
Chapter 3

Preparation on analysis for the proof

of Arithmetic Hilbert–Samuel

The goal of this chapter is to discuss about some analytic tools and results which will be used
to prove the Arithmetic Hilbert–Samuel Theorem (for which we follow the approach of Abbès–
Bouche) in the next chapter.

3.1 Distortion function

3.1.1 Fubini–Study metric

Let X be a connected complex manifold of dimension n, endowed with a smooth Hermitian
metric (i.e. a J-invariant positive-definite Hermitian inner product h(·, ·) on TX where J is the
complex structure on X). This Hermitian metric induces a positive (1, 1)-form ω = →Imh on
X, and hence a volume form dV := ω→n/n! on X. Notice that h can be recovered from ω and
J via the formula h(u, v) = ω(u, Jv)→

↑
→1ω(u, v).

Definition 3.1.1. Such a complex manifold X is called a Kähler manifold if ω is closed.

If X is a Kähler manifold, we usually call ω its Kähler form.

Example 3.1.2. For X = Pn, the Fubini–Study metric is defined as follows. We have the
standard projection Cn+1

\ {0} ↓ Pn by viewing Pn as the space consisting of all complex lines
in Cn+1. The standard Hermitian metric on Cn+1 defines the following (1, 1)-form on Pn

ωFS =

↑
→1

2ε
ϑϑ log(|z0|

2 + · · ·+ |zn|
2)

with (z0, . . . , zn) the standard coordinate of Cn+1. To see this, consider any open subset U ↔ Pn

such that natural projection admits a lifting Z : U ↓ Cn+1
\ {0}. Thenany other lifting Z ↑

di!ers from Z by a non-zero holomorphic function f , and hence ϑϑ log |Z ↑
|
2 = ϑϑ log |fZ|

2 =
ϑϑ log |Z|

2 + ϑϑ log(ff) = ϑϑ log |Z|
2. Thus the local (1, 1)-forms ϑϑ log |Z|

2, with U varying,
patch together to a global (1, 1)-form, which is exactly (2ε/

↑
→1)ωFS.

Notice that dωFS = 0, i.e. ωFS is closed.
To see that ωFS is a positive (1, 1)-form, it su”ces to prove that it is positive at one point since

ω is invariant under the group action of U(n+1) on Pn (which is transitive). Use {w1, . . . , wn}
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36 CHAPTER 3. PREPARATION ON ANALYSIS

to denote the standard coordinate on the open subset U0 := {z0 ↗= 0} ↔ Pn, i.e. wj = zj/z0.
Then

ωFS|U0 =

↑
→1

2ε
ϑϑ log(1 +

∑
wjwj) =

↑
→1

2ε

(∑
dwj ↘ dwj

1 +
∑

wjwj
→

(
∑

wjdwj) ↘ (
∑

wj ↘ dwj)

(1 +
∑

wjwj)2

)
,

which is
↓
↔1
2ω

∑
dwj ↘ dwj at [1 : 0 : · · · : 0]. Thus ωFS is positive.

By the discussion above, ωFS defines a Hermitian metric on Pn, which is called the Fubini–
Study metric.

By Example 3.1.2, the analytification of any smooth quasi-projective variety is a Kähler
manifold.

Another way to see the Fubini–Study metric on Pn is as via a suitable Hermitian metric ≃·≃FS
on OPn(1) as follows. The coordinate functions X0, . . . , Xn form a basis of H0(Pn,OPn(1)). At
each point x = [x0 : · · · : xn] ⇐ Pn, define for a global section s = a0X0 + · · ·+ aNxN

≃s(x)≃FS :=
|a0x0 + · · ·+ aNxN |√
|x0|2 + · · ·+ |xN |2

. (3.1.1)

Then one can check that c1(OPn(1), ≃ · ≃FS) = ωFS.

3.1.2 Distortion function

Let X be a compact Kähler manifold. Let L be a line bundle on X, endowed with a smooth
Hermitian metric ≃ · ≃ which is positive, i.e. c1(L, ≃ · ≃) is a positive (1, 1)-form on X. By the
Kodaira embedding theorem, L is an ample line bundle on X (and hence X is projective). Now
for each k ⇒ 0, denote by kL := L↗k, Vk := H0(X, kL) the space of holomorphic sections of kL
on X, and

!k : X ↓ P(V ↘

k ), x ⇑↓ Hx = {ϖ ⇐ Vk : ϖ(x) = 0}. (3.1.2)

Then !k is a closed immersion with !≃

kOP(V →
k )(1) ⇓ kL for all k ⇔ 1.

On kL, we have the natural Hermitian metric ≃ · ≃k, which is the metric of (L, ≃ · ≃)↗k. On
the other hand, we have the Fubini–Study metric on OP(V →

k )(1) as defined by (3.1.1). Thus its
pullback via !k defines a Hermitian metric on kL, which we call ≃ · ≃kFS .

Thus on kL, we have two Hermitian metrics: ≃ · ≃k and ≃ · ≃kFS .

Definition 3.1.3. The k-th distortion function is

bk : X ↓ R, x ⇑↓
≃ϱ≃2k
≃ϱ≃2

kFS

for any ϱ ⇐ (kL)x \ {0}.

Here is a more explicit expression of the distortion function. On Vk we have the L2-norm
defined by

≃s≃2L2 =

∫

X
≃s(x)≃2kdV for all s ⇐ Vk = H0(X, kL).

Then Vk is canonically isomorphic to V ↘

k , by sending v ⇑↓ ↖v,→↙L2 for the inner product deter-
mined by the L2-norm. Let s1, . . . , sN be an orthonormal basis of Vk = H0(X, kL) for this L2-
norm. Then it is not hard to compute that !k(x) = [s1(x) : · · · : sN (x)] under Vk =

⊕N
j=1Csj .

