Chapter 1

Hermitian line bundles on SpecOy
and positivity

In the whole chapter, let K be a number field and O be its ring of integers. It is known that
SpecOg is not a projective scheme. A key idea in Arakelov Geometry is to identify SpecOg with
the set of finite places of K and then compactify SpecOk by adding the archimedean places.

1.1 Hermitian line bundles and arithmetic divisors on SpecOy

Definition 1.1.1. A Hermitian line bundle on SpecOy is a pair £ := (L, || - ||), where L is
a line bundle on SpecOk and || - || = {|| - ||+ }o: ks @s a collection of Hermitian metrics || - ||»
on each L, = H(SpecOf, L) @, C satisfying ||sllo = ||s|lz for all s € H°(SpecOy, L).

We say that such collections of metrics are invariant under complex conjugation. Notice
that H°(SpecOg, L) is a projective Ox-module of rank 1, and each L, is a C-vector space of
dimension 1. Thus | - ||+ is determined by |s||, for any non-zero rational section s of L.

Next we introduce the group of isometric classes of Hermitian line bundles on SpecOk,
denoted by Pic(SpecOk ). The identity element is the trivial Hermitian line bundle, the multi-
plication is the tensor product, and the inverse is the dual.

Definition 1.1.2. (i) Anisometry between two Hermitian line bundles L and L' on SpecOg

18 an isomorphism
i L—=L

of line bundles on SpecOg satisfying

Isllo = [li(s)]ls, Vs € H(SpecOx, L), Yo: K — C.

(i1) The trivial Hermitian line bundle on SpecOg is (Ospecoy,| - |) where | - |5 is the
absolute value at each archimedean place o.

(iii) The tensor product of two Hermitian line bundles £ and Z on SpecOg is defined to be
—= =
LoL =LL,| I

(iv) The dual of a Hermitian line bundle £ on SpecOy is defined to be

L= (L] 1Y)
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where LV := Hom (L, Ospeco,.) and, for each t € HY(SpecOk, LY),

, )
e = s,

for any non-zero s € L.

Definition-Lemma 1.1.3. Let £ be a Hermitian line bundle on SpecOy. For any non-zero
s € H%(SpecOx, L), the number

deg(L) == log # (H*(SpecOx, L) /s0k) — > log||s|l, (1.1.1)
o: K—C

does not depend o/n\the choice of s.
This number deg(L) is called the arithmetic degree of L.

The proof is an application of the product formula. We will postpone it to Proposition [1.1.7]
using the relation between Hermitian line bundles and arithmetic divisors introduced below.

In Algebraic Geometry, line bundles and (Cartier) divisors are closely related. In Arakelov
Geometry, we also have the notion of arithmetic divisors.

Definition 1.1.4. An arithmetic divisor is a formal finite sum

D= Y mlpl+ >  nglo] (1.1.2)

pGMK,f o: K—=C

with ny € Z, ny € R and ny = nz.
A principal arithmetic divisor is of the form

div(e) == Y ordy(a)p] - D loglo(a)]lo]

pEMK 5 o: K—C
for some a € K*.

In (1.1.2), we usually denote b}LDf = ZpeMK,f np[p] the finite part of D and by Dy =
Y o Kse Nolo] the infinite part of D.
We will also introduce the following groups, where the group law is clear:
BR/(SpeCOK) := {arithmetic divisors on SpecOk},
P/ri\n(SpecOK) := {principal arithmetic divisors on SpecOx },
CAI(SpecOK) = m(SpecOK)/P/rﬂl(Spec(’)K).

Definition 1.1.5. The arithmetic degree of an arithmetic divisor D of the form (1.1.2) is
defined to be

deg(D) = ) mlog#(Ox/p)+ D no.

peEMk 5 o: K—=C

The product formula immediately implies that any principal arithmetic divisor has arithmetic
degree 0. Thus we get a group homomorphism

d/e\g: él(SpecOK) —R. (1.1.3)
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Proposition 1.1.6. We have a group homomorphism
Div(SpecOg) — Pic(SpecOk), D + O(D), (1.1.4)

where for D = D¢+ Y. nglo], the Hermitian line bundle O(D) is defined to be (O(Ds), || - |l»)
with ||1]|, := exp(—ny) for the canonical 1 of O(Dy) (i.e. the divisor of 1 is Ds).
And this group homomorphism induces a group isomorphism

CAl(SpeCOK) = f’i\c(Spec(’)K). (1.1.5)

The inverse of is called the arithmetic first Chern class and is denoted by ¢;.

