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Chapter 0

Quick Summary on the Height
Machine

0.1 Weil height on projective spaces

Let us start with the simplest case. Let x € P}(Q). There is a unique way to write x as [a : b]
with a,b € Z and ged(a,b) = 1. Set

h(z) := log max{|al, |b|}.

For a general number field K, we use the following normalized valuations at places of K:

(i) For v € Mk ¢ a non-archimedean place, v is above a prime number p € Z. We take the
~1.

absolute value || - ||,: K — R such that ||p||, =p~";
(ii) For v € Mg o = Hom(K,C) an archimedean place, v corresponds to an embedding
o: K — C. We take || - |,: K — R to be ||z, := |o(a)|KHR,

Notice that || - ||, is an absolute value unless v is a complex place, i.e. K, = C.

Let Q be an algebraic closure of Q.

Definition 0.1.1. Let x = [z : - - : ] € P*(Q). The (absolute logarithmic Weil) height
of x is defined to be

1

h(x) : K Q)

> logmax{||zolls, ..., lzallo},

vEME

where K C Q is a number field such that x; € K for all j.
We also set H(x) := e to be the multiplicative height.

The Weil height is a well-defined function on P"*(Q), i.e. it is independent of the choice of
K and independent of the choice of the homogeneous coordinates. This can be proved using the
product formula. Also one can check that this definition coincides with the one for P1(Q) above.
The following properties are of fundamental importance for the Height Machine.

Theorem 0.1.2. We have:

- (Positivity/Lower Bound) h(x) > 0 for all x € P*(Q);
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- (Northcott Property) For each B > 0 and D > 1, the following set is a finite set

{x e P"(Q): h(x) < B, [Q(x) : Q] < D}.

Lemma 0.1.3. The action of the Galois group Gal(Q/Q) on P"(Q) leaves the height invariant.
More precisely, for any x € P*(Q) and any o € Gal(Q/Q), we have h(c(x)) = h(x).

0.2 Height Machine

Let X be an irreducible projective variety defined over Q. Denote by RX (@ the set of functions
X(Q) — R, and by O(1) the subset of bounded functions.
The Height Machine associates to each line bundle L € Pic(X) a unique class of functions

RX@/0(1), i.e. a map

hy: Pic(X) - R¥X@/0(1), L~ hy,. (0.2.1)

Let hx,: X(Q) — R a representative of the class hy r; it is called a height function associated
with (X, L).

Construction 0.2.1. One can construct hx j, as follows. In each case below, hx 1 depends on
some extra data and hence is not unique. However, it can be shown that any two choices differ

by a bounded functions on X (Q), and thus the class of hx 1, is well-defined.

(i) If L is very ample, then the global sections of L give rise to a closed immersion v: X — P"
for some n, such that *O(1) ~ L. Set hx = ho, with h the Weil height on P" from
Definition |0.1.1].

(i) If L is ample, then L¥™ is very ample for some m > 1. Set hx 1, = (1/m)hx pom.

(i1i) For an arbitrary L, there exist ample line bundles Ly and Ly on X such that L ~ L, ®L§®_1
by general theory of Algebraic Geometry. Set hx 1 = hx,r, — hx -

Here are some basic properties of the Height Machine. Moreover, the construction (0.2.1)) is
also uniquely determined by the normalization, additivity, and functoriality.

Proposition 0.2.2. We have
- (Normalization) Let h be the Weil height from Definition |0.1.1, Then for all x € P*(Q),

we have

hpn 0(1)(x) = h(x) + O(1).

(Additivity) Let L and M be two line bundles on X. Then for all x € X(Q), we have
hx rom(z) = hx (x) + hx am(z) + O(1).

(Functoriality) Let ¢: X — Y be a morphism of irreducible projective varieties and let L

be a line bundle on'Y. Then for all x € X(Q), we have

hxg1(x) = hy,L(6(x)) + O(1).

(Lower Bound) If s € H°(X, L) is a global section, then for all x € (X \ div(s))(Q) we
have

hX’L(:U) > O(l).
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- (Northcott property) Assume L is ample. Let Ky be a number field on which X is defined.
Then for any d > 1 and any constant B, the set

{(L‘ € X(K) : [K : K()] <d, hxyL(l') < B}
is a finite set.

The O(1)’s that appear in the proposition depend on the varieties, line bundles, morphisms,
and the choices of the representatives in the classes of height functions. But they are independent
of the points on the varieties.

A natural question arises at this point:

What should one do to get a genuine function X (Q) — R from a line bundle L?
Or, in other words, to choose a nice representative hx 1?7

Here is a naive way: one can always fix a representative by fixing every operation needed to
define hy, (for example, the basis of H°(X, L) giving the embedding of X into some PV if L is
very ample).

In the next section, we will see that a canonical choice of hx r exists when (X, L) defines a
polarized dynamical system, after Néron and Tate.

we use Arakelov Geometry for this purpose. This is the main content of this course.

0.3 Normalized height function, after Néron and Tate

Let X be an irreducible projective variety defined over Q. Let L € Pic(X).
Assume there exists ¢: X — X is a morphism satisfying ¢*L ~ L®* for some integer o > 1.
The following theorem gives a canonical representative of hy r,.

Theorem 0.3.1. There exists a unique height function
hxor: X(@ —R
with the following properties.
(i) hx.or(x) = hxr(x)+O(1) for all z € X(Q),
(ii) hxo.1(6(x)) = ahxgp(x) for all z € X(Q).

The height function ﬁx,w depends only on the isomorphism class of L. Moreover, it can be
computed as the limit

Fxon(e) = lim —hyn(6"(2)) (0.3.1

with ¢" the n-fold iterate of ¢.

Before moving on to the proof, let us have a digest. The morphism ¢ induces a Z-linear map
¢*: Pic(X) — Pic(X) Tensoring with R gives a linear map ¢*: Pic(X) ®z R — Pic(X) ®z R of real
vector spaces of finite dimension. Say L is non-trivial. Then the assumption ¢*L ~ L®® implies that L
is an eigenvector for the eigenvalue . The assumption « > 1 guarantees that the Tate Limit Process
(0.3.1]) will work in the end.

We finish this section by two examples of normalized height.

MThe “addition” on the group Pic(X) is ®.
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Example 0.3.2. Let X = P" and L = O(1). Let ¢: P* — P" be given by homogeneous
polynomials of degree d > 1, then ¢*O(1) ~ O(d) = O(1)®4. If p([xg: -+ : xp]) = [2d : - 2],
then one can check that /]’Z]P)n7¢7(')(1) 1s precisely the Weil height h.

Notice that ¢ restricted to the algebraic torus Gl C P" is precisely the multiplication-by-d
morphism. Using this observation, one can prove the following Kronecker’s Theorem: For any
C:=(C1s--,¢n) € GH(Q) = (Q)", we have h(C) = 0 if and only if each component ; is a root
of unity.

A more important example for the Tate Limit Process is the definition of the Néron—
Tate heights on abelian varieties. Let X = A be an abelian variety and L be a symmetric line
bundle, i.e. [~1]*L ~ L. Then [n]*L ~ L®" for the multiplication-by-n map. Taking n = 2
gives the Néron—Tate height on A, which we denote by ha r.

The following theorem summarizes some important properties of h A,r- Notice that by (i),
in the definition of the Néron—Tate height we can replace the morphism [2]: A — A by [n] for
any n > 2.

Theorem 0.3.3. Assume L is ample.
(i) For each N € Z, we have EAL([N]{L‘) = NQﬁA,L(:L‘) for all x € A(Q).
(i) /HA,L(:U) >0 for all z € A(Q), and BAL(CL‘) = 0 if and only if x is a torsion point.

(iii) For each finitely generated subgroup T of A(Q), the R-linearly extension of /HA,L is a
quadratic form on I' ®z R which is furthermore positive definite.



Chapter 1

Hermitian line bundles on SpecOy
and positivity

In the whole chapter, let K be a number field and O be its ring of integers. It is known that
SpecOg is not a projective scheme. A key idea in Arakelov Geometry is to identify SpecOg with
the set of finite places of K and then compactify SpecOk by adding the archimedean places.

1.1 Hermitian line bundles and arithmetic divisors on SpecOy

Definition 1.1.1. A Hermitian line bundle on SpecOy is a pair £ := (L, || - ||), where L is
a line bundle on SpecOk and || - || = {|| - ||+ }o: ks is a collection of Hermitian metrics || - ||»
on each L, = H(SpecOf, L) @, C satisfying ||s|lo = ||s||z for all s € H°(SpecOk, L).

We say that such collections of metrics are invariant under complex conjugation. Notice
that H°(SpecOg, L) is a projective Ox-module of rank 1, and each L, is a C-vector space of
dimension 1. Thus | - ||+ is determined by |s||, for any non-zero rational section s of L.

Next we introduce the group of isometric classes of Hermitian line bundles on SpecOk,
denoted by Pic(SpecOk). The identity element is the trivial Hermitian line bundle, the multi-
plication is the tensor product, and the inverse is the dual.

Definition 1.1.2. (i) Anisometry between two Hermitian line bundles L and L' on SpecOg

18 an isomorphism
i L—L

of line bundles on SpecOg satisfying

Isllo = [li(s)]le, Vs € H(SpecOx, L), Yo: K — C.

