
Chapter 1

Hermitian line bundles on SpecOK
and positivity

In the whole chapter, let K be a number field and OK be its ring of integers. It is known that
SpecOK is not a projective scheme. A key idea in Arakelov Geometry is to identify SpecOK with
the set of finite places of K and then compactify SpecOK by adding the archimedean places.

1.1 Hermitian line bundles and arithmetic divisors on SpecOK

Definition 1.1.1. A Hermitian line bundle on SpecOK is a pair L := (L, → · →), where L is
a line bundle on SpecOK and → · → = {→ · →ω}ω : Kε→C is a collection of Hermitian metrics → · →ω

on each Lω = H0(SpecOK ,L)↑ω C satisfying →s→ω = →s→ω for all s ↓ H0(SpecOK ,L).

We say that such collections of metrics are invariant under complex conjugation. Notice
that H0(SpecOK ,L) is a projective OK-module of rank 1, and each Lω is a C-vector space of
dimension 1. Thus → · →ω is determined by →s→ω for any non-zero rational section s of L.

Next we introduce the group of isometric classes of Hermitian line bundles on SpecOK ,
denoted by P̂ic(SpecOK). The identity element is the trivial Hermitian line bundle, the multi-
plication is the tensor product, and the inverse is the dual.

Definition 1.1.2. (i) An isometry between two Hermitian line bundles L and L
↑
on SpecOK

is an isomorphism
i : L ↔ L

↑

of line bundles on SpecOK satisfying

→s→ω = →i(s)→ω, ↗s ↓ H0(SpecOK ,L), ↗ω : K ε↔ C.

(ii) The trivial Hermitian line bundle on SpecOK is (OSpecOK , | · |) where | · |ω is the
absolute value at each archimedean place ω.

(iii) The tensor product of two Hermitian line bundles L and L
↑
on SpecOK is defined to be

L↑ L
↑
:= (L↑ L

↑, → · →→ · →↑).

(iv) The dual of a Hermitian line bundle L on SpecOK is defined to be

L
↓
:= (L↓, → · →↓)
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where L
↓ := Hom(L,OSpecOK ) and, for each t ↓ H0(SpecOK ,L↓),

→t→↓ω :=
|t(s)|

→s→ω
for any non-zero s ↓ Lω.

Definition-Lemma 1.1.3. Let L be a Hermitian line bundle on SpecOK . For any non-zero
s ↓ H0(SpecOK ,L), the number

d̂eg(L) := log#
(
H0(SpecOK ,L)/sOK

)
↘

∑

ω : Kε→C
log →s→ω (1.1.1)

does not depend on the choice of s.
This number d̂eg(L) is called the arithmetic degree of L.

The proof is an application of the product formula. We will postpone it to Proposition 1.1.7,
using the relation between Hermitian line bundles and arithmetic divisors introduced below.

In Algebraic Geometry, line bundles and (Cartier) divisors are closely related. In Arakelov
Geometry, we also have the notion of arithmetic divisors.

Definition 1.1.4. An arithmetic divisor is a formal finite sum

D =
∑

p↔MK,f

np[p] +
∑

ω : Kε→C
nω[ω] (1.1.2)

with np ↓ Z, nω ↓ R and nω = nω.
A principal arithmetic divisor is of the form

d̂iv(ϑ) :=
∑

p↔MK,f

ordp(ϑ)[p]↘
∑

ω : Kε→C
log |ω(ϑ)|[ω]

for some ϑ ↓ K↗.

In (1.1.2), we usually denote by Df :=
∑

p↔MK,f
np[p] the finite part of D and by D↘ :=

∑
ω : Kε→C nω[ω] the infinite part of D.
We will also introduce the following groups, where the group law is clear:

D̂iv(SpecOK) := {arithmetic divisors on SpecOK},

P̂rin(SpecOK) := {principal arithmetic divisors on SpecOK},

Ĉl(SpecOK) := D̂iv(SpecOK)/P̂rin(SpecOK).

Definition 1.1.5. The arithmetic degree of an arithmetic divisor D of the form (1.1.2) is
defined to be

d̂eg(D) :=
∑

p↔MK,f

np log#(OK/p) +
∑

ω : Kε→C
nω.