By constructions, the group homomorphism is compatible with the forgetful maps
ISRI(SpecOK) — Div(SpecOf), D + Dy, and lgi\c(Spec(’)K) — Pic(SpecOg), L +— L. Thus the
isomorphism is an extension of the natural isomorphism Cl(Of) =~ Pic(SpecOk ).

Proof. 1t is easy to check that (| is a group homomorphism.

For any dlv( ) € Prm(Spec(’) K) it is not hard to check that the isomorphism a: Ospeco, —
O(div(«)) induces an isometry between the trivial Hermitian line bundle on SpecO and (Ti;(a).
Thus we have a group homomorphism él(SpecO K) — f’i\c(SpeCOK).

The inverse is defined as follows. For any £ € f/’i\c(SpecOK), let s be a non-zero rational
section of Lx and set

div(s) == div(s +Z—log” o) [o]. (1.1.6)

If we have two non-zero rational sections s and s, then s = as’ for some o € K*. Then
div(s) — div(s’) is a principal arithmetic divisor. Thus we obtain a group homomorphism

lsi\c(SpecOK) — él(SpecOK), L+ &1\\/(3)
It is not hard to check that this is the desired inverse. O

Proposition 1.1.7. The following diagram of group homomorphisms commutes:

Cl(SpecOx ) —== Pic(SpecO) (1.1.7)
o n
R = R,

where the top arrow is the one induced by (1.1.4).
Proof. By the definitions of the arithmetic degrees ((1.1.1) and Definition [1.1.5) and the in-

verse of the top arrow (|1.1.6), it suffices to prove the following claim. For any non-zero
s € H(SpecOk, L), we have

# (H°(SpecOk, L) /sOk) H# (O /p)r e

Write M := H°(SpecOf, £). Then for each p, the localization M, is a free O p-module of rank
1 and M/sOk ~ @, M,/sOk ,. Thus the desired equality holds true. We are done. O

We finish this section by stating a lemma which compares ﬁi}(Spec(’)K) o~ él(Spec(’)K) and
Pic(SpecOk) ~ Cl(Ok). The proof is easy.
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Lemma 1.1.8. Let p1, ..., pr, be the real embeddings of K and 01,71, ...,0p,,0r, be the complex
embeddings. Then We have the following exact sequence:

1= e — O 285 gtz b Gl(SpecOy) — Cl(Ok) — 1,

where pg s the group of roots of unities contained in K, logy is given by a — (log|o(a)|)s: ks,
1 T2
L (ah cees Gy b1y abrz) = Zai[pi] + sz([gz} + [Ei])v
i=1 i=1
and Cl(SpecOk) — Cl(Ok) is the forgetful map.

1.2 Hermitian vector bundles on SpecOg

Hermitian vector bundles are higher rank generalizations of Hermitian line bundles, for which
there is a rich theory. In this course, we focus on: Even to study Hermitian line bundles on
SpecOg, it turns out to be sometimes helpful to study the more general Hermitian vector bundles
as will be shown in

Definition 1.2.1. A Hermitian coherent sheaf on SpecOy is a pair € := (€, - ||), where
€ is an Ok -module of finite type and || - || = {|| - llo }o: KsC is a collection of Hermitian metrics
| - |lo on each & := E @, C such that |le||s = ||e|lz for alle € € and all 0: K — C.

If moreover € is a projective O -module, then € is called a Hermitian vector bundle.

We define the rank of £, denoted by rk(€), to be the rank of £ as an Ox-module. A Hermitian
coherent sheaf £ on SpecOp is a Hermitian vector bundle if and only if £ is torsion-free.