(i1) The trivial Hermitian line bundle on SpecOg is (Ospecoy, | - |) where | - |5 is the
absolute value at each archimedean place o.

(iii) The tensor product of two Hermitian line bundles £ and Z on SpecOk is defined to be
—= =
LoLl =LL,| I

(iv) The dual of a Hermitian line bundle £ on SpecOy is defined to be

L= (L)1)

11
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where LV := Hom (L, Ospeco,.) and, for each t € H(SpecOk, LY),

, )
e = s,

for any non-zero s € L.

Definition-Lemma 1.1.3. Let £ be a Hermitian line bundle on SpecOy. For any non-zero
s € H%(SpecOx, L), the number

deg(L) == log # (H*(SpecOx, L) /s0k) — > log||s|l, (1.1.1)
o: K—C

does not depend o/n\the choice of s.
This number deg(L) is called the arithmetic degree of L.

The proof is an application of the product formula. We will postpone it to Proposition[1.1.7]
using the relation between Hermitian line bundles and arithmetic divisors introduced below.

In Algebraic Geometry, line bundles and (Cartier) divisors are closely related. In Arakelov
Geometry, we also have the notion of arithmetic divisors.

Definition 1.1.4. An arithmetic divisor is a formal finite sum

D= Y mlpl+ Y  nglo] (1.1.2)

pGMK,f o: K—=C

with ny € Z, ny € R and ny = nz.
A principal arithmetic divisor is of the form

div(e) = Y ordy(a)p] - D loglo(a)|lo]

pEMK ¢ o: K—C
for some a € K*.

In (1.1.2), we usually denote b}LDf = ZpeMK,f np[p] the finite part of D and by Dy =
Y o Kse Nolo] the infinite part of D.
We will also introduce the following groups, where the group law is clear:
BR/(SpeCOK) := {arithmetic divisors on SpecOk },
P/ri\n(SpecOK) := {principal arithmetic divisors on SpecOx },
CAI(SpecOK) = m(SpecOK)/P/rﬂl(Spec(’)K).

Definition 1.1.5. The arithmetic degree of an arithmetic divisor D of the form (1.1.2) is
defined to be

deg(D) == ) mplog#(Ox/p)+ D no.

peMk 5 o: K—=C

The product formula immediately implies that any principal arithmetic divisor has arithmetic
degree 0. Thus we get a group homomorphism

d/e\g: él(SpecOK) —R. (1.1.3)
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Proposition 1.1.6. We have a group homomorphism
Div(SpecOg) — Pic(SpecOk), D + O(D), (1.1.4)

where for D = D¢+ Y. nglo], the Hermitian line bundle O(D) is defined to be (O(Ds), || - |l»)
with ||1]|, := exp(—ny) for the canonical 1 of O(Dy) (i.e. the divisor of 1 is Ds).
And this group homomorphism induces a group isomorphism

Cl(SpecOx) = f’i\c(Spec(’)K). (1.1.5)

The inverse of is called the arithmetic first Chern class and is denoted by ¢;.

By constructions, the group homomorphism is compatible with the forgetful maps
ISRI(SpecOK) — Div(SpecOf), D + Dy, and F/’i\c(Spec(’)K) — Pic(SpecOg), L +— L. Thus the
isomorphism is an extension of the natural isomorphism Cl(Of) =~ Pic(SpecOk).

Proof. 1t is easy to check that (| is a group homomorphism.

For any dlv( ) € Prm(Spec(’) K) it is not hard to check that the isomorphism a: Ospeco, —
O(div(«)) induces an isometry between the trivial Hermitian line bundle on SpecOx and (Ti;(a).
Thus we have a group homomorphism él(SpecOK) — f’i\c(SpecOK).

The inverse is defined as follows. For any £ € f/’i\c(SpecOK), let s be a non-zero rational
section of Lx and set

div(s) == div(s +Z—log” o) [o]. (1.1.6)

If we have two non-zero rational sections s and s, then s = as’ for some o € K*. Then
div(s) — div(s’) is a principal arithmetic divisor. Thus we obtain a group homomorphism

lsi\c(SpecOK) — él(Spec(QK), L+ &1\\/(3)
It is not hard to check that this is the desired inverse. O

Proposition 1.1.7. The following diagram of group homomorphisms commutes:

Cl(SpecOx ) —== Pic(SpecO) (1.1.7)
o n
R = R,

where the top arrow is the one induced by (1.1.4)).

Proof. By the definitions of the arithmetic degrees ((1.1.1) and Definition [1.1.5) and the in-
verse of the top arrow (|1.1.6), it suffices to prove the following claim. For any non-zero
s € H%(SpecOk, L), we have

# (HO(Spec(’)K, )/sOk) H# (O /p)dele
Write M := H°(SpecOf, £). Then for each p, the localization M, is a free Ok p-module of rank
1 and M/sOk ~ @®,M,/sOk ,. Thus the desired equality holds true. We are done. O

We finish this section by stating a lemma which compares ﬁi}(Spec(’)K) o~ él(Spec(’)K) and
Pic(SpecOk) ~ Cl(Ok). The proof is easy.
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Lemma 1.1.8. Let p1, ..., pr, be the real embeddings of K and 01,01, ...,0p,,0r, be the complex
embeddings. Then We have the following exact sequence:

1 e — O 285 gtz 4 Gl(SpecOy) — Cl(Ok) — 1,

where p s the group of roots of unities contained in K, logy is given by a — (log|o(a)|)s: K,
1 T2
¢ (ah cees Gy b1y abrz) = Zai[pi] + sz([gz} + [Ei])v
i=1 i=1
and Cl(SpecOk) — Cl(Ok) is the forgetful map.

1.2 Hermitian vector bundles on SpecOg

Hermitian vector bundles are higher rank generalizations of Hermitian line bundles, for which
there is a rich theory. In this course, we focus on: Even to study Hermitian line bundles on
SpecOg, it turns out to be sometimes helpful to study the more general Hermitian vector bundles
as will be shown in

Definition 1.2.1. A Hermitian coherent sheaf on SpecOy is a pair € := (€, - ||), where
€ is an Ok -module of finite type and || - || = {|| - llo }o: KsC is a collection of Hermitian metrics
|- |lc on each & == E @, C such that |le||s = ||e|lz for alle € € and all 0: K — C.

If moreover € is a projective O -module, then € is called a Hermitian vector bundle.

We define the rank of £, denoted by rk(€), to be the rank of £ as an Ox-module. A Hermitian
coherent sheaf £ on SpecOp is a Hermitian vector bundle if and only if £ is torsion-free.

The category of vector bundles on SpecOg is equivalent to the category projective Og-
modules of finite rank. Using this one sees that any Hermitian line bundle on SpecOf is a
Hermitian vector bundle on SpecOg.

Definition 1.2.2. Let £ and F be Hermitian coherent sheaves (or Hermitian vector bundles)
on SpecOg. A morphism o

p: &= F
is a morphism between the underlying projective O -modules such that ||p(e)|ls < |le|ls for all
o: K —Candallec&,.

Thus we can define the category of Hermitian coherent sheaves on SpecOg, and the full
sub-category of Hermitian vector bundles on SpecOy.

1.2.1 Several constructions on SpecOg

Short exact sequence Let £ be a Hermitian coherent sheaf on SpecOf.

Let F be a submodule of £ and consider the quotient &€ — G := £/F. The restriction of the
Hermitian metrics || - ||» to F, for each o: K < C gives rise to a Hermitian sub-coherent sheaf
F of €. The quotient metrics, i.e. for each o and each g € G,,

o= _inf flefo,

Hg’ e€€y, eg

define a quotient Hermitian coherent sheaf G of £&. We have a short exact sequence in the
category of Hermitian coherent sheaves on SpecOg

0F—>E—G—0.
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If F = Eior, then G is a Hermitian vector bundle.

Direct sum Let £ and F be Hermitian coherent sheaves on SpecOg. The direct sum € ® F
is defined to be (£ ® F,| - lle + | - |l). It is a Hermitian vector bundle if both £ and F are

Hermitian vector bundles. The rank is rk(&) + rk(F).

Tensor product Let £ and F be Hermitian coherent sheaves on SpecOg. The tensor product
£ ® F is defined to be (E® F, || - le| - l7). Tt is a Hermitian vector bundle if both € and F are

Hermitian vector bundles. The rank is rk(&)rk(F).

Dual and homomorphism Let £ be a Hermitian coherent sheaf on SpecOg. Its dual & s
defined to be (Y, |- ||V), where €Y := Hom(&, Ok ) and

follo += sup 1
2 el

for all 0 € Mg o and all v € EY.

It is a Hermitian vector bundle if € is a Hermitian vector bundle. The rank is rk().
More generally, let £ and F be Hermitian coherent sheaves on SpecOx. Then the homo-
morphism Hom(E, F) is defined to be &' ®F. It is a Hermitian vector bundle if both & and F

are Hermitian vector bundles. The rank is rk(&)rk(F).
Determinant Let £ be a Hermitian vector bundle on SpecOp of rank n. The determinant of

€ is defined to be det & := (A" &, || - ||aet), where for each o: K < C, the metric || - [|get,» is the
unique metric on (A" &), such that

Hel ASERA 6n”det,a =1

for any orthonormal basis {e, ..., ey} of the normed Euclidean space (&, || - ||+)-

Notice that the determinant is always a Hermitian line bundle on SpecOk. Now we can
define:

Definition 1.2.3. Let & be a Hermitian vector bundle on SpecO. The arithmetic degree
of £ is defined to be

deg(€) := deg(det E).