The product formula immediately implies that any principal arithmetic divisor has arithmetic
degree 0. Thus we get a group homomorphism

d̂eg : Ĉl(SpecOK) ↔ R. (1.1.3)
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Proposition 1.1.6. We have a group homomorphism

D̂iv(SpecOK) ↔ P̂ic(SpecOK), D ≃↔ O(D), (1.1.4)

where for D = Df +
∑

ω nω[ω], the Hermitian line bundle O(D) is defined to be (O(Df), → · →ω)
with →1→ω := exp(↘nω) for the canonical 1 of O(Df) (i.e. the divisor of 1 is Df).

And this group homomorphism induces a group isomorphism

Ĉl(SpecOK)
≃
↘↔ P̂ic(SpecOK). (1.1.5)

The inverse of (1.1.5) is called the arithmetic first Chern class and is denoted by ĉ1.
By constructions, the group homomorphism (1.1.4) is compatible with the forgetful maps

D̂iv(SpecOK) ↔ Div(SpecOK), D ≃↔ Df , and P̂ic(SpecOK) ↔ Pic(SpecOK), L ≃↔ L. Thus the
isomorphism (1.1.5) is an extension of the natural isomorphism Cl(OK) ⇐ Pic(SpecOK).

Proof. It is easy to check that (1.1.4) is a group homomorphism.

For any d̂iv(ϑ) ↓ P̂rin(SpecOK), it is not hard to check that the isomorphism ϑ : OSpecOK ↔

O(div(ϑ)) induces an isometry between the trivial Hermitian line bundle on SpecOK and d̂iv(ϑ).

Thus we have a group homomorphism Ĉl(SpecOK) ↔ P̂ic(SpecOK).

The inverse is defined as follows. For any L ↓ P̂ic(SpecOK), let s be a non-zero rational
section of LK and set

d̂iv(s) := div(s) +
∑

ω

(↘ log →s→ω)[ω]. (1.1.6)

If we have two non-zero rational sections s and s↑, then s = ϑs↑ for some ϑ ↓ K↗. Then
d̂iv(s)↘ d̂iv(s↑) is a principal arithmetic divisor. Thus we obtain a group homomorphism

P̂ic(SpecOK) ↔ Ĉl(SpecOK), L ≃↔ d̂iv(s).

It is not hard to check that this is the desired inverse.

Proposition 1.1.7. The following diagram of group homomorphisms commutes:

Ĉl(SpecOK) ≃ !!

d̂eg
""

P̂ic(SpecOK)

d̂eg
""

R = !! R,

(1.1.7)

where the top arrow is the one induced by (1.1.4).

Proof. By the definitions of the arithmetic degrees ((1.1.1) and Definition 1.1.5) and the in-
verse of the top arrow (1.1.6), it su!ces to prove the following claim. For any non-zero
s ↓ H0(SpecOK ,L), we have

#
(
H0(SpecOK ,L)/sOK

)
=

∏

p

#(OK/p)ordp(s).

Write M := H0(SpecOK ,L). Then for each p, the localization Mp is a free OK,p-module of rank
1 and M/sOK ⇐ ⇒pMp/sOK,p. Thus the desired equality holds true. We are done.

We finish this section by stating a lemma which compares P̂ic(SpecOK) ⇐ Ĉl(SpecOK) and
Pic(SpecOK) ⇐ Cl(OK). The proof is easy.
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Lemma 1.1.8. Let ϖ1, . . . , ϖr1 be the real embeddings of K and ω1,ω1, . . . ,ωr2 ,ωr2 be the complex
embeddings. Then We have the following exact sequence:

1 ↔ µK ↔ O
↗

K
logK
↘↘↘↔ Rr1+r2 ϑ

↘↔ Ĉl(SpecOK) ↔ Cl(OK) ↔ 1,

where µK is the group of roots of unities contained in K, logK is given by ϑ ≃↔ (log |ω(ϑ)|)ω : Kε→C,

ϱ : (a1, . . . , ar1 , b1, . . . , br2) ≃↔
r1∑

i=1

ai[ϖi] +
r2∑

i=1

bi([ωi] + [ωi]),

and Ĉl(SpecOK) ↔ Cl(OK) is the forgetful map.