The category of vector bundles on SpecOg is equivalent to the category projective Og-
modules of finite rank. Using this one sees that any Hermitian line bundle on SpecOf is a
Hermitian vector bundle on SpecOg.

Definition 1.2.2. Let £ and F be Hermitian coherent sheaves (or Hermitian vector bundles)
on SpecOg. A morphism o

p: &= F
is a morphism between the underlying projective Ok -modules such that ||p(e)|ls < |le|ls for all
o: K —Candallec&,.

Thus we can define the category of Hermitian coherent sheaves on SpecOg, and the full
sub-category of Hermitian vector bundles on SpecOy.

1.2.1 Several constructions on SpecOg

Short exact sequence Let £ be a Hermitian coherent sheaf on SpecOf.

Let F be a submodule of £ and consider the quotient £ — G := £/F. The restriction of the
Hermitian metrics || - ||» to F, for each o: K < C gives rise to a Hermitian sub-coherent sheaf
F of €. The quotient metrics, i.e. for each o and each g € G,,

o= _nf lefo,

Hg’ e€€y, eg

define a quotient Hermitian coherent sheaf G of £&. We have a short exact sequence in the
category of Hermitian coherent sheaves on SpecOg

0F—>E—G—0.
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If F = Eior, then G is a Hermitian vector bundle.

Direct sum Let £ and F be Hermitian coherent sheaves on SpecOg. The direct sum € ® F
is defined to be (£ ® F,| - lle + | - ||l7). It is a Hermitian vector bundle if both £ and F are

Hermitian vector bundles. The rank is rk(&) + rk(F).
Tensor product Let £ and F be Hermitian coherent sheaves on SpecOg. The tensor product
£ ® F is defined to be (E® F, || - le| - l7). It is a Hermitian vector bundle if both € and F are

Hermitian vector bundles. The rank is rk(&)rk(F).

Dual and homomorphism Let £ be a Hermitian coherent sheaf on SpecOg. Its dual & s
defined to be (Y, |- ||V), where €Y := Hom(&, Ok ) and

follo += sup L1
2 el

for all 0 € Mg o and all v € EY.

It is a Hermitian vector bundle if € is a Hermitian vector bundle. The rank is rk().
More generally, let £ and F be Hermitian coherent sheaves on SpecOx. Then the homo-
morphism Hom(E, F) is defined to be &' ®F. It is a Hermitian vector bundle if both & and F

are Hermitian vector bundles. The rank is rk(&)rk(F).

Determinant Let £ be a Hermitian vector bundle on SpecOy of rank n. The determinant of
€ is defined to be det & := (A" &, || - ||aet), where for each o: K < C, the metric || - [|get,» is the
unique metric on (A" &), such that

Hel AERNA 6n”det,a =1

for any orthonormal basis {e, ..., ey} of the normed Euclidean space (&, || - ||o)-

Notice that the determinant is always a Hermitian line bundle on SpecOk. Now we can
define:

Definition 1.2.3. Let & be a Hermitian vector bundle on SpecO. The arithmetic degree
of £ is defined to be

deg(€) := deg(det E).

Let us look at the example and particularly important case where K = Q. Since the class
number of Q is 1, any projective module of finite rank is a free module. Consider a Hermitian
vector bundle €& = (&, - ||). Let {v1,...,v,} be a Z-basis of £&. Then v := v; A--- A v, is a
Z-basis of det £ := A" €. Thus

— 1
deg(€) = log #(det £/Zv) — log ||v|| = —log ||v]| = —3 log det (h(vs,v5)) ,

where h(-,-) is the Hermitian form on &c, i.e. h(v',v’) = ||v/||? for all v/ € Ec.

On the other hand, let {eq,...,e,} be an orthonormal basis of Eg. Then we have an isomor-
phism &g — R™ with £ identified with a lattice in R™. Let covol(€gr/€) denote the co-volume
of this lattice, namely the volume of any fundamental domain of this lattice for the Lebesgue
measure on Eg.

