
Chapter 2

Hermitian line bundles on projective

arithmetic varieties

In this chapter, we define Hermitian line bundles on arithmetic varieties, explain how to use them
to define the height machine, and discuss about their positivity (nefness, ampleness, bigness).

2.1 Review on complex geometry

2.1.1 Complex spaces (complex analytic varieties)

Definition 2.1.1. Let ! be a connected open subset of Cn for some n → 1. A complex analytic

subset V of ! is the vanishing locus V = V (f1, . . . , fm) of holomorphic function f1, . . . , fm on
!.

For ! and V as in the definition, let O! be the sheaf of holomorphic functions on !, and set

OV := (O!/(f1, . . . , fm)) |V . (2.1.1)

This makes (V,OV ) a locally ringed space. We call such pairs (V,OV ) local models of complex
spaces.

Definition 2.1.2. A complex space (or complex analytic variety) is a locally ringed space
(X,OX) where

- X is a locally compact Hausdor! space,

- OX is a structure sheaf

such that (X,OX) is locally isomorphic to a local model (V,OV ) defined above.
When the structure sheaf is clear, we by abuse of notation write X for the complex space.

With this definition, one can define morphisms between complex spaces, holomorphic func-
tions on complex spaces, etc.

Notice that complex manifolds are precisely complex spaces which are smooth. Moreover, for
any complex space X, its regular locus Xreg is open and dense in X, and is naturally a complex
manifold. The singular locus Xsing = X \Xreg is a closed complex subspace of X.

Definition 2.1.3. Let X be a complex space. A smooth function on X is a continuous
function f : X ↑ R such that for any x ↓ X, there exists an open neighborhood Ux of x in X
and an analytic map i : Ux ↑ ! (with ! open in Cn for some n → 1) satisfying the following
property: i(Ux) is closed in ! and f |Ux = f̃ |i(Ux) ↔ i with f̃ a smooth function on !.
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2.1.2 Forms and currents

Let us start with the case of complex manifolds (smooth complex spaces) M .
We start with the real forms and currents. For each r → 0, let

Ar(M) := space of smooth complex valued r-forms on M,

Ar
c(M) := spaced of compactly supported smooth complex valued r-forms on M.

The topology on Ar(M) is defined using the following semi-norms (with s,!, L varying for all
posibilities): For any ! ↗ M a coordinate open subset, and any complex subset L ↗ ! and any
s ↓ Z→0, define the semi-norm

psL(u) := sup
x↑L

max
|I|=r, |ω|↓s

|DωuI(x)| (2.1.2)

for any r-form u =
∑

I uIdxI on !. In other words, a sequence {un} in Ar(M) converges
to a form u ↓ Ar(M) if and only if the following holds true: for each compact subset of every
coordiante neighborhood, the sequence {u↘un} and the sequences of higher derivatives converge
to 0 uniformly.

The topology on Ar
c(M) is simply the sub-space topology induced by Ar

c(M) ↗ Ar(M).

Definition 2.1.4. A current of dimension r on M is a complex linear functional T : Ar
c(M) ↑

C which is continuous in the topology on Ar
c(M) defined above.

We use Dr(M) to denote the space of currents of dimension r, and

DdimR M↔r(M) := Dr(M). (2.1.3)

We call dimRM ↘ r the degree of a current in this space. For T ↓ Dr(M) and ω ↓ Ar
c, write

≃T,ω⇐ := T (ω) ↓ C. (2.1.4)

Example 2.1.5. (i) Let Z ↗ M be a complex subspace of M with dimC Z = r. Then the
Dirac operator

εZ := (u ⇒↑

∫

Z
u)

is an element in D2r(M).

(ii) For any f ↓ Ar(M) with L1
loc-coe”cients, we have

Tf := (u ⇒↑

∫

M
f ⇑ u) ↓ DdimR M↔r(M) = Dr(M).

The map f ⇒↑ Tf then makes Ar(M) into a subspace of Dr(M).

This explains the terminology of “degree” of a current: a degree r current can be written
as

∑
|I|=r uIdxI with each uI a distribution.

Next we separate the holomorphic and anti-holomorphic parts. For each r → 0, we have a
decomposition into (p, q)-forms Ar(M) =

⊕
p+q=r A

p,q(M). Define

Ap,q
c (M) := Ap,q(M) ⇓Ar

c(M)

Dp,q(M) := {T ↓ Dp+q(M) : T (u) = 0 for all u ↓ Ar,s
c (M) with r ⇔= p} (2.1.5)

DdimC M↔p,dimC M↔q(M) := Dp,q(M).
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Example 2.1.6. (i) In Example 2.1.5.(i), we have furthermore

εZ ↓ Dr,r(M) = DdimM↔r,dimM↔r(M).

If Z is a divisor, i.e. codimMZ = 1, then we get a (1, 1)-current εZ .

(ii) In Example 2.1.5.(ii), if we furthermore assume f ↓ Ap,q(M), then Tf ↓ Dp,q(M). Thus
f ⇒↑ Tf makes Ap,q(M) into a subspace of Dp,q(M).

Now we are ready to discuss the general case of complex spaces (X,OX).

