Chapter 3

Preparation on analysis for the proof
of Arithmetic Hilbert—Samuel

The goal of this chapter is to discuss about some analytic tools and results which will be used
to prove the Arithmetic Hilbert—Samuel Theorem (for which we follow the approach of Abbes—
Bouche) in the next chapter.

3.1 Distortion function

3.1.1 Fubini—Study metric

Let X be a connected complex manifold of dimension n, endowed with a smooth Hermitian
metric (i.e. a J-invariant positive-definite Hermitian inner product h(-,-) on Tx where J is the
complex structure on X). This Hermitian metric induces a positive (1,1)-form w = —Imh on
X, and hence a volume form dV := w”"/n! on X. Notice that h can be recovered from w and
J via the formula h(u,v) = w(u, Jv) — v/—1w(u,v).

Definition 3.1.1. Such a complex manifold X is called ¢« Kdhler manifold if w is closed.
If X is a Kéhler manifold, we usually call w its Kdhler form.

Example 3.1.2. For X = P", the Fubini—Study metric is defined as follows. We have the
standard projection C" 1\ {0} — P" by viewing P" as the space consisting of all complex lines
in C"t1. The standard Hermitian metric on C"*! defines the following (1,1)-form on P

N/ —1 —
Wrs = ?&'ﬂogﬂzop + -4 |Zn|2)

with (29, . .., 2n) the standard coordinate of C* 1. To see this, consider any open subset U C P"
such that natural projection admits a lifting Z: U — C"t1\ {0}. Thenany other lifting Z'
differs from Z by a non-zero holomorphic function f, and hence ddlog|Z'|> = 0dlog|fZ|* =
00log | Z|* + 00log(ff) = 0log|Z|*. Thus the local (1,1)-forms 00log|Z|?, with U varying,
patch together to a global (1,1)-form, which is exactly (27 /v/—1)wrs.

Notice that dwpg = 0, i.e. wpg is closed.

To see that wrs is a positive (1, 1)-form, it suffices to prove that it is positive at one point since
w is invariant under the group action of U(n+1) on P (which is transitive). Use {wy, ..., wy,}
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to denote the standard coordinate on the open subset Uy := {29 # 0} C P", i.e. w; = zj/20.
Then

V-1 (Zde' ANdw; Qo widwi) Ao wi A dwj)) ’

2T 1+ Z wW;W; B (1 + Z ijj)Q

which is g YodwjAdwj at [1:0:---:0]. Thus wrs is positive.
By the discussion above, wrs defines a Hermitian metric on P™, which is called the Fubini—
Study metric.

J_1 _
wrslu, = ?8810g(1 + ij@j) =

By Example the analytification of any smooth quasi-projective variety is a K&hler
manifold.

Another way to see the Fubini-Study metric on P” is as via a suitable Hermitian metric ||-||rs
on Opn (1) as follows. The coordinate functions Xy, ..., X, form a basis of H°(P", Opn(1)). At
each point x = [zg : -+ - : x,| € P, define for a global section s = apXo + -+ + ayxy

|aga;0 + -+ aNxN\
() s == 3
Vol -+ Jzal

Then one can check that ¢1(Opn (1), || - ||Fs) = wrs.

(3.1.1)

3.1.2 Distortion function

Let X be a compact Kéhler manifold. Let L be a line bundle on X, endowed with a smooth
Hermitian metric || - || which is positive, i.e. ¢1(L, || - ||) is a positive (1, 1)-form on X. By the
Kodaira embedding theorem, L is an ample line bundle on X (and hence X is projective). Now
for each k > 0, denote by kL := L¥* V}, := H°(X, kL) the space of holomorphic sections of kL
on X, and

D X — P(V)), x+— Hy ={o€V;:0(x)=0} (3.1.2)
Then @, is a closed immersion with @};O]}D(Vk\/)(l) ~ kL for all k> 1.

On kL, we have the natural Hermitian metric || - ||, which is the metric of (L, | - [|)®*. On
the other hand, we have the Fubini-Study metric on O[[D(Vk\/)(l) as defined by . Thus its
pullback via @ defines a Hermitian metric on kL, which we call || - ||;rs.

Thus on kL, we have two Hermitian metrics: || - || and || - ||grs.