Let us look at the example and particularly important case where K = Q. Since the class
number of Q is 1, any projective module of finite rank is a free module. Consider a Hermitian
vector bundle €& = (&, || - ||). Let {v1,...,v,} be a Z-basis of £&. Then v := v; A --- A v, is a
Z-basis of det £ := A" €. Thus

— 1
deg(€) = log #(det £/Zv) — log ||v|| = —log ||v]| = —3 log det (h(vs,v5)),

where h(-,-) is the Hermitian form on &c, i.e. h(v',v’) = ||v/||? for all v/ € Ec.

On the other hand, let {eq,...,e,} be an orthonormal basis of Eg. Then we have an isomor-
phism &g — R™ with £ identified with a lattice in R™. Let covol(Eg/€) denote the co-volume
of this lattice, namely the volume of any fundamental domain of this lattice for the Lebesgue
measure on Eg.

For each i, we have v; = Zj aijej for some a;; € R. Then h(vi,v;) = Y axajr. Thus
det (h(vi,vj)) = det(A'A) = det(A)? for the matrix A = (a;;). Therefore we have

d/(%(z) = —log covol(Er/E). (1.2.1)
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1.2.2 Pullback, pushforward, norm

Let K C K’ be an inclusion of number fields, and f: SpecOgs — SpecOk the induced morphism;
then f is finite of degree d := [K' : K].

Pullback Let £ be a Hermitian vector bundle on SpecOp of rank n. Define its pullback f*&
as follows. First, set f*€ := & ®p, Ok; then f*E is a projective Ogr-module of rank n. Next,
for any embedding ¢’: K’ < C, its restriction to K (denoted by o) is an embedding of K into
C, and the canonical isomorphism (f*€) ®, C = £ ®, C gives the desired metric || - ||, on

(f*g)a’ = (f*S) ®q C.

Proposition 1.2.4. The pullback f* commutes with direct sums, tensor products, and taking

determinants. Moreover, - -
degf*€ = [K' : K]deg€.

Proof. The first claim is easy to check and we leave it as an exercise. To prove the second claim,
it then suffices to check for Hermitian line bundles.
Let ¢ € £\ {0}. Then

deg(&) =log #(£/t0k) — Y log|ltls = > ordy(6)log#(Oxcfp) — > log ]l

o: K—C pEMp 5 o: K—=C
Thus
deg(f*€) = > ordy(O)log #(Orr/p) = Y log|lt]s
pEMpr ol K'<sC
= > > ordy(O)log#(Oxr /p) = Y > log |[€]|
pEMy ¢ p'|p o: K—=Co'lo
Z d - ordy(¢) log #(Ok /p) — Z dlog ||4]|»
PEMKf o: K—C
= d - deg(&).
We are done. O

Pushforward Let £ be a Hermitian vector bundle on SpecOf: of rank n. Define its pushforward
£.€ as follows. First, the underlying projective module f,€’ is set to be &, viewed as an Ox-
module of rank dn which is again projective (locally free). Next, for any embedding o: K — C,
the tensor product Ok’ ®o,» C is canonically isomorphic to

@0/|0(C = @o/: K'—C, U‘"KZO‘C

Thus we have a canonical isomorphism

(fi€)o = € @040 C=E R0y, (Ox' ®0k.0 C) =D , Eb.

o|lo

Thus the desired Hermitian metric is given by: for any e = (e[,)),/o € (f+«&')o, set

HeHg = Zda’/aH@:ﬂH?ﬂ, (122)

ollo

where dg//, = 2 if o’ is a complex place and o is a real place, and d /o = 1 otherwise.
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Sometimes, it is more convenient to put a singular metric, by changing ([1.2.2) to

||e||maX,a = I}}/?f”d;/”a’- (1.2.3)

We denote by fmax,*? = (&€, - ||l max)-

Example 1.2.5. A particularly important case is when f: SpecOx — SpecZ is induced by the
inclusion Q C K (we changed our notation for this particular case). Let L be a Hermitian line
bundle on SpecOk. Then f.L is a vector bundle on SpecZ which must be trivial since the class
number of Q is 1. Under the identification of vector bundles and projective modules, this is
equivalent to say that H°(SpecOy, L) is a projective O -module of rank 1, and is free if viewed
as a Z-module. Moreover, we have

H(SpecOx, L) @7 C = @U: Ko L.
For any s = (s54)s € H°(SpecOy, L) ®7 C, we then have
[ ——
Set
H(SpecOxk, L)r := {5 = (55)s € H*(SpecOk, L) @7 C : s, = 55 for all o}. (1.2.4)
Then H°(SpecOy, L) is a lattice in H?(SpecOk, L)r, and ||:||max induces a norm on H°(SpecOf, L)g.

We will come back to this example later.

Norm of Hermitian line bundles Let £ be a Hermitian line bundle on SpecOfk+. We wish to define
the norm Normg, K(Z/) € Pic(SpecOf ), which corresponds to the pushforward of the arithmetic class
group (even though we have not defined what it means), i.e.

—/

fer(L') = & (Normg i (L))
for the arithmetic first Chern class ¢; (the inverse of (L.1.5)).

Let (U;) be an open cover of SpecOx such that L'|;—1(y,) is trivial for each i. Choose a section
e € HO(f~1(U;), L) which generates £ everywhere on f~!(U;). Then the line bundle £’ is represented by
the 1-cocycle (f;;) defined as follows: for each pair (i, ) and U;; := U;NU;, fi; € HO(f~1(Us;), OsxpecoK,)
is the unique invertible function on f~*(U;;) such that €; = f;je;.

The underlying line bundle Norm g /i (£’) is then defined to be the line bundle on SpecO determined
by the 1-cocycle Normg:, g (fi;), relative to the open cover (U;). It admits a canonical trivialization over
U; with generator Normpg/ (€;).

The Hermitian metrics are defined as follows. Let o: K < C. Then we have a canonical isomorphism

NormK//K(,C/)U = ® Elo./.

o’|o

This defines a canonical Hermitian metric on Norm g/ /g (L)

1.3 Positivity of Hermitian line bundles on SpecOjx

Let £ be a Hermitian line bundle on SpecOx.

Definition 1.3.1. The Hermitian line bundle L is said to be ample (resp. nef) if d/e%(Z) >0
(resp. deg(L) >0).
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We will prove a criterion for ampleness (Theorem [1.3.8]) which is the arithmetic version of the
criterion for ample line bundles over curves. For this we need to introduce the sets of effective
sections and of strictly effective sections of L.

Definition 1.3.2. Define
HO(L) := {s € H(SpecOx, L) : ||s||ls < 1, Yo},
ﬁIS(Z) .= {s € H(SpecOg, L) : ||s|ls < 1, Vo}.

Lemma 1.3.3. Both ﬁO(Z) and ﬁISO(Z) are finite sets.

Proof. Tt suffices to prove the result for H 9(L). By Example HO(L) is the set of lattice
points in H°(SpecO, £)r contained in the unit ball defined by the norm induced by || - ||max-
Thus it is a finite set. O

Definition 1.3.4. Define
hO(L) = log #HC (L),
hO(L) = log #HY(L).
By definition of arithmetic degree (T.1.1)), £ is ample if A%(Z) > 0 and is nef if h%(Z) > 0.
As indicated by the proof of Lemmall.3.3] we are interested in counting the number of lattice

points in a unit ball, both contained in a Euclidean space. In general this is not an easy task.
But there are tools in the theory of geometry of numbers which we can use.

1.3.1 Geometry of numbers

Consider the pairs M = (M, || - ||) where M is a free Z-module of finite rank of r > 1 and || - || is
a norm on Mr = M ®z R. Thus the natural map M — Mg makes M into a lattice in M. An
example is the one obtained from H®(SpecOx, £) and || - ||max from Example m

Set

HOM) :={meM:|m| <1}, nO(M) :=log #H(M);
H)(M) :={m € M : |m| < 1}, hO(M) = log #HY(M).

Minkowski’s First Theorem is a tool to prove the existence of a non-zero small lattice point, via
the quantity x (M) defined as below. Denote by B(M) := {m € My : ||m|| < 1} the unit ball in
Mpg. Fix a Haar measure on Mg and let

vol(B(M))

M) :=log ————"— 1.3.1
X(M) :=log covol(Mg /M)’ ( )
which is independent of the choice of the Haar measure. This is an arithmetic analogue of the
Euler characteristic. R

By Minkowski’s First Theorem, h®(M) > 0 if x(M) > rlog?2. The following is a quantitative

version:

Theorem 1.3.5. We have R
RO(M) > x (M) — rlog2. (1.3.2)

Moreover, there exists a non-zero m € M such that

M
—log||m|| = X(M) log 2.
T
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To prove Theorem [1.3.5, we use a common trick called Variational Principle in Arakelov
Geometry. For any real number ¢, set

M(c) = (M,e™|| - |])-

It is not hard to check that o o
(M (¢)) = x(B) + er.