At each x ↓ X, we have a local model (V,OV ) with x ↓ V closed in some connected open
subset ! of Cn for some n → 1. Recall that OV is a quotient of O!.

Definition 2.1.7. A smooth (p, q)-form on X is a smooth (p, q)-form ω on Xreg such that
for any x ↓ X and the local model above, ω extends to a smooth (p, q)-form on !.

Let Ap,q
X be the sheaf of smooth (p, q)-forms on X. Then on each local model V , we have

A
p,q
X |V = A

p,q
! /{u : i↗u = 0}

where i is Xreg
⇓ V ↗ V ↗ !.

For each n → 0, define A
n
X :=

⊕
p+q=nA

p,q
X . There are natural di”erential operators

ϑ : Ap,q
X ↑ A

p+1,q
X , ϑ : Ap,q

X ↑ A
p,q+1
X

d = ϑ + ϑ : An
X ↑ A

n+1
X

for all p, q, n → 0. We have ϑ2 = ϑ
2
= d2 = 0 and thus ϑϑ = ↘ϑϑ. We furthermore introduce

dc :=
1

2ϖ
↖
↘1

(ϑ ↘ ϑ). (2.1.6)

Then ddc =
↘
↔1
ε ϑϑ.

Denote by Ap,q(X) := A
p,q
X (X). Denote by Ap,q

c (X) ↗ Ap,q(X) the subspace of compactly
supported (p, q)-forms. A (p, q)-form ω on X is said to be closed if dω = 0.

Currents on X are defined in a similar way to the smooth case. We omit it here. The
di”erential operators above can also be applied to currents by considering the duality. More
precisely, d = ϑ + ϑ where

ϑ : Dp,q(X) ↑ Dp+1,q(X), ϑ : Dp,q(X) ↑ Dp,q+1(X)

are defined according to the formulae:

≃ϑT,ω⇐ := (↘1)p+q+1
≃T, ϑω⇐ for all ω ↓ AdimX↔p↔1,dimX↔q

c (X)

≃ϑT,ω⇐ := (↘1)p+q+1
≃T, ϑω⇐ for all ω ↓ AdimX↔p,dimX↔q↔1

c (X).

A (p, q)-current T on X is said to be closed if dT = 0.
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2.1.3 Positivity and the Poincaré–Lelong Formula

Definition 2.1.8. On an open subset ! ↗ Cn, a (1, 1)-current u =
↖
↘1

∑
ujkdzj ⇑ dzk (with

each ujk a distribution) is said to be (semi-)positive if the associated Hermitian form ϱ ⇒↑∑
ujkϱjϱk is (semi-)positivie on Cn.

If each ujk is a smooth function, then we recover the definition of (semi-)positive (1, 1)-forms.
Let (X,OX) be a complex space.

Definition 2.1.9. Assume n = dimX.

(i) A smooth (1, 1)-form on X is said to be (semi-)positive if locally it is (semi-)positive.

(ii) A (1, 1)-current T ↓ D1,1(X) is said to be (semi-)positive if locally it is (semi-)positive.

An equivalent way to define semi-positive (1, 1)-current is to use the duality: T ↓ D1,1(X)
is semi-positive if and onoy if T (ς ⇑ ς) → 0 for all ς ↓ An↔1,0

c (X).

Proposition 2.1.10. Let T ↓ D1,1(X) be a closed (1, 1)-current. Then T is semi-positive if and only if
locally T can be written as

↖
↘1ϑϑu for some plurisubharmonic function u.

We end this section with the following result.

Theorem 2.1.11 (Poincaré–Lelong Formula for meromorphic functions). Let X be a complex
space and let f be a meromorphic function. Then as (1, 1)-currents on X, we have

↖
↘1

2ϖ
ϑϑ log |f |2 = εdiv(f).

2.2 Hermitian line bundles in complex geometry

Let X be a complex space.

2.2.1 Hermitian metrics on holomorphic line bundles

Let L be a holomorphic line bundle on X.

Definition 2.2.1. A smooth (resp. continuous) Hermitian metric ↙ · ↙ of L on X is the
assignment of a C-metric ↙ · ↙ to the fiber L(x) above each point x ↓ X, which varies smoothly
(resp. continuously). More precisely, for any open subset U of X and any section s of L|U ↑ U ,
the function ↙s(x)↙2 is smooth (resp. continuous) in x ↓ U .

We call (L, ↙ · ↙) a smooth/continuous Hermitian line bundle on X.
Next we define the curvature form/current of the Hermitian line bundle L on X. We need

the following preparation. The line bundle L is determined by: (i) an open cover {Uω} of X
with L|Uω ∝ Uω ′ C, (ii) 1-cocyles {gωϑ} which are nowhere-zero holomorphic functions on
Uω ⇓ Uϑ . The Hermitian metric corresponds to the collection (Uω, hω)ω with hω : Uω ↑ R>0,
with hϑ |gωϑ |2 = hω on Uω ⇓ Uϑ ; indeed hω is ↙ · ↙2 locally on Uω.