1.2 Hermitian vector bundles on SpecOK

Hermitian vector bundles are higher rank generalizations of Hermitian line bundles, for which
there is a rich theory. In this course, we focus on: Even to study Hermitian line bundles on
SpecOK , it turns out to be sometimes helpful to study the more general Hermitian vector bundles
as will be shown in §1.3.

Definition 1.2.1. A Hermitian coherent sheaf on SpecOK is a pair E := (E , → · →), where
E is an OK-module of finite type and → · → = {→ · →ω}ω : Kε→C is a collection of Hermitian metrics
→ · →ω on each Eω := E ↑ω C such that →e→ω = →e→ω for all e ↓ E and all ω : K ε↔ C.

If moreover E is a projective OK-module, then E is called a Hermitian vector bundle.

We define the rank of E , denoted by rk(E), to be the rank of E as anOK-module. A Hermitian
coherent sheaf E on SpecOK is a Hermitian vector bundle if and only if E is torsion-free.

The category of vector bundles on SpecOK is equivalent to the category projective OK-
modules of finite rank. Using this one sees that any Hermitian line bundle on SpecOK is a
Hermitian vector bundle on SpecOK .

Definition 1.2.2. Let E and F be Hermitian coherent sheaves (or Hermitian vector bundles)
on SpecOK . A morphism

ς : E ↔ F

is a morphism between the underlying projective OK-modules such that →ς(e)→ω ⇑ →e→ω for all
ω : K ε↔ C and all e ↓ Eω.

Thus we can define the category of Hermitian coherent sheaves on SpecOK , and the full
sub-category of Hermitian vector bundles on SpecOK .

1.2.1 Several constructions on SpecOK

Short exact sequence Let E be a Hermitian coherent sheaf on SpecOK .
Let F be a submodule of E and consider the quotient E ↔ G := E/F . The restriction of the

Hermitian metrics → · →ω to Fω for each ω : K ε↔ C gives rise to a Hermitian sub-coherent sheaf
F of E . The quotient metrics, i.e. for each ω and each g ↓ Gω,

→g→G,ω := inf
e↔Eω , e ⇐→g

→e→ω,

define a quotient Hermitian coherent sheaf G of E . We have a short exact sequence in the
category of Hermitian coherent sheaves on SpecOK

0 ↔ F ↔ E ↔ G ↔ 0.
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If F = Etor, then G is a Hermitian vector bundle.

Direct sum Let E and F be Hermitian coherent sheaves on SpecOK . The direct sum E ⇒ F

is defined to be (E ⇒ F , → · →E + → · →F ). It is a Hermitian vector bundle if both E and F are
Hermitian vector bundles. The rank is rk(E) + rk(F).

Tensor product Let E and F be Hermitian coherent sheaves on SpecOK . The tensor product

E ↑F is defined to be (E ↑F , → · →E→ · →F ). It is a Hermitian vector bundle if both E and F are
Hermitian vector bundles. The rank is rk(E)rk(F).

Dual and homomorphism Let E be a Hermitian coherent sheaf on SpecOK . Its dual E
↓
is

defined to be (E↓, → · →↓), where E
↓ := Hom(E ,OK) and

→v→ω := sup
e↔Eω

|v(e)|ω
→e→ω

for all ω ↓ MK,↘ and all v ↓ E
↓

ω .

It is a Hermitian vector bundle if E is a Hermitian vector bundle. The rank is rk(E).
More generally, let E and F be Hermitian coherent sheaves on SpecOK . Then the homo-

morphism Hom(E ,F) is defined to be E
↓
↑ F . It is a Hermitian vector bundle if both E and F

are Hermitian vector bundles. The rank is rk(E)rk(F).

