Θ−Θ−(w)

)
− hC×C,∆(P,Q) +O(1)

by Proposition 5.1.3.(ii)

=
1

2g

(
|z|2 − ĥΘ−Θ−(z)

)
+

1

2g

(
|w|2 − ĥΘ−Θ−(w)

)
− h∆(P,Q) +O(1).

So

hC×C,∆(P,Q) =
1

2g
|j(P )|2 +

1

2g
|j(Q)|2 − 〈j(P ), j(Q)〉 − 1

2g
ĥΘ−Θ−(j(P ))− 1

2g
ĥΘ−Θ−(j(Q)) +O(1), (6.1.4)

from which we can conclude.

The equality (6.1.3) gives a strong restriction on the distribution of points on C. For the
left hand side, we have[3] hC×C,∆(P,Q) ≥ 0 for all P 6= Q, since ∆ is an effective divisor on
C × C and (P,Q) is not in supp(∆). For the right hand side, the main term is an indefinite
quadratic form (since g ≥ 2) and hence can à priori attain all negative values, especially when
j(P ) and j(Q) both have large norms and are “too close” to each other. The equality (6.1.3)
then confirms that this last case cannot happen: If |j(P )| and |j(Q)| are both very large, then
either the angle between j(P ) and j(Q) is large, or max{|j(P )|, |j(Q)|} is significantly larger
than min{|j(P )|, |j(Q)|}.

6.1.2 Mumford’s Gap Principle

Theorem 6.1.5 (Mumford’s Inequality). Let ε > 0. There exists a constant R = R(C, ε) > 0
such that the following property holds true. Consider all pairs of distinct points P,Q ∈ C(Q)
satisfying:

(i) |j(Q)| ≥ |j(P )| ;

(ii) the angle between j(P ) and j(Q) is at most cos−1(3/4+ ε). In other words, 〈j(P ), j(Q)〉 ≥
(3/4 + ε)|j(P )||j(Q)|.

If |j(P )| ≥ R, then

|j(Q)| ≥ 2|j(P )|. (6.1.5)

Proof. By assumption, P 6= Q. So for a suitable representative height function, we have
hC×C,∆(P,Q) ≥ 0 since ∆ is an effective divisor on C × C and (P,Q) is not in supp(∆).

[3]For a representative of the height function.
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Denote by z = j(P ) and w = j(Q). In addition to the last paragraph, by Proposition 6.1.4
and since |w| ≥ |z| (hypothesis (i)), we have

〈z, w〉 ≤ 1

2g
|z|2 +

1

2g
|w|2 +O(|w|+ 1).

Divide both sides by |z||w|. Hypothesis (ii) then implies

3

4
+ ε ≤ 1

2g

(
|w|
|z|

+
|z|
|w|

)
+O

(
1

|z|

)
≤ 1

2g

(
|w|
|z|

+ 1

)
+O

(
1

|z|

)
,

from which we have

|w|
|z|
≥ 3

2
g − 1 + 2gε−O

(
1

|z|

)
≥ 2 + 2gε−O

(
1

|z|

)
.

So for R� 1, the hypothesis |z| ≥ R implies |w| ≥ 2|z|.

Mumford’s Gap Principle allows us to continue the proof of the Mordell Conjecture as follows.

In the Euclidean space (J(K)⊗R, | · | = ĥ
1/2
Θ+Θ−), the image of J(K)→ J(K)⊗R is a lattice.[4]

Consider the ball centered at the origin of radius R in the Euclidean space. We divide the points
in C(K) into:

• (small points) {P ∈ C(K) : ĥΘ+Θ−(j(P )) < R} ;

• (large points) {P ∈ C(K) : ĥΘ+Θ−(j(P )) ≥ R}.

Notice that the set of small points is immediately a finite set since it contains lattice points in
a bounded ball. Now to prove the Mordell Conjecture, it suffices to prove the finiteness of the
large points.

To do this, we divide J(K) ⊗ R into cones according to the angles between distinct points
given by hypothesis (ii) of Mumford’s Gap Principle. More precisely, we divide J(K) ⊗ R into
7dim J(K)⊗R cones such that the angle between each two points in a same cone is ≤ cos−1(3/4+ε).
Mumford’s Gap Principle then says that in each cone, the norms of large points increase rapidly.

6.2 Vojta’s Inequality: Statement and Consequence

Theorem 6.2.1 (Vojta’s Inequality). Let ε > 0. There exist two constants R = R(C, ε) > 0
and κ = κ(g, ε) > 0 such that the following property holds true. Consider all pairs of distinct
points P,Q ∈ C(Q) satisfying:

(i) |j(Q)| ≥ |j(P )| ;

(ii) the angle between j(P ) and j(Q) is at most cos−1(3/4+ ε). In other words, 〈j(P ), j(Q)〉 ≥
(3/4 + ε)|j(P )||j(Q)|.

If |j(P )| ≥ R, then

|j(Q)| ≤ κ|j(P )|. (6.2.1)

[4]Two points in J(K) have the same image in J(K) ⊗ R if and only if they differ from a torsion point. Since
J(K) has only finitely many torsion points (by the Mordell–Weil Theorem), viewing j(C(K)) as a subset of J(K)
or as a subset of J(K)⊗ R does not change the finiteness.
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The constant R here may be different from the one from Mumford’s Gap Principle. However,
we can replace them by the maximum and assume that it is the same constant.

Proof of Theorem 6.1.1 assuming Vojta’s Inequality. By the discussion of the last section, it suf-
fices to prove the finiteness of the large points in each cone.

Assume P0, . . . , Pn are such points of non-decreasing norms. Then Mumford’s Gap Principle
(6.1.5) implies

|j(Pn)| ≥ 2|j(Pn−1)| ≥ · · · ≥ 2n|j(P0)|.

On the other hand, Vojta’s Inequality says |j(Pn)| ≤ κ|j(P0)|. So 2n ≤ κ. Hence in each cone,
there are ≤ log κ/ log 2 + 1 large points. Hence we are done.