Then ≃ϱ≃2kFS = (≃s1(x)≃2k + · · ·+ ≃sN (x)≃2k)
↔1

≃ϱ≃2k by (3.1.1). Thus

bk(x) =
N∑

j=1

≃sj(x)≃
2
k. (3.1.3)
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3.1.3 Main result on the distortion function

The main result about the distortion function is the following:

Theorem 3.1.4. The function (bk)1/k converges to 1 uniformly on X. Namely for any ς > 0,
there exists k0 such that |bk(x)1/k → 1| < ς for all k ⇒ k0 and all x ⇐ X.

In other terminology, the Fubini–Study metric on L flattens uniformly into the initial metric
≃ · ≃.

We shall prove a more precise version of this theorem. For the statement we need to introduce
the following notion. Locally on X we can find a suitable complex coordinate (z1, . . . , zn) of

X such that: (i) ω =
↓
↔1
2

∑n
j=1 dzj ↘ dzj (in other words, 1

↓
2
(dz1, dz1 . . . , dzn, dzn) is an

orthonormal frame of T ≃

X with respect to the Hermitian metric), (ii) the (1, 1)-form c1(L, ≃ · ≃)

equals
↓
↔1
2

∑n
j=1 φj(x)dzj ↘ dzj with φj(x) > 0.

Definition 3.1.5. The functions φ1, . . . ,φn are called the eigenfunctions of c1(L, ≃ · ≃) with
respect to ω (or with respect to the Hermitian metric on X). The determinant is defined to be
the smooth function on X

det c1(L, ≃ · ≃) := φ1 · · ·φn.

Theorem 3.1.6. When k ↓ ∝, the function

bk
kn det c1(L, ≃ · ≃)

converges to 1 uniformly on X.

Theorem 3.1.6 implies Theorem 3.1.4 immediately.

3.2 Proof of the main theorem on the distortion function via

heat kernel

Let X be a connected compact Kähler manifold of dimension n, and let dV be the volume form
on X. Let L be a line bundle on X, endowed with a smooth Hermitian metric ≃ · ≃.

3.2.1 Kodaira Laplacian and Harmonic forms

For any k ⇒ 1, denote by A0,q(X, kL) the space of smooth global (0, q)-forms with values in
kL := L↗k (i.e. global sections of (T 0,q

X )≃ ′ L↗k). If q = 0, notice that A0,0(X, kL) is precisely
the space of smooth (real) sections of kL over X.

The Hermitian metric on X and the Hermitian metric on L together induce a Hermitian
metric on (T 0,q

X )≃′L↗k which we denote by ≃ ·≃k,q. Then we can endow A0,q(X, kL) with norms,
for example the L2-norm

≃ϖ≃L2 :=

(∫

X
≃ϖ(x)≃2k,qdV

)1/2

, ∞ϖ ⇐ A0,q(X, kL).

Each such norm defines a sesquilinear pairing (·, ·)q on A0,q(X, kL). Denote by L2
q(X, kL) the

completion of A0,q(X, kL) with respect to the L2-norm. It is a Hilbert space.
The di”erential operator ϑ : (T 0,q

X )≃ ↓ (T 0,q+1
X )≃ induces a di”erential operator ϑk,q : A0,q(X, kL) ↓

A0,q+1(X, kL). And ϑk,q has an adjoint ϑ
≃

k,q : A
0,q+1(X, kL) ↓ A0,q(X, kL) with respect to the

given norms, determined by (ϑk,qu, u↑)q+1 = (u, ϑ
≃

k,qu
↑)q.
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Definition 3.2.1. The anti-holomorphic Kodaira Laplacian is

#↑↑

k,q := ϑk,q↔1ϑ
≃

k,q↔1 + ϑ
≃

k,qϑk,q

with the first term being 0 if q = 0.
A smooth (0, q)-form u is called a harmonic form if #↑↑

k,qu = 0.

In our case, we are interested in the operator

↭q
k :=

2

k
#↑↑

k,q. (3.2.1)

Notice that Ker↭q
k = Ker#↑↑

k,q.

The cohomology of the Dolbeault complex · · · ↓ A0,q(X, kL)
ε
→↓ A0,q+1(X, kL) ↓ · · · gives

H0,q(X, kL) ⇓ Hq(X,$0
X ′ L↗k) = Hq(X, kL).

We state the following lemma without proof (the proof is not hard).

Lemma 3.2.2. A ϑ-closed form u ⇐ A0,q(X, kL) is of minimal norm in u+ Imϑ if and only if
ϑ
≃
u = 0.

This lemma (formally) implies that the Dolbeault cohomology group H0,q(X, kL) is repre-
sented exactly by solutions of two first-order equations

ϑu = 0, ϑ
≃
u = 0,

which can be replaced by the single second-order equation

#↑↑

k,qu = 0.

Thus we have

Hq(X, kL) ⇓ Ker#↑↑

k,q = Ker↭q
k.

In particular if q = 0, then this realizes H0(X, kL) as the subspace Ker↭0
k of A0,0(X, kL).

In general, we have an L2-orthogonal decomposition

A0,q(X, kL) = Ker↭q
k ∈ Imϑk,q→1 ∈ Imϑ

↑

k,q+1.

Recall that X is compact. We state the following (special case of a) theorem on the spectrum
of any self-adjoint elliptic operator which is semi-bounded.

Theorem 3.2.3 (Spectral theorem). The operator ↭q
k has discrete spectrum (of eigenvalues)

0 = ↼1 ∋ ↼2 ∋ · · · ∋ ↼m ∋ · · · ↓ ∝

and there exists a corresponding orthonormal basis consisting of smooth eigenforms {↽m}, i.e.
↭q

k↽m = ↼m↽m for non-zero ↽m.

In general, this theorem can be applied to any self-adjoint elliptic operator P which is semi-
bounded (i.e. (Pu, u)L2 ⇒ →c≃u≃2L2 for some fixed c ⇐ R) and with 0 replaced by →c.
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3.2.2 Heat kernel associated with the anti-holomorphic Kodaira Laplacian

We shall assume the following proposition which claims the existence of the heat kernel, which
is our main tool to prove Theorem 3.1.6.

