
Exercises course Introduction to Algebraic Topology - Singular homology, Fall

2014

In the following exercises X is a topological space.

Exercise 1. Let P be an affine independent subset of Rn and let p0, ..., pk be an enumeration
of the elements of P . Define

< p0, ..., pk > : ∆k → [P ], (t0, ..., tk) 7→

k∑

i=0

tipi.

Prove that this map is a homeomorphism. (Hint: remark that ∆k is compact and [P ] is
Hausdorff.)

Exercise 2. Let X be a path-connected space. Prove that H0(X) ∼= Z.

Exercise 3. Let X1, . . . , Xn be the path-connected components of the space X. Prove that
Hk(X) ∼= ⊕n

i=1Hk(Xi) for all k ∈ Z.

Exercise 4. Prove that < e1, e0 > + < e0, e1 > is a boundary in C1(∆
1). Let σ : ∆1 → X be

a singular 1-simplex given by (1 − t)e0 + te1 7→ s(t), t ∈ [0, 1], and let σ′ : ∆1 → X be given
by (1 − t)e0 + te1 7→ s(1 − t). Prove that σ + σ′ is a boundary in C1(X).

Exercise 5. A singular 1-simplex σ : ∆1 → X is called a loop if σ(e0) = σ(e1).
(a) Prove that a loop is a 1-cycle.
(b) Two loops σ0 and σ1 are called freely homotopic if there is a continuous map F : [0, 1] ×
[0, 1] → X such that F (0, t) = σ0((1 − t)e0 + te1) and F (1, t) = σ1((1 − t)e0 + te1) and each
F (s, t) is a loop. Prove that free homotopy defines an equivalence relation on the set of loops
in X.
(c) Prove that two freely homotopic loops are homologous.
(d) Choose a basepoint x ∈ X. Give a natural map ρ : π1(X, x) → H1(X) and prove that it
is a homomorphism. So we have a natural map ρ̄ : π1(X, x)

ab → H1(X).
(e) A 1-chain σ0 + · · · + σr−1 with σi(e0) = σi−1(e1) for all i ∈ Z/rZ is called an elementary

1-cycle. Prove that an elementary 1-cycle is a 1-cycle, homologous to a loop.
(f) Prove that the classes of loops generate H1(X).
(g) Assume that X is path-connected. Show that ρ is surjective.
Remark: it can be proved that ρ̄ is an isomorphism.

Exercise 6. Let C′
• be a subcomplex of a complex C•. Let k ∈ Z. Show that

dk+1(Ck+1) + C′
k ⊂ d−1

k
(C′

k−1)

and that Hk(C•/C
′
•) can be identified with the quotient d−1

k
(C′

k−1)/(dk+1(Ck+1) + C′
k
).

Exercise 7. Let A be a subspace of X.
(a) Assume there exists a map r : X → A which is the identity on A (in that case we call r a
retraction map and A a retract of X). Let k ∈ Z. Show that Hk(X) ∼= Hk(A) ⊕ Ker rk.
(b) Assume there exists a map R : X × [0, 1] → X such that R(a, t) = a for all a ∈ A and
all t, and R(x, 0) = x and R(x, 1) ∈ A for all x in X (in that case we call R a deformation

retraction map and A a deformation retract of X). Show that for each subspace B ⊂ A the
inclusion (A,B) ⊂ (X,B) induces isomorphisms on homology.
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Exercise 8. (a) Let φ : C• → D• be a chain map of exact complexes. Suppose there exist two
distinct residue classes modulo 3 such that φk is an isomorphism whenever k belongs to one
of these two residue classes. Prove that φk is an isomorphism for all k ∈ Z.
(b) Let φ : C• → D• be a chain map of complexes. Assume C′

• ⊂ C• and D′
• ⊂ D• are

sbucomplexes such that φk(C
′
k
) ⊂ D′

k
for all k ∈ Z. So we have chain maps φ′ : C′

• → D′
• and

φ̄ : C•/C
′
• → D•/D

′
•. Prove that if two of φ, φ′and φ̄ induce an isomorphism on homology, then

so does the third.
(c) Let f : (X, Y, Z) → (X ′, Y ′, Z ′) be a map of triads. In particular we have three maps of
topological pairs (X, Y ) → (X ′, Y ′), (X,Z) → (X ′, Z ′) and (Y, Z) → (Y ′, Z ′). Prove that if
two of these inclusions induce isomorphisms on homology, then so does the third.