Now consider the (1, 1)-current ↘
↘
↔1
2ε ϑϑ log hω on Uω; if the Hermitian metric is smooth then

it is a (1, 1)-form. Since hϑ |gωϑ |2 = hω on Uω ⇓ Uϑ , we have log hω + log gωϑ + log gωϑ = log hϑ
for some local branch of log gωϑ . But gωϑ is holomorphic, so ϑ log gωϑ = ϑ log gωϑ = 0. Thus

↘

↘
↔1
2ε ϑϑ log hω = ↘

↘
↔1
2ε ϑϑ log hϑ on Uω ⇓ Uϑ . In other words, these local (1, 1)-currents patch

together to a (1, 1)-current on the whole X, and it is a (1, 1)-form if the Hermitian metric is

smooth. Sometimes we also use ↘

↘
↔1
ε ϑϑ log ↙ · ↙ to denote this current.
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Definition 2.2.2. The curvature current of (L, ↙ · ↙), denoted by c1(L, ↙ · ↙), is the (1, 1)-
current on X defined above. It is called the curvature form if the Hermitian metric is smooth.

It is clear that c1(L, ↙ · ↙) is a closed since d = ϑ + ϑ and ϑ2 = ϑ
2
= 0.

Theorem 2.2.3 (Poincaré–Lelong Formula for Hermitian line bundles). As (1, 1)-currents, we
have

c1(L, ↙ · ↙) = ↘

↖
↘1

ϖ
ϑϑ log ↙s↙+ εdiv(s)

for any non-zero meromorphic section s of L.

Proof. Let s be a non-zero meromorphic section of L over X. Then s corresponds to (Uω, sω)ω
with sω : Uω ↑ C with sω = gωϑsϑ . Then ↙s↙ =

↖
hω|sω| on Uω. Thus log ↙s↙2 = log hω +

log |sω|2. The conclusion then follows by definition of c1(L, ↙ · ↙) and Theorem 2.1.11.

Definition 2.2.4. A Hermitian metric ↙ · ↙ on L is said to be (semi-)positive if c1(L, ↙ · ↙) is
a (semi-)positive current.

By Proposition 2.1.10, ↙ · ↙ is semi-positive if and only if the following holds true: For any local
section s of L which is everywhere non-vanishing over an open subset U of X, the function ↘2 log ↙s(x)↙
is plurisubharmonic.

We close this subsection by stating the following results when X is projective, i.e. X is the
analytification of a projective variety.

Proposition 2.2.5. Let (L, ↙ · ↙) be a Hermitian line bundle on X. Then

(i) c1(L, ↙ · ↙) represents the cohomology class of L in H2(X,C) under the natural map
H1(X,O↗

X) ↑ H2(X,C);

(ii) we have ∫

X
c1(L, ↙ · ↙)

≃ dimX = degL(X).

Moreover if X is furthermore smooth, then Kodaira’s embedding theorem asserts the follow-
ing: a holomorphic line bundle L on X is ample if and only if L has a positive metric.

2.2.2 Green’s functions

Let D be a Cartier divisor on X. Denote by |D| the support of D.

Definition 2.2.6. A smooth (resp. continuous) Green’s function gD of D over X is a
function

gD : X \ |D| ↑ R

such that the following holds true: for any meromorphic function f over an open subset U of X
with div(f) = D|U , the function gD + log |f | can be extended to a smooth (resp. continuous) on
U .

We say that such a function gD has logarithmic singularity along D.
It is well-known that line bundles and Cartier divisors are closely related. The correspondence

can be extended to:
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1. Given a smooth/continuous Hermitian line bundle (L, ↙ · ↙) on X, for any meromorphic
section s of L on X, we obtain a pair

d̂iv(s) := (div(s),↘ log ↙s↙)

with ↘ log ↙s↙ clearly a smooth/continuous Green’s function of div(s) over X.

2. Conversely given a pair (D, gD) consisting of a Cartier divisor and a smooth/continuous
Green’s function, we can associated a smooth/continuous Hermitian line bundle (O(D), ↙ ·
↙gD) where ↙ · ↙gD is defined by ↙sD↙gD := e↔gD for the canonical section sD of O(D) (i.e.
div(sD) = D).

By this correspondence, we can make the following definitions.

Definition 2.2.7. The Chern current of the pair (D, gD), where gD is a Green’s function of
D over X, is defined to be c1(O(D), ↙ · ↙gD). We denote it by c1(D, gD).

Definition 2.2.8. A Green’s function gD of D over X is said to be (semi-)positive if c1(D, gD)
is a (semi-)positive current.

We close this subsection by stating the following Stokes’ Formula which allows logarithmic
singularity.

Theorem 2.2.9. Let X be an irreducible projective complex space of dimension n. Let ω be a
closed (n↘ 1, n↘ 1)-form on X. Let L,M be Hermitian line bundles on X. Let l (resp. m) be
a non-zero rational section of L (resp. of M) such that their divisors intersect properly. Then
∫

X
(log ↙l↙)c1(M) ⇑ ω↘

∫

div(m)
(log ↙l↙)ω =

∫

X
(log ↙m↙)c1(L) ⇑ ω↘

∫

div(l)
(log ↙m↙)ω (2.2.1)

and both equal

2

∫

X\(|div(l)|⇐|div(m)|)
(d log ↙l↙) ⇑ (dc log ↙m↙) ⇑ ω. (2.2.2)

Here the divisors in (2.2.1) are the Weil divisors, and the integrals on div(l) and on div(m)
are induced from those on prime Weil divisors by linearity. The supports of the divisors in
(2.2.2) are supports of Cartier divisors.

