Exercises course Introduction to Algebraic Topology - Singular homology, Fall
2014

In the following exercises X is a topological space.

Exercise 1. Let P be an affine independent subset of R™ and let py, ..., pr be an enumeration
of the elements of P. Define

k
< Po, .-, Pk > Ak — [P], (to, ,tk) — thpl
=0

Prove that this map is a homeomorphism. (Hint: remark that A* is compact and [P] is
Hausdorft.)

Exercise 2. Let X be a path-connected space. Prove that Ho(X) = Z.

Exercise 3. Let X;,..., X, be the path-connected components of the space X. Prove that
Hk<X) = ?lek(Xz) for all k € Z.

Exercise 4. Prove that < ej, ey > + < ey, e; > is a boundary in C;(A!). Let o: A — X be
a singular 1-simplex given by (1 — t)eg + te; — s(t),t € [0,1], and let ¢': A — X be given
by (1 —t)eg + te; — s(1 —t). Prove that o + ¢’ is a boundary in C;(X).

Exercise 5. A singular 1-simplex o: A! — X is called a loop if o(eg) = o(ey).

(a) Prove that a loop is a 1-cycle.

(b) Two loops g and o are called freely homotopic if there is a continuous map F': [0, 1] x
[0,1] — X such that F(0,t) = 0o((1 — t)eg + tey) and F(1,t) = o1((1 — t)eg + te;) and each
F(s,t) is a loop. Prove that free homotopy defines an equivalence relation on the set of loops
in X.

(c) Prove that two freely homotopic loops are homologous.

(d) Choose a basepoint € X. Give a natural map p: 7 (X, z) — H;(X) and prove that it
is a homomorphism. So we have a natural map p: m (X, 2)*® — H;(X).

(e) A 1-chain o¢ + - -+ + 0,1 with o;(eg) = g;_1(eq) for all i € Z/rZ is called an elementary
1-cycle. Prove that an elementary 1-cycle is a 1-cycle, homologous to a loop.

(f) Prove that the classes of loops generate H;(X).

(g) Assume that X is path-connected. Show that p is surjective.

Remark: it can be proved that p is an isomorphism.

Exercise 6. Let C, be a subcomplex of a complex C,. Let k € Z. Show that
i1 (Crr1) +Cj, C 4 (Chry)
and that Hy(C,/C.) can be identified with the quotient d;*(C,_,)/(dr+1(Crs1) + Cp).

Exercise 7. Let A be a subspace of X.

(a) Assume there exists a map r: X — A which is the identity on A (in that case we call r a
retraction map and A a retract of X). Let k € Z. Show that Hy(X) = Hi(A) & Kerry.

(b) Assume there exists a map R: X x [0,1] — X such that R(a,t) = a for all a € A and
all ¢, and R(x,0) = x and R(z,1) € A for all x in X (in that case we call R a deformation
retraction map and A a deformation retract of X). Show that for each subspace B C A the
inclusion (A, B) C (X, B) induces isomorphisms on homology.
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Exercise 8. (a) Let ¢: C, — D, be a chain map of exact complexes. Suppose there exist two
distinct residue classes modulo 3 such that ¢, is an isomorphism whenever k belongs to one
of these two residue classes. Prove that ¢y is an isomorphism for all k € Z.

(b) Let ¢: Co¢ — D, be a chain map of complexes. Assume C, C C, and D, C D, are
sbucomplexes such that ¢x(C;,) C Dy, for all k € Z. So we have chain maps ¢': C, — D, and
¢: C,/C. — D, /D.. Prove that if two of ¢, ¢'and ¢ induce an isomorphism on homology, then
so does the third.

(c) Let f: (XY, Z) — (X',Y',Z") be a map of triads. In particular we have three maps of
topological pairs (X,Y) — (X"|Y’), (X,Z2) — (X', Z') and (Y, Z) — (Y', Z'). Prove that if
two of these inclusions induce isomorphisms on homology, then so does the third.