Exercise 9. Let φ, φ′ : C• → D• be chain maps. A chain homotopy from φ to φ′ is a collection
homomorphisms (Pk : Ck → Dk+1)k∈Z such that φ′

k
− φk = Pk−1dk + dk+1Pk for all k ∈ Z.

(a) Prove that chain homotopy defines an equivalence relation on the set of chain maps from
C• to D•.
(b) Let φ, φ′ : C• → D• and ψ, ψ′ : D• → E• be chain homotopic. Prove that ψφ, ψ′φ′ : C• → E•
are chain homotopic.
(c) Prove that chain homotopic maps induce the same maps on homology.

Exercise 10. The cone CX over a non-empty space X is obtained from [0, 1] ×X by iden-
tifying the subspace {0} ×X to one point v, the vertex of CX.
(a) Show that CX is contractible.
Let {x} be a one point space and let ǫ : X → {x} be the unique map. Let k ∈ Z. We define
the k-th reduced homology group H̃k(X) to be the kernel of the map ǫk : Hk(X) → Hk({x}).
(b) Prove that Hk(CX,CX − {v}) ∼= H̃k−1(X).

Exercise 11. Visualize the first barycentric subdivision of ∆3 and count the number of 3-
simplices in it.

Exercise 12. The suspension ΣX of a non-empty space X is obtained from [0, 1] × X by
identifying each of the subsets {0} ×X and {1} ×X to a point.
(a) Prove that the projection [0, 1] ×X → [0, 1] defines a continuous map h : ΣX → [0, 1].
(b) Compute the homology of ΣX by applying Mayer-Vietoris to the open sets h−1(0, 1] and
h−1[0, 1).
(c) Let Sn for n ∈ Z≥0 be the n-sphere. Prove that ΣSn and Sn+1 are homeomorphic and
compute the homology groups of Sn from this.

Exercise 13. Let p1, . . . , pn be distinct points in the plane R2. Compute the homology of
R2 \ {p1, . . . , pn}.

Exercise 14. Let S2 be the 2-sphere and let D1, . . . , Dn be n small open discs on S2 with
disjoint boundaries. Let X+, X− be two copies of S2 \ (D1 ∪ . . .∪Dn) and let X be the space
obtained by identifying, for each i = 1, . . . , n, the boundary of Di on X+ with the boundary
of Di on X−, using the identity map. Thus, X is a “sphere with n − 1 handles”. Compute
the homology of X.

Exercise 15. Each graph has the homotopy type of a bouquet of circles. Suppose that X is a
graph, with the homotopy type of a bouquet of n circles. Prove that n is a homotopy-invariant
of X. We call n the Betti number of X.
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Exercise 16. Suppose that X is the union of open sets U0, . . . , Un such that all homology
groups Hk(Y ) vanish for any intersection Y = Ui0 ∩ . . . ∩ Uir of these open sets and all k > 0
(we call the open cover {U0, . . . , Un} an acyclic cover in this case).
(a) Show that Hk(X) = 0 for k > n.
(b) If, in addition, each intersection Y is path-connected or empty, and n ≥ 1, show that
Hn(X) = 0.

Exercise 17. Let f : X → Y be a map between non-empty spaces.
(a) Prove that f induces a natural map Σf : ΣX → ΣY between the suspensions of X and
Y (see Exercise 12).
(b) Let f : Sn → Sn be a map and let Σf : Sn+1 → Sn+1 be the map induced from a homeo-
morphism ΣSn ∼= Sn+1. Prove that f and Σf have the same degree.
(c) In particular, for each n > 0 there exist maps Sn → Sn of arbitrary degree.

Exercise 18. In class we have seen that for any n ≥ 1 and any k ∈ Z we have natural
isomorphisms

Hk(∆
n, ∆̂n) ∼= Hk−1(∆

n−1, ∆̂n−1) .

Let Y be a non-empty space. By sticking in Y as a ‘dummy’ variable, we have natural
isomorphisms

Hk((∆
n, ∆̂n) × Y ) ∼= Hk−1((∆

n−1, ∆̂n−1) × Y )

as well.
(a) Prove, by iteration, that Hk((∆

n, ∆̂n) × Y ) ∼= Hk−n(Y ).
(b) Hence we have Hk(B

n × Y, Sn−1 × Y ) ∼= Hk−n(Y ).
(c) Let x be a point on Sn. Prove that Hk(S

n × Y, {x} × Y ) ∼= Hk−n(Y ).
(d) Prove that there is a natural isomorphism

Hk(S
n × Y ) ∼= Hk−n(Y ) ⊕ Hk(Y ) .