Proposition 3.2.4. The operator ↭q
k admits a smooth (heat) kernel eqk(t, x, y), uniquely deter-

mined by the following properties:

(i) It is a smooth function on R>0 △X △X taking values in End((T 0,q
X )≃ ′ L↗k).

(ii) ( ε
εt +↭k)e

q
k = 0 with ↭q

k acting on the x-variable.

(iii) eqk(t, x, y) ↓ ⇀y (Dirac function) when t ↓ 0+.

More concretely, (ii) and (iii) mean the following: For each u0(x), there exists a unique
smooth solution u = u(t, x) : R⇐0 △X ↓ End((T 0,q

X )≃ ′ L↗k) to the heat equation

{
( ε
εt +↭q

k)u = 0

u(0, x) = u0(x),

which can be obtained as

u(t, x) =

∫

X
eqk(t, x, y)u0(y)dy. (3.2.2)

We sometimes call eqk(t, x, y) the fundamental solution of ( ε
εt +↭k)u = 0. It is known that under

the eigenbasis given by Theorem 3.2.3, we have

eqk(t, x, y) =
∑

m⇐1

e↔ϑmt↽m(x)′ ↽≃

m(y).

We shall be interested in the diagonal of the heat kernel, which for simplicity we denote by

eqk(t, x) := eqk(t, x, x) =
∑

ϑ

e↔ϑt
≃↽ϑ(x)≃

2
k,q (3.2.3)

for the L2-orthonormal eigenbasis (↼,↽ϑ)ϑ given by Theorem 3.2.3; here we abuse the notation
since there can be more than 1 eigenforms for each ↼.

The following theorem is the main theorem on heat kernel expansion and is of fundamental
importance. We state the theorem without proof.

Let φ1, . . . ,φn be the eigenfunctions of c1(L, ≃ · ≃) with respect to the Hermitian metric on
X. For any multi-index J , set φJ :=

∑
j ⇒⇑J φj →

∑
j⇑J φj . Define

eq⇓(t, x) := φ1(x) · · ·φn(x)

∑
|J |=q e

tϖJ (x)

∏n
j=1(e

tϖj(x) → e↔tϖj(x))
. (3.2.4)

Theorem 3.2.5. There exists a real number ς > 0 with the following property. When k ↓ ∝,
the function k↔neqk(t, x) converges to eq⇓(t, x) uniformly with respect to x ⇐ X and t ⇐ (0, k2ϱ).
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3.2.3 Application to the proof of Theorem 3.1.6

Let us prove Theorem 3.1.6 by using the results on heat kernel above.

Let (↼,↽ϑ)ϑ be an L2-orthonormal eigenbasis for the operator ↭0
k from Theorem 3.2.3. Recall

that H0(X, kL) is precisely the subspace Ker↭0
k of A0,0(X, kL). Thus

e0k(t, x) =
∑

ϑ

e↔tϑ
≃↽ϑ(x)≃

2
k,0 = bk(x) +

∑

ϑ>0

e↔tϑ
≃↽ϑ(x)≃

2
k,0 (3.2.5)

where the second equality follows from (3.1.3).
We will study the asymptotic behavior of e0k(t, x) and of e0k(t, x)→bk(x) =

∑
ϑ>0 e

↔tϑ
≃↽ϑ(x)≃2k,0

separately.
By Theorem 3.2.5 with q = 0, we get

e0k(t, x) =



φ1(x) · · ·φn(x)
n∏

j=1

1

1→ e↔2tϖj(x)



 kn + o(kn)

uniformly in x ⇐ X and in t ⇐ (0, k2ϱ) for a fixed ς. Taking t = kϱ ↓ ∝, we get

e0k(k
ϱ, x) ▽ φ1(x) · · ·φn(x)k

n. (3.2.6)

On the other hand for each ↼ > 0, we have e↔tϑ/2
≃↽ϑ(x)≃2k,0 < e0k(t/2, x) by (3.2.5). Thus

∑

ϑ>0

e↔tϑ
≃↽ϑ(x)≃

2
k,0 < e0k(t/2, x)

∑

ϑ>0

e↔tϑ/2 (3.2.7)

Lemma 3.2.6. Let ↼ > 0 be an eigenvalue of ↭0
k. For any eigenfunction ↽ϑ associated with ↼,

the (0, 1)-form ϑ↽ϑ is an eigenform for ↭1
k associated with ↼.

Sometimes we say that the positive spectrum of ↭0
k injects into the positive spectrum of ↭1

k.
Notice that this lemma immediately implies that ϑ↽ϑ = ϑ↽↑

ϑ if and only if ↽ϑ = ↽↑

ϑ.

Proof. We have ↭0
k↽ϑ = ↼↽ϑ. Applying ϑ to both sides, we get ϑϑ

≃
ϑ↽ϑ = (k/2)↼ϑ↽ϑ. Thus

↭1
k(ϑ↽ϑ) = ↼ϑ↽ϑ.
It remains to show that ϑ↽ϑ ↗= 0. Suppose ϑ↽ϑ = 0. Then ↽ϑ is a holomorphic function

on X, and hence is constant since X is compact. But then ↭0
k↽ϑ = 0, so ↽ϑ = 0, which is a

contradiction.

These (0, 1)-forms ϑ↽ϑ are still orthogonal to each other, but they do not necessary have
L2-norm 1 (and hence should be normalized).

By Lemma 3.2.6 and (3.2.3), we have

∑

ϑ>0

e↔tϑ
≃ϑ↽ϑ(x)≃2k,1
≃ϑ↽ϑ≃

2
L2

< e1k(t, x).