Determinant Let E be a Hermitian vector bundle on SpecOK of rank n. The determinant of
E is defined to be det E := (

∧n
E , → · →det), where for each ω : K ε↔ C, the metric → · →det,ω is the

unique metric on (
∧n

E)ω such that

→e1 ⇓ · · · ⇓ en→det,ω = 1

for any orthonormal basis {e1, . . . , en} of the normed Euclidean space (Eω, → · →ω).
Notice that the determinant is always a Hermitian line bundle on SpecOK . Now we can

define:

Definition 1.2.3. Let E be a Hermitian vector bundle on SpecOK . The arithmetic degree

of E is defined to be

d̂eg(E) := d̂eg(det E).

Let us look at the example and particularly important case where K = Q. Since the class
number of Q is 1, any projective module of finite rank is a free module. Consider a Hermitian
vector bundle E = (E , → · →). Let {v1, . . . , vn} be a Z-basis of E . Then v := v1 ⇓ · · · ⇓ vn is a
Z-basis of det E :=

∧n
E . Thus

d̂eg(E) = log#(det E/Zv)↘ log →v→ = ↘ log →v→ = ↘
1

2
log det (h(vi, vj)) ,

where h(·, ·) is the Hermitian form on EC, i.e. h(v↑, v↑) = →v↑→2 for all v↑ ↓ EC.
On the other hand, let {e1, . . . , en} be an orthonormal basis of ER. Then we have an isomor-

phism ER
≃
↘↔ Rn with E identified with a lattice in Rn. Let covol(ER/E) denote the co-volume

of this lattice, namely the volume of any fundamental domain of this lattice for the Lebesgue
measure on ER.

For each i, we have vi =
∑

j aijej for some aij ↓ R. Then h(vi, vj) =
∑

k aikbjk. Thus

det (h(vi, vj)) = det(AtA) = det(A)2 for the matrix A = (aij). Therefore we have

d̂eg(E) = ↘ log covol(ER/E). (1.2.1)
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1.2.2 Pullback, pushforward, norm

LetK ⇔ K ↑ be an inclusion of number fields, and f : SpecOK→ ↔ SpecOK the induced morphism;
then f is finite of degree d := [K ↑ : K].

Pullback Let E be a Hermitian vector bundle on SpecOK of rank n. Define its pullback f↗
E

as follows. First, set f↗
E := E ↑OK OK→ ; then f↗

E is a projective OK→-module of rank n. Next,
for any embedding ω↑ : K ↑ ε↔ C, its restriction to K (denoted by ω) is an embedding of K into
C, and the canonical isomorphism (f↗

E) ↑ω→ C = E ↑ω C gives the desired metric → · →ω→ on
(f↗

E)ω→ = (f↗
E)↑ω→ C.

Proposition 1.2.4. The pullback f↗ commutes with direct sums, tensor products, and taking
determinants. Moreover,

d̂egf↗
E = [K ↑ : K]d̂egE .

Proof. The first claim is easy to check and we leave it as an exercise. To prove the second claim,
it then su!ces to check for Hermitian line bundles.

Let ϱ ↓ E \ {0}. Then

d̂eg(E) = log#(E/ϱOK)↘
∑

ω : Kε→C
log →ϱ→ω =

∑

p↔MK,f

ordp(ϱ) log#(OK/p)↘
∑

ω : Kε→C
log →ϱ→ω.

Thus

d̂eg(f↗
E) =

∑

p→↔MK→,f

ordp→(ϱ) log#(OK→/p↑)↘
∑

ω→ : K→ε→C
log →ϱ→ω→

=
∑

p↔MK,f

∑

p→|p

ordp→(ϱ) log#(OK→/p↑)↘
∑

ω : Kε→C

∑

ω→|ω

log →ϱ→ω→

=
∑

p↔MK,f

d · ordp(ϱ) log#(OK/p)↘
∑

ω : Kε→C
d log →ϱ→ω

= d · d̂eg(E).

We are done.

Pushforward Let E
↑
be a Hermitian vector bundle on SpecOK→ of rank n. Define its pushforward

f↗E
↑
as follows. First, the underlying projective module f↗E ↑ is set to be E

↑, viewed as an OK-
module of rank dn which is again projective (locally free). Next, for any embedding ω : K ε↔ C,
the tensor product OK→ ↑OK ,ω C is canonically isomorphic to

⊕
ω→|ω

C :=
⊕

ω→ : K→ε→C, ω→|K=ω
C.