2.3 Height via Hermitian line bundles on arithmetic varieties

2.3.1 Hermitian line bundles on projective arithmetic varieties

Definition 2.3.1. An arithmetic variety is an integral scheme X which is flat, separated,
and of finite type over SpecZ. It is said to be (quasi-)projective if the structure morphism
X ↑ SpecZ is (quasi-)projective.

From an arithmetic variety X , we obtain a complex space

X (C) := HomSpecZ(SpecC,X ),

with the complex conjugation acting on X (C) via its action on SpecC. Moreover, if X ↑ SpecZ
factors through SpecR for an order R in a number field K, then X (C) =

∐
ϖ : Kϱ⇒CXϖ(C), with

Xϖ(C) = HomSpecϖ(K)(SpecC,X ).

Let X be a projective arithmetic variety.
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Definition 2.3.2. A Hermitian line bundle on X is a pair L = (L, ↙ · ↙) consisting of a
line bundle L on X and a Hermitian metric ↙ · ↙ of L(C) on X (C) which is invariant under the
complex conjugation, i.e. ↙s(x)↙ = ↙s(x)↙ for all local sections s of L and all x ↓ X (C) at which
s is defined.

We can also define the group of isomorphism classes of Hermitian line bundles on X , which
will be denote by P̂ic(X ). The identity element is the trivial Hermitian line bundle, the multi-
plication is the tensor product, and the inverse is the dual.

Definition 2.3.3. (i) An isomorphism (or isometry) between two Hermitian line bundles

L = (L, ↙ ·↙) and L
⇑
= (L⇑, ↙ ·↙⇑) on X is an isomorphism i : L ↑ L

⇑ such that ↙ ·↙ = i↗↙ ·↙⇑.

(ii) The trivial Hermitian line bundle on X is defined to be OX := (OX , | · |) where | · | is
the usual absolute value.

(iii) The tensor product of two Hermitian line bundles L = (L, ↙ · ↙) and L
⇑
= (L⇑, ↙ · ↙⇑) on

X is L∞ L
⇑
:= (L∞ L

⇑, ↙ · ↙↙ · ↙⇑).

(iv) The dual of a Hermitian line bundle L on X is defined to be L
⇓
:= (L⇓, ↙ · ↙

⇓), where
L
⇓ := Hom(L,OX ) and ↙ · ↙

⇓ is the dual metric.

We also have the definition of arithmetic divisors.

Definition 2.3.4. An arithmetic divisor on X is a pair D = (D, gD) consisting of a Cartier
divisor D on X and a Green’s function gD of D(C) on X (C) which is invariant under the
complex conjugation, i.e. gD(x) = gD(x) for all x ↓ X (C) \ |D(C)|.

A principal arithmetic divisor is of the form

d̂iv(f) := (div(f),↘ log |f |)

where f ↓ Q(X )↗ is a non-zero rational function on X .

We have the following groups, where the group laws are clear:

D̂iv(X ) := {arithmetic divisors on X},

P̂rin(X ) := {principal arithmetic divisors on X},

Ĉl(X ) := D̂iv(X )/P̂rin(X ).

Proposition 2.3.5. We have a group homomorphism

D̂iv(X ) ↑ P̂ic(X ), D = (D, gD) ⇒↑ O(D) = (O(D), ↙ · ↙D) (2.3.1)

where ↙ ·↙ is defined by ↙sD↙ = e↔gD with sD the canonical section of O(D) (i.e. div(sD) = D).
Moreover this group homomorphism induces a canonical isomorphism

Ĉl(X )
⇔
↘↑ P̂ic(X ). (2.3.2)

Proof. The proof is similar to Proposition 1.1.6. Let us write down the inverse map P̂ic(X ) ↑
Ĉl(X ). For each L = (L, ↙ · ↙), let s be a non-zero rational section of LQ and set

d̂iv(s) := (div(s),↘ log ↙s↙). (2.3.3)

Then the inverse is L ⇒↑ d̂iv(s).



26CHAPTER 2. HERMITIAN LINE BUNDLES ON PROJECTIVE ARITHMETIC VARIETIES

2.3.2 Height machine via Hermitian line bundles

Let X be a projective variety over Q, and let L ↓ Pic1(X). Then X and L are defined over
some number field K, with X ↑ SpecK the structural morphism.

Definition 2.3.6. We say that a pair (X ,L) is an arithmetic model of (X,L) over OK if

(i) X is an integral model of X, i.e X is an integral scheme, projective and flat over SpecOK ,
such that XK := X ′SpecOK SpecK ∝ X (notice that X is naturally an arithmetic variety
via Z ↗ OK);

(ii) L is a Hermitian line bundle on X extending L, i.e. LK ∝ L under the identification
XK ∝ X.

Fix an arithmetic model (X ,L) of (X,L) over OK . Let us construct the height on X
associated with (X ,L), denoted by

h
L
: X(Q) ↑ R (2.3.4)

as follows.
Consider a point x ↓ X(K ⇑) with K ⇑/K a finite extension. Then x : SpecK ⇑

↑ X. The
valuative criterion of properness thus gives rise to a unique morphism x : SpecOK→ ↑ X such
that the following diagram commutes:

SpecK ⇑ x !!