Proof. Consider the universal covering
u: Mg — Mg/M.
For ¢ € R, there exists a point y € Mr/M such that
# (u'(y) N B(M(c))) > vol(B(M(c)))/covol(Mp/M).

Otherwise we would have vol(B(M(c))) < covol(Mg/M) - vol(B(M(c)))/covol(Mg /M).
Take mg € u~!(y) N B(M(c)). For any m € u~(y) N B(M/(c)), we have m —mg € M and
lm — mgl| < 2, and therefore m —mg € H°(M(c + log?2)). Hence

RO(M(c +1og2)) > log # (v~ (y) N B(M(¢))) .
The two inequalities above together with the definition of x(M/(c)) yield
hO(M (e +log2)) > x(M(c)) = x(M) +cr.

Thus we get ([1.3.2]) by letting ¢ = —log 2.
Now for any ¢ € R, we have

O(M(—c)) > x(M(—c)) — rlog2 = x(M) — rc — rlog 2.

Thus for all ¢ < x(M)/r — log 2, there exists a non-zero m € M such that e®||m|| < 1. In other
words, for any € > 0, there exists a non-zero me € M with

M
—log||me|| > X(M) —log2 —e.
r

Taking a sequence {€y},>1 decreasing to 0, the corresponding sequence {m,, },>1 takes finitely
many values since m,, are lattice points in a bounded ball. Thus we find an m € M with

—log||m|| > X(T]W) —log2 — e,
with €, — 0. It suffices to take n — oco. O
Proposition 1.3.6. We have
nO(M) < hO(M) < hO(M) + rlog 3.
Proof. We will prove the desired comparison by the following: For any ¢ > 0, we have
RO(M(—c)) < hO(M) < hO(M(=c)) + rc+rlog 3. (1.3.3)

In fact, the desired inequality follows directly from (|1.3.3)) by letting ¢ — 0.
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Let us prove We only need to prove the second inequality. For any ¢ > 0, set
B(t) :={m € Mg : H \ t} the ball of radius ¢ centered at 0. Then vol(B(t)) = t"vol(B(1)).

Notice that B(t) = B(M(logt)).

Now consider B(1 + 2 17 ¢). Let us also consider all the balls of radius 2_1 ~¢ centered at
points in M N B(1) = H° (M) all these small balls are contained in B(1+27"e~¢). Thus there
exists a point m € B(1 + 271e~¢) which is contained in N of these small balls, Wlth

HO(M) - vol(B(2 e~ S0
vol(B(1 4 2= 1e=c)) (14 2e°)"
Thus .
log N > h%(M) — r(c +log 3).
Let z1,...,2n5 be the centers of these small balls. Then z; — m € B(2_1e_c). Hence x; — 21 €

B(e™®) for all i. In particular we find N points in H°(M(—c)). Therefore we can conclude. O

1.3.2 Ampleness and nefness

Let £ be a Hermitian line bundle on SpecO¥x-. o
We relate Hermitian line bundles with the theory of geometry of numbers as follows. Let M =

(M, ||-1]) be the pair as in §1.3.1| obtained from H°(SpecOf, £) and || - ||max from Example
Then by definition, we have

H(L) = HO(M), 1O(L) = hO(M);
HY(L) = H)(M), hY(L) = hY(M).
We also set
X(L) = x(M). (1.3.4)

The following arithmetic Riemann—Roch theorem is not hard to prove.

Theorem 1.3.7 (Arithmetic Riemann—Roch over SpecOf). x(£) = degl + X(Ospecogs | - 1)-
Here | - | is the trivial norm on SpecOf .

Theorem 1.3.8. The followings are equivalent:
(i) L is ample,
(ii) WO(LZ™) > 0 for m > 1,
(iii) for any Hermitian line bundle M on SpecOp, we have EQ(ZW ® M) >0 for m > 1.

Proof. (iii) clearly implies (ii).
(ii) implies (i): Take a non-zero s € HSO(Z®m). Then by definition of arithmetic degree

(1.1.1)), we have cTéTg(Z(@m) > 0. But (T(%Tg(z®m) = md/e\g(Z) by Proposition m Thus L is
ample.
(i) implies (iii): By Theorem we have

X(LZ™ @ M) = mdeg(L) + deg(M) + x(Ospecorc | - |)-

Since d/e\g(Z) > 0, for m > 1 we have X(Z®m ® M) > [K : Q]log6. Thus iAL(S)(Z@)m M) >0
by Theorem and Proposition [1.3.6 ]



Chapter 2

Hermitian line bundles on projective
arithmetic varieties

In this chapter, we define Hermitian line bundles on arithmetic varieties, explain how to use them
to define the height machine, and discuss about their positivity (nefness, ampleness, bigness).

2.1 Review on complex geometry

2.1.1 Complex spaces (complex analytic varieties)

Definition 2.1.1. Let Q) be a connected open subset of C™ for somen > 1. A complex analytic
subset V of Q is the vanishing locus V.=V (f1,..., fm) of holomorphic function f1,..., fm on
Q.

For Q and V as in the definition, let Ogq be the sheaf of holomorphic functions on €2, and set

Ov :=(0q/(f1,---s fm)) v (2.1.1)

This makes (V,Oy) a locally ringed space. We call such pairs (V, Oy) local models of complex
spaces.

Definition 2.1.2. A complex space (or complex analytic variety) is a locally ringed space
(X,0x) where

- X is a locally compact Hausdorff space,

- Ox is a structure sheaf

such that (X, Ox) is locally isomorphic to a local model (V,Oy) defined above.
When the structure sheaf is clear, we by abuse of notation write X for the complex space.

With this definition, one can define morphisms between complex spaces, holomorphic func-
tions on complex spaces, etc.

Notice that complex manifolds are precisely complex spaces which are smooth. Moreover, for
any complex space X, its regular locus X*°8 is open and dense in X, and is naturally a complex
manifold. The singular locus X5 = X \ X8 is a closed complex subspace of X.

Definition 2.1.3. Let X be a complex space. A smooth function on X is a continuous
function f: X — R such that for any x € X, there exists an open neighborhood U, of x in X
and an analytic map i: Uy — Q (with Q open in C" for some n > 1) satisfying the following
property: i(Uy) is closed in Q and fly, = f|Z-(Uw) ot with f a smooth function on Q.

21
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2.1.2 Forms and currents

Let us start with the case of complex manifolds (smooth complex spaces) M.
We start with the real forms and currents. For each r > 0, let

A"(M) := space of smooth complex valued r-forms on M,

A (M) := spaced of compactly supported smooth complex valued r-forms on M.

The topology on A"(M) is defined using the following semi-norms (with s, 2, L varying for all
posibilities): For any 2 C M a coordinate open subset, and any compact subset L C  and any
s € Z>0, define the semi-norm

pi(u) :=sup max |[D%y(x)| (2.1.2)
zeL [I|=r, |a|<s

for any r-form uw = >, urdz; on Q. In other words, a sequence {u,} in A"(M) converges
to a form u € A"(M) if and only if the following holds true: for each compact subset of every
coordiante neighborhood, the sequence {u—wu,} and the sequences of higher derivatives converge
to 0 uniformly.

The topology on AL(M) is simply the sub-space topology induced by AL(M) C A"(M).

Definition 2.1.4. A current of dimension r on M is a complez linear functional T: AL(M) —
C which is continuous in the topology on AL(M) defined above.

We use D, (M) to denote the space of currents of dimension r, and
pdime M=r(Ary.— D (M). (2.1.3)
We call dimg M — r the degree of a current in this space. For T' € D, (M) and « € AL, write
(T,a) :=T(«a) € C. (2.1.4)

Example 2.1.5. (i) Let Z C M be a complex subspace of M with dim¢c Z = r. Then the

Dirac operator
Oz = (ur / u)
z

is an element in Do, (M).

(i) For any f € A"(M) with L}

ioc-coefficients, we have

Tf = (u — /Mf /\u) S DdimRM—r(M) = DT(M)

The map f +— Ty then makes A"(M) into a subspace of D" (M).
This explains the terminology of “degree” of a current: a degree r current can be written

as Zm:r wrdxy with each ur a distribution.

Next we separate the holomorphic and anti-holomorphic parts. For each » > 0, we have a
decomposition into (p, g)-forms A"(M) = B, ,—, API(M). Define

API(M) = API(M) 1 AT(M)
Dy o(M):={T € Dpq(M) : T(u) =0 for all u € AD°(M) with r # p} (2.1.5)
Ddimc M —p,dimc M_q(M) — Dp,q (M) .
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Example 2.1.6. (i) In Ezample[2.1.5 (i), we have furthermore
5Z c DT,T(M) _ DdimM—T,dim M_T(M).
If Z is a divisor, i.e. codimy;Z = 1, then we get a (1,1)-current §.

1) In Exzample [2.1.5, (ii), if we furthermore assume f € AP9(M), then Ty € DP9(M). Thus
f
f = Ty makes AP4(M) into a subspace of DP4(M).

Now we are ready to discuss the general case of complex spaces (X, Ox).
At each x € X, we have a local model (V,Oy) with € V closed in some connected open
subset €2 of C™ for some n > 1. Recall that Oy is a quotient of Og.

Definition 2.1.7. A smooth (p,q)-form on X is a smooth (p,q)-form a on X8 such that
for any x € X and the local model above, v extends to a smooth (p,q)-form on Q.