Integrating on X and by the definition of the L2-norm, we get

∑

ϑ>0

e↔tϑ <

∫

X
e1k(t, x)dV. (3.2.8)
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Now (3.2.7) and (3.2.8) together yield

∑

ϑ>0

e↔tϑ
≃↽ϑ(x)≃

2
k,0 < e0k(t/2, x)

∫

X
e1k(t/2, x)dV. (3.2.9)

By Theorem 3.2.5 with q = 1, we get

e1k(t, x) =



φ1(x) · · ·φn(x)
n∑

j=1

1

e2tϖj(x) → 1

∏

j↑ ⇒=j

1

1→ e↔2tϖj↑ (x)



 kn + o(kn)

uniformly in x ⇐ X and in t ⇐ (0, k2ϱ). Set φ0 := 2 infj,x φj(x) > 0. Then e1k(t, x) is uniformly
bounded above by Ce↔ϖ0tkn for some real number C > 0. Letting t = kϱ, we get

e0k(k
ϱ/2, x)

∫

X
e1k(k

ϱ/2, x)dV ∋ C ↑e↔ϖ0kωk2n

which converges to 0 uniformly in x ⇐ X when k ↓ ∝. Thus by (3.2.9) we have

∑

ϑ>0

e↔kωϑ
≃↽ϑ(x)≃

2
k,0 ↓ 0 when k ↓ ∝ (3.2.10)

uniformly in x ⇐ X.
Now let t = kϱ in (3.2.5). Then Theorem 3.1.6 immediately follows from (3.2.6) and (3.2.10).

3.2.4 Application to a lower bound of the smallest non-zero eigenvalue

Lemma 3.2.7. Let µk be the smallest non-zero eigenvalue of ↭0
k on X. Then

lim inf
k

µk ⇒ φ0

where φ0 := 2 infj,x φj(x) > 0 for the eigenfunctions φ1, . . . ,φn of c1(L, ≃ · ≃) with respect to the
Hermitian metric on X.

Proof. By (3.2.8), we have e↔tµk <
∫
X e1k(t, x)dV . By Theorem 3.2.5 with q = 1, we get that

e1k(k
ϱ, x) is uniformly bounded above in x ⇐ X by Ce↔ϖ0tkn for some real numbers C > 0 and

ς > 0 by the argument as above. Thus etµk < Ce↔ϖ0kωkn. Taking the log of both sides and
letting k ↓ ∝, we can conclude.

3.3 L2
-existence

Let X be a connected (not necessarily compact) Kähler manifold of dimension n with Kähler
form ω, and let dVς = ω→n/n! be the volume form on X.

Let L be a line bundle on X, endowed with a smooth Hermitian metric ≃ · ≃.

3.3.1 Setup

Denote by Ap,q
c (X,L) the space of compactly supported smooth global (p, q)-forms with values

in L (i.e. global sections of (T p,q
X )≃ ′L which are compactly supported). The Hermitian metric
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on X and the Hermitian metric on L together induce a Hermitian metric on (T p,q
X )≃ ′ L which

we denote by | · |p,q. Then we can endow Ap,q
c (X,L) with the L2-norm

≃ϖ≃L2 :=

(∫

X
|ϖ(x)|2p,qdVς

)1/2

, ∞ϖ ⇐ Ap,q
c (X,L).

This norm defines a sesquilinear pairing ↖·, ·↙L2 on Ap,q(X,L).
Denote by L2

p,q(X,L) the completion of Ap,q
c (X,L) with respect to the L2-norm. It is a

Hilbert space.
Let % := %ς be the adjoint of the operator ω↘ : Ap,q

c (X,L) ↓ Ap+1,q+1
c (X,L) with respect

to the L2-norm. Then we have a di”erential operator

Aς := [2εc1(L, ≃ · ≃)↘,%] = 2εc1(L, ≃ · ≃) ↘ ̸%→ % ̸ 2εc1(L, ≃ · ≃)↘ (3.3.1)

on Ap,q
c (X,L) for all p, q ⇒ 1.

Example 3.3.1. Consider X = Cn with the standard metric, and L = OX with the trivial
metric (i.e. (OX , ≃ · ≃) is the trivial Hermitian line bundle on Cn). Then ω = 2εc1(OX , ≃ · ≃) =
↓
↔1
2

∑n
j=1 dzj ↘ dzj. For each j, denote by ej : A

p,q
c (Cn) ↓ Ap+1,q

c (Cn) the operator dzj↘ (resp.

ej : A
p,q
c (Cn) ↓ Ap,q+1

c (Cn) the operator dzj↘). Then their adjoints satisfy e≃j (dzJ ↘dzJ ↑) = 0 if
j ↗⇐ J and e≃j (dzj ↘dzJ ↘dzJ ↑) = 2dzJ ↘dzJ ↑ (since the length of dzj is 2), and e≃j (dzJ ↘dzJ ↑) =

0 if j ↗⇐ J ↑ and e≃j (dzj ↘ dzJ ↘ dzJ ↑) = 2dzJ ↘ dzJ ↑. In this case, ω↘ =
↓
↔1
2

∑
ejej and

% = →

↓
↔1
2

∑
e≃je

≃

j . Thus Aς = 1
4

∑
(eje≃j → e≃jej).

Also we have ϑ =
∑

ϑjej =
∑

ejϑj, where ϑj(
∑

fJJ ↑dzJ ↘dzJ ↑) =
∑ εfJJ↑

εzj
dzJ ↘dzJ ↑. Then

ϑ
≃
= →

∑
ϑje≃j .

We need to extend the di”erential operators ϑ and Aς to L2
p,q(X,L). First, notice that Aς

extends to an operator on the whole L2
p,q(X,L) because both 2εc1(L, ≃ · ≃)↘ and %ς do. Next,

the di”erential operator ϑ : Ap,q
c (X,L) ↓ Ap,q+1

c (X,L) then has an adjoint ϑ
≃
: Ap,q+1

c (X,L) ↓
Ap,q

c (X,L) with respect to the L2-norm. Let domϑ ↔ L2
p,q(X,L) consist of those u for which ϑu,

computed in the sense of distribution (i.e. using ↖ϑu, v↙L2 := ↖u, ϑ
≃
v↙L2 for all v ⇐ Ap,q+1

c (X,L)),
is in L2

p,q+1(X,L). Similarly we can define domϑ
≃
.

3.3.2 Classical L2
-existence

Theorem 3.3.2 (Classical L2-existence). Assume X is geodesic complete for the Riemannian
metric determined by ω.