6.3 Vojta divisors

6.3.1 Vojta divisors and the generalized Mumford’s Formula

Let ∆ be the diagonal of C × C; it is a divisor on C × C. Set

∆′ = ∆− {P0} × C − C × {P0}, (6.3.1)

which has degree 0 on each fiber of the natural projections C × C → C.

Definition 6.3.1. A Vojta divisor is of the form

V (d1, d2, d) = d1{P0} × C + d2C × {P0}+ d∆′

for some d1, d2, d ∈ Z>0.

As for Proposition 6.1.4, one can prove the following generalized Mumford’s Formula.

Proposition 6.3.2. We have, for all P,Q ∈ C(Q),

hV (d1,d2,d)(P,Q) =
d1

2g
|j(P )|2 +

d2

2g
|j(Q)|2 − d〈j(P ), j(Q)〉 (6.3.2)

+ d1O(|j(P )|) + d2O(|j(Q)|) + (d1 + d2 + d)O(1).

The main term of the right hand side of this formula is a quadratic form, which is indefinite
if d1d2 < g2d2.

The proof of Vojta’s Inequality is inspired by the proof of Roth’s Theorem. Roughly speaking,
one has to find an upper bound and a lower bound of the evaluation of a suitable function at
certain points, and then conclue using these two (repelling) bounds with the parameters tending
to infinity. In our case, this function a height hV (d1,d2,d) on C × C, these points are the pairs
(P,Q) outside the diagonal with P,Q in a same cone Γ constructed at the end of §6.1.2, and the
parameters are d1, d2, d. In other words, one wishes to prove an upper bound and a lower bound
for hV (d1,d2,d)(P,Q) for d1, d2, d large enough and for (P,Q) ∈ Γ× Γ outside the diagonal.

The upper bound is given by (6.3.2).
To prove the lower bound, we need to construct a small section of the line bundleO(V (d1, d2, d))

on C×C, “small” in an appropriate sense which will be made precise in later sections. Our tool
to do this is by a suitable version of Siegel’s Lemma.[5]

[5]How this is inspired by the proof of Roth’s Theorem: We constructed an auxiliary polynomial of small height
in the proof of Roth’s Theorem. In §4.4.3, we explained that each polynomial can be seen as a section of a suitable
line bundle on (P1)m. Here we will construct a section of some line bundle O(V (d1, d2, d)) on C × C.
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6.3.2 Sections of Vojta divisors

We start by writing a Vojta divisor V = V (d1, d2, d) as the difference of two very ample divisors
on C × C.

Fix an integer N � 1 such that N [P0] is a very ample divisor on C. Then it gives rise to a
closed immesion

φN [P0] : C → PnK
such that φ∗N [P0]O(1) ' O(N [P0]). Thus we get a closed immersion

ψ = φN [P0] × φN [P0] : C × C → PnK × PnK

and, for all pairs of positive integers (δ1, δ2), we have as line bundles on C × C

O(δ1N{P0} × C + δ2NC × {P0}) ' ψ∗O(δ1, δ2). (6.3.3)

Fix an integer M � 1 such that B := M({P0}×C +C ×{P0})−∆′ is a very ample divisor
on C × C. Then it gives rise to a closed immesion

φB : C × C → PmK

such that φ∗BO(1) ' O(B).
Suppose

(V1) δ1 :=
d1 +Md

N
and δ2 :=

d2 +Md

N
are two integers.

This is satisfied up to adding d1 with an integer bounded by N (same for d2). Now the Vojta
divisor can be written as the difference of two very ample divisors

V = V (d1, d2, d) = (δ1N{P0} × C + δ2NC × {P0})− dB. (6.3.4)

Thus for all P,Q ∈ C(K), we have

[K : Q]hV (P,Q) = [K : Q](δ1hN [P0](P ) + δ2hN [P0](Q)− dhB(P,Q))

= [K : Q]
(
δ1h(φN [P0](P )) + δ2h(φN [P0](Q))− dh(φB(P,Q))

)
.

Denote by φN [P0](P ) = x = [x0 : · · · : xn], φN [P0](Q) = x′ = [x′0 : · · · : x′n] et φB(P,Q) = y =
[y0 : · · · : ym]. Then the right hand side of the equality above equals

δ1
∑
v∈MK

max
j

log ‖xj‖v + δ2
∑
v∈MK

max
j′

log ‖x′j′‖v − d
∑
v∈MK

max
i

log ‖yi‖v =
∑
v∈MK

min
i

max
j,j′

log

∥∥∥∥∥x
δ1
j x
′δ2
j′

ydi

∥∥∥∥∥
v

.

Hence we have

hV (P,Q) =
1

[K : Q]

∑
v∈MK

min
i

max
j,j′

log

∥∥∥∥∥x
δ1
j x
′δ2
j′

ydi

∥∥∥∥∥
v

. (6.3.5)

Suppose furthermore

(V2) ψ∗ : H0(PnK × PnK ,O(δ1, δ2))→ H0(C × C,ψ∗O(δ1, δ2))

and φ∗B : H0(PmK ,O(d))→ H0(C × C,O(dB)) are surjective.

This is satisfied for all d1, d2, d� 1.
Write (x,x′) for the coordinate of PnK×PnK . Write y for the coordinate of PmK . The following

lemma is not hard to prove under (V2).
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Lemma 6.3.3. For each global section s ∈ H0(C × C,O(V )), there exist bi-homogeneous poly-
nomials Fi(x,x

′) with coefficients in K (i ∈ {0, . . . ,m}) of bi-degree (δ1, δ2) such that

s =
Fi(x,x

′)

ydi

∣∣∣∣
C×C

for all i ∈ {0, . . . ,m}. (6.3.6)

Conversely, if Fi(x,x
′) (i ∈ {0, . . . ,m}) are bi-homogeneous polynomials with coefficients in K

of bi-degree (δ1, δ2) such that

(Fi(x,x
′)/ydi )|C×C = (Fj(x,x

′)/ydj )|C×C (6.3.7)

for all i and j, then there exists a unique global section s ∈ H0(C × C,O(V )) such that (6.3.6)
holds true.

One importance of this lemma is that one can always take ydi as the denominator.