Exercise 9. Let ¢, ¢': Co — D, be chain maps. A chain homotopy from ¢ to ¢’ is a collection
homomorphisms (Py: Cx — Dgi1)rez such that ¢ — ¢ = Py_1dg + dgi1 Py, for all k € Z.

(a) Prove that chain homotopy defines an equivalence relation on the set of chain maps from
Ce t0 D,.

(b) Let ¢, ¢': Co — Do and 1, 9" Dy — &, be chain homotopic. Prove that ¢, 9'¢": Co — &,
are chain homotopic.

(c) Prove that chain homotopic maps induce the same maps on homology.

Exercise 10. The cone CX over a non-empty space X is obtained from [0, 1] x X by iden-
tifying the subspace {0} x X to one point v, the vertez of C'X.

(a) Show that C'X is contractible.

Let {z} be a one point space and let ¢: X — {z} be the unique map. Let k € Z. We define
the k-th reduced homology group Hy(X) to be the kernel of the map e: Hy(X) — Hy({z}).
(b) Prove that H,(CX,CX — {v}) = H,_1(X).

Exercise 11. Visualize the first barycentric subdivision of A% and count the number of 3-
simplices in it.

Exercise 12. The suspension ©X of a non-empty space X is obtained from [0,1] x X by
identifying each of the subsets {0} x X and {1} x X to a point.

(a) Prove that the projection [0, 1] x X — [0, 1] defines a continuous map h: ¥X — [0, 1].
(b) Compute the homology of XX by applying Mayer-Vietoris to the open sets h~1(0, 1] and
h=10,1).

(c) Let S™ for n € Z>o be the n-sphere. Prove that 5" and S"™! are homeomorphic and
compute the homology groups of S™ from this.

Exercise 13. Let p;,...,p, be distinct points in the plane R?. Compute the homology of
RQ \ {p17 s 7pn}

Exercise 14. Let S? be the 2-sphere and let Dy, ..., D, be n small open discs on S? with
disjoint boundaries. Let X+, X~ be two copies of S*\ (D;U...UD,) and let X be the space
obtained by identifying, for each i = 1,...,n, the boundary of D; on Xt with the boundary
of D; on X~ using the identity map. Thus, X is a “sphere with n — 1 handles”. Compute
the homology of X.

Exercise 15. Each graph has the homotopy type of a bouquet of circles. Suppose that X is a
graph, with the homotopy type of a bouquet of n circles. Prove that n is a homotopy-invariant
of X. We call n the Betti number of X.



Exercise 16. Suppose that X is the union of open sets Uy, ..., U, such that all homology
groups Hy(Y) vanish for any intersection Y = U;, N...NU;, of these open sets and all k£ > 0
(we call the open cover {Uy,...,U,} an acyclic cover in this case).

(a) Show that Hx(X) =0 for & > n.

(b) If, in addition, each intersection Y is path-connected or empty, and n > 1, show that
H,(X)=0.

Exercise 17. Let f: X — Y be a map between non-empty spaces.

(a) Prove that f induces a natural map Xf: XX — XY between the suspensions of X and
Y (see Exercise 12).

(b) Let f: S™ — S™ be a map and let ¥ f: S"™! — S"*1 be the map induced from a homeo-
morphism 25" = S™*1. Prove that f and Xf have the same degree.

(¢) In particular, for each n > 0 there exist maps S™ — S™ of arbitrary degree.

Exercise 18. In class we have seen that for any n > 1 and any k € Z we have natural
isomorphisms

Hy (A", A") 2 H,_ (A™1, Any

Let Y be a non-empty space. By sticking in Y as a ‘dummy’ variable, we have natural
isomorphisms

Hy((A", A™) x V) 2 H,_1 (A" A1) x V)

as well.

(a) Prove, by iteration, that Hy((A™, A™) x V) = Hy_,(Y).

(b) Hence we have Hy(B" x YV, S" ! x V) 2 H;_,(Y).

(c) Let « be a point on S™. Prove that Hi(S™ x Y, {z} x V) = Hy_,(Y).
(d) Prove that there is a natural isomorphism

Hint: the projection S™ x Y — Y = {z} x Y is a retraction.
(e) Compute the homology groups of S x ... x St (n factors).