Hint: the projection Sn × Y → Y ∼= {x} × Y is a retraction.
(e) Compute the homology groups of S1 × . . .× S1 (n factors).

Exercise 19. If m,n ≥ 0 then every point z of Sm+n+1 ⊂ Rm+n+2 = Rm+1 × Rn+1 can be
represented in the form z = cos(t) · x + sin(t) · y with x ∈ Sm, y ∈ Sn, and t ∈ [0, π/2],
and this representation is unique except that x resp. y is undetermined when t = π/2 resp.
t = 0. Given f : Sm → Sm and g : Sn → Sn we define their join f ∗ g : Sm+n+1 → Sm+n+1 by
(f ∗ g)(z) = cos(t) · f(x) + sin(t) · g(y).
(a) Prove that deg(f ∗ g) = deg(f) · deg(g). Hint: first prove that f ∗ g = (f ∗ id)(id ∗ g) and
prove deg(f ∗ id) = deg(f) by induction on n. You may want to use the results of Exercise
17.
(b) Show that if both f and g are homotopic to the identity, then so is f ∗ g.
(c) Exhibit a homotopy from id to −id on S1.
(d) Prove that the antipodal map on an odd-dimensional sphere is homotopic to the identity.

Exercise 20. In this exercise we prove the Main Theorem of Algebra. Let p(z) = zk +
c1z

k−1 + · · ·+ ck with k > 0 be a non-constant polynomial with complex coefficients. We view
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S1 as the unit circle in C. Assume p has no zeroes. We can then define a map p̂ : S1 → S1

via

p̂(z) =
p(z)

|p(z)|
.

(a) Exhibit a homotopy from p̂ to a constant map. Hint: use that p has no zero z with |z| ≤ 1.
(b) Exhibit a homotopy from p̂ to the map z 7→ zk. Hint: use the identity

tkp(
z

t
) = zk + t(c1z

k−1 + tc2z
k−2 + · · · + tk−1ck)

and the fact that p̂ has no zero z with |z| ≥ 1.
(c) Finish the proof of the Main Theorem of Algebra.

Exercise 21. In this exercise we prove that a sphere of positive even dimension cannot be
given the structure of a topological group. Given a group G acting as a group of homeo-
morphisms of a space X, we say that G acts freely if the only element from G which has any
fixed points is the identity element. Let g, h be two elements, unequal to the identity element,
from a group G acting freely on Sn, where n > 0 is even.
(a) Prove that both g and h have degree −1.
(b) Prove that gh is the identity element.
(c) Conclude that G is either Z/2Z or the trivial group.
(d) Prove that Sn is not a topological group.

Exercise 22. Prove that S3 is a topological group. Hint: identify R4 with the Hamilton
quaternions.

Exercise 23. Let Pn(R) = P(Rn+1) be the n-dimensional real projective space. Prove that
any map Pn(R) → Pn(R) has a fixed point if n is even. Describe a map Pn(R) → Pn(R)
without fixed points for each odd n.

Exercise 24. Assume the following fact: Sn → Sn, (x1, ..., xn+1) 7→ (−x1, x2, ..., xn+1) is of
degree −1. For each n ∈ Z>0 construct a surjective map Sn → Sn that has degree 0.

Exercise 25. Prove that every map Sn → Sn (n > 0) is homotopic to one with a fixed point.

Exercise 26. (More about Snake Lemma) For Snake Lemma, prove that if ϕ is injective
(resp. ψ′ is surjective), then ϕ0 is injective (resp. ψ̄′ is surjective).

Exercise 27. (Snake Lemma implies long exact sequence) Let 0 → (C′
•, d

′) → (C•, d) →
(C′′

• , d
′′) → 0 be an exact sequence of complexes. Let Zk(C•) := ker(Ck → Ck−1) and Bk(C•) :=

im(Ck+1 → Ck).
(a) Use Ex. 26 to prove the exactness of 0 → Zk(C

′
•) → Zk(C•) → Zk(C

′′
• ) and of C′

k
/Bk(C

′
•) →

Ck/Bk(C•) → C′′
k
/Bk(C

′′
• ) → 0.

(b) Show that for each k, there is a commutative diagram

C′
k
/Bk(C

′
•) //

��

Ck/Bk(C•) //

��

C′′
k
/Bk(C

′′
• ) //

��

0

0 // Zk−1(C
′
•)

// Zk−1(C•) // Zk−1(C
′′
• )

where the vertical maps are induced by d′, d and d′′ respectively.
(c) Apply Snake Lemma to the diagram in (b) to get the long exact sequence of homology.
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