Proof. Let s be a global section of O(V ). Then s⊗ ydi |C×C is a global section of the line bundle
O(V +dB) = O(δ1N{P0}×C+δ2NC×{P0}) ' ψ∗O(δ1, δ2); see (6.3.3) for the last isomorphism.
Thus we obtain bi-homogeneous polynomials Fi(x,x

′) of bi-degree (δ1, δ2) satisfying (6.3.6).

Conversely, assume Fi(x,x
′) (with i ∈ {0, . . . ,m}) are bi-homogeneous polynomials of bi-

degree (δ1, δ2) satisfying (6.3.7). Then we get a meromorphic section s of O(V ) by the formula
(6.3.6). Notice that s does not depend on the choice of i ∈ {0, . . . ,m}. Moreover, the poles of
s are contained in the subvariety

⋂m
i=0 V (yi) = ∅. Thus s is a global section, and hence we are

done.

6.4 Lower bound: Construction of a small section

Assume

(V3) d1 + d2 > 4g − 4 and d1d2 − gd2 > γd1d2 for some γ > 0.

Here γ depends only on d1, d2, d. We will make the choice later.

The goal of this section is to prove the following proposition, which constructs a small section.

Proposition 6.4.1. Assume (V1), (V2) et (V3). Then there exists a global section s ∈ H0(C×
C,O(V )) associated with F = (F0, . . . , Fm) such that

h(F) = O

(
d1 + d2

γ

)
. (6.4.1)

6.4.1 A coarse lower bound for hV (P,Q)

We start with the following proposition, which gives a motivation for the desired construction
of the small section.

Proposition 6.4.2. Let s ∈ H0(C × C,O(V )) be a global section which corresponds to F =
(F0, . . . , Fm) as in Lemme 6.3.3. Assume s(P,Q) 6= 0. Then

hV (P,Q) ≥ −h(F)− n log ((δ1 + n)(δ2 + n)) , (6.4.2)

where h(F) = maxi h(Fi).
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Proof. The Product Formula, since s(P,Q) 6= 0, implies∑
v∈MK

log ‖s(P,Q)‖v = 0. (6.4.3)

Denote by φN [P0](P ) = x = [x0 : · · · : xn], φN [P0](Q) = x′ = [x′0 : · · · : x′n] et φB(P,Q) = y =
[y0 : · · · : ym]. Then

[K : Q]hV (P,Q) =
∑
v∈MK

min
i

max
j,j′

log

∥∥∥∥∥ xδ1j x
′δ2
j′

ydi · s(P,Q)

∥∥∥∥∥
v

by (6.3.5) - (6.4.3)

=
∑
v∈MK

min
i

max
j,j′

log

∥∥∥∥∥ x
δ1
j x
′δ2
j′

Fi(x, x′)

∥∥∥∥∥
v

by (6.3.6)

= −
∑
v∈MK

max
i

min
j,j′

log

∥∥∥∥∥Fi
([

x0

xj
, . . . ,

xm
xj

]
,

[
x′0
x′j′

, . . . ,
x′m
x′j′

])∥∥∥∥∥
v

.

Fix v and i, and let jv,i be such that ‖xj/xjv,i‖v ≤ 1 for all j and let j′v,i be such that

‖x′j′/x′j′v,i‖v ≤ 1 for all j′. Then we have

min
j,j′

log

∥∥∥∥∥Fi
([

x0

xj
, . . . ,

xm
xj

]
,

[
x′0
x′j′

, . . . ,
x′m
x′j′

])∥∥∥∥∥
v

≤ log

∥∥∥∥∥∥Fi
[ x0

xjv,i

, . . . ,
xm
xjv,i

]
,

 x′0
x′
j′v,i

, . . . ,
x′m
x′
j′v,i

∥∥∥∥∥∥
v

.

If v -∞, then the right hand side is ≤ log max ‖coefficients of Fi‖v. If v|∞, we should also take
into account the number of monomials, which is ≤

(
δ1+n
n

)(
δ2+n
n

)
≤ (δ1 + n)n(δ2 + n)n. So

[K : Q]hV (P,Q) ≥ −
∑
v∈MK

max
i

log max ‖coefficients of Fi‖v −
∑
v|∞

log ‖(δ1 + n)n(δ2 + n)n‖v

= −[K : Q]h(F)− [K : Q]n log ((δ1 + n)(δ2 + n)) .

Hence we are done.

By this proposition, to obtain the desired lower bound il would suffice to choose a global
section s which satisfies the following two properties: (i) s has small height, i.e. h(F) from
(6.4.2) is small; (ii) s does not vanish at (P,Q).

To get (i), we will use Siegel’s Lemma. For (ii), one should use some results from zero
estimates (Roth’s Lemma in our case) to conclude that s does not vanish at (P,Q) to a large
order (and also adjust appropriately the lower bound (6.4.2)). We finish (i) in this section, and
finish (ii) in the next sections.

6.4.2 Construction of a small section

Now we apply Siegel’s Lemma to construct a small section. We start by recalling the basic
version of Siegel’s Lemma, Lemma 2.1.1.

Lemma 6.4.3. Let A = (aij) be an M ′ ×N ′-matrix with entries in Z. Set B = maxi,j |aij |. If
N ′ > M ′, then Ker(A) contains a non-zero vector x = (x1, . . . , xN ′) ∈ ZN ′ such that

max
j
|xj | ≤ (N ′B)

M′
N′−M′ .
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The number N ′ is the number of variables. In our case, by Lemma 6.3.3 it is (m+ 1)-times
of the dimension of the space of all F (x,x′)|C×C of bi-degree (δ1, δ2). Hence

N ′ ≈ (m+ 1) dimH0(C × C,ψ∗O(δ1, δ2)) ≥ (m+ 1)(Nδ1 + 1− g)(Nδ2 + 1− g).

Here we have used the Riemann–Roch Theorem for C to prove this bound. Indeed by (V2), we
have

dimH0(C × C,ψ∗O(δ1, δ2)) = (Nδ1 + 1− g)(Nδ2 + 1− g). (6.4.4)

If rkA = M ′, then the number N ′ −M ′ = dim Ker(A). In our case, this number is

dimH0(C × C,O(V (d1, d2, d))) (6.4.5)

which is ≥ d1d2 − gd2 + (g − 1)(d1 + d2) if d1 + d2 > 4g − 4.[6]

If rk(A) < M ′, then one can do elementary eliminations for the linear system such that M ′

becomes rk(A). Notice that this elimination can be done in such a way that h(A) = logH(A)
increases at most linearly.