Exercise 19. If m,n > 0 then every point z of S™*"tl ¢ Rmn+2 — R™+L » R**! can be
represented in the form z = cos(t) - = + sin(t) - y with x € S™, y € S™, and t € [0,7/2],
and this representation is unique except that x resp. y is undetermined when t = 7/2 resp.
t =0. Given f: S™ — S™ and ¢g: S™ — S™ we define their join f x g: S+l — gmintl by
(f % g)(2) = cos(t) - f(x) +sin(t) - g(y).

(a) Prove that deg(f x g) = deg(f) - deg(g). Hint: first prove that f*g = (f *id)(id * g) and
prove deg(f *id) = deg(f) by induction on n. You may want to use the results of Exercise
17.

(b) Show that if both f and g are homotopic to the identity, then so is f * g.

(c) Exhibit a homotopy from id to —id on S*.

(d) Prove that the antipodal map on an odd-dimensional sphere is homotopic to the identity.

Exercise 20. In this exercise we prove the Main Theorem of Algebra. Let p(z) = 2 +
c12" 1+ -4 ¢, with £ > 0 be a non-constant polynomial with complex coefficients. We view



S as the unit circle in C. Assume p has no zeroes. We can then define a map p: S* — S*
via ()
N P{z
p(z) = -
Ip(2)]

(a) Exhibit a homotopy from p to a constant map. Hint: use that p has no zero z with |z| < 1.
(b) Exhibit a homotopy from p to the map z +— z*. Hint: use the identity

z
tk;p(g) = Zk; + t(012k_1 + tCQZk_Q + 4 tk—lck)

and the fact that p has no zero z with |z| > 1.
(c) Finish the proof of the Main Theorem of Algebra.

Exercise 21. In this exercise we prove that a sphere of positive even dimension cannot be
given the structure of a topological group. Given a group G acting as a group of homeo-
morphisms of a space X, we say that G acts freely if the only element from G which has any
fixed points is the identity element. Let g, h be two elements, unequal to the identity element,
from a group G acting freely on S™, where n > 0 is even.

(a) Prove that both g and h have degree —1.

(b) Prove that gh is the identity element.

(c) Conclude that G is either Z/27Z or the trivial group.

(d) Prove that S™ is not a topological group.

Exercise 22. Prove that S? is a topological group. Hint: identify R* with the Hamilton
quaternions.

Exercise 23. Let P"(R) = P(R"™) be the n-dimensional real projective space. Prove that
any map P"(R) — P"(R) has a fixed point if n is even. Describe a map P*(R) — P"(R)
without fixed points for each odd n.

Exercise 24. Assume the following fact: S™ — S™, (x1,...,xy11) — (=1, Ta, ..., Tpyy) is of
degree —1. For each n € Z-( construct a surjective map S™ — S™ that has degree 0.

Exercise 25. Prove that every map S™ — S™ (n > 0) is homotopic to one with a fixed point.
Exercise 26. (More about Snake Lemma) For Snake Lemma, prove that if ¢ is injective
(resp. ¢ is surjective), then (g is injective (resp. v’ is surjective).

Exercise 27. (Snake Lemma implies long exact sequence) Let 0 — (C.,d') — (Co,d) —
(C!,d") — 0 be an exact sequence of complexes. Let Z(C,) := ker(Cy — Ci_1) and By (C,) :=
im(Ck+1 — Ck)

(a) Use Ex. 26 to prove the exactness of 0 — Zy(C.) — Z(Co) — Zi(C.) and of C;./ Bx(C\) —
Cr/Bx(Cs) — C}!/Bi(Cl) — 0.

(b) Show that for each k, there is a commutative diagram

C1./Bk(Cy) —=Ci/Bi(Co) —C}/ Bi(C)) —0
00— Zk-1(Cy) —= Z3—1(Co) — Z11(CY)

where the vertical maps are induced by d’, d and d” respectively.
(c¢) Apply Snake Lemma to the diagram in (b) to get the long exact sequence of homology.