""

X = XK

""
SpecOK→

x !! X

where the vertical maps are induced by the inclusions OK→ ↗ K ⇑ and OK ↗ K.
Define

h
L
(x) :=

1

[K ⇑ : K]
d̂egx↗L. (2.3.5)

Definition-Lemma 2.3.7. Let K ⇑⇑/K ⇑ be a finite extension. Let x0 : SpecOK→→ ↑ X be the
morphism determined by x ↓ X(K ⇑⇑). Then

1

[K ⇑ : K]
d̂egx↗L =

1

[K ⇑⇑ : K]
d̂egx↗0L.

Thus h
L
(x) in (2.3.5) extends to a well-defined function X(Q) ↑ R, which is the desired height

function (2.3.4).

Proof. This follows easily from Proposition 1.1.7, the definition of the arithmetic degrees of arith-
metic divisors on SpecOK→ and on SpecOK→→ (Definition 1.1.5), and the fact that

∑
v↑MK→→ ev/v0fv/v0 =

[K ⇑⇑ : K ⇑] with (in the sum) v0 ↓ MK→ the place below v.

Example 2.3.8. Let (X,L) = (PN ,O(1)) be defined over Q, and take the arithmetic model
(X ,L) = (PN

Z ,O(1)) with the metric on O(1) as follows: For each s = a0X0 + . . . + aNXN ↓

H0(PN
C ,O(1)), set

↙s(x)↙ :=
|a0x0 + . . .+ aNxN |

max{|x0|, . . . , |xN |}

for any x = [x0 : · · · : xN ] ↓ PN (C). Then it is not hard to check that h
O(1) is precisely the Weil

height on PN (Q).
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Proposition 2.3.9. For each arithmetic model (X ,L) of (X,L) over OK , the function h
L
is a

height function associated with (X,L).

Proof. We start by showing that h
L1

↘ h
L2

is bounded on X(Q) for any two arithmetic models

(X1,L1) and (X2,L2) of (X,L). Let X be the Zariski closure of

X
”
↘↑ X ′SpecK X ↑ X1 ′SpecOK X2.

Write fi : X ↑ Xi for the i-th projection. Then by definition we have hf↑
i Li

= h
Li

for i ↓ {1, 2}.

On the other hand, f↗
1L1 ↘ f↗

2L2 is trivial on the generic fiber X = XK . Thus hf↑
1L1↔f↑

2L2
is

bounded on X(Q) since we can take the global section to be 1 in the computation of d̂eg. Hence

h
L1

↘ h
L2

= hf↑
1L1

↘ hf↑
2L2

= hf↑
1L1↔f↑

2L2

is bounded on X(Q).
So the conclusion of the proposition does not depend on the choice of the arithmetic model.

By linearity/additivity, we may and do assume that L is very ample on X, i.e. there exists an
embedding i : X φ↑ PN

K such that i↗O(1) ∝ L. Then i extends to i : X ↑ PN
OK

for the Zariski

closure X of X in PN
OK

. Then the conclusion follows from Example 2.3.8. We are done.

2.4 Self-intersection of Hermitian line bundles on arithmetic va-

rieties

2.4.1 Review on intersection of line bundles in algebraic geometry

Let X be a projective variety defined over a field k. Let Pic(X) be the Picard group, i.e. the
isomorphism classes of line bundles on X.

Definition 2.4.1 (multiplicity in complete intersection). Let R be a noetherian local domain of
Krull dimension n. For f1, . . . , fn ↓ R \ {0} such that |div(f1)| ⇓ · · · ⇓ |div(fn)| has dimension
0 in SpecR, define

ordR(f1, . . . , fn) = lengthRR/(f1, . . . , fn).

By linearity, this definition extends to, for K = Frac(R),

ordR : (K↗)n ↑ Z

for f1, . . . , fn ↓ K↗ such that |div(f1)| ⇓ · · · ⇓ |div(fn)| has dimension 0 in SpecR.

Definition 2.4.2. Let D1, . . . , Dr be Cartier divisors on X which intersect properly, i.e. |D1|⇓

· · · ⇓ |Dr| is pure of codimension r in X. Define the r-cocycle of X

D1 · · ·Dr :=
∑

Y↖X integral
codimXY=r

ordOX,εY
(D1, . . . , Dr)[Y ],

where ςY is the generic point of Y .

Notice that when r = 1, the right hand side is just the Weil divisor associated with D1. To
distinguish Cartier and Weil divisors, we use [D] to denote the Weil divisor associated with the
Cartier divisor D.

On the other hand, for r = dimX, we can furthermore define the degree of D1 · · ·DdimX to
be

deg(D1 · · ·DdimX) :=
∑

P↑X(k)

ordOX,P (D1, . . . , DdimX).
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Lemma 2.4.3. Let d = dimX. Let L1, . . . , Ld ↓ Pic(X). There exist rational sections si of Li

on X for each i ↓ {1, . . . , d} such that div(s1), . . . , div(sd) intersect properly.