A consequence of (V3) is
d = O(d1 + d2). (6.4.6)

Sketch of Proof of Proposition 6.4.1. In order to apply Siegel’s Lemma, we should transform the
conditions (6.3.7) into a linear system A whose variables are the coefficients of the Fi’s. This
is possible because the curve C (resp. the surface C × C) is a subvariety of PnK (resp. of PmK)
by the closed immersion φN [P0] (resp. by the closed immersion φB), and hence is defined as the
zero locus of some polynomials. One can check that h(A) := logH(A) = O(d); for this we use
the fact that in the expression (6.3.6) of s the denominator is ydi .

Now Siegel’s Lemma implies

h(F) ≤ (m+ 1) dimH0(C × C,ψ∗O(δ1, δ2))

dimH0(C × C,O(V (d1, d2, d)))
(O(d) + logO(1)).

Therefore by (6.4.4), (6.4.5), (V1) and (V3), we have

h(F) ≤ N2δ1δ2 +O(d1 + d2 + d)

γd1d2 +O(d1 + d2)
O(d). (6.4.7)

Recall that Nδi = di + Md; see (V1). Thus one can conclude by a direct computation and
(6.4.6).

More detailed proof of Proposition 6.4.1. To prove this proposition, we wish to translate (6.3.7) in to a
linear system defined by a matrix A with entries in K, whose unknowns are the coefficients of the Fi’s.

The morphism φN [P0] : C → PnK sends C to a closed irreducible subvariety of PnK , and φN [P0](C) is
the zero locus of some linear forms over PnK . Thus the morphism φB : C × C → PmK can be expressed as

φB = [p0(x,x′) : · · · : pm(x,x′)].

with (x,x′) the coordinates of PnK × PnK . Here the pi’s are fixed polynomials.
Now (6.3.7) can be translated into

pdiF0|C×C = pd0Fi|C×C (6.4.8)

for all i ∈ {1, . . . ,m}.
[6]This is a consequence of the Riemann–Roch Theorem for C × C. We assume this estimate in this course.
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By Theorem 1.3.4 (applied to f1 = · · · = fm = pi), we have |h(pdi )− dh(pi)| ≤ ddeg(pi) log 2. As the
pi’s are fixed, we have then h(pdi ) = O(d).

We need to handle the restriction to C × C in (6.4.8). To achieve this, we perform the following
standard operation. There exists a morphism ξ : C → P2

K which is birational to its image.[7] If we
write z = [z0 : z1 : z2] the coordinates of P2

K , then ξ(C) is defined by a homogeneous polynomial
f(z0, z1, z2) = zN2 + f1(z0, z1)zN−1

2 + · · ·+ fN (z0, z1); notice that the degree is N because C is embedded
into Pn via N [P0]. Notice that K(C) = K(ξ(C)). Consider the set

K[ξ(C)] := {G ∈ K[z0 : z1 : z2] : G homogeneous and degz2 G < N}.

Each element in K(ξ(C)) can then be written as the quotient of two polynomials in K[ξ(C)], so can each
element in K(C).

Now, instead of the whole H0(C × C,ψ∗O(δ1, δ2)), we work with its subspace given by

W = {F ′i (z, z′) : degz F
′
i ≤ δ1, degz′ F

′
i ≤ δ2, degz2 F

′
i < N, degz′2 F

′
i < N}m+1.

Then

dimW = (m+ 1)

(
Nδ1 −

1

2
N(N − 3)

)(
Nδ2 −

1

2
N(N − 3)

)
(6.4.9)

= (m+ 1)N2

(
δ1 −

N − 3

2

)(
δ2 −

N − 3

2

)
.

The solution space is then H0(C ×C,O(V )) ∩W . We wish to have a lower bound on its dimension.
This can be obtained by

dimH0(C × C,O(V )) ∩W ≥ dimH0(C × C,O(V ))− (dimH0(C × C,ψ∗O(δ1, δ2))− dimW ).

Thus we obtain, by (6.4.5), (6.4.4) and (6.4.9),

dimH0(C × C,O(V )) ∩W ≥ γd1d2 +O(d1 + d2). (6.4.10)

Under the pull back of ξ × ξ : C × C → P2 × P2, (6.4.8) becomes a system of equations of the form
pdi (z, z

′)F ′0(z, z′) = pd0(z, z′)F ′i (z, z
′) (without further restrictions!). By comparing the coefficients to

each monomial, we obtain a linear system A whose unknowns are the coefficients of the (F ′i )’s and the
coefficients are obtained by the pdi ’s. From the discussion above, we then have h(A) = O(d).

Now Siegel’s Lemma implies

h(F) ≤ (m+ 1) dimW

dim Γ(C × C,O(V )) ∩W
(O(d) + logO(1)).

Hence by (6.4.9), (6.4.10), (V1) and (V3), we have

h(F) ≤ N2δ1δ2 +O(d1 + d2 + d)

γd1d2 +O(d1 + d2)
O(d). (6.4.11)

Recall that Nδi = di +Md; see (V1). Thus one can conclude by a direct computation and (6.4.6).

6.4.3 Conclusion for Vojta’s Inequality under the extra hypothesis

Assume that the s constructed by Proposition 6.4.1 satisfies s(P,Q) 6= 0. Then (6.4.2) and
(6.4.1) yield

hV (P,Q) ≥ −O
(
d1 + d2

γ

)
.

[7]This is true for any variety X of dimension r: there exists a morphism X → Pr+1 under which X is birational
to its image.
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With the upper bound hV (P,Q) given by (6.3.2), we then have

−O
(
d1 + d2

γ

)
≤ d1

2g
|j(P )|2 +

d2

2g
|j(Q)|2 − d〈j(P ), j(Q)〉+ d1O(|j(P )|) + d2O(|j(Q)|) +O(d1 + d2). (6.4.12)

Now let us make the choice of d1, d2 and d. Set, for an integer D ∈ Z>0 and a real number
γ0 ∈ (0, 1),

d1 =
√
g + γ0

D

|j(P )|2
+O(1), d2 =

√
g + γ0

D

|j(Q)|2
+O(1), (6.4.13)

d =
D

|j(P )||j(Q)|
+O(1).