Thus we have a canonical isomorphism

(f↗E
↑)ω = E

↑
↑OK ,ω C = E

↑
↑OK→ (OK→ ↑OK ,ω C) =

⊕
ω→|ω

E
↑

ω→ .

Thus the desired Hermitian metric is given by: for any e = (e↑ω→)ω→|ω ↓ (f↗E ↑)ω, set

→e→2ω :=
∑

ω→|ω

dω→/ω→e
↑

ω→→
2
ω→ , (1.2.2)

where dω→/ω = 2 if ω↑ is a complex place and ω is a real place, and dω→/ω = 1 otherwise.
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Sometimes, it is more convenient to put a singular metric, by changing (1.2.2) to

→e→max,ω := max
ω→|ω

→e↑ω→→ω→ . (1.2.3)

We denote by fmax,↗E
↑
:= (f↗E ↑, → · →max).

Example 1.2.5. A particularly important case is when f : SpecOK ↔ SpecZ is induced by the
inclusion Q ⇔ K (we changed our notation for this particular case). Let L be a Hermitian line
bundle on SpecOK . Then f↗L is a vector bundle on SpecZ which must be trivial since the class
number of Q is 1. Under the identification of vector bundles and projective modules, this is
equivalent to say that H0(SpecOK ,L) is a projective OK-module of rank 1, and is free if viewed
as a Z-module. Moreover, we have

H0(SpecOK ,L)↑Z C =
⊕

ω : Kε→C
Lω.

For any s = (sω)ω ↓ H0(SpecOK ,L)↑Z C, we then have

→s→max = max
ω

{→sω→}.

Set

H0(SpecOK ,L)R := {s = (sω)ω ↓ H0(SpecOK ,L)↑Z C : sω = sω for all ω}. (1.2.4)

Then H0(SpecOK ,L) is a lattice in H0(SpecOK ,L)R, and →·→max induces a norm on H0(SpecOK ,L)R.

We will come back to this example later.

Norm of Hermitian line bundles Let L
→

be a Hermitian line bundle on SpecOK→ . We wish to define
the norm NormK→/K(L

→

) ↓ P̂ic(SpecOK), which corresponds to the pushforward of the arithmetic class
group (even though we have not defined what it means), i.e.

f↑ĉ1(L
→

) = ĉ1(NormK→/K(L
→

)).

for the arithmetic first Chern class ĉ1 (the inverse of (1.1.5)).
Let (Ui) be an open cover of SpecOK such that L

→
|f↑1(Ui) is trivial for each i. Choose a section

φi ↓ H0(f↓1(Ui),L→) which generates L→ everywhere on f↓1(Ui). Then the line bundle L→ is represented by
the 1-cocycle (fij) defined as follows: for each pair (i, j) and Uij := Ui↖Uj , fij ↓ H0(f↓1(Uij),O

↔

SpecOK→ )

is the unique invertible function on f↓1(Uij) such that φi = fijφj .
The underlying line bundle NormK→/K(L→) is then defined to be the line bundle on SpecOK determined

by the 1-cocycle NormK→/K(fij), relative to the open cover (Ui). It admits a canonical trivialization over
Ui with generator NormK→/K(φi).

The Hermitian metrics are defined as follows. Let ω : K ε↔ C. Then we have a canonical isomorphism

NormK→/K(L→)ω =
⊗

ω→|ω
L
→

ω→ .

This defines a canonical Hermitian metric on NormK→/K(L→)ω.

1.3 Positivity of Hermitian line bundles on SpecOK

Let L be a Hermitian line bundle on SpecOK .

Definition 1.3.1. The Hermitian line bundle L is said to be ample (resp. nef) if d̂eg(L) > 0

(resp. d̂eg(L) ↙ 0).
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We will prove a criterion for ampleness (Theorem 1.3.7) which is the arithmetic version of the
criterion for ample line bundles over curves. For this we need to introduce the sets of e”ective
sections and of strictly e”ective sections of L.