Definition 3.1.3. The k-th distortion function is
€117

€1 3es

bp: X — R, T

for any & € (kL)y \ {0}
Here is a more explicit expression of the distortion function. On V}, we have the L?-norm
defined by

Is]22 = / Is@)|2dV  for all s € Vi, = HO(X, kL).
X
Then Vj, is canonically isomorphic to V,, by sending v + (v, —) 2 for the inner product deter-

mined by the L2-norm. Let s1,..., sy be an orthonormal basis of V;, = H°(X, kL) for this L%
norm. Then it is not hard to compute that ®i(z) = [si(x) : -+ : sy(x)] under Vj = 695\7:1 Cs;.

Then [|¢][Fes = (Is1(2)[F + -+ sn (@) 1) 7HIENE by (B-LI). Thus

N
be(x) =) lls;(@)|E. (3.1.3)
j=1
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3.1.3 Main result on the distortion function
The main result about the distortion function is the following:

Theorem 3.1.4. The function (bk)l/k converges to 1 uniformly on X. Namely for any € > 0,
there exists ko such that |by(2)Y* — 1| < € for all k > ko and all z € X

In other terminology, the Fubini-Study metric on L flattens uniformly into the initial metric

We shall prove a more precise version of this theorem. For the statement we need to introduce

the following notion. Locally on X we can find a suitable complex coordinate (z1,...,z,) of
X such that: (i) w = @Zyzl dz; A dz; (in other words, %(dzl,dfl...,dzn,dén) is an
orthonormal frame of T% with respect to the Hermitian metric), (ii) the (1, 1)-form ¢;(L, || - ||)

equals @ > i—y aj(z)dz; A dz; with a;(z) > 0.

Definition 3.1.5. The functions a1, ..., ay are called the eigenfunctions of ¢ (L, | - ||) with
respect to w (or with respect to the Hermitian metric on X ). The determinant is defined to be
the smooth function on X

detei (L] - ) = a1+ a.

Theorem 3.1.6. When k — oo, the function

by,
k™ det er(L, || - [])

converges to 1 uniformly on X.

Theorem implies Theorem immediately.

3.2 Proof of the main theorem on the distortion function via
heat kernel

Let X be a connected compact Kédhler manifold of dimension n, and let dV' be the volume form
on X. Let L be a line bundle on X, endowed with a smooth Hermitian metric || - ||.

3.2.1 Kodaira Laplacian and Harmonic forms

For any k > 1, denote by A%4(X, kL) the space of smooth global (0,q)-forms with values in
kL := L (i.e. global sections of (T%9)* @ L&*). If ¢ = 0, notice that A%0(X, kL) is precisely
the space of smooth (real) sections of kL over X.

The Hermitian metric on X and the Hermitian metric on L together induce a Hermitian
metric on (Ty?)*® L which we denote by || ||.q- Then we can endow A%4(X, kL) with norms,
for example the L?-norm

1/2
lollze == (/X ua(a:)r\i,qdv) . Vo e AM(X,kL).

Each such norm defines a sesquilinear pairing (-,-), on A%4(X,kL). Denote by Lg(X ,kL) the
completion of A%4(X, kL) with respect to the L2-norm. It is a Hilbert space.

The differential operator 0: (T)O(’q)* — (T;)(’qﬂ)* induces a differential operator 0 ,: A% (X, kL) —
A%t (X kL). And Jy, has an adjoint gzgc A%t (X kL) — A%9(X, kL) with respect to the

. . a a*
given norms, determined by (O qu, u')g+1 = (u, Oy ju'),-
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Definition 3.2.1. The anti-holomorphic Kodaira Laplacian is
,l;q = gkvq—lg;’;,q—l + 52,(]51%‘1

with the first term being 0 if ¢ = 0.
A smooth (0, q)-form u is called @ harmonic form if A} u = 0.

In our case, we are interested in the operator

— 2
i = 700 (3.2.1)

Notice that Ker(j, = KerAY .

The cohomology of the Dolbeault complex - -- — A%Y(X kL) KN A% (X kL) — --- gives
H%(X, kL) ~ H1(X,Q% ® L®*) = HI(X,kL).
We state the following lemma without proof (the proof is not hard).

Lemma 3.2.2. A 0-closed form v € A%4(X,kL) is of minimal norm in u + Imd if and only if
du=0.

This lemma (formally) implies that the Dolbeault cohomology group H"4(X, kL) is repre-
sented exactly by solutions of two first-order equations

Ou =0, g*u:(),

which can be replaced by the single second-order equation

%7qu =0.

Thus we have
HY(X, kL) ~ KerA , = Ker[J}.