Notice that div(si) ↓ Div(X) is mapped to Li under Div(X) ↑ Cl(X) = Div(X)/Prin(X)
⇔
↘↑

Pic(X), where Div(X) is the group of Cartier divisors on X and Prin(X) is the subgroup of
principal Cartier divisors.

Definition 2.4.4. Let d = dimX. The intersection pairing

Pic(X)d ↑ Z

is defined to be define
L1 · · ·Ld := deg(div(s1) · · · div(sd)) (2.4.1)

for the rational sections s1, . . . , sd obtained from Lemma 2.4.3, where the right hand side is
Definition 2.4.2 with r = d.

Lemma 2.4.5. The intersection pairing Pic(X)d ↑ Z can equivalently defined inductively as
follows. When d = 1, it is the composite

Pic(X)
⇔
↘↑ Cl(X) = Div(X)/Prin(X)

deg
↘↘↑ Z.

For general d → 2, we have

L1 · · ·Ld =
∑

i

miL1|Yi · · ·Ld↔1|Yi (2.4.2)

where
∑

imi[Yi] is the Weil divisor for any rational section sd of Ld on X.

Proof. When d = 1, this is immediately true by the discussion below Definition 2.4.2.
For general d → 2, by multi-linearity (definition of ord) we can reduce to the case where

L1, . . . , Ld are all very ample. Then both sides of (2.4.2) equal

dimk Odiv(s1)↙···↙div(sd)

for some global sections si ↓ H0(X,Li) such that dim |div(s1)|⇓ · · ·⇓ |div(sd)| = 0, and div(s1)⇓
· · ·⇓div(sd) is the scheme-theoretic intersection in X. We can replace sd by any rational section
(which is fsd for some f ↓ K(X)↗) since L1 · · ·Ld↔1 · OX = 0.

Proposition 2.4.6 (Projection Formula). Let f : X ⇑
↑ X be a surjective morphism of projective

varieties over a field. Assume dimX ⇑ = d. Then for any L1, . . . , Ld ↓ Pic(X), we have

f↗L1 · · · f
↗Ld = deg(f)L1 · · ·Ld.

Here we use the convention that

deg(f) =

{
0 if dimX < dimX ⇑

[K(X ⇑) : K(X)] if dimX = dimX ⇑.

As suggested by (2.4.2), it is convenient to define the intersection pairing restricted to integral
closed subschemes of X. Let Y be a closed subvariety of X of dimension r, and let L1, . . . , Lr ↓

Pic(X). Define
L1 · · ·Lr · Y := L1|Y · · ·Lr|Y .
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By linearity, this definition extends to a map

Pic(X)r ′ Zr(X) ↑ Z (2.4.3)

with Zr(X) the group of r-cycles on X, i.e. the abelian group generated by integral closed
subschemes of X of dimension r. In stating the Projection Formula, it is then convenient to
introduce

f↗ : Zr(X
⇑) ↑ Zr(X), (2.4.4)

where for Y ⇑ an integral closed subscheme of X we have

f↗([Y
⇑]) =

{
0 if dim f(Y ⇑) < dimY ⇑

deg(Y ⇑
↑ f(Y ⇑))[f(Y ⇑)] if dim f(Y ⇑) = dimY ⇑.

In particular, if f : X ⇑
↑ X is generically finite, then f↗([X ⇑]) = (deg f)[X].

2.4.2 Top intersection number of Hermitian line bundles on projective arith-

metic varieties

Let X be a projective arithmetic variety, with X ↑ SpecZ the structural morphism. Now we
turn to the intersection theory of Hermitian line bundles on X .

Definition 2.4.7. An integral closed subscheme Y of X is said to be:

(i) horizontal if Y is flat over SpecZ (notice that Y ↑ Z is then surjective),

(ii) vertical if the image of Y ↑ SpecZ is a point.

Let n + 1 = dimX . Let Zr(X ) be the group of r-cycles on X , i.e. i.e. the abelian group
generated by integral closed subschemes of X of dimension r.

To define the arithmetic version of the top self-intersection, we start with the definition of
the arithmetic degree for n = 0. When n = 0, we have X = SpecR for some order R of a
number field K. If R = OK , then the we have the arithmetic degree d̂eg : P̂ic(SpecOK) ↑ R
from (1.1.1). For general R, we take the same definition with OK replaced by R.

Definition 2.4.8. Define the intersection pairing

P̂ic(X )n+1
↑ R

and, more generally (for r ∈ n+ 1)

P̂ic(X )r ′ Zr(X ) ↑ R,

as follows.

(i) When n = 0, this is precisely d̂eg. For n → 1 and L1, . . . ,Ln+1 ↓ P̂ic(X ), define

L1 · · · Ln+1 := L1 · · · Ln · [div(sn+1)]↘

∫

X (C)
log ↙sn+1↙c1(L1) · · · c1(Ln), (2.4.5)

with sn an arbitrary rational section of Ln+1 on X (and [div(sn+1)] is the Weil divisor);

(ii) For L1, . . . ,Lr ↓ P̂ic(X ) and an integral closed subscheme Y of X of dimension r, define
L1 · · · Lr · Y inductively on r according to:
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(a) If Y is horizontal, then set

L1 · · · Lr · Y := L1|Y · · · Lr|Y . (2.4.6)

(b) If Y is vertical, then the image of Y ↑ SpecZ is (p) for some prime number p and
hence we view Y as a scheme over SpecFp. Set

L1 · · · Lr · Y := (L1|Y · · · Lr|Y) log p. (2.4.7)

Theorem 2.4.9. The pairing P̂ic(X )n+1
↑ R is well-defined, multi-linear and symmetric.