For each i, we have v; = Zj a;jej for some a;; € R. Then h(v;,v;) = >, aixbjr. Thus
det (h(vi,vj)) = det(A'A) = det(A)? for the matrix A = (a;;). Therefore we have

d/(%(z) = —log covol(Er/E). (1.2.1)
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1.2.2 Pullback, pushforward, norm

Let K C K’ be an inclusion of number fields, and f: SpecOgs — SpecOk the induced morphism;
then f is finite of degree d := [K': K].

Pullback Let £ be a Hermitian vector bundle on SpecOp of rank n. Define its pullback f*&
as follows. First, set f*€ := & ®p, Ok; then f*E is a projective Ogr-module of rank n. Next,
for any embedding ¢’: K’ < C, its restriction to K (denoted by o) is an embedding of K into
C, and the canonical isomorphism (f*€) ®, C = £ ®, C gives the desired metric || - ||, on

(f*g)a’ = (f*S) ®q C.

Proposition 1.2.4. The pullback f* commutes with direct sums, tensor products, and taking

determinants. Moreover, - -
degf*€ = [K' : K]deg€.

Proof. The first claim is easy to check and we leave it as an exercise. To prove the second claim,
it then suffices to check for Hermitian line bundles.
Let ¢ € £\ {0}. Then

deg(&) =log #(£/t0k) — Y log|llls = > ordy(6)log#(Oxc/p) — > log ]|,

o: K—C pEM 5 o: K—=C
Thus
deg(f*€) = > ordy(O)log#(Orr/p) = Y log|lt]s
pEMpr ol K'<sC
= > > ordy(O)log#(Oxr /p) = Y > log |[t]|
pEMy ¢ p'|p o: K—=Co'lo
Z d - ordy(¢) log #(Ok /p) — Z dlog ||4]|»
PEMKf o: K—C
= d - deg(&).
We are done. O

Pushforward Let £ be a Hermitian vector bundle on SpecOf of rank n. Define its pushforward
£.€ as follows. First, the underlying projective module f,€’ is set to be &, viewed as an Ox-
module of rank dn which is again projective (locally free). Next, for any embedding o: K — C,
the tensor product Ok’ ®o, » C is canonically isomorphic to

@0/|0(C = @o/: K'—C, U‘"KZO‘C

Thus we have a canonical isomorphism

(fi€)o = € @040 C=E R0y, (Ox' ®0x.0 C) =D , Eb.

o|lo

Thus the desired Hermitian metric is given by: for any e = (e[,)),/o € (f+«&')o, set

HeHg = Zda’/aH@;/Hg/, (122)

ollo

where dg//, = 2 if o’ is a complex place and o is a real place, and d /o = 1 otherwise.
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Sometimes, it is more convenient to put a singular metric, by changing (|1.2.2) to

||e||maX,a = I}}/?f”d;/”a’- (1.2.3)

We denote by fmax,*? = (&€, - ||l max)-

Example 1.2.5. A particularly important case is when f: SpecOx — SpecZ is induced by the
inclusion Q C K (we changed our notation for this particular case). Let L be a Hermitian line
bundle on SpecOk. Then f.L is a vector bundle on SpecZ which must be trivial since the class
number of Q is 1. Under the identification of vector bundles and projective modules, this is
equivalent to say that H°(SpecOg, L) is a projective O -module of rank 1, and is free if viewed
as a Z-module. Moreover, we have

H(SpecOx, L) @7 C = @U: Ko L.
For any s = (s54)s € H°(SpecOy, L) ®7 C, we then have
[ ——T
Set
H(SpecOxk, L)r := {5 = (54)s € H*(SpecOk, L) @7 C : s, = 55 for all o}. (1.2.4)
Then H°(SpecOy, L) is a lattice in H?(SpecOk, L)r, and ||:||max induces a norm on H°(SpecOf, L)g.

We will come back to this example later.

Norm of Hermitian line bundles Let £ be a Hermitian line bundle on SpecOfk. We wish to define
the norm Normg, K(Z/) € Pic(SpecOf ), which corresponds to the pushforward of the arithmetic class
group (even though we have not defined what it means), i.e.