In particular if ¢ = 0, then this realizes H°(X, kL) as the subspace Kerig of A% (X kL).
In general, we have an L2-orthogonal decomposition

14074()(7 kL) = Kerﬁi 52 Imgk,q—l ® Img/*c,q-%l'

Recall that X is compact. We state the following (special case of a) theorem on the spectrum
of any self-adjoint elliptic operator which is semi-bounded.

Theorem 3.2.3 (Spectral theorem). The operator Of has discrete spectrum (of eigenvalues)
0=M< A< <A <r =50

and there exists a corresponding orthonormal basis consisting of smooth eigenforms {ip,}, i.e.
Optbm = Amtm for non-zero .

In general, this theorem can be applied to any self-adjoint elliptic operator P which is semi-
bounded (i.e. (Pu,u)p2 > —c|lu|3, for some fixed ¢ € R) and with 0 replaced by —c.
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3.2.2 Heat kernel associated with the anti-holomorphic Kodaira Laplacian

We shall assume the following proposition which claims the existence of the heat kernel, which
is our main tool to prove Theorem

Proposition 3.2.4. The operator EZ admits a smooth (heat) kernel e}(t,x,y), uniquely deter-
mined by the following properties:

(i) It is a smooth function on Rsg x X x X taking values in End(( D)* @ LR,
(ii) (% +Op)el = 0 with O, acting on the x-variable.
(i) el (t,x,y) — 8y (Dirac function) when t — 07.

More concretely, (ii) and (iii) mean the following: For each wg(x), there exists a unique
smooth solution u = u(t, ): Rso x X — End((Ty%)* ® L®*) to the heat equation

which can be obtained as

u(t,:z:)—/XeZ(t,:L',y)uo(y)dy. (3.2.2)

We sometimes call e} (¢, 2, y) the fundamental solution of (% +0k)u = 0. Tt is known that under
the eigenbasis given by Theorem we have

Htwy) = e () @5, (1),

m>1

We shall be interested in the diagonal of the heat kernel, which for simplicity we denote by

el(t,x) :==el(t,z,x) Ze ey ()

(3.2.3)

for the L?-orthonormal eigenbasis (), ) given by Theorem here we abuse the notation
since there can be more than 1 eigenforms for each .

The following theorem is the main theorem on heat kernel expansion and is of fundamental
importance. We state the theorem without proof.

Let aq,...,a, be the eigenfunctions of ¢1(L, || - ||) with respect to the Hermitian metric on
X. For any multi-index J, set @y 1=}, ; a; — > ey oj. Define

Zlleq et (@)
H?:l(etaj(x) _ eftaj(:r)) :

el (t,x) == aq(z) - an(x) (3.2.4)

Theorem 3.2.5. There exists a real number € > 0 with the following property. When k — oo,
the function k="el(t, ) converges to el (t,x) uniformly with respect to x € X and t € (0, k*).



40 CHAPTER 3. PREPARATION ON ANALYSIS

3.2.3 Application to the proof of Theorem [3.1.6]

Let us prove Theorem by using the results on heat kernel above.
Let (A, 1)) be an L?-orthonormal eigenbasis for the operator ﬁz from Theorem Recall
that H(X, kL) is precisely the subspace Kerﬁg of A%°(X kL). Thus

Ze Ma(@) 17,0 = be(@) + e la@)lRo (3.2.5)

A>0

where the second equality follows from ([3.1.3).
We will study the asymptotic behavior of e} (¢, z) and of €D (¢, z)—by(z) = Y- o0 ||[¥r(z) ”2,0
separately.

By Theorem with ¢ = 0, we get

1 n n
et ) = | ay(x) - an(x) H e E™ + o(E™)
i=1

uniformly in # € X and in t € (0, k*¢) for a fixed e. Taking t = k¢ — oo, we get
eQ(kS, ) ~ ay(x) - an(z)k™ (3.2.6)

On the other hand for each A > 0, we have e_t)‘/QHw,\(:U)H%’0 < el(t/2,z) by (3:2.5). Thus

Zef”\lwx Hko < et/2,x) Zeft/\ﬂ (3.2.7)

A>0 A>0

Lemma 3.2.6. Let A > 0 be an eigenvalue of ﬁg. For any eigenfunction vy associated with X,
the (0,1)-form Ovy, is an eigenform for ﬁ,lc associated with \.

Sometimes we say that the positive spectrum of iﬁ injects into the positive spectrum of ﬁ,lg.
Notice that this lemma immediately implies that 0y = 0v)) if and only if 1) = .