Proof. Take si to be a rational section of Li such that div(s1), . . . , div(sn+1) intersect properly in X . Set

L1 · · · Ln→1 · d̂iv(sn) · d̂iv(sn+1) := L1 · · · Ln→1 (div(sn) · div(sn+1))

↘

∫

[div(sn+1)](C)
log ↙sn↙c1(L1) · · · c1(Ln→1)↘

∫

X (C)
log ↙sn+1↙c1(L1) · · · c1(Ln).

By induction on n, we then get the definition of d̂iv(s1) · · · d̂iv(sn+1) and have

L1 · · · Ln+1 = d̂iv(s1) · · · d̂iv(sn+1).

By Stokes’ Formula (Theorem 2.2.9), we have

L1 · · · Ln→1 · d̂iv(sn) · d̂iv(sn+1) = L1 · · · Ln→1 · d̂iv(sn+1) · d̂iv(sn).

Thus we obtain
L1 · · · Ln→1 · Ln · Ln+1 = L1 · · · Ln→1 · Ln+1 · Ln.

This proves the symmetry by induction on n. The multi-linearity then follows easily. Moreover, the
symmetry and induction on n implies that L1 · · · Ln·d̂iv(f) = 0 for all f ↓ K(X )↑. Hence well-defined.

We also have the Projection Formula for the arithmetic case.

Proposition 2.4.10. Let f : X ⇑
↑ X be a morphism of projective arithmetic varieties. For

[Y ⇑] ↓ Zr(X ⇑) and L1, . . . ,Lr ↓ P̂ic(X ), we have

f↗
L1 · · · f

↗
Lr · [Y

⇑] = L1 · · · Lr · f↗[Y
⇑],

where f↗ : Zr(X ⇑) ↑ Zr(X ) is defined in the same way as in the geometric case (2.4.4).

2.5 Positivity of Hermitian line bundles on projective arith-

metic varieties

2.5.1 Review on nef and big line bundles in algebraic geometry

Let X be a projective variety defined over a field k, and let L ↓ Pic(X). Let d = dimX.

Definition 2.5.1. The line bundle L is called nef (numerically e!ective) if L · C → 0 for any
closed subcurve C ↗ X.

In fact, if L is nef, then LdimY
· Y → 0 for any irreducible closed subvariety Y of X. Thus,

nef line bundles are the boundary of the cone of ample line bundle because, by the criterion of
Nakai–Moishezon, L is ample if and only if LdimY

· Y > 0 for any irreducible closed subvariety
Y of X.

Use the symbol + to denote the binary operation on the group Pic(X) (so L + L⇑ means
L∞ L⇑). For n ↓ Z→1, write nL for L∝n. Denote by h0(nL) := dimk H0(X,nL).
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Definition-Lemma 2.5.2. The limit

vol(L) := lim
n⇒′

d!

nd
h0(nL)

exists, and is called the volume of L.

Definition 2.5.3. The line bundle L is said to be big if vol(L) > 0.

Both definitions are stable under base change, i.e.

Lemma 2.5.4. Assume k ↗ k⇑ is an inclusion of fields. Then L is a nef (resp. big) line bundle
on X if and only if Lk→ is a nef (resp. big) line bundle on Xk→.

In height theory, if we have a big line bundle L on X, then by definition there exists a global
section s of nL on X for some n ∋ 1. Thus the height function hL has a lower bound outside
|div(s)| by “Lower Bound” of Proposition 0.2.2. In fact, in algebraic geometry, we furthermore
have:

Theorem 2.5.5. The line bundle L is big if and only if mL = A+O(E) for some m > 1, some
ample line bundle A and some e!ective divisor E on X.

Here are two important theorems to check the bigness of certain line bundles under suitable
nefness assumption.

Theorem 2.5.6 (Hilbert–Samuel). Assume L is nef. Then vol(L) = Ld.

Theorem 2.5.7 (Siu’s inequality). If L and M are nef line bundles, then

vol(L↘M) → Ld
↘ dLd↔1

·M.

In particular, if L is nef and big, then mL↘M is big for m ∋ 1.

If k = C and L carries a smooth Hermitian metric ↙ · ↙, then we can use the curvature
form c1(L, ↙ · ↙) to check the nefness and bigness. Indeed, in this case for any irreducible closed
subvariety Y of X, we have

LdimY
· Y =

∫

Y reg(C)
c1(L, ↙ · ↙)

≃ dimY ,

where the integral is on the regular locus of Y (or equivalently, the desingularization of Y and
then take the pullback of c1(L, ↙ · ↙)). Hence we have:

(i) L is nef if c1(L, ↙ · ↙) → 0;

(ii) if c1(L, ↙ · ↙) → 0, then L is big if and only if c1(L, ↙ · ↙)≃d ⇔△ 0.