Let AR be the sheaf of smooth (p, g)-forms on X. Then on each local model V, we have
ARy = AB{u:i*u =0}

where ¢ is X™e NV CV C Q.

For each n > 0, define A% := P AR There are natural differential operators

p+g=n
0: ART — ARFLY 9 AR 5 ARTH
d=0+0: A% — A%

for all p,q,n > 0. We have 9% = 9° = d2 = 0 and thus 93 = —99. We furthermore introduce

c.__ 1 I
&= 5= (0-0). (2.1.6)

Then dd°¢ = Q@g.

Denote by AP?(X) := AR?(X). Denote by A??(X) C AP%(X) the subspace of compactly
supported (p, ¢)-forms. A (p, q)-form « on X is said to be closed if daw = 0.

Currents on X are defined in a similar way to the smooth case. We omit it here. The

differential operators above can also be applied to currents by considering the duality. More
precisely, d = 0 + 0 where
9: DP(X) — DPTh(X),  9: DP4(X) — DPIH(X)

are defined according to the formulae:

(T, o) == (—1)PTIHUT, da)  for all @ € ATWX—P=LdimX=q(x
(0T, ) := (—=1)PTITUT, Da)  for all a € AdmX—pdimX=g=1 )

A (p,q)-current T on X is said to be closed if dT' = 0.
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2.1.3 Positivity and the Poincaré-Lelong Formula

Definition 2.1.8. On an open subset Q@ C C", a (1,1)-current u = /—1) ujrdz; A dzy (with
each wj, a distribution) is said to be (semi-)positive if the associated Hermitian form & —
Yo wiké&y is (semi-)positivie on C™.

If each ujy, is a smooth function, then we recover the definition of (semi-)positive (1, 1)-forms.
Let (X, Ox) be a complex space.

Definition 2.1.9. (i) A smooth (1,1)-form on X is said to be (semi-)positive if locally it
is (semi- )positive.

(i) A (1,1)-current T € DY(X) is said to be (semi-)positive if locally it is (semi-)positive.

An equivalent way to define semi-positive (1, 1)-current is to use the duality: 7' € DY1(X)
is semi-positive if and onoy if T(n A7) > 0 for all n € AL~ 0(X).

Proposition 2.1.10. Let T € DV (X) be a closed (1,1)-current. Then T is semi-positive if and only if
locally T can be written as /—1001og |u| for some plurisubharmonic function w.

We end this section with the following result.

Theorem 2.1.11 (Poincaré-Lelong Formula for meromorphic functions). Let X be a complex
space and let f be a meromorphic function. Then as (1,1)-currents on X, we have
a

L = 2
?38108; |f]* = 5div(f)-

2.2 Hermitian line bundles in complex geometry

Let X be a complex space.

2.2.1 Hermitian metrics on holomorphic line bundles
Let L be a holomorphic line bundle on X.

Definition 2.2.1. A smooth (resp. continuous) Hermitian metric || || of L on X is the
assignment of a C-metric || - || to the fiber L(x) above each point x € X, which varies smoothly
(resp. continuously). More precisely, for any open subset U of X and any section s of L|y — U,
the function ||s(z)||? is smooth (resp. continuous) in x € U.

We call (L, || - ||) a smooth/continuous Hermitian line bundle on X.

Next we define the curvature form/current of the Hermitian line bundle L on X. We need
the following preparation. The line bundle L is determined by: (i) an open cover {U,} of X
with L|y, ~ U, x C, (ii) 1-cocyles {gos} which are nowhere-zero holomorphic functions on
U, NUg. The Hermitian metric corresponds to the collection (U, ha)a With hq: Uy — R,
with hglgas|? = ha on Uy N Ug; indeed hy, is || - ||? locally on Us,.

Now consider the (1, 1)-current —%85 log hy on Uy; if the Hermitian metric is smooth then
it is a (1,1)-form. Since hg|gag|> = ha on U, N Ug, we have log ha + log gas + logg,3 = log hg
for some local branch of log gog. But gns is holomorphic, so dlog gz = dlogg,s = 0. Thus

—%8510g ho = —%8510g hg on U, N Ug. In other words, these local (1,1)-currents patch
together to a (1,1)-current on the whole X, and it is a (1,1)-form if the Hermitian metric is

smooth. Sometimes we also use —@35 log || - || to denote this current.



2.2. HERMITIAN LINE BUNDLES IN COMPLEX GEOMETRY 25

Definition 2.2.2. The curvature current of (L, | - ||), denoted by c1(L,|| - ), is the (1,1)-
current on X defined above. It is called the curvature form if the Hermitian metric is smooth.

It is clear that ¢y (L, | - ||) is a closed since d =  + 0 and 9% = 9 =0.

Theorem 2.2.3 (Poincaré-Lelong Formula for Hermitian line bundles). As (1, 1)-currents, we
have

J—1 _
Cl(L7 || ’ H) = _Taalog ||8|| + 5div(s)
for any non-zero meromorphic section s of L.

Proof. Let s be a non-zero meromorphic section of L over X. Then s corresponds to (Uy, Sa)a
with sq: Uy — C with sq = gagsg. Then [|s| = V/halsa| on U,. Thus log ||s||> = logha +
log |s4|?. The conclusion then follows by definition of ¢1(L, || - ||) and Theorem [2.1.11 O

Definition 2.2.4. A Hermitian metric || - || on L is said to be (semi-)positive if c1(L,| - ||) is
a (semi-)positive current.

By Proposition [2.1.10} || - || is semi-positive if and only if the following holds true: For any local
section s of L which is everywhere non-vanishing over an open subset U of X, the function —2log ||s(x)||
is plurisubharmonic.

We close this subsection by stating the following results when X is projective, ¢.e. X is the
analytification of a projective variety.

Proposition 2.2.5. Let (L, || - ||) be a Hermitian line bundle on X. Then

(i) c1(L,|| - ||) represents the cohomology class of L in H*(X,C) under the natural map
HY(X,0%) —» H*(X,C);
(ii) we have

/X e (L] - DAY = dogy (X).

Moreover if X is furthermore smooth, then Kodaira’s embedding theorem asserts the follow-
ing: a holomorphic line bundle L on X is ample if and only if L has a positive metric.

2.2.2 Green’s functions

Let D be a Cartier divisor on X. Denote by |D| the support of D.

Definition 2.2.6. A smooth (resp. continuous) Green’s function gp of D over X is a
function
gp: X\ |D| =R

such that the following holds true: for any meromorphic function f over an open subset U of X

with div(f) = D|u, the function gp + log |f| can be extended to a smooth (resp. continuous) on
U.

We say that such a function gp has logarithmic singularity along D.
It is well-known that line bundles and Cartier divisors are closely related. The correspondence
can be extended to:
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1. Given a smooth/continuous Hermitian line bundle (L, || - ||) on X, for any meromorphic
section s of L on X, we obtain a pair

div(s) := (div(s), - log s])
with —log ||s|| clearly a smooth/continuous Green’s function of div(s) over X.

2. Conversely given a pair (D, gp) consisting of a Cartier divisor and a smooth/continuous
Green’s function, we can associated a smooth/continuous Hermitian line bundle (O(D), || -
llgp) where || - ||4, is defined by ||spl|4, := €797 for the canonical section sp of O(D) (i.e.
diV(S D) = D)

By this correspondence, we can make the following definitions.

Definition 2.2.7. The Chern current of the pair (D, gp), where gp is a Green’s function of
D over X, is defined to be c1(O(D),| - |gp). We denote it by c1(D, gp).

Definition 2.2.8. A Green’s function gp of D over X is said to be (semi-)positive if ¢ (D, gp)
is a (semi-)positive current.

We close this subsection by stating the following Stokes’ Formula which allows logarithmic
singularity.

Theorem 2.2.9. Let X be an irreducible projective complex space of dimension n. Let o be a
closed (n —1,n — 1)-form on X. Let L, M be Hermitian line bundles on X. Letl (resp. m) be
a non-zero rational section of L (resp. of M) such that their divisors intersect properly. Then

| oz 1er(37) - /{div(m)]aognzn)az | oz lmlper () o~ /[divm]“‘)g”m"“ (2.2.)

and both equal

2/ (dlog ||I]|) A (d°log ||m]|) A c. (2.2.2)
X\(|div(D)]uldiv(m)])

Here the divisors in (2.2.1]) are the Weil divisors, and the integrals on div(l) and on div(m)
are induced from those on prime Weil divisors by linearity. The supports of the divisors in

(2.2.2)) are supports of Cartier divisors.

2.3 Height via Hermitian line bundles on arithmetic varieties

2.3.1 Hermitian line bundles on projective arithmetic varieties

Definition 2.3.1. An arithmetic variety is an integral scheme X which is flat, separated,
and of finite type over SpecZ. It is said to be (quasi-)projective if the structure morphism
X — SpecZ is (quasi- )projective.

From an arithmetic variety X', we obtain a complex space
X (C) := Homgpecz (SpecC, &),

with the complex conjugation acting on X (C) via its action on SpecC. Moreover, if X — SpecZ
factors through SpecR for an order R in a number field K, then X(C) =[],. x,c X-(C), with
X (C) = HomSpeca(K) (SpecC, X).