Proof. We have EZT/J/\ = M. Applying 9 to both sides, we get 99 Ohy = (k/2)A01py. Thus
71 — —
O (01)) = AOwy. _ B

It remains to show that 0y, # 0. Suppose 0v¥y = 0. Then ) is a holomorphic function
on X, and hence is constant since X is compact. But then Ezzm = 0, so ¥y = 0, which is a
contradiction. O

These (0, 1)-forms 9 are still orthogonal to each other, but they do not necessary have
L?-norm 1 (and hence should be normalized).

By Lemma [3.2.6 and (3.2.3), we have

3 2
Z o tA Halﬁ)\(ﬂ?)z k,1 ei(t, 2).
>0 10¥All72

Integrating on X and by the definition of the L?-norm, we get

Zet)‘</ ek(t,z)dV. (3.2.8)

A>0 X
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Now (3.2.7) and (3.2.8) together yield
> e Mt < chit/2,2) [ ehte/2.0av. (329)
X

A>0

By Theorem with ¢ = 1, we get

R 1 1
ellf(t’ :TJ) ! (x) o Oén($) Z e2tay(z) _ 1 H 1— 672taj/(x) K"+ O(kn)
J=1 J'#i ‘

uniformly in z € X and in t € (0,%%). Set ag := 2inf;, a;(z) > 0. Then ei(¢,) is uniformly
bounded above by Ce™@!k™ for some real number C' > 0. Letting t = k¢, we get

(k< /2, 2) / eL(kS/2, 2)dV < Ce=o0k 2n
X

which converges to 0 uniformly in € X when k — oo. Thus by (3.2.9) we have

Z e_ke/\||¢,\(:n)|\%70 — 0 when k — o (3.2.10)
A>0

uniformly in x € X.
Now let t = k€ in (3.2.5). Then Theorem immediately follows from (3.2.6) and ({3.2.10).
3.2.4 Application to a lower bound of the smallest non-zero eigenvalue

Lemma 3.2.7. Let ug be the smallest non-zero eigenvalue of ﬁg on X. Then

limkinf Wi = Qg

where ag = 2inf; ; aj(z) > 0 for the eigenfunctions ax,...,an of ci(L, || -||) with respect to the
Hermiatian metric on X.

Proof. By (.2.8), we have e~ < [, ¢} (¢,2)dV. By Theorem with ¢ = 1, we get that
e,lg(k:e, x) is uniformly bounded above in x € X by Ce™ k™ for some real numbers C' > 0 and

€ > 0 by the argument as above. Thus e < Ce™ @ k" Taking the log of both sides and
letting £ — oo, we can conclude. O

3.3 L2-existence

Let X be a connected (not necessarily compact) Kéahler manifold of dimension n with Kéahler
form w, and let dV,, = w""/n! be the volume form on X.
Let L be a line bundle on X, endowed with a smooth Hermitian metric || - ||.

3.3.1 Setup

Denote by A??(X, L) the space of compactly supported smooth global (p, q)-forms with values
in L (i.e. global sections of (T%?)* ® L which are compactly supported). The Hermitian metric
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on X and the Hermitian metric on L together induce a Hermitian metric on (T%9)* ® L which
we denote by | - |4 Then we can endow A??(X, L) with the L?-norm

1/2
ol = ([ lo@Raan) . voeazex.o)
X

This norm defines a sesquilinear pairing (-, )72 on AP4(X, L).

Denote by L2 (X, L) the completion of A??(X,L) with respect to the L?-norm. It is a
Hilbert space.

Let A := A, be the adjoint of the operator wA: AP9(X, L) — AZTH4T (X L) with respect
to the L?-norm. Then we have a differential operator

Ay = 2mer(Ly || - [N, A] = 2mer (L, || - ||) A oA — Ao 2mey (L, || - |)A (3.3.1)
on APY(X L) for all p,q > 1.

Example 3.3.1. Consider X = C™ with the standard metric, and L = Ox with the trivial
metric (i.e. (Ox,| -||) is the trivial Hermitian line bundle on C"). Then w = 2mwci1(Ox, || -||) =
@ > i—1dzj Adz;. For each j, denote by e;: APY(C™) — AZTY(CM) the operator dzjA (resp.
g ADY(C™) — ADITH(C™) the operator dZjA). Then their adjoints satisfy e5(dzgNdZy) =0 if
jéJ and e;(dzj NdzgNdZy) = 2dz; ANdZp (since the length of dzj is 2), and E;(dZJ/\dZJ/) =
04 j & J and Ej(déj ANdzy ANdzZyp) = 2dzy AdzZy. In this case, wA = @Eeﬁj and
= —@ Y.eje;. Thus A, = %Z(Ejéj —ejej).