Let D →∞. Notice that d1d2 − gd2 > γd1d2 for γ = γ0/(g + γ0) + o(1).
Dividing (6.4.12) by D, we get

〈j(P ), j(Q)〉
|j(P )||j(Q)|

≤
√
g + γ0

g
+O(

1

|j(P )|
+

1

|j(Q)|
).

The right hand side is ≤ 3/4 when |j(P )|, |j(Q)| � 1 because g ≥ 2; when this happens, then
the angle between j(P ) and j(Q) is ≥ cos−1(3/4), under the extra hypothesis that there exists
a small section s which does not vanish at (P,Q). In other words, under this extra hypothesis,
there exists at most 1 large point in each cone constructed at the end of §6.1.2, a conclusion
much stronger than Vojta’s Inequality!

6.5 Lower bound: Admissible pair and conclusion

In practice, we cannot directly find such a global section s ∈ H0(C × C,O(V )) which does not
vanish at (P,Q). But we still can show that the small section s we find in Proposition 6.4.1 does
not vanish to a high order at (P,Q) in an appropriate sense.

Definition 6.5.1. Let s ∈ H0(C×C,O(V ))\{0} and (P,Q) ∈ (C×C)(Q). A pair (i∗1, i
∗
2) ∈ N2

is said to be admissible for s at (P,Q) if ∂i∗1∂
′
i∗2
s(P,Q) 6= 0 and

∂i1∂
′
i2s(P,Q) = 0 for all i1 ≤ i∗1, i2 ≤ i∗2 and (i1, i2) 6= (i∗1, i

∗
2).

Here ∂i = (1/i!)∂i and ∂′i = (1/i!)∂′i, and ∂ (resp. ∂′) is a non-zero vector in the tangent space
of C at P (resp. at Q).

Zero estimate results, for example Roth’s Lemma, allows to prove:

Proposition 6.5.2. There exists a constant c = c(C, φN [P0], φB) > 0 with the following property.

Assume ε ∈ (0, 1/
√

2] and (P,Q) ∈ (C × C)(Q), with |j(P )|, |j(Q)| � 1, satisfy

ε2d1 ≥ d2 et min{d1|j(P )|2, d2|j(Q)|2} ≥ c

γε2
d1.

Then for the section s constructed in Proposition 6.4.1, there exists an admissible pair (i∗1, i
∗
2)

for s at (P,Q) such that
i∗1
d1

+
i∗2
d2
≤ 4Nε.

Next one needs to generalize the lower bound (6.4.2) removing the hypothesis s(P,Q) 6= 0.
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Proposition 6.5.3. Let s ∈ H0(C × C,O(V )) be a global section which corresponds to F =
(F0, . . . , Fm) as in Lemme 6.3.3. Let (i∗1, i

∗
2) be an admissible pair for s at (P,Q). Then

hV (P,Q) ≥ −h(F)−O(i∗1|j(P )|2 + i∗2|j(Q)|2 + i∗1 + i∗2)−O(δ1 + δ2). (6.5.1)

With these propositions, we can finish the proof of Vojta’s Inequality (Theorem 6.2.1).

Proof of Theorem 6.2.1. Assume P,Q ∈ C(Q) satisfy the hypotheses (i) and (ii).The inequality
(6.4.12) becomes, by replacing (6.4.2) by (6.5.1),

−O
(
d1 + d2

γ

)
−O(i∗1|j(P )|2 + i∗2|j(Q)|2 + i∗1 + i∗2)−O(δ1 + δ2) (6.5.2)

≤d1

2g
|j(P )|2 +

d2

2g
|j(Q)|2 − d〈j(P ), j(Q)〉+ d1O(|j(P )|) + d2O(|j(Q)|) +O(d1 + d2).

Choose d1, d2, d as in (6.4.13), and also γ0 and γ. Recall that O(δ1 + δ2) = O(d1 + d2) by
(V1). Then the inequality above becomes

〈j(P ), j(Q)〉
|j(P )||j(Q)|

≤
√
g + γ0

g
+O

(
1

|j(P )|
+

1

|j(Q)|

)
+O

(
i∗1
d1

+
i∗2
d2

)
+O

(
i∗1 + i∗2
D

)
(6.5.3)

Since |j(Q)| ≥ |j(P )| by hypothesis (i) and 〈j(P ), j(Q)〉 > (3/4)|j(P )||j(Q)| by hypothesis (ii),
we have

3

4
<

√
g + γ0

g
+O

(
1

|j(P )|

)
+O

(
i∗1
d1

+
i∗2
d2

)
+O

(
(
i∗1
d1

+
i∗2
d2

)
1

|j(P )|2

)
. (6.5.4)

Set ε = |j(P )|/|j(Q)|. Then ε ∈ (0, 1/
√

2] by Mumford’s Gap Principle (Theorem 6.1.5).
We have ε2d1 ≥ d2 by choice of d1 and d2. The condition min{d1|j(P )|2, d2|j(Q)|2} ≥ c

γε2
d1

is satisfied if |j(P )| � 1. Hence we can apply Proposition 6.5.2 and obtain a lower bound
i∗1
d1

+
i∗2
d2
≤ 4Nε. Thus (6.5.4) implies

3

4
<

√
g + γ0

g
+ 4Nε+O

(
1

|j(P )|

)
+O

(
12Nε

1

|j(P )|2

)
.

This gives a positive lower bound, say ε0, for ε when |j(P )| � 1. More precisely there exists
R = R(C) > 0 such that |j(P )| ≥ R⇒ ε > ε0. Notice that ε0 depends only on g and γ0. Hence
we can fix a γ0 ∈ (0, 1) and then ε0 depends only on g.

Set κ = 1/ε0 ≥ 1 which depends only on g. If |j(P )| ≥ R, then we have |j(Q)| ≤ κ|j(P )| by
the previous paragraph. This is precisely Vojta’s Inequality.