Let X be a projective arithmetic variety.
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Definition 2.3.2. A Hermitian line bundle on X is a pair L = (L,|| - ||) consisting of a
line bundle £ on X and a Hermitian metric || - || of L(C) on X(C) which is invariant under the

complex conjugation, i.e. ||s(x)|| = ||s(Z)|| for all local sections s of L and all x € X (C) at which
s is defined.

We make the following assumption on the Hermitian metric || - ||: it is the quotient of two
semi-positive metrics (called integrable). This automatically holds true for smooth metrics, by
using the Fubini-Study metric which will be introduced in (3.1.1)).

We can also define the group of isomorphism classes of Hermitian line bundles on &', which
will be denote by Pic(X). The identity element is the trivial Hermitian line bundle, the multi-
plication is the tensor product, and the inverse is the dual.

Definition 2.3.3. (i) An isomorphism (or isometry) between two Hermitian line bundles
L=(L| ) and L = (L, ||-|I') on X is an isomorphism i: £ — L' such that ||| = i*|-||'.

(ii) The trivial Hermitian line bundle on X is defined to be Oy := (O, |- |) where | -| is
the usual absolute value.

(iii) The tensor product of two Hermitian line bundles £ = (L, | - ||) and £ = (£, | -|") on
XisCLOL =Ll -1
(iv) The dual of a Hermitian line bundle £ on X is defined to be L = (LY, - 11Y), where
LY :=Hom(L,Ox) and || - ||V is the dual metric.
We also have the definition of arithmetic divisors.

Definition 2.3.4. An arithmetic divisor on X is a pair D = (D, gp) consisting of a Cartier
divisor D on X and a Green’s function gp of D(C) on X(C) which is invariant under the
complex conjugation, i.e. gp(x) = gp(T) for all x € X(C) \ |D(C)|.

A principal arithmetic divisor is of the form

div(f) := (div(f), ~log|/])
where f € Q(X)* is a non-zero rational function on X.

We make the following assumption on the Green’s function gp: it is the quotient of two semi-
positive Green’s functions (called integrable). This automatically holds true if gp is smooth, by
the result for Hermitian line bundles and Proposition below.

We have the following groups, where the group laws are clear:

]SR/(X ) := {arithmetic divisors on X'},
P/rﬁ(é\,’ ) := {principal arithmetic divisors on X'},

Cl(X) := Div(X)/Prin(X).
Proposition 2.3.5. We have a group homomorphism
Div(X) — Pic(¥), D = (D.gp) O(D) = (O(D),]|- |I) (2.3.1)

where || - || is defined by ||sp|ly = e™9P with sp the canonical section of O(D) (i.e. div(sp) =
D). Moreover this group homomorphism induces a canonical isomorphism

~

CL(X) = Pic(X). (2.3.2)
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Proof. The proof is similar to Proposition Let us write down the inverse map 151\(:(2( ) —
CI(X). For each £ = (L, || - ||), let s be a non-zero rational section of Lg and set

div(s) := (div(s), — log ||s|)- (2.3.3)

Then the inverse is £ &R/(s) O

2.3.2 Height machine via Hermitian line bundles

Let X be a projective variety over @, and let L € Pic'(X). Then X and L are defined over
some number field K, with X — SpecK the structural morphism.

Definition 2.3.6. We say that a pair (X, L) is an arithmetic model of (X, L) over O if

(i) X is an integral model of X, i.e X is an integral scheme, projective and flat over SpecOf,
such that X = X Xgpeco, SpecK =~ X (notice that X is naturally an arithmetic variety
via Z C Ok );

(ii) L is a Hermitian line bundle on X extending L, i.e. Lyx ~ L under the identification

Fix an arithmetic model (X,L) of (X,L) over Og. Let us construct the height on X
associated with (X, L), denoted by
hz: X(Q) — R (2.3.4)

as follows.

Consider a point z € X(K’) with K'/K a finite extension. Then z: SpecK’ — X. The
valuative criterion of properness thus gives rise to a unique morphism Z: SpecOg: — X such
that the following diagram commutes:

SpecK' —= X = X

L,

SpecO X

where the vertical maps are induced by the inclusions O C K’ and O C K.
Define

hs degz*L. (2.3.5)

1
]

Definition-Lemma 2.3.7. Let K"/K' be a finite extension. Let To: SpecOgn — X be the
morphism determined by x € X (K"). Then

—— _ 1 —_— —
degZ L = ————degz L.

[K'": K] [K": K]

Thus hz(z) in ([2.3.5) extends to a well-defined function X(Q) — R, which is the desired height
function (2.3.4).

Proof. This follows easily from Proposition the definition of the arithmetic degrees of arith-
metic divisors on SpecOg and on SpecOg» (Definition , and the fact that ) Mo €0/v0 fooo =
[K" : K'] with (in the sum) vy € M the place below v. O
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Example 2.3.8. Let (X,L) = (PV,0(1)) be defined over Q, and take the arithmetic model
(X,L) = (IP)JZV,W) with the metric on O(1) as follows: For each s = apXo+ ...+ anXn €
HO(PN,0(1)), set

lapzo + ... + anzN]|

max{|xol, ..., |zxN]|}

Is(@) =

for any x = [xg: .2 axy] € PN(C). Then it is not hard to check that hm is precisely the Weil
height on PN (Q).

Proposition 2.3.9. For each arithmetic model (X, L) of (X, L) over Ok, the function hz is a
height function associated with (X, L).

Proof. We start by showing that hz — hz, is bounded on X(Q) for any two arithmetic models
(Xl,zl) and (XQ,ZQ) of (X, L). Let X be the Zariski closure of

A
X =X XSpecKX — Xl XSpecOx XQ.

Write f;: X — AX; for the i-th projection. Then by definition we have h L= hz. for i € {1,2}.
On the other hand, ffL; — f;Ls is trivial on the generic fiber X = Xx. Thus hfl*zer*Zz is

bounded on X (Q) since we can take the global section to be 1 in the computation of deg. Hence
hz, =hz, = hyrzy — Mgz, = Pz gz,

is bounded on X (Q).

So the conclusion of the proposition does not depend on the choice of the arithmetic model.
By linearity/additivity, we may and do assume that L is very ample on X, i.e. there exists an
embedding i: X < P¥ such that i*O(1) ~ L. Then i extends to i: X — ]P’gK for the Zariski
closure X of X in }P’gK. Then the conclusion follows from Example We are done. O

2.4 Self-intersection of Hermitian line bundles on arithmetic va-
rieties
2.4.1 Review on intersection of line bundles in algebraic geometry

Let X be a projective variety defined over an algebraically closed field k. Let Pic(X) be the
Picard group, i.e. the isomorphism classes of line bundles on X.

Definition 2.4.1 (multiplicity in complete intersection). Let R be a noetherian local domain of
Krull dimension n. For fi,..., fn € R\ {0} such that |div(f1)| N --- N |div(fn)| has dimension
0 in SpecR, define

ordr(fi,..., fn) =lengthrR/(f1,..., fn).

By linearity, this definition extends to, for K = Frac(R),
ordp: (K*)" = Z

for fi,..., fn € K* such that |div(f1)| N ---N|div(f,)| has dimension 0 in SpecR.
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Definition 2.4.2. Let Dy, ..., D, be Cartier divisors on X which intersect properly, i.e. |D1|N
- N |Dy| is pure of codimension r in X. Define the r-cocycle of X

Dy---D, = Z ordoy,, (D1,...,Dp)[Y],
Y CX integral
codimxY=r

where ny is the generic point of Y.

Notice that when r = 1, the right hand side is just the Weil divisor associated with D;. To
distinguish Cartier and Weil divisors, we use [D] to denote the Weil divisor associated with the
Cartier divisor D.

On the other hand, for » = dim X, we can furthermore define the degree of D;--- Dgim x to
be

deg(D1 s -DdimX) = Z OI‘d(QX’P (Dl, ey DdimX)-
PeX(k)

Lemma 2.4.3. Let d =dim X. Let Ly,..., Ly € Pic(X). There exist rational sections s; of L;
on X for each i € {1,...,d} such that div(sy),...,div(sq) intersect properly.

~

Notice that div(s;) € Div(X) is mapped to L; under Div(X) — Cl(X) = Div(X)/Prin(X) —
Pic(X), where Div(X) is the group of Cartier divisors on X and Prin(X) is the subgroup of
principal Cartier divisors.

Definition 2.4.4. Let d = dim X. The intersection pairing

Pic(X)? = Z
1s defined to be define
L1 s Ld = deg(div(sl) cee diV(sd)) (2.4.1)
for the rational sections si,...,8q obtained from Lemma where the right hand side is

Definition [2.4.2 with r = d.

Lemma 2.4.5. The intersection pairing Pic(X)? — Z can equivalently defined inductively as
follows. When d =1, it is the composite

Pic(X) = CI(X) = Div(X)/Prin(X) 2% z.
For general d > 2, we have

Li-+Lg=Y miLily, -+ La-1ly, (2.4.2)
7

where Y, m;[Y;] is the Weil divisor for any rational section sq of Ly on X.