—/

fer(L') = & (Normg i (L))
for the arithmetic first Chern class ¢; (the inverse of (L.1.5)).

Let (U;) be an open cover of SpecOx such that L'|;-1(y,) is trivial for each i. Choose a section
e € HO(f~1(U;), L) which generates £ everywhere on f~!(U;). Then the line bundle £’ is represented by
the 1-cocycle (f;;) defined as follows: for each pair (i, ) and U;; := U;NU;, f;; € HO(f~1(Us;), OsxpecoK,)
is the unique invertible function on f~*(U;;) such that €; = f;je;.

The underlying line bundle Norm g /i (£’) is then defined to be the line bundle on SpecO determined
by the 1-cocycle Normg:, g (fi;), relative to the open cover (U;). It admits a canonical trivialization over
U; with generator Normpg/ (€;).

The Hermitian metrics are defined as follows. Let o: K < C. Then we have a canonical isomorphism

NormK//K(,C/)U = ® Elo./.

o’|o

This defines a canonical Hermitian metric on Norm g/ /g (L)

1.3 Positivity of Hermitian line bundles on SpecOjx

Let £ be a Hermitian line bundle on SpecOx-.

Definition 1.3.1. The Hermitian line bundle L is said to be ample (resp. nef) if d/e%(Z) >0
(resp. deg(L) >0).
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We will prove a criterion for ampleness (Theorem [1.3.7)) which is the arithmetic version of the
criterion for ample line bundles over curves. For this we need to introduce the sets of effective
sections and of strictly effective sections of L.

Definition 1.3.2. Define

H'(L) := {s € H(SpecOx, L) : ||s||ls < 1, Yo},
HY(L) := {s € H*(SpecOx, L) : ||s||ls < 1, Yo}

S

Lemma 1.3.3. Both H(L) and HY(L) are finite sets.

Proof. 1t suffices to prove the result for H(£). By Example m, H Y(L) is the set of lattice
points in H°(SpecOp, L£)g contained in the unit ball defined by the norm induced by || - ||max-
Thus it is a finite set. O

Definition 1.3.4. Define

(L) :=log #H" (L),
hO(L) = log #HY(L).
By definition of arithmetic degree (1.1.1), £ is ample if ES (£) > 0 and is nef if h%(Z) > 0.
As indicated by the proof of Lemma we are interested in counting the number of lattice
points in a unit ball, both contained in a Euclidean space. In general this is not an easy task.
But there are tools in the theory of geometry of numbers which we can use.

1.3.1 Geometry of numbers

Consider the pairs M = (M, || - ||) where M is a free Z-module of finite rank of r > 1 and || - || is
a norm on Mr = M ®z R. Thus the natural map M — Mg makes M into a lattice in M. An
example is the one obtained from H®(SpecOx, £) and || - ||max from Example

Set

HO(M) :={m € M : |m| < 1}, hO(M) = log #H (M);
HY(M) :={me M :|m| <1}, hO(M) := log #HO(M).

Minkowski’s First Theorem is a tool to prove the existence of a non-zero small lattice point, via
the quantity x(M) defined as below. Denote by B(M) := {m € Mg : ||m|| < 1} the unit ball in
Mpg. Fix a Haar measure on My and let

vol(B(M))

covol(Mg /M)’ (1.3.1)

X(M) =
/Whiih is indepegient of the choice of the Haar measure. By Minkowski’s First Theorem,
hO(M) > 0 if x(M) > rlog?2. The following is a quantitative version:

Theorem 1.3.5. We have R
hO(M) > x(M) — rlog?2. (1.3.2)

Moreover, there exists a non-zero m € M such that

M
—log||m|| = X(AM) log 2.
T
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To prove Theorem we use a common trick called Variational Principle in Arakelov
Geometry. For any real number ¢, set

M(c) = (M, e™|| - ]])-

It is not hard to check that o o
(¥ (e)) = x(B) + er.

Proof. Consider the universal covering
u: Mg — Mg/M.
For ¢ € R, there exists a point y € Mr/M such that
# (u'(y) N B(M(c))) > vol(B(M(c)))/covol(Mp/M).