6.6 Proof of Proposition 6.5.2

We give the outline of the proof of Proposition 6.5.2. In particular, we explain how Roth’s
Lemma is applied.

6.6.1 Basic setup

In order to apply Roth’s Lemma, we need to project down C to P1
K . Such a finite morphism

C → P1 exists in general. Here let us be more precise and write down the projection. This is
helpful for the computation afterwards.
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There exists a morphism ξ : C → P2
K which is birational to its image. Moreover, by a

change of coordinates, we may and do assume that ξ is precisely given by the natural projection
Pn → P2, x 7→ [x0 : x1 : x2]. Then ξ(C) is defined by a homogeneous polynomial f(x0, x1, x2) =
xN2 + f1(x0, x1)xN−1

2 + · · · + fN (x0, x1); notice that the degree is N because C is embedded
into Pn via N [P0]. Moreover, we may assume that none of the coordinates x0, x1, x2 vanishes
identically on C.

Consider the finite morphism π : C → P1
K , x 7→ [x0 : x1]; it has degree N , meaning that for

all but at most finitely many [x0 : x1] ∈ P1(Q), the inverse image under π has cardinality N .
With this projection π in hand, we wish to accomplish the following constructions. Recall

that the small section s ∈ H0(C × C,O(V )) which we constructed in Proposition 6.4.1; it is
associated with F = (F0, . . . , Fm) with

s =
Fi(x,x

′)

ydi

∣∣∣∣
C×C

for all i ∈ {0, . . . ,m}.

We wish to find an admissible pair (i∗1, i
∗
2) for s at (P,Q) ∈ (C × C)(Q). Under the morphism

π× π : C ×C → P1×P1, we are able to push down s to a bi-homogeneous polynomial (which is
a section is a suitable line bundle on P1×P1). Moreover, we can show that this bi-homogeneous
polynomial shares similar properties as s. On the other hand, this bi-homogeneous polynomial
becomes a polynomial in 2 variables when restricted to a suitable affine chart. In the end, we
apply Roth’s Lemma to this 2-variable polynomial to conclude.

6.6.2 Push down of s

We will omit all the proofs for this push down. Familiarity with the intersection theory of
divisors will be helpful for this construction.

We start by pushing down sydi |C×C = Fi(x,x
′)|C×C . The results are:

Lemma 6.6.1. There is a bi-homogeneous polynomial Gi ∈ K[x0, x1;x′0, x
′
1] of bi-degree (N2δ1, N

2δ2)
such that (π × π)∗div(Fi|C×C) = div(Gi).

Lemma 6.6.2. h(Gi) ≤ N2h(Fi) +O(δ1 + δ2).

From these lemmas, we get the following result on the push down of s.

Lemma 6.6.3. There exists a bi-homogeneous polynomial E ∈ K[x0, x1;x′0, x
′
1] of bi-degree

(Nd1, Nd2) such that

(i) (π × π)∗div(s) = div(E);

(ii) if (j∗1 , j
∗
2) is an admissible pair of E at (π(P ), π(Q)), then there exists an admissible pair

(i∗1, i
∗
2) of s at (P,Q) such that i∗1 ≤ j∗1 and i∗2 ≤ j∗2 ;

(iii) h(E) ≤ N2h(F) +O(d1 + d2 + d).

In order to perform the push down, it is already convenient to use the affine coordinates.
Let us explain it in more details.

Since Pn → P2, x 7→ [x0 : x1 : x2], is well-defined on C and f vanishes at the point [x0(P ) :
x1(P ) : x2(P )], we have either x0(P ) 6= 0 or x1(P ) 6= 0. Without loss of generality, we may
assume x0(P ) 6= 0. Similarly we may assume x0(Q) 6= 0 also holds true. On {x ∈ C(Q) : x0 6= 0},
we use the affine coordinates ξ1, . . . , ξn, where ξj := (xj/x0)|C for j ∈ {1, . . . , n}. Also write
(ξ, ξ′) for the affine coordinates of PnK × PnK .
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Since f(x0, x1, x2) is monic in x2, we have that ξ2 is integral over the ring K[ξ1].
Consider the function field K(C × C), which is a finite extension of K(ξ1, ξ

′
1) of degree N2.

Then in the lemmas above, we can take

Gi(ξ1, ξ
′
1) := NormK(C×C)/K(ξ1,ξ′1)Fi(ξ, ξ

′)

and

E(ξ1, ξ
′
1) := NormK(C×C)/K(ξ1,ξ′1)

Fi(ξ, ξ
′)

(yi/y0)d
.

Notice that this definition does not depend on i. Moreover, Fi(ξ,ξ
′)

(yi/y0)d
has no poles on the locus of

C × C where x0x
′
0 6= 0. So E ∈ K[ξ1, ξ

′
1].

6.6.3 Application of Roth’s Lemma

Let us finish the proof of Proposition 6.5.2.
We wish to apply Roth’s Lemma (Lemma 3.4.1) to m = 2, the polynomial E of degree

Nd1, Nd2, the point (π(P ), π(Q)), and σ = ε2. Let us check the conditions.
Condition (i) is satisfied by the assumption ε2d1 ≥ d2.

Let us check condition (ii). Recall that h(F) = O
(
d1+d2
γ

)
. Thus by Lemma 6.6.3.(iii), we

have

h(E) ≤ N2O

(
d1 + d2

γ

)
+O(d1 + d2 + d).

But d = O(d1 + d2) by (6.4.6) and d1 ≥ d2. So

h(E) ≤ N2O(d1/γ). (6.6.1)

On the other hand, we have

min{Nd1h(π(P )), Nd2h(π(Q))} = N min{d1hN [P0](P ), d2hN [P0](Q)}+O(d1)

because hN [P0] = h ◦ π +O(1) by Proposition 5.1.3.(iii). But

hN [P0](P ) =
N

g
hg[P0](P ) +O(1) =

N

2g
|j(P )|2 +O(|j(P )|+ 1),

where the last equality follows from Lemma 6.1.2.(ii). Hence we have

min{Nd1h(π(P )), Nd2h(π(Q))} =
N2

2g
min{d1|j(P )|2, d2|j(Q)|2}+d1O(|j(P )|)+d2O(|j(Q)|)+O(d1).