Proof. When d = 1, this is immediately true by the discussion below Definition [2.4.2
For general d > 2, by multi-linearity (definition of ord) we can reduce to the case where
Li,..., Ly are all very ample. Then both sides of (2.4.2) equal

dimg Ogiy(s;)n--ndiv(sq)

for some global sections s; € HY(X, L;) such that dim |[div(s1)|N---N|div(sg)| = 0, and div(s1)N
---Ndiv(sg) is the scheme-theoretic intersection in X. We can replace s4 by any rational section
(which is fsg for some f € K(X)*) since Ly---Lg_1-Ox = 0. O
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Proposition 2.4.6 (Projection Formula). Let f: X' — X be a surjective morphism of projective
varieties over a field. Assume dim X' = d. Then for any Ly, ..., Lq € Pic(X), we have

f*Ll tee f*Ld = deg(f)L1 cee Ld.
Here we use the convention that

0 if dimX < dim X’

deg(f) = {[K(X/) K(X)] if dimX = dim X"

As suggested by (2.4.2)), it is convenient to define the intersection pairing restricted to integral
closed subschemes of X. Let Y be a closed subvariety of X of dimension r, and let Lq,...,L, €
Pic(X). Define

Ll"'Lr ‘Y = L1’y~~-LT’y.

By linearity, this definition extends to a map
Pic(X)" x Z,(X) = Z (2.4.3)

with Z,(X) the group of r-cycles on X, i.e. the abelian group generated by integral closed
subschemes of X of dimension r. In stating the Projection Formula, it is then convenient to
introduce

fe: Zo(X") — Z,.(X), (2.4.4)
where for Y’/ an integral closed subscheme of X we have

0 if dim f(Y") < dim Y’

HED= {degw' < JOD] A dim f(¥) = dim Y,

In particular, if f: X’ — X is generically finite, then f.([X']) = (deg f)[X].
2.4.2 Top intersection number of Hermitian line bundles on projective arith-

metic varieties

Let X be a projective arithmetic variety, with X — SpecZ the structural morphism. Now we
turn to the intersection theory of Hermitian line bundles on X.

Definition 2.4.7. An integral closed subscheme Y of X is said to be:
(i) horizontal if Y is flat over SpecZ (notice that Y — 7 is then surjective),
(ii) vertical if the image of Y — SpecZ is a point.

Let n+1 = dimX. Let Z,.(X) be the group of r-cycles on X, i.e. i.e. the abelian group
generated by integral closed subschemes of X of dimension r.

To define the arithmetic version of the top self-intersection, we start with the definition of
the arithmetic degree for n = 0. When n = 0, we have X = SpecR for some order R of a
number field K. If R = Ok, then the we have the arithmetic degree cTe\g: f’i\c(SpecOK) - R
from . For general R, we take the same definition with Ok replaced by R.
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Definition 2.4.8. Define the intersection pairing
Pic(x)"*! 5 R
and, more generally (forr <n+1)
Pic(X)" x Z,(X) = R,
as follows.

(i) When n =0, this is precisely d/e\g. Forn>1and Ly,...,Lpy1 € ﬁi\c(z’\,’), define

£1 te »Cn—i-l = Zl N -Zn . [diV(S,H_l)] - / © log H8n+1H01(Zl) e Cl(zn), (2.4.5)
X(C

with s, an arbitrary rational section of L,+1 on X (and [div(s,+1)] is the Weil divisor);

(ii) For L1,...,L, € 151\(:(2() and an integral closed subscheme Y of X of dimension r, define
Ly--- L, Y inductively on r according to:

(a) If Y is horizontal, then set
Lo LoV =Ty Tl (2.4.6)

(b) If Y is vertical, then the image of ¥ — SpecZ is (p) for some prime number p and
hence we view ) as a scheme over SpecF, (and hence over SpecF, ). Set

Ly Ly Y= (Laly - Lrly)logp. (2.4.7)

Theorem 2.4.9. The pairing P/’i:(X)”H — R is well-defined, multi-linear and symmetric.

Proof. Take s; to be a rational section of £; such that div(sy),...,div(s,1) intersect properly in X. Set

El - -Zn,1 . (Tl:l(sn) . d/i;(snﬂ) = Zl . 'Zn,1 (le(Sn) . diV(8n+1))

—/ mm%m@nmq@wn—/ log [smsaller(Z1) - 1 (Cn)-
[div(sn+1)](C) X(©)

By induction on n, we then get the definition of (TR/(sl) e cTi;(an) and have
Ly Losr = div(sy) -+ - div(spg)-

By Stokes’ Formula (Theorem [2.2.9)), we have

o~ o~

Ly Lot div(sy) - div(spi1) = L1 L1 - div(sns1) - div(ss).

Thus we obtain - B L B B B B
‘Cl"'ﬂnfl 'Ln'£n+1 :‘Cl"'ﬁnfl '£n+1 £n

This proves the symmetry by induction on n. The multi-linearity then follows easily. Moreover, the
symmetry and induction on n implies that £y - - - £,,-div(f) = 0 for all f € K(X)*. Hence well-defined. [

We also have the Projection Formula for the arithmetic case.

Proposition 2.4.10. Let f: X/’\—) X be a morphism of projective arithmetic varieties. For
V'€ Z.(X") and Ly, ..., L, € Pic(X), we have

Ly L, - D}’] =Ly L, - f*[y’]’
where fy: Z.(X') — Z.(X) is defined in the same way as in the geometric case (2.4.4).
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2.5 Positivity of Hermitian line bundles on projective arith-
metic varieties

2.5.1 Review on nef and big line bundles in algebraic geometry

Let X be a projective variety defined over a field k, and let L € Pic(X). Let d = dim X.

Definition 2.5.1. The line bundle L is called nef (numerically effective) if L - C > 0 for any
closed subcurve C C X.

In fact, if L is nef, then L4™Y .Y > 0 for any irreducible closed subvariety Y of X. Thus,
nef line bundles are the boundary of the cone of ample line bundle because, by the criterion of
Nakai-Moishezon, L is ample if and only if L4™Y .Y > 0 for any irreducible closed subvariety
Y of X.

Use the symbol + to denote the binary operation on the group Pic(X) (so L + L' means
L® L'). For n € Z>1, write nL for L¥". Denote by h®(nL) := dimy H(X, nL).

Definition-Lemma 2.5.2. The limit
d!
vol(L) := lim —h%(nL)

n—o0 N

exists, and is called the volume of L.
Definition 2.5.3. The line bundle L is said to be big if vol(L) > 0.
Both definitions are stable under base change, i.e.

Lemma 2.5.4. Assume k C k' is an inclusion of fields. Then L is a nef (resp. big) line bundle
on X if and only if Ly is a nef (resp. big) line bundle on Xy .

In height theory, if we have a big line bundle L on X, then by definition there exists a global
section s of nL on X for some n > 1. Thus the height function hj, has a lower bound outside
|div(s)| by “Lower Bound” of Proposition In fact, in algebraic geometry, we furthermore
have:

Theorem 2.5.5. The line bundle L is big if and only if mL = A+ O(E) for some m > 1, some
ample line bundle A and some effective divisor E on X.

Here are two important theorems to check the bigness of certain line bundles under suitable
nefness assumption.

Theorem 2.5.6 (Hilbert-Samuel). Assume L is nef. Then vol(L) = L¢.
Theorem 2.5.7 (Siu’s inequality). If L and M are nef line bundles, then
vol(L — M) > L% —dL4 ™t . M.
In particular, if L is nef and big, then mL — M is big for m > 1.

If £k = C and L carries a smooth Hermitian metric || - ||, then we can use the curvature
form ¢1 (L, || -||) to check the nefness and bigness. Indeed, in this case for any irreducible closed
subvariety Y of X, we have

LdimY-Y: Cl(LaH . ”)/\dimY’
Yreeg(C)

where the integral is on the regular locus of Y (or equivalently, the desingularization of Y and
then take the pullback of ¢1(L, || - ||)). Hence we have:

(i) Lis nefif ¢;(L, | -]|) > 0;
(ii) if c1(L, || - ||) > 0, then L is big if and only if c1(L, || - |[)¢ # 0.
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2.5.2 Arithmetic volumes

Let & be a projective arithmetic variety. Let n 4+ 1 = dim X'
Let £ € Pic(X) be a Hermitian line bundle. Define
HYX, L) :={s € H (X, L) : ||5]lsup < 1}, (2.5.1)
where |[s[lsup = sup,ex(c) |s(z)]| is the usual supremum norm on H°(X, £)c.

The proof of the following lemma is important, especially the construction of the real Eu-
clidean space H°(X, L) (which generalizes Example [1.2.5)).

Lemma 2.5.8. H'(X L) is a finite set.

Proof. The structural morphism X — SpecZ factors through SpecR for an order R in a number
field K, such that the generic fiber Xk is irreducible. We have

0 _ 7o _ 0
HO(X, L)c = HO(X(©), L) =), H'X,.L,)
with X, = Homgpeco () (SpecC, X') and L, defined similarly. Set
HY(X,L)r = {5 = (55)0 € H'(X,L)c : 8, = 55 for all o}. (2.5.2)
Then || - ||sup induces a norm on H(X, £)g, and H*(X,£) = H*(X, L) N B(L) with
B(Z) = {s € H'(X, L)g : |slloup < 1}.
So H°(X, L) is the set of lattice points contained in the unit ball, which is a finite set. O
Notice that we are again back in the context of Geometry of Numbers discussed in §1.3.1]
with M = Ho(X, £) and || * ||sup-

Now define
RO(L) := log #H’(X, L). (2.5.3)

Elements in HO(X, £) are usually called small sections or effective sections (we will explain this
second terminology at the end of this section).