Also we have d =Y 0;e; = >.€;0;, where 9;(Y frpdzyAdzy) = ag%j/ dzyAdz . Then

9 =-Y 0.

We need to extend the differential operators d and A, to Lqu (X, L). First, notice that A,
extends to an operator on the whole L2 (X, L) because both 2mei(L, || - [[)A and A, do. Next,
the differential operator 9: A9(X, L) — A2Y"1 (X, L) then has an adjoint " : AP (X, L) —
ARY(X, L) with respect to the L2-norm. Let domd C Laq(X, L) consist of those u for which du,
computed in the sense of distribution (i.e. using (Qu,v)2 := (u,d v) 2 for all v € AP (X L)),
is in Lg,q 4+1(X, L). Similarly we can define domd".

3.3.2 Classical L2-existence

Theorem 3.3.2 (Classical L2-existence). Assume X is geodesic complete for the Riemannian
metric determined by w.

Assume that the operator A, is positive definite everywhere in L§7q(X, L). Assume p > 0,
g>1andue€ le)’q(X, L) satisfies Ou = 0 (in the sense of distributions) and (A u,u)r2 < co.

Then there exists f € Lg,qq(Xa L) such that f = u and || f||3. < (A5 u, u)rz.

We shall assume the following lemma, which is an easy application of the Bochner-Kodaira—
Nakano identity (which itself is an easy computation via the Hodge identities).

Lemma 3.3.3. For any v € APY(L) with ¢ > 1, we have

190]|72 + 1107 0]|72 = (Awo, v) 2.
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Proof of Theorem[3.3.2. Both Kerd and Imd" are closed subspaces of L}%’q (X, L). General theory

of Hilbert spaces gives the orthogonal decomposition Liq(X ,L) = Kerd @ Imd".
Denote for simplicity by C := (A u,u) 2 < co. Consider the linear functional

Imd" C L2 (X,L) = C,  Jve (v,u)pe. (3.3.2)
We shall prove that the norm of this linear functional is bounded by v/C, i.e.

2 e~
% <C  forallvedomd . (3.3.3)
10" 0]z
We start with v € flg’qul(X ,L), and write v = v; + v2 according to the decomposition
Lqu(X , L) = Kero & Imd". Then Lemma applied to v1 implies

107 0] 72 = 10701172 = (Auvr,v1) 2.
On the other hand, Cauchy—Schwarz yields
(v, w) 2] = [{o1, ) 2 |* < (Awvr, v1) 2 (A, w) 2.

Thus holds true for all v € APYTH (X L).

To claim for all v € domg*, we need to use the geodesic completeness of w. Indeed,
under this assumption, the Andreotti—Vesentini lemma says that Ag’qul(X , L) is dense in Imd"
(for the graph norm of 8", i.e the graph norm of v is ||v||z2 + |0 v||2), and hence we can

conclude for (3.3.3).

Thus we can apply the Riesz representation theorem to the continuous linear functional

(3.3.2) to conclude that (3.3.2) is represented by an element f € szq_l(X ,L) of L?>norm

< VO, i.e. (w,u)2 = (D v, f)2 for all v € domd . Therefore df = u as distributions. We are
done. O

3.3.3 Hormander’s L2-existence theorem

Theorem 3.3.4. Assume X carries a Kdhler form @ such that X is geodesic complete for the
Riemannian metric determined by @.

Assume cy(L, || - ||) > 0. Assume ¢ > 1 and u € L}, (X, L) satisfies du = 0 (in the sense of
distributions) and (A u,u) 2 < 0o.

Then there exists f € Lgl,q—l(X’ L) such that 8f = u and | f||2, < (A5 u, u)re.

Remark 3.3.5. (i) A particularly important case for which X carries such a complete Kahler
form @ is as follows: X = X'\ Z where X' is a compact Kahler manifold and Z is an
analytic subvariety.

(i1) Since c1(L, || - ||) > 0, locally on X we can find a suitable complex coordinate (z1,. .., zp)
of X such that: (i) w = \/T—TZ;;:1 dz; A dzj, (i) the (1,1)-form ci(L,| - ||) equals
@Z;‘:l aj(z)dz; A dz; with aj(x) > 0. By the computation from Ezample |3.3.1, we

have then A, = %Z] ozj(éjéj — e;-ej), which simplifies to gzj ajeje; for (n,q)-forms

(this is why we are constraint to (n,q)-forms!). Thus A, is positive definite.