Definition 1.3.2. Define

Ĥ0(L) := {s ↓ H0(SpecOK ,L) : →s→ω ⇑ 1, ↗ω},

Ĥ0
s (L) := {s ↓ H0(SpecOK ,L) : →s→ω < 1, ↗ω}.

Lemma 1.3.3. Both Ĥ0(L) and Ĥ0
s (L) are finite sets.

Proof. It su!ces to prove the result for Ĥ0(L). By Example 1.2.5, Ĥ0(L) is the set of lattice
points in H0(SpecOK ,L)R contained in the unit ball defined by the norm induced by → · →max.
Thus it is a finite set.

Definition 1.3.4. Define

ĥ0(L) := log#Ĥ0(L),

ĥ0s (L) := log#Ĥ0
s (L).

By definition of arithmetic degree (1.1.1), L is ample if ĥ0s (L) > 0 and is nef if ĥ0(L) > 0.
As indicated by the proof of Lemma 1.3.3, we are interested in counting the number of lattice

points in a unit ball, both contained in a Euclidean space. In general this is not an easy task.
But there are tools in the theory of geometry of numbers which we can use.

1.3.1 Geometry of numbers

Consider the pairs M = (M, → · →) where M is a free Z-module of finite rank of r ↙ 1 and → · → is
a norm on MR = M ↑Z R. Thus the natural map M ↔ MR makes M into a lattice in MR. An
example is the one obtained from H0(SpecOK ,L) and → · →max from Example 1.2.5.

Set

Ĥ0(M) := {m ↓ M : →m→ ⇑ 1}, ĥ0(M) := log#Ĥ0(M);

Ĥ0
s (M) := {m ↓ M : →m→ < 1}, ĥ0s (M) := log#Ĥ0

s (M).

Minkowski’s First Theorem is a tool to prove the existence of a non-zero small lattice point, via
the quantity ↼(M) defined as below. Denote by B(M) := {m ↓ MR : →m→ ⇑ 1} the unit ball in
MR. Fix a Haar measure on MR and let

↼(M) := log
vol(B(M))

covol(MR/M)
, (1.3.1)

which is independent of the choice of the Haar measure. By Minkowski’s First Theorem,
ĥ0(M) > 0 if ↼(M) > r log 2. The following is a quantitative version:

Theorem 1.3.5. We have
ĥ0(M) ↙ ↼(M)↘ r log 2. (1.3.2)

Moreover, there exists a non-zero m ↓ M such that

↘ log →m→ ↙
↼(M)

r
↘ log 2.
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To prove Theorem 1.3.5, we use a common trick called Variational Principle in Arakelov
Geometry. For any real number c, set

M(c) := (M, e⇒c
→ · →).

It is not hard to check that
↼(M(c)) = ↼(M) + cr.

Proof. Consider the universal covering

u : MR ↔ MR/M.

For c ↓ R, there exists a point y ↓ MR/M such that

#
(
u⇒1(y) ↖B(M(c))

)
↙ vol(B(M(c)))/covol(MR/M).

Otherwise we would have vol(B(M(c))) < covol(MR/M) · vol(B(M(c)))/covol(MR/M).
Take m0 ↓ u⇒1(y) ↖ B(M(c)). For any m ↓ u⇒1(y) ↖ B(M(c)), we have m ↘m0 ↓ M and

→m↘m0→ ⇑ 2ec, and therefore m↘m0 ↓ Ĥ0(M(c+ log 2)). Hence

ĥ0(M(c+ log 2)) ↙ log#
(
u⇒1(y) ↖B(M(c))

)
.

The two inequalities above together with the definition of ↼(M(c)) yield

ĥ0(M(c+ log 2)) ↙ ↼(M(c)) = ↼(M) + cr.

Thus we get (1.3.2) by letting c = ↘ log 2.
Now for any c ↓ R, we have

ĥ0(M(↘c)) ↙ ↼(M(↘c))↘ r log 2 = ↼(M)↘ rc↘ r log 2.