2.5.2 Arithmetic volumes

Let X be a projective arithmetic variety. Let n+ 1 = dimX .
Let L ↓ P̂ic(X ) be a Hermitian line bundle. Define

H0(X ,L) := {s ↓ H0(X ,L) : ↙s↙sup ∈ 1}, (2.5.1)

where ↙s↙sup = supx↑X (C) ↙s(x)↙ is the usual supremum norm on H0(X ,L)C. It is a finite set:

indeed, we have H0(X ,L) = H0(X ,L) ⇓B(L) with

B(L) = {s ↓ H0(X ,L)R : ↙s↙sup ∈ 1},
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and hence H0(X ,L) is the set of lattice points contained in the unit ball. We thus define

h0(L) := log#H0(X ,L). (2.5.2)

Elements in H0(X ,L) are usually called small sections or e!ective sections (we will explain this
second terminology at the end of this section).

Definition-Proposition 2.5.8. The sup-limit

vol(L) := lim sup
N⇒′

h0(NL)

Nn+1/(n+ 1)!

exists, and is called the (arithmetic) volume of L.

In practice, it is not easy to count the number of lattice points. Instead, here is a number
which approximates this number in an asymptotic way and is easier to handle. Fix any Haar
measure on H0(X ,L)R, and set

↼(L) := log
vol(B(L))

covol(H0(X ,L)R/H0(X ,L))
, (2.5.3)

which is independent of the choice of the Haar measure (not hard to check). The quantitative
version of Minkowski’s first theorem (Theorem 1.3.5) then yields

h0(L) → ↼(L)↘ h0(LQ) log 2. (2.5.4)

Thus we can make the following definition:

Definition 2.5.9. The ↼-volume of L is defined to be the sup-limit

volς(L) := lim sup
N⇒′

↼(NL)

Nn+1/(n+ 1)!
.

(2.5.4) furthermore implies that volς(L) ∈ vol(L).

2.5.3 Arithmetic nefness, bigness, and ampleness

Let X be a projective arithmetic variety, and let n+ 1 = dimX .

Definition 2.5.10. A Hermitian line bundle L = (L, ↙ · ↙) ↓ P̂ic(X ) is said to be:

(1) nef if

(i) c1(L, ↙ · ↙) → 0;

(ii) L · Y → 0 for any integral 1-dimensional subscheme Y of X .

(2) weakly ample if L is nef and LQ is ample.

(3) ample if L is weakly ample and L
dimY

· Y > 0 for any integral subscheme Y of X .

Definition 2.5.11. A Hermitian line bundle L = (L, ↙ · ↙) ↓ P̂ic(X ) is said to be big if

v̂ol(L) > 0.
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In height theory, suppose (X ,L) is an arithmetic model of (X,L) with X a projective variety.
If theHermitian line bundle L is big, then by definition there exists a global section s of NL on
X with ↙s↙sup ∈ 1 for some N ∋ 1. Thus the height function h

L
is bounded below by 0 outside

the generic fiber of |div(s)|, by the definition of h
L
(2.3.5). Thus instead of having only a lower

bound, we have positivity.

Theorem 2.5.12 (Arithmetic Hilbert–Samuel). Assume L is nef. Then v̂ol(L) = L
n+1

.

Theorem 2.5.13 (Arithmetic Siu). Assume L and M are nef Hermitian line bundles on X .
Then

v̂ol(L↘M) → L
n+1

↘ (n+ 1)L
n
· M.

Indeed, both theorems still hold true with v̂ol replaced by v̂olς. For v̂olς and for weakly
ample L, the Arithmetic Hilbert–Samuel Formula is a consequence of Gillet–Soulé’s arithmetic
Riemann–Roch theorem and an estimate of analytic torsions by Bismut–Vasserot (with refine-

ment by Zhang); a direct proof was later on given by Abbès–Bouche. For v̂ol and L ample,
the Arithmetic Hilbert–Samuel Formula by Zhang by furthermore using his arithmetic Nakai–
Moishezon theorem. Moriwaki extended these results to nef Hermitian line bundle (with con-
tinuous metrics). Arithmetic Siu is a result of Yuan.

In the next chapter, we will present the proof of Abbès–Bouche of the Arithmetic Hilbert–
Samuel Formula.

We close this section with the following discussion on the e”ectiveness of arithmetic divisors.
Let D = (D, gD) be an arithmetic divisor on X .

Definition 2.5.14. We say that D is e!ective (resp. strictly e!ective) if D → 0 and gD → 0
(resp. D → 0 and gD > 0).

Recall that O(D) is the Hermitian line bundle on X with the metric ↙ · ↙ determined by
↙sD↙ = e↔gD . Thus if D is e”ective, then h0(O(D)) > 0. Conversely, if a Hermitian line bundle
L on X satisfies h0(L) > 0, then there exists a non-zero s ↓ H0(X ,L) such that ↙s(x)↙ ∈ 1 for

all x ↓ X (C), and hence the arithmetic divisor d̂iv(s) = (div(s),↘ log ↙s↙) is e”ective.
For this reason, we sometimes call elements in H0(X ,L) e!ective sections, and say that L is

e!ective if h0(L) > 0.
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