Assume that the operator Aς is positive definite everywhere in L2
p,q(X,L). Assume p ⇒ 0,

q ⇒ 1 and u ⇐ L2
p,q(X,L) satisfies ϑu = 0 (in the sense of distributions) and ↖A↔1

ς u, u↙L2 < ∝.

Then there exists f ⇐ L2
p,q↔1(X,L) such that ϑf = u and ≃f≃2L2 ∋ ↖A↔1

ς u, u↙L2.

We shall assume the following lemma, which is an easy application of the Bochner–Kodaira–
Nakano identity (which itself is an easy computation via the Hodge identities).

Lemma 3.3.3. For any v ⇐ Ap,q
c (L) with q ⇒ 1, we have

≃ϑv≃2L2 + ≃ϑ
≃
v≃2L2 ⇒ ↖Aςv, v↙L2 .
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Proof of Theorem 3.3.2. Both Kerϑ and Imϑ
≃
are closed subspaces of L2

p,q(X,L). General theory

of Hilbert spaces gives the orthogonal decomposition L2
p,q(X,L) = Kerϑ ∈ Imϑ

≃
.

Denote for simplicity by C := ↖A↔1
ς u, u↙L2 < ∝. Consider the linear functional

Imϑ
≃
↔ L2

p,q(X,L) ↓ C, ϑ
≃
v ⇑↓ ↖v, u↙L2 . (3.3.2)

We shall prove that the norm of this linear functional is bounded by
↑
C, i.e.

|↖v, u↙L2 |
2

≃ϑ
≃
v≃2L2

∋ C for all v ⇐ domϑ
≃
. (3.3.3)

We start with v ⇐ Ap,q+1
c (X,L), and write v = v1 + v2 according to the decomposition

L2
p,q(X,L) = Kerϑ ∈ Imϑ

≃
. Then Lemma 3.3.3 applied to v1 implies

≃ϑ
≃
v≃2L2 = ≃ϑ

≃
v1≃

2
L2 ⇒ ↖Aςv1, v1↙L2 .

On the other hand, Cauchy–Schwarz yields

|↖v, u↙L2 |
2 = |↖v1, u↙L2 |

2
∋ ↖Aςv1, v1↙L2↖A↔1

ς u, u↙L2 .

Thus (3.3.3) holds true for all v ⇐ Ap,q+1
c (X,L).

To claim (3.3.3) for all v ⇐ domϑ
≃
, we need to use the geodesic completeness of ω. Indeed,

under this assumption, the Andreotti–Vesentini lemma says that Ap,q+1
c (X,L) is dense in Imϑ

≃

(for the graph norm of ϑ
≃
, i.e the graph norm of v is ≃v≃L2 + ≃ϑ

≃
v≃L2), and hence we can

conclude for (3.3.3).
Thus we can apply the Riesz representation theorem to the continuous linear functional

(3.3.2) to conclude that (3.3.2) is represented by an element f ⇐ L2
p,q↔1(X,L) of L2-norm

∋
↑
C, i.e. ↖v, u↙L2 = ↖ϑ

≃
v, f↙L2 for all v ⇐ domϑ

≃
. Therefore ϑf = u as distributions. We are

done.

3.3.3 Hörmander’s L2
-existence theorem

Theorem 3.3.4. Assume X carries a Kähler form ω such that X is geodesic complete for the
Riemannian metric determined by ω.

Assume c1(L, ≃ · ≃) > 0. Assume q ⇒ 1 and u ⇐ L2
n,q(X,L) satisfies ϑu = 0 (in the sense of

distributions) and ↖A↔1
ς u, u↙L2 < ∝.

Then there exists f ⇐ L2
n,q↔1(X,L) such that ϑf = u and ≃f≃2L2 ∋ ↖A↔1

ς u, u↙L2.

Remark 3.3.5. (i) A particularly important case for which X carries such a complete Kähler
form ω is as follows: X = X ↑

\ Z where X ↑ is a compact Kähler manifold and Z is an
analytic subvariety.

(ii) Since c1(L, ≃ · ≃) > 0, locally on X we can find a suitable complex coordinate (z1, . . . , zn)

of X such that: (i) ω =
↓
↔1
2

∑n
j=1 dzj ↘ dzj, (ii) the (1, 1)-form c1(L, ≃ · ≃) equals

↓
↔1
2

∑n
j=1 φj(x)dzj ↘ dzj with φj(x) > 0. By the computation from Example 3.3.1, we

have then Aς = ω
2

∑
j φj(eje≃j → e≃jej), which simplifies to ω

2

∑
j φjeje≃j for (n, q)-forms

(this is why we are constraint to (n, q)-forms!). Thus Aς is positive definite.

With this observation, we shall reduce Theorem 3.3.4 to Theorem 3.3.2 using the following
monotonicity result.
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Proposition 3.3.6 (Monotonicity). Assume X has two Kähler metrics ω,ω↑ such that ω↑
⇒ ω

pointwise. Then for any positive (1, 1)-form ⇁, we have

|u|2ς↑dVς↑ ∋ |u|2ςdVς, ↖[⇁,%w↑ ]u, u↙L2,ς↑dVς↑ ⇒ ↖[⇁,%w]u, u↙L2,ςdVς

for all (n, q)-form u.

Here is a brief explanation on the proof of Proposition 3.3.6. The conclusion can be checked locally,
and hence it su&ces to check for X = Cn, ω the standard Kähler form, and ω↓ = (

↑
→1/2)

∑
γjdzj ↘ dzj

for γj ⇒ 1. The proof is then a direct computation.

Proof of Theorem 3.3.4. For every ς > 0, set ωϱ := ω + ςω. Since c1(L, ≃ · ≃) ⇒ 0, we can apply
Proposition 3.3.6 to ⇁ = 2εc1(L, ≃ · ≃) and to ω and ω↑ = ωϱ to get that u is L2 with respect to
ωϱ and

↖A↔1
ςω

u, u↙L2,ςω
∋ ↖A↔1

ς u, u↙L2,ς.