Thus assuming |j(P )|, |j(Q)| � 1, there exists a constant c > 0 such that

min{d1|j(P )|2, d2|j(Q)|2} ≥ c

γε2
d1 ⇒ min{Nd1h(π(P )), Nd2h(π(Q))} ≥ ε−2(h(E) + 8Nd1).

(6.6.2)
Now, we can invoke Roth’s Lemma and conclude that there exists an admissible pair (j∗1 , j

∗
2)

of E at (π(P ), π(Q)) such that
j∗1
Nd1

+
j∗2
Nd2

≤ 4ε.

Hence we are done by Lemma 6.6.3.(ii).
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6.7 Proof of Proposition 6.5.3

We give an outline of the proof of Proposition 6.5.3. It is a consequence of Lemma 6.7.1 and
Lemma 6.7.3.

6.7.1 First step

Recall the closed immersion φN [P0] : C → PnK . For PnK × PnK , write (x,x′) for the coordinate.
Denote by

ξij := (xi/xj)|C , ξ′ij := (x′i/x
′
j)|C . (6.7.1)

They are well-defined non-zero rational functions on C.
For v ∈MK , let jv be the index j for which ‖ξj0(P )‖v is largest and similarly j′v for ‖ξ′j0(Q)‖v.

Lemma 6.7.1. Let s ∈ H0(C × C,O(V )) be a global section which corresponds to F =
(F0, . . . , Fm) as in Lemme 6.3.3. Let (i∗1, i

∗
2) be an admissible pair for s at (P,Q). Then

[K : Q]hV (P,Q) ≥− h(F)− n log ((δ1 + n)(δ2 + n))

−
∑
v∈MK

max
{iλ}

(∑
λ

max
ν

log ‖∂iλξνjv(P )‖v

)

−
∑
v∈MK

max
{i′λ}

(∑
λ

max
ν′

log ‖∂′i′λξ
′
ν′j′v

(Q)‖v

)
− (δ1 + δ2 + i∗1 + i∗2),

where {iλ} and {i′λ} run over all partitions of i∗1 and i∗2, i.e.
∑

λ iλ = i∗1 and
∑

λ i
′
λ = i∗2.

Proof. Recall from (6.3.5) that

hV (P,Q) =
1

[K : Q]

∑
v∈MK

min
i

max
j,j′

log

∥∥∥∥∥x
δ1
j x
′δ2
j′

ydi

∥∥∥∥∥
v

. (6.7.2)

Because (i∗1, i
∗
2) is an admissible pair and by Leibniz rule, we have(

ydi
xδ1j x

′δ2
j′

∂i∗1∂
′
i∗2
s

)
(P,Q) = ∂i∗1∂

′
i∗2

(
ydi

xδ1j x
′δ2
j′

s

)
(P,Q).

Write ξj := (ξ0j , ξ1j , . . . , ξnj) and ξ′j′ := (ξ′0j′ , ξ
′
1j′ , . . . , ξ

′
nj′), then the right-hand side equals

∂i∗1∂
′
i∗2
Fi(ξj , ξ

′
j′)(P,Q). The Product Formula, since (∂i∗1∂

′
i∗2
s)(P,Q) 6= 0, implies∑

v∈MK

log ‖(∂i∗1∂
′
i∗2
s)(P,Q)‖v = 0. (6.7.3)

Therefore

[K : Q]hV (P,Q) =
∑
v∈MK

min
i

max
j,j′

log

∥∥∥∥∥ xδ1j x
′δ2
j′

ydi (∂i∗1∂
′
i∗2
s)(P,Q)

∥∥∥∥∥
v

by (6.7.2) - (6.7.3)

= −
∑
v∈MK

max
i

min
j,j′

log ‖∂i∗1∂
′
i∗2
Fi(ξj , ξ

′
j′)(P,Q)‖v.
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The number of monomials of Fi is bounded by
(
δ1+n
n

)(
δ2+n
n

)
≤ (δ1 + n)n(δ2 + n)n. Thus

[K : Q]hV (P,Q) ≥− h(F)− n log ((δ1 + n)(δ2 + n))

−
∑
v∈MK

min
j

max
|l|=δ1

log
∥∥∥∂i∗1ξlj(P )

∥∥∥
v

−
∑
v∈MK

min
j

max
|l′|=δ2

log
∥∥∥∂′i∗2ξ′l′j′ (Q)

∥∥∥
v

Here ξlj = ξl00j · · · ξ
ln
nj and similarly for ξ′l

′
j′ . Since for each v we take the minimum with respect

to j and j′, we may take instead j = jv and j′ = j′v.
Let us consider log ‖∂i∗1ξ

l
j(P )‖v. Leibniz’s rule implies

∂i∗1ξ
l
j =

∑ n∏
ν=0

lν∏
µ=1

∂iµνξνj ,

where
∑

µν iµν = i∗1 and the sum above runs over all possible {iµν}’s. Since the total number

of pairs µν equals δ1, the number of possibilities for iµν equals
(δ1+i∗1−1

i∗1

)
≤ 2δ1+i∗1 . We only

need to consider the case where j = jv. Since ‖ξjv0(P )‖v is the largest ‖ξj0(P )‖v, we have
‖ξνjv(P )‖v = ‖ξν0(P )/ξjv0(P )‖v ≤ 1 for each ν. This allows us to get rid of the terms with
iµν = 0 in the estimates. Hence we get

log ‖∂i∗1ξ
l
j(P )‖v ≤ max

{iλ}

(∑
λ

max
ν

log ‖∂iλξνjv(P )‖v

)
+ (δ1 + i∗1)εv log 2,

with εv =

{
[Kv : R] if v|∞
0 otherwise

, and where {iλ} runs over all partitions of i∗1. The same

argument applies to log ‖∂′i∗2ξ
′l′
j′ (Q)‖v. Thus we can conclude.