With this observation, we shall reduce Theorem [3.3.4 to Theorem using the following

monotonicity result.
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Proposition 3.3.6 (Monotonicity). Assume X has two Kdhler metrics w,w’ such that W' > w
pointwise. Then for any positive (1,1)-form B, we have

|2 dVy < Jul2dV, (18, Awlu, w2, dVie > ([B, Awlu,u) 2 ,dVi,
for all (n, q)-form w.

Here is a brief explanation on the proof of Proposition [3.3.6] The conclusion can be checked locally,
and hence it suffices to check for X = C”, w the standard Kéhler form, and v’ = (v/—1/2) > v;dz; AdZ;
for v; > 1. The proof is then a direct computation.

Proof of Theorem[3.53.4. For every € > 0, set w, := w + ew. Since ¢1(L, || -||) > 0, we can apply
Proposition to B =2mcy (L, - ||) and to w and W’ = w, to get that u is L? with respect to
we and

<A;€1u, U>L2,wE < <A;1uv U>L2,o.w

It is known that w, is complete (because @ is), i.e. X is geodesically complete for the
Riemannian metric determined by w.. The argument of Remark (i) shows that A, is
positive definite. Thus we can apply Theorem to the Kéhler manifold (X,w.). So we

obtain an f. € L? (X, L) (with L? with respect to w,) satisfying 0fc = u and || fc[|%. v, <
(Ajlu,u)rz2 . In particular, the family (f) is locally bounded in the L?-norm, and hence we

can extract a weal limit f in L2 . (locally L?-coefficients), which is the required f. O

3.3.4 Weighted L’-existence

To prove the L?-extension theorem in the next section, we need a fancier version of Hérmander’s
L?-existence theorem by introducing weights on the operator A,,. Let us explain this.
Let n,A: X — Ry be smooth functions. Define

Byaw = [(m2mer(L, || - ||) — V—180n — V—1X"1oy AOn) A, Ayl (3.3.4)

Theorem 3.3.7. Assume X carries a Kdhler form & such that X is geodesic complete for the
Riemannian metric determined by @.
Assume that the (1,1)-form n2mer1 (L, || - ||) — V/=100n — /—=1X"10n A On is positive.
Assume ¢ > 1 and u € L%’q(X, L) satisfies Ou = 0 (in the sense of distributions) and

<B;/1\,MU7U>L2 < 00.
Then there exists f € L2 (X, L) such that f = u and
foP f 2 »
< -y < .
H Vi A ? N2+ X2, T 2<B777>\,wu7u>L2

The proof follows the same line as Theorem [3.3.4l The extra information needed is the
following estimate: For all (n, ¢)-forms u, we have

(B, 3wt w)zz < |2+ N0 ul[7 1" 2 7.

-1

AW
We close this section with the following variant of Theorem which applies to singular

Hermitian metric on L, i.e. in the following theorem we do not assume the Hermitian metric

| - || on L to be smooth in contrast to the general setting of this section.

Theorem 3.3.7". Assume that X is compact. Assume that the Hermitian metric || - | on L is
smooth outside a proper analytic subset Z of X. Assume that the (1,1)-form n2mei(L,| - ||) —
V/—=100n — /=1X"10n A On is positive on X \ Z.

The conclusion of Theorem[3.3.7 still holds true in this setting.
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Proof. By a result of Demailly (c.f. “Estimations L? pour opérateur O d’un fibré vectoriel
holomorphe semi-positif au-dessus d’une variété kihlérienne compléte”), X \ Z carries a Kahler
form for which X \ Z is geodesic complete. Hence we can apply Theorem @ to X \ Z to
get an L2-solution f. Then f extends to the whole X by a lemma of Demailly (Lemma 6.9 of
loc.cit.). O

3.4 L’-extension

Let X be a connected compact Kéhler manifold of dimension n with Kéhler form w, and let
dVx ., = w"™/n! be the volume form on X.
Let Kx := A" T% be the canonical line bundle on X.

Theorem 3.4.1 (L?-extension). Let L be a line bundle on X, endowed with a smooth Hermitian
metric || - ||.

Let Y be the zero of a holomorphic section s € HY(X, Lo) of another Hermitian line bundle
(Lo, || - llo) on X. Assume c1(L,|| - ||) — (1L + 0)e1(Lo, || - llo) > 0 for a positive rational number
d>0.