It is known that ωϱ is complete (because ω is), i.e. X is geodesically complete for the
Riemannian metric determined by ωϱ. The argument of Remark 3.3.5.(ii) shows that Aςω is
positive definite. Thus we can apply Theorem 3.3.2 to the Kähler manifold (X,ωϱ). So we
obtain an fϱ ⇐ L2

n,q↔1(X,L) (with L2 with respect to ωϱ) satisfying ϑfϱ = u and ≃fϱ≃2L2,ςω
∋

↖A↔1
ςω

u, u↙L2,ςω
. In particular, the family (fϱ) is locally bounded in the L2-norm, and hence we

can extract a weal limit f in L2
loc (locally L2-coe&cients), which is the required f .

3.3.4 Weighted L2
-existence

To prove the L2-extension theorem in the next section, we need a fancier version of Hörmander’s
L2-existence theorem by introducing weights on the operator Aς. Let us explain this.

Let η,↼ : X ↓ R>0 be smooth functions. Define

Bφ,ϑ,ς := [

η2εc1(L, ≃ · ≃)→

↑
→1ϑϑη →

↑
→1↼↔1ϑη ↘ ϑη


↘, %ς]. (3.3.4)

Theorem 3.3.7. Assume X carries a Kähler form ω such that X is geodesic complete for the
Riemannian metric determined by ω.

Assume that the (1, 1)-form η2εc1(L, ≃ · ≃)→
↑
→1ϑϑη →

↑
→1↼↔1ϑη ↘ ϑη is positive.

Assume q ⇒ 1 and u ⇐ L2
n,q(X,L) satisfies ϑu = 0 (in the sense of distributions) and

↖B↔1
φ,ϑ,ςu, u↙L2 < ∝.

Then there exists f ⇐ L2
n,q↔1(X,L) such that ϑf = u and


f

↑
η + ↼


2

L2

∋ 2


f

η1/2 + ↼1/2


2

L2

∋ 2↖B↔1
φ,ϑ,ςu, u↙L2 .

The proof follows the same line as Theorem 3.3.4. The extra information needed is the
following estimate: For all (n, q)-forms u, we have

↖B↔1
φ,ϑ,ςu, u↙L2 ∋ ≃(η1/2 + ↼1/2)ϑ

≃
u≃2L2≃η1/2ϑu≃2L2 .

We close this section with the following variant of Theorem 3.3.7 which applies to singular
Hermitian metric on L, i.e. in the following theorem we do not assume the Hermitian metric
≃ · ≃ on L to be smooth in contrast to the general setting of this section.

Theorem 3.3.7
↑
. Assume that X is compact. Assume that the Hermitian metric ≃ · ≃ on L is

smooth outside a proper analytic subset Z of X. Assume that the (1, 1)-form η2εc1(L, ≃ · ≃) →↑
→1ϑϑη →

↑
→1↼↔1ϑη ↘ ϑη is positive on X \ Z.

The conclusion of Theorem 3.3.7 still holds true in this setting.
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Proof. By a result of Demailly (c.f. “Estimations L2 pour l’opérateur ϑ d’un fibré vectoriel
holomorphe semi-positif au-dessus d’une variété kählérienne complète”), X \Z carries a Kähler
form for which X \ Z is geodesic complete. Hence we can apply Theorem 3.3.7 to X \ Z to
get an L2-solution f . Then f extends to the whole X by a lemma of Demailly (Lemma 6.9 of
loc.cit.).

3.4 L2
-extension

Let X be a connected compact Kähler manifold of dimension n with Kähler form ω, and let
dVX,ς = ω→n/n! be the volume form on X.

Let KX :=
n T ≃

X be the canonical line bundle on X.

Theorem 3.4.1 (L2-extension). Let L be a line bundle on X, endowed with a smooth Hermitian
metric ≃ · ≃.

Let Y be the zero of a holomorphic section s ⇐ H0(X,L0) of another Hermitian line bundle
(L0, ≃ · ≃0) on X. Assume c1(L, ≃ · ≃) → (1 + ⇀)c1(L0, ≃ · ≃0) > 0 for a positive rational number
⇀ > 0.

Then for any f ⇐ H0(Y, L+KX), there exists F ⇐ H0(X,L+KX) such that F |Y = f and
∫

X

≃F≃
2

≃s≃20(log ≃s≃0)
2
dVX,ς ∋ 72 · 8ε

∫

Y

≃f≃2

≃ds≃20
dVY,ς. (3.4.1)

Here we use the following abuse of notation: use ≃ · ≃ (resp. ≃ · ≃0) to denote the Hermitian
metric on L+KX induced by ≃ · ≃ on L and ω on X (resp. on L0 ′ T ≃

X induced by ≃ · ≃0 on L0

and ω on X). Moreover, ds induces a vector bundle isomorphism TX/TY
⇔
→↓ L0 along Y , and

hence is a section of ((TX |Y )/TY )≃ ′ L0|Y (⇓ OY ) ↔ T ≃

X ′ L0.

Remark 3.4.2. There are more general versions of L2-extension. One can replace the line
bundle L0 by a vector bundle of rank r (and hence Y has codimension r) and modify the as-
sumptions accordingly. The Hermitian metric on L0 does not play an important role. We refer
to Demailly’s paper “On the Ohsawa–Takegoshi–Manivel L2 extension theorem”.

In the proof of arithmetic Hilbert–Samuel, we will take L to be L↑
→KX and L0 to be (1/N)L↑

for a very ample line bundle L↑ and an integer N ⇔ 1.

The whole section is divided into steps of the proof of Theorem 3.4.1.

3.4.1 Construction of a smooth extension f⇓ and truncation

By partition of unity, we can find a smooth section

f⇓ ⇐ C⇓(X,L+KX) = A0,0(X,L+KX) ⇓ An,0(X,L)

such that

(i) f⇓|Y = f ,

(ii) ϑ f⇓ = 0 on Y .

Since we do not know about f⇓ far away from Y , we will consider a truncation fϱ of f⇓ with
support in a small tubular neighborhood ≃s≃0 < ς of Y as follows. Take a bumping function
▷ : R ↓ [0, 1] satisfying the following properties: ▷ is smooth, |▷↑| ∋ 3 and

▷(t) =

{
1 for t ∋ 1/2

0 for t ⇒ 1.