6.7.2 Local Eisenstein estimates

Next we wish bound from above the partial derivative evaluated at the given points.
Here is the idea of the local Eisenstein estimates. Recall that the partial derivative ∂ involves choosing

a uniformizer x at P ∈ C. We may and do assume x(P ) = 0 (up to replacing x by x − x(P )). Since
trdegK(C) = trdegK(x) = 1, we have that K(C) is a finite extension of K(x). So any rational function
ξ ∈ K(C) is an algebraic function in x, and it satisfies a polynomial equation p(x, ξ(x)) = 0 for some
p ∈ K[x, t] with degt p ≤ [K(C) : K(x)].

If ∂p
∂t (0, ξ(0)) 6= 0, then the Implicit Function Theorem says that

ξ(x) =
∑
k≥0

(∂kξ(0))xi

in a neighborhood of 0, with ∂k = (1/k!)(∂/∂x)k. If we work over C, then complex analysis says that the
series above converges for all |x| < ρ, where

ρ = lim inf
k→∞

|∂kξ(0)|−1/k > 0.

It follows that if we replace ρ by a smaller ρ′ > 0, then we get a bound

|∂kξ(0)| ≤ cρ′−k for all k ≥ 0. (6.7.4)

Here, the constant c takes care of the first few k’s.
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Theorem 6.7.2. Let p(x, t) ∈ K[x, t] be a polynomial in two variables with partial degrees ≤ d.
Let ξ = ξ(x) be an algebraic function such that p(x, ξ(x)) = 0. Assume ξ(0) ∈ K, ‖ξ(0)‖v ≤ 1
and ∂p

∂t (0, ξ(0)) 6= 0. Then the Taylor coefficients of this algebraic function ξ(x) satisfy

‖∂kξ(0)‖v ≤ ‖8(d+ 1)7‖kηvv

(
‖p‖v

‖∂p∂t (0, ξ(0))‖v

)2k−1

with ηv :=

{
1 if v|∞
0 otherwise

.

6.7.3 Application of local Eisenstein estimates

Fix a non-constant rational function f ∈ K(C). Since trdegKK(C) = dimC = 1, we have
that K(C) is a finite extension of K(f). Each ξij from (6.7.1) is thus algebraic over K(f). Let
gij(x, t) ∈ K[x, t] be such that gij(f, t) ∈ K(f)[t] is a minimal polynomial of ξij over K(f). In
characteristic 0, every irreducible polynomial is separable, and hence ∂

∂tgij(f, ξij) 6= 0 in K(C).
Let Z ⊆ C(Q) be the finite set consisting of:

(i) all zeros of xj for j ∈ {0, . . . , n},

(ii) all poles of f ,

(iii) the support of div(df),

(iv) the zeros of ∂
∂tgij(f, ξij).

Lemma 6.7.3. If P 6∈ Z, then∑
v∈MK

max
{iλ}

(∑
λ

max
ν

log ‖∂iλξνjv(P )‖v

)
� i∗1(|j(P )|2 + 1),

with the constant in � independent of P and i∗1.

Proof. Denote by ηv :=

{
1 if v|∞
0 otherwise

.

Let P 6∈ Z. Set pij(x, t) := gij(x+ f(P ), t+ ξij(P )). Then pij(0, 0) = 0 and ∂
∂tpij(0, 0) 6= 0.

Apply the local Eisenstein theorem (Theorem 6.7.2) to ξij and P . Then we get, for all k ≥ 1,

‖∂kξij(P )‖v ≤ ‖C2‖kηvv

(
‖pij‖v

‖ ∂∂tpij(0, 0)‖v

)2k−1

(6.7.5)

with C2 depending only on deg gij . Thus one gets

∑
v∈MK

max
{iλ}

(∑
λ

max
ν

log ‖∂iλξνjv(P )‖v

)

≤i∗1 logC2 +
∑
v∈MK

max
{iλ}

∑
λ

max
ν

(2iλ − 1)

(
log+ ‖pνjv‖v + log+

∥∥∥∥∥ 1
∂
∂tpνjv(0, 0)

∥∥∥∥∥
v

)

≤i∗1 logC2 + 2i∗1
∑
v∈MK

∑
i,j

(
log+ ‖pij‖v + log+

∥∥∥∥∥ 1
∂
∂tpij(0, 0)

∥∥∥∥∥
v

)
.
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For ‖pij‖v, one gets easily the following upper bound by construction

‖pij‖v ≤ ‖C1‖ηvv max{1, ‖f(P )‖v, ‖ξij(P )‖v}deg gij‖gij‖v (6.7.6)

with C1 ≤ (deg gij + 1)22deg gij .
On the other hand,

[K : Q]
∑
v∈MK

∑
i,j

log+

∥∥∥∥∥ 1
∂
∂tpij(0, 0)

∥∥∥∥∥
v

=
∑
i,j

h

(
1

∂
∂tgij(f(P ), ξij(P ))

)

=
∑
i,j

h

(
∂

∂t
gij(f(P ), ξij(P ))

)
≤ C3 max{h(f(P )), h(ξij(P ))}

with C3 depending only on h(gij) and deg gij .
Putting these together, we obtain

∑
v∈MK

max
{iλ}

(∑
λ

max
ν

log ‖∂iλξνjv(P )‖v

)
� i∗1 max{h(f(P )), h(ξij(P ))}. (6.7.7)

It remains to show that max{1, h(f(P )), h(ξij(P ))} � |j(P )|2 + 1. For this, notice that (f, ξij)
can be viewed as the first two affine coordinates of a morphism ϕ : C → Pr for some r. Hence
max{h(f(P )), h(ξij(P ))} = h([1 : f(P ) : ξij(P )]) ≤ h ◦ ϕ(P ) = hϕ∗O(1)(P ) + O(1). But since
N [P0] is very ample in C, we have that O(kN [P0]) ⊗ ϕ∗O(1)∨ is very ample for some k � 1,
and therefore hϕ∗O(1)(P ) ≤ khN [P0](P ) +O(1). Hence

max{h(f(P )), h(ξij(P ))} � hN [P0](P ) + 1.

Now the conclusion follows from Lemma 6.1.2.(ii), which implies hN [P0](P ) = N
2g |j(P )|2 +

O(|j(P )|+ 1).
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