Then for any f € H(Y,L + Kx), there exists F € H(X,L + Kx) such that F|y = f and

/ QHF—”QQdVX,w < 72-87r/ P 4w (3.4.1)
x |Isllg(log ls[lo) y lldsl[g
Here we use the following abuse of notation: use || - || (resp. || - |jo) to denote the Hermitian

metric on L 4+ Kx induced by || - || on L and w on X (resp. on Lo ® T% induced by || - |lo on Lg
and w on X). Moreover, ds induces a vector bundle isomorphism T /Ty — Lg along Y, and
hence is a section of ((T'x|y)/Ty)* ® Loy (~ Oy) C T% ® Ly.

Remark 3.4.2. There are more general versions of L?-extension. One can replace the line
bundle Ly by a vector bundle of rank r (and hence Y has codimension r) and modify the as-
sumptions accordingly. The Hermitian metric on Ly does not play an important role. We refer
to Demailly’s paper “On the Ohsawa—Takegoshi—Manivel L? extension theorem”.

In the proof of arithmetic Hilbert—Samuel, we will take L to be L' — Kx and L to be (1/N)L’
for a very ample line bundle L' and an integer N > 1.

The whole section is divided into steps of the proof of Theorem

3.4.1 Construction of a smooth extension foo and truncation
By partition of unity, we can find a smooth section
Fro €EC®(X,L+Kx) = A%(X,L + Kx) ~ A"(X, L)
such that
(i) fooly = f,
(i) Ofoc =0on Y.

Since we do not know about foo far away from Y, we will consider a truncation ﬁ of foo with
support in a small tubular neighborhood ||s||o < € of Y as follows. Take a bumping function
0: R — [0, 1] satisfying the following properties: 6 is smooth, |#'| < 3 and

0(t) {1 fort <1/2

0 fort>1.
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For € > 0 small, consider the truncation

fe 1= 0(e2sl[5) foo-
Then f.|y = f, and f(z) =0 for all € X with ||s(z)]|o > €.

3.4.2 Construction of weights
We make use of the standard subharmonic function
o = log(||s]|2 + €?). (3.4.2)

and the following inequality (we omit this computation using the Chern connection and Lagrange
inequality) to compute the twisted curvature:

V—1090. > /-1 Is H 806/\8 s H 16 s2mer (Lo, || - [lo)- (3.4.3)
0 0

Recall that ||s||3: X — R is a smooth function. Hence

e = supyex [|s(2)§ < oo (3.4.4)

since X is compact. We may rescale the metric |- [|o so that o € (0,1/0), because the conclusion

(3.4.1) is unchanged under this operation.
Let xo: (—00,0] = (—00,0], t — t —log(1 —t). Then 2¢t < xo(t) < t, 1 < x; < 2, and

Xo(t) =1/(1—t)%.
Let 1. := € — xo(0c). Then 1 > € — log(e™2* + €2). For € > 0 small enough, we thus have
Ne > 2. We can compute

—00n. = x((0e)000 + X0 (0c)doe A Do, One N One = xp(0e)?00c A Do
Let Ae := x4(0c)?/x0(0c). Then
Y _185776 Y _1)\;18776 /\5776 =V _1X6(Ue)8506

for which we have a lower bound from (3.4.3).

We are interested in the metric on L defined by ||-||||s]|o 2, for a reason which will be explained
in the next step. By the Poincaré-Lelong formula (Theorem , we have /—1901og ||s||3 >
—2mey (Lo, || - |lo) with equality on X \ Y. So on X \ Y, we have that

O(L, e, ) :=ne2mer (L, || - [lIsllg™) — V=100 — vV=1A"One A One
>20(2mci (L, || - |) = 2mer (Lo, || - lo)) — V=180n — V/=IA; 'O A Dne

s 2
z2w(2ac1<L,||-||>—<2a+xg<ae>wgﬂ|[%”i)é>cl<Lo,||-||o>> I e AT
v (L) - 0+ Do ] -l0) + VT, ST A

€2 =
Zﬁmane A One (3.4.5)

is positive, where the last inequality follows from « € (0,1/9) and the assumption that ¢ (L, || -
) = (L +6)ci(Lo, | - |lo) > 0. Notice that Example then implies

2
B = [O(L, 6, )\, Ay] > —————— (DA o (DneA)* (3.4.6)
XQ(JG)HSHO

as an operator on (n, ¢)-forms.