46 CHAPTER 3. PREPARATION ON ANALYSIS

For ς > 0 small, consider the truncation

fϱ := ▷(ς↔2
≃s≃20) f⇓.

Then fϱ|Y = f , and f(x) = 0 for all x ⇐ X with ≃s(x)≃0 ⇒ ς.

3.4.2 Construction of weights

We make use of the standard subharmonic function

ϖϱ = log(≃s≃20 + ς2). (3.4.2)

and the following inequality (we omit this computation using the Chern connection and Lagrange
inequality) to compute the twisted curvature:

↑
→1ϑϑϖϱ ⇒

↑
→1

ς2

≃s≃20
ϑϖϱ ↘ ϑϖϱ →

≃s≃20
≃s≃20 + ς2

2εc1(L0, ≃ · ≃0). (3.4.3)

Recall that ≃s≃20 : X ↓ R is a smooth function. Hence

e↔2ϖ := supx⇑X ≃s(x)≃20 < ∝ (3.4.4)

since X is compact. We may rescale the metric ≃ ·≃0 so that φ ⇐ (0, 1/⇀), because the conclusion
(3.4.1) is unchanged under this operation.

Let ◁0 : (→∝, 0] ↓ (→∝, 0], t ⇑↓ t → log(1 → t). Then 2t ∋ ◁0(t) ∋ t, 1 ∋ ◁↑
0 ∋ 2, and

◁↑↑
0(t) = 1/(1→ t)2.
Let ηϱ := ς → ◁0(ϖϱ). Then ηϱ ⇒ ς → log(e↔2ϖ + ς2). For ς > 0 small enough, we thus have

ηϱ ⇒ 2φ. We can compute

→ϑϑηϱ = ◁↑

0(ϖϱ)ϑϑϖϱ + ◁↑↑

0(ϖϱ)ϑϖϱ ↘ ϑϖϱ, ϑηϱ ↘ ϑηϱ = ◁↑

0(ϖϱ)
2ϑϖϱ ↘ ϑϖϱ.

Let ↼ϱ := ◁↑
0(ϖϱ)

2/◁↑↑
0(ϖϱ). Then

→
↑
→1ϑϑηϱ →

↑
→1↼↔1

ϱ ϑηϱ ↘ ϑηϱ =
↑
→1◁↑

0(ϖϱ)ϑϑϖϱ

for which we have a lower bound from (3.4.3).
We are interested in the metric on L defined by ≃·≃≃s≃↔2

0 , for a reason which will be explained
in the next step. By the Poincaré–Lelong formula (Theorem 2.2.3), we have

↑
→1ϑϑ log ≃s≃20 ⇒

→2εc1(L0, ≃ · ≃0) with equality on X \ Y . So on X \ Y , we have that

’(L, ς, s) :=ηϱ2εc1(L, ≃ · ≃≃s≃
↔2
0 )→

↑
→1ϑϑηϱ →

↑
→1↼↔1

ϱ ϑηϱ ↘ ϑηϱ

⇒2φ(2εc1(L, ≃ · ≃)→ 2εc1(L0, ≃ · ≃0))→
↑
→1ϑϑηϱ →

↑
→1↼↔1

ϱ ϑηϱ ↘ ϑηϱ

⇒2ε

(
2φc1(L, ≃ · ≃)→

(
2φ+ ◁↑

0(ϖϱ)
≃s≃20

≃s≃20 + ς2

)
c1(L0, ≃ · ≃0)

)
+
↑
→1

ς2

◁↑
0(ϖϱ)≃s≃

2
0

ϑηϱ ↘ ϑηϱ

⇒4εφ

(
c1(L, ≃ · ≃)→ (1 +

1

φ
)c1(L0, ≃ · ≃0)

)
+
↑
→1

ς2

◁↑
0(ϖϱ)≃s≃

2
0

ϑηϱ ↘ ϑηϱ

⇒
↑
→1

ς2

◁↑
0(ϖϱ)≃s≃

2
0

ϑηϱ ↘ ϑηϱ (3.4.5)

is positive, where the last inequality follows from φ ⇐ (0, 1/⇀) and the assumption that c1(L, ≃ ·
≃)→ (1 + ⇀)c1(L0, ≃ · ≃0) > 0. Notice that Example 3.3.1 then implies

Bϱ := [’(L, ς, s)↘,%ς] ⇒
ς2

◁↑
0(ϖϱ)≃s≃

2
0

(ϑηϱ↘) ̸ (ϑηϱ↘)
≃ (3.4.6)

as an operator on (n, q)-forms.
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3.4.3 Estimate the partial derivative

Next we wish to construct a holomorphic extension from the smooth extension fϱ. For this
purpose we wish to solve the equation ϑuϱ = ϑ fϱ, with the constraint uϱ|Y = 0, so that fϱ → uϱ
will be a desired holomorphic extension. Our tool to solve this di”erential equation is the
L2-existence theorem discussed in the last section (notice that ϑ fϱ is a ϑ-closed smooth (n, 1)-
form). Since codimY = 1, the extra constraint uϱ|Y = 0 will be satisfied if ≃uϱ≃2≃s≃

↔2
0 is locally

integrable near Y . This is why we change the metric on L to be ≃ · ≃≃s≃↔2
0 . Notice that this new

metric is singular along Y , so we need to apply the version of Theorem 3.3.7↑ for the L2-existence.
We start by computing ϑ fϱ. Observe that 1 + ς↔2

≃s≃20 = ς↔2e↼ω . Thus we have

ϑ fϱ = ς↔2▷↑(ς↔2
≃s≃20)ϑ≃s≃

2
0↘

f⇓+▷(ς↔2
≃s≃20)ϑ f⇓ = (1+ς↔2

≃s≃20)▷
↑(ς↔2

≃s≃20)ϑϖϱ↘ f⇓+▷(ς↔2
≃s≃20)ϑ f⇓.