Thus for all c < ↼(M)/r ↘ log 2, there exists a non-zero m ↓ M such that ec→m→ ⇑ 1. In other
words, for any φ > 0, there exists a non-zero mϖ ↓ M with

↘ log →mϖ→ ↙
↼(M)

r
↘ log 2↘ φ.

Taking a sequence {φn}n⇑1 decreasing to 0, the corresponding sequence {mn}n⇑1 takes finitely
many values since mn are lattice points in a bounded ball. Thus we find an m ↓ M with

↘ log →m→ ↙
↼(M)

r
↘ log 2↘ φn

with φn ↔ 0. It su!ces to take n ↔ ∝.

Proposition 1.3.6. We have

ĥ0s (M) ⇑ ĥ0(M) ⇑ ĥ0s (M) + r log 3.

Proof. We will prove the desired comparison by the following: For any c > 0, we have

ĥ0(M(↘c)) ⇑ ĥ0(M) ⇑ ĥ0(M(↘c)) + rc+ r log 3. (1.3.3)

In fact, the desired inequality follows directly from (1.3.3) by letting c ↔ 0.
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Let us prove (1.3.3). We only need to prove the second inequality. For any t > 0, set
B(t) := {m ↓ MR : →m→ ⇑ t} the ball of radius t centered at 0. Then vol(B(t)) = trvol(B(1)).
Notice that B(t) = B(M(log t)).

Now consider B(1 + 2⇒1e⇒c). Let us also consider all the balls of radius 2⇒1e⇒c centered at
points in M ↖B(1) = Ĥ0(M); all these small balls are contained in B(1 + 2⇒1e⇒c). Thus there
exists a point m ↓ B(1 + 2⇒1e⇒c) which is contained in N of these small balls, with

N ↙
#Ĥ0(M) · vol(B(2⇒1e⇒c))

vol(B(1 + 2⇒1e⇒c))
= #Ĥ0(M)

1

(1 + 2ec)r
.

Thus
logN ↙ ĥ0(M)↘ r(c+ log 3).

Let x1, . . . , xN be the centers of these small balls. Then xi ↘m ↓ B(2⇒1e⇒c). Hence xi ↘ x1 ↓

B(e⇒c) for all i. In particular we find N points in Ĥ0(M(↘c)). Therefore we can conclude.

1.3.2 Ampleness and nefness

Theorem 1.3.7. Let L be a Hermitian line bundle on SpecOK . The followings are equivalent:

(i) L is ample,

(ii) ĥ0s (L
⇓m

) > 0 for m ′ 1,

(iii) for any Hermitian line bundle M on SpecOK , we have ĥ0s (L
⇓m

↑M) > 0 for m ′ 1.

For the proof, we need to relate Hermitian line bundles with the theory of geometry of
numbers. Let M = (M, → · →) be the pair as in §1.3.1 obtained from H0(SpecOK ,L) and → · →max

from Example 1.2.5. Then by definition, we have

Ĥ0(L) = Ĥ0(M), ĥ0(L) = ĥ0(M);

Ĥ0
s (L) = Ĥ0

s (M), ĥ0s (L) = ĥ0s (M).

We also set
↼sup(L) := ↼(M). (1.3.4)

Proof. (iii) clearly implies (ii).

(ii) implies (i): Take a non-zero s ↓ Ĥ0
s (L

⇓m
). Then by definition of arithmetic degree

(1.1.1), we have d̂eg(L
⇓m

) > 0. But d̂eg(L
⇓m

) = md̂eg(L) by Proposition 1.1.7. Thus L is
ample.

(i) implies (iii): For this, we need to assume the following fact (Arithmetic Hilbert–Samuel,
applied to L nef)

↼sup(L
⇓m

↑M) = md̂eg(L) +O(1).

Here ↼sup(↘) is (1.3.4) with L replaced by the corresponding Hermitian line bundles, and OK

is the trivial line bundle endowed with the trivial norm on SpecOK .
Since d̂eg(L) > 0, form ′ 1 we have ↼sup(L

⇓m
↑M) > [K : Q] log 6. Thus ĥ0s (L

⇓m
↑M) > 0

by Theorem 1.3.5 and Proposition 1.3.6.
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