0776 A 5776
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3.4.3 Estimate the partial derivative

Next we wish to construct a holomorphic extension from the smooth extension ]A”; For this
purpose we wish to solve the equation du. = 0f., with the constraint uely = 0, so that fe — ue
will be a desired holomorphic extension. Our tool to solve this differential equation is the
L?-existence theorem discussed in the last section (notice that df. is a d-closed smooth (n,1)-
form). Since codimY = 1, the extra constraint u|y = 0 will be satisfied if ||uc||?||s||y* is locally
integrable near Y. This is why we change the metric on L to be | -||||s|ly 2. Notice that this new
metric is singular along Y, so we need to apply the version of Theorem |3.3.7’ for the L?-existence.
We start by computing 8f.. Observe that 1 + € 2||s]|3 = e 2e%. Thus we have

0f = 20 (2 |slI)Dlls 5 foot0(e 2 1518)Dfoc = (1€ 2[slI)0 (2| 115)oen foo (e > [113)D o

Both terms on the RHS have supports in ||s]jo < e.
The first term, which is the main term, can be written as

g = (L2 YslR)e (2 slE)xb(oe) ™ Ine A foo.

To estimate (B! £1), g£1)> 12, notice that (3.4.6) implies

/ ad)lls 2
e, )2 = |, @) < @) ol = bl (@) @), ) < X002 0.

Thus by letting v = BZ-1(0n. Au) = B;lggl) and u = (1 + 6_2HsH%)H’(e_z||S||(2))X6(a€)_1foo,
pointwise on X we get

(B g, 9M) < Nslige (1 + €2 l1s13)%6 (eI l13)?l] foo 1 < 36 foo

because x(,(¢) > 1 on Suppg6 C{llsllo < €}. So

(B g™, V) 1 /X (B9, M) [sl52dVi o < 36 / 1 FoolPl1sl15 2V .

l[sllo<e

When € — 04, this integral becomes

S /Y 1£121dslg2dV-

Thus
timsup (5197, gV} 12 < 3687 [ sl Vo
Y

e—0Tt

The second term on the RHS in the expression of 5}; converges uniformly to 0 on every compact
set when ¢ — 07 and hence has no contribution in the limit. More precisely, write gg ) =
0(e~2||s]|2)0f~. Then g = O(||s]lo) since foo|y = 0. Thus (B 1", ¢ 2, (¢, B-1gP)) 2,

<Bglg£2),g£2)>L2 are O(¢€) because they are all integrals over ||s|lo < e. Hence

limsup(B.'0f.,0f.) 2 = limsup(B. ' (¢ +¢@), gV 4¢3 2 < 36-87 / 1£11%(1ds]lg 2dVyre < oo.
Y

e—0T e—0t



48 CHAPTER 3. PREPARATION ON ANALYSIS

3.4.4 Conclusion by L*-existence
Apply Theorem [3.3.7' to the Hermitian metric | - ||||sllg? on L, Z =Y, ¢ =1 and u = df.. We
then obtain g. such that dg. = df. and

lgel*lIsllg®

dVy,, <728 2|\ dsllg2d Vi
[ avy, < 72w [ 11Plasl v,

In particular, g.ly = 0 since ||g||?||s|lg? is locally integrable. Set

F, ::]?e_ge-

Then F, is an L%-extension of f to the whole X such that OF., =0 on X \ Y.
We have 7. = e —xo(0¢) > e—0c and A\ = (1—0¢)?+ (1 —0). Thus ne+Ae > 02 —4do+2+¢
with o = log(||s]|2 + €2). So

el lsllg
— dVyy < —
X Met A Ko = (log 6)2

because f; is uniformly bounded with support in ||s]lo < €. Therefore, by using [t + u|> <
(14 K)[t]? + (1 + k7Y |u|?, with k = |loge€|, we obtain

”15||2 -1 / 2 -2 -1
dVx ., < (14 |loge 72 - 87 ds||g“dVy, + O(|loge .
. TRl Ve < (1 hogel 7287 | 1Pl *avy + O(logel ™

Similarly we can show that || F¢||z2 is bounded above by a constant independent of € (when € > 0
is small enough). Thus we can extract a weak limit F' of the family {F.}.. Then

IF]? / 211 (=2
vy, <7287 [ ||f]llds]lg AV
/x 151§ (log [|sol[ )2 Y 0

It remains to prove that F' is holomorphic. Since we are applying Theorem [3.5.7 to ¢ = 1,
ge s smooth (because 9 is elliptic in bidegree (0,0)). Hence F. is smooth. Notice that 9F, = 0
on X \'Y. So F¢ is holomorphic on X \ Y, and hence is holomorphic on the whole X because F¢
is L? near Y. Therefore the weak limit F' is holomorphic. We are done.
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