Both terms on the RHS have supports in ≃s≃0 ∋ ς.
The first term, which is the main term, can be written as

g(1)ϱ := (1 + ς↔2
≃s≃20)▷

↑(ς↔2
≃s≃20)◁

↑

0(ϖϱ)
↔1ϑηϱ ↘ f⇓.

To estimate ↖B↔1
ϱ g(1)ϱ , g(1)ϱ ↙L2 , notice that (3.4.6) implies

|↖ϑηϱ↘u, v↙|
2 = |↖u, (ϑηϱ)

≃v↙|2 ∋ |u|2||(ϑηϱ)
≃v|2 = |u|2↖(ϑηϱ)(ϑηϱ)

≃v, v↙ ∋
◁↑
0(ϖϱ)≃s≃

2
0

ς2
|u|2↖Bϱv, v↙.

Thus by letting v = B↔1
ϱ (ϑηϱ ↘ u) = B↔1

ϱ g(1)ϱ and u = (1 + ς↔2
≃s≃20)▷

↑(ς↔2
≃s≃20)◁

↑
0(ϖϱ)

↔1 f⇓,
pointwise on X we get

↖B↔1
ϱ g(1)ϱ , g(1)ϱ ↙ ∋ ≃s≃20ς

↔2(1 + ς↔2
≃s≃20)

2▷↑(ς↔2
≃s≃20)

2
≃ f⇓≃

2
∋ 36≃ f⇓≃

2

because ◁↑
0(ς) ⇒ 1 on Suppg(1)ϱ ↔ {≃s≃0 ∋ ς}. So

↖B↔1
ϱ g(1)ϱ , g(1)ϱ ↙L2 =

∫

X
↖B↔1

ϱ g(1)ϱ , g(1)ϱ ↙≃s≃↔2
0 dVX,ς ∋ 36

∫

↖s↖0↙ϱ
≃ f⇓≃

2
≃s≃↔2

0 dVX,ς.

When ς ↓ 0+, this integral becomes

8ε

∫

Y
≃f≃2≃ds≃↔2

0 dVY,ς.

Thus

lim sup
ϱ∝0+

↖B↔1
ϱ g(1)ϱ , g(1)ϱ ↙L2 ∋ 36 · 8ε

∫

Y
≃f≃2≃ds≃↔2

0 dVY,ς.

The second term on the RHS in the expression of ϑ fϱ converges uniformly to 0 on every compact

set when ς ↓ 0+ and hence has no contribution in the limit. More precisely, write g(2)ϱ :=

▷(ς↔2
≃s≃20)ϑ

f⇓. Then g(2)ϱ = O(≃s≃0) since f⇓|Y = 0. Thus ↖B↔1
ϱ g(1)ϱ , g(2)ϱ ↙L2 , ↖g

(1)
ϱ , B↔1

ϱ g(2)ϱ ↙L2 ,

↖B↔1
ϱ g(2)ϱ , g(2)ϱ ↙L2 are O(ς) because they are all integrals over ≃s≃0 ∋ ς. Hence

lim sup
ϱ∝0+

↖B↔1
ϱ ϑ fϱ, ϑ fϱ↙L2 = lim sup

ϱ∝0+
↖B↔1

ϱ (g(1)ϱ +g(2)ϱ ), g(1)ϱ +g(2)ϱ ↙L2 ∋ 36·8ε

∫

Y
≃f≃2≃ds≃↔2

0 dVY,ς < ∝.
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3.4.4 Conclusion by L2
-existence

Apply Theorem 3.3.7↑ to the Hermitian metric ≃ · ≃≃s≃↔2
0 on L, Z = Y , q = 1 and u = ϑ fϱ. We

then obtain gϱ such that ϑgϱ = ϑ fϱ and
∫

X

≃gϱ≃2≃s≃
↔2
0

ηϱ + ↼ϱ
dVX,ς ∋ 72 · 8ε

∫

Y
≃f≃2≃ds≃↔2

0 dVY,ς

In particular, gϱ|Y = 0 since ≃gϱ≃2≃s≃
↔2
0 is locally integrable. Set

Fϱ := fϱ → gϱ.

Then Fϱ is an L2-extension of f to the whole X such that ϑFϱ = 0 on X \ Y .
We have ηϱ = ς→◁0(ϖϱ) ⇒ ς→ϖϱ and ↼ϱ = (1→ϖϱ)2+(1→ϖϱ). Thus ηϱ+↼ϱ ⇒ ϖ2

ϱ →4ϖϱ+2+ς
with ϖϱ = log(≃s≃20 + ς2). So

∫

X

≃ fϱ≃2≃s≃↔2
0

ηϱ + ↼ϱ
dVX,ς ∋

M

(log ς)2

because fϱ is uniformly bounded with support in ≃s≃0 ∋ ς. Therefore, by using |t + u|2 ∋

(1 + k)|t|2 + (1 + k↔1)|u|2, with k = | log ς|, we obtain

∫

X

≃Fϱ≃
2

≃s≃20(log(≃s0≃
2 + ς2))2

dVX,ς ∋ (1 + | log ς|↔1)72 · 8ε

∫

Y
≃f≃2≃ds≃↔2

0 dVY,ς +O(| log ς|↔1).

Similarly we can show that ≃Fϱ≃L2 is bounded above by a constant independent of ς (when ς > 0
is small enough). Thus we can extract a weak limit F of the family {Fϱ}ϱ. Then

∫

X

≃F≃
2

≃s≃20(log ≃s0≃)
2
dVX,ς ∋ 72 · 8ε

∫

Y
≃f≃2≃ds≃↔2

0 dVY,ς.

It remains to prove that F is holomorphic. Since we are applying Theorem 3.3.7↑ to q = 1,
gϱ is smooth (because ϑ is elliptic in bidegree (0, 0)). Hence Fϱ is smooth. Notice that ϑFϱ = 0
on X \Y . So Fϱ is holomorphic on X \Y , and hence is holomorphic on the whole X because Fϱ

is L2 near Y . Therefore the weak limit F is holomorphic. We are done.
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