Otherwise we would have vol(B(M(c))) < covol(Mg/M) - vol(B(M(c)))/covol(Mg /M).
Take mg € u~!(y) N B(M(c)). For any m € u~t(y) N B(M(c)), we have m — mg € M and
lm — mgl| < 2, and therefore m —mg € H°(M(c + log2)). Hence

RO(M(c +1og2)) > log # (u~(y) N B(M(¢))) .
The two inequalities above together with the definition of x(M/(c)) yield
hO(M (e +log2)) > x(M(c)) = x(M) +cr.

Thus we get ([1.3.2]) by letting ¢ = —log 2.
Now for any ¢ € R, we have

O(M(—c)) > x(M(—c)) — rlog2 = x(M) — rc — rlog 2.

Thus for all ¢ < x(M)/r — log 2, there exists a non-zero m € M such that e¢||m|| < 1. In other
words, for any € > 0, there exists a non-zero m. € M with

M
—log||me|| > X(M) —log2 —e.
r

Taking a sequence {€y}n,>1 decreasing to 0, the corresponding sequence {m,, },>1 takes finitely
many values since m,, are lattice points in a bounded ball. Thus we find an m € M with

—log||m|| > X(T]W) —log2 — e,
with €, — 0. It suffices to take n — oco. O
Proposition 1.3.6. We have
nO(M) < hO(M) < hO(M) + rlog 3.
Proof. We will prove the desired comparison by the following: For any ¢ > 0, we have
RO(M(—c)) < hO(M) < hO(M(—c)) + rc+ rlog 3. (1.3.3)

In fact, the desired inequality follows directly from (|1.3.3) by letting ¢ — 0.
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Let us prove We only need to prove the second inequality. For any ¢ > 0, set
B(t) :={m € Mg : H \ t} the ball of radius ¢ centered at 0. Then vol(B(t)) = t"vol(B(1)).

Notice that B(t) = B(M(logt)).

Now consider B(1 + 2 17 ¢). Let us also consider all the balls of radius 2_1 ~¢ centered at
points in M N B(1) = H° (M) all these small balls are contained in B(1+27"e~¢). Thus there
exists a point m € B(1 4 271e~¢) which is contained in N of these small balls, Wlth

HO(M) -vol(B(2~'e™® o1
vol(B(1 +271e¢)) (14 2ec)"
Thus o
log N > hO(M) — r(c + log 3).
Let x1,..., 2y be the centers of these small balls. Then x; —m € B(27'e™¢). Hence z; — 21 €

B(e°) for all i. In particular we find N points in H(M(—c)). Therefore we can conclude. [

1.3.2 Ampleness and nefness

Theorem 1.3.7. Let £ be a Hermitian line bundle on SpecO. The followings are equivalent:
(i) L is ample,
(ii) WOA(ZZ™) > 0 for m > 1,

(iii) for any Hermitian line bundle M on SpecOp, we have TLQ(Z@W ®@ M) >0 for m > 1.

For the proof, we need to relate Hermitian line bundles with the theory of geometry of
numbers. Let M = (M, ]| -||) be the pair as in §1.3.1|obtained from H?(SpecOx, £) and || - ||max
from Example Then by definition, we have

We also set B o

Proof. (iii) clearly implies (ii).

(ii) implies (i): Take a non-zero s € .FAIS (Z®m). Then by definition of arithmetic degree
(L.1.1), we have d/(e\sg(z®m) > 0. But d/e\g(z®m) = md/e%(Z) by Proposition M Thus £ is
ample.

(i) implies (iii): For this, we need to assume the following fact (Arithmetic Hilbert-Samuel,
applied to L nef)

Xsup (L™ ® M) = mdeg(L) + O(1).

Here xsup(—) is with £ replaced by the corresponding Hermitian line bundles, and Og
is the trivial line bundle endowed with the trivial norm on SpecOk. R

Since deg(L£) > 0, for m > 1 we have Ysup (Z®m®ﬂ) > [K : Q]log6. Thus h? (Z®m®ﬂ) >0
by Theorem and Proposition [1.3.6 O
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