Definition-Proposition 2.5.9. The sup-limit
- RO(NL)
1(L) :=1i —_
VOlL) = ol Nk (4 1)
exists, and is called the (arithmetic) volume of L.

In practice, it is not easy to count the number of lattice points. Instead, here is a number
which approximates this number in an asymptotic way and is easier to handle. Fix any Haar
measure on H°(X, £)g, and set

vol(B(L))

covol(HO(X, L)g/HO(X, L))’
which is independent of the choice of the Haar measure (not hard to check). The quantitative
version of Minkowski’s first theorem (Theorem [1.3.5)) then yields

h'(L) > x(£) — h"(Lg) log 2. (2.5.5)
Thus we can make the following definition:
Definition 2.5.10. The x-volume of L is defined to be the sup-limit

S X(NL)
L (L) =1 —_—
vob(L) := TSP s 4 )

(2.5.5) furthermore implies that vol,(£) < vol(L).

(2.5.4)

X(L) :=log
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2.5.3 Arithmetic nefness, bigness, and ampleness

Let X be a projective arithmetic variety, and let n + 1 = dim X.

Definition 2.5.11. A Hermitian line bundle L = (L, |- ||) € F/’l\c(X) is said to be:
(1) nef if

(i) er(L, ] - 1) = 0;
(ii) L-Y >0 for any integral 1-dimensional subscheme ) of X.

(2) weakly ample if L is nef and Lqg is ample.

—dim Y

(3) ample if L is weakly ample and L - Y > 0 for any integral subscheme Y of X.

Definition 2.5.12. A Hermitian line bundle L = (L,] - ||) € I/)I\C(X) is said to be big if

vol(L) > 0.

In height theory, suppose (X, £) is an arithmetic model of (X, L) with X a projective variety.
If theHermitian line bundle £ is big, then by definition there exists a global section s of NZ on
X with [|s][sup < 1 for some N > 1. Thus the height function h; is bounded below by 0 outside
the generic fiber of |div(s)|, by the definition of hz (2.3.5)). Thus instead of having only a lower
bound, we have positivity.

Theorem 2.5.13 (Arithmetic Hilbert-Samuel). Assume L is nef. Then vol(L) = yoiany

Theorem 2.5.14 (Arithmetic Siu). Assume £ and M are nef Hermitian line bundles on X.
Then

vol(£ — M) > "

—(n+1)L"- M.

Indeed, both theorems still hold true with vol replaced by vol,. For vol, and for weakly
ample £, the Arithmetic Hilbert-Samuel Formula is a consequence of Gillet-Soulé’s arithmetic
Riemann—Roch theorem and an estimate of analytic torsions by Bismut—Vasserot (with refine-
ment by Zhang); a direct proof was later on given by Abbes-Bouche. For vol and £ ample,
the Arithmetic Hilbert—Samuel Formula by Zhang by furthermore using his arithmetic Nakai—
Moishezon theorem. Moriwaki extended these results to nef Hermitian line bundle (with con-
tinuous metrics). Arithmetic Siu is a result of Yuan.

In the next chapters, we will present the proof of Abbés-Bouche of the Arithmetic Hilbert—
Samuel Formula.

We close this section with the following discussion on the effectiveness of arithmetic divisors.
Let D = (D, gp) be an arithmetic divisor on X.

Definition 2.5.15. We say that D is effective (resp. strictly effective) if D > 0 and gp > 0
(resp. D >0 and gp > 0).

Recall that O(D) is the Hermitian line bundle on X with the metric || - | determined by
|lspll = e97. Thus if D is effective, then h°(O(D)) > 0. Conversely, if a Hermitian line bundle
L on X satisfies h°(L£) > 0, then there exists a non-zero s € HY(X, £) such that |s(z)|| < 1 for
all z € X(C), and hence the arithmetic divisor ch:f(s) = (div(s), —log||s||) is effective.

For this reason, we sometimes call elements in H(X, L) effective sections, and say that L is
effective if h°(L) > 0.
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Chapter 3

Preparation on analysis for the proof
of Arithmetic Hilbert—Samuel

The goal of this chapter is to discuss about some analytic tools and results which will be used
to prove the Arithmetic Hilbert—Samuel Theorem (for which we follow the approach of Abbes—
Bouche) in the next chapter.

3.1 Distortion function

3.1.1 Fubini—Study metric

Let X be a connected complex manifold of dimension n, endowed with a smooth Hermitian
metric (i.e. a J-invariant positive-definite Hermitian inner product h(-,-) on Tx where J is the
complex structure on X). This Hermitian metric induces a positive (1,1)-form w = —Imh on
X, and hence a volume form dV := w”"/n! on X. Notice that h can be recovered from w and
J via the formula h(u,v) = w(u, Jv) — v/—1w(u,v).

Definition 3.1.1. Such a complex manifold X is called ¢« Kahler manifold if w is closed.
If X is a Kéhler manifold, we usually call w its Kdhler form.

Example 3.1.2. For X = P", the Fubini—Study metric is defined as follows. We have the
standard projection C" 1\ {0} — P" by viewing P" as the space consisting of all complex lines
in C"*t1. The standard Hermitian metric on C"*! defines the following (1,1)-form on P

N/ —1 —
Wrs = ?&'ﬂogﬂzop + -4 |Zn|2)

with (29, . .., 2n) the standard coordinate of C"1. To see this, consider any open subset U C P"
such that natural projection admits a lifting Z: U — C"t1\ {0}. Thenany other lifting Z'
differs from Z by a non-zero holomorphic function f, and hence ddlog|Z'|> = ddlog|fZ|* =
00log | Z|* + 0dlog(ff) = 0log|Z|*. Thus the local (1,1)-forms 00log|Z|?, with U varying,
patch together to a global (1,1)-form, which is exactly (27 /v/—1)wrs.

Notice that dwpg = 0, i.e. wpg is closed.

To see that wrs is a positive (1, 1)-form, it suffices to prove that it is positive at one point since
w is invariant under the group action of U(n+1) on P (which is transitive). Use {wy, ..., wy}

37
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to denote the standard coordinate on the open subset Uy := {29 # 0} C P", i.e. w; = zj/20.
Then

V-1 (Zde' ANdw; Qo widws) Ao w; A dwj)) ’

2T 1+ Z wW;W; B (1 + Z ijj)Q

which is g YodwjAdwj at [1:0:---:0]. Thus wrs is positive.
By the discussion above, wrs defines a Hermitian metric on P™, which is called the Fubini—
Study metric.

J_1 _
wrs|u, = ?8810g(1 + ij@j) =

By Example the analytification of any smooth quasi-projective variety is a K&hler
manifold.

Another way to see the Fubini-Study metric on P” is as via a suitable Hermitian metric ||-||rs
on Opn (1) as follows. The coordinate functions Xy, ..., X, form a basis of H°(P", Opn(1)). At
each point x = [z¢ : -+ - : x,| € P, define for a global section s = apXo + -+ + ayxy

|aga;0 + -+ aNxN\
() s := 3
Vol -+ Jzal

Then one can check that ¢1(Opn (1), || - ||Fs) = wrs.

(3.1.1)

3.1.2 Distortion function

Let X be a compact Kéhler manifold. Let L be a line bundle on X, endowed with a smooth
Hermitian metric || - || which is positive, i.e. ¢1(L, || - ||) is a positive (1,1)-form on X. By the
Kodaira embedding theorem, L is an ample line bundle on X (and hence X is projective). Now
for each k > 0, denote by kL := L¥* V}, := H°(X, kL) the space of holomorphic sections of kL
on X, and

D X — P(V,)), x+— Hy={o€V;:0(x)=0} (3.1.2)
Then @, is a closed immersion with @};O]}D(Vk\/)(l) ~ kL for all k> 1.

On kL, we have the natural Hermitian metric || - ||z, which is the metric of (L, | - [)®*. On
the other hand, we have the Fubini-Study metric on (’)p(ka)(l) as defined by . Thus its
pullback via @ defines a Hermitian metric on kL, which we call || - ||;rs.

Thus on kL, we have two Hermitian metrics: || - || and || - ||zrs.

Definition 3.1.3. The k-th distortion function is
€117

€1 3es

bp: X — R, T

for any & € (kL)y \ {0}
Here is a more explicit expression of the distortion function. On Vj, we have the L?-norm
defined by

Is]22 = / Is@)|2dV  for all s € Vi, = HO(X, kL).
X
Then Vj, is canonically isomorphic to V,, by sending v + (v, —) 2 for the inner product deter-

mined by the L2-norm. Let s1,...,sy be an orthonormal basis of V}, = H°(X, kL) for this L%
norm. Then it is not hard to compute that ®i(z) = [si(x) : -+ : sy(x)] under Vj = 695\7:1 Cs;.

Then [|¢][Fes = (Is1(@)[F + -+ lsn (@) 1) 7HIENE by B-LI). Thus

N
be(x) =) lls;(@)|E. (3.1.3)
j=1
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3.1.3 Main result on the distortion function
The main result about the distortion function is the following:

Theorem 3.1.4. The function (bk)l/k converges to 1 uniformly on X. Namely for any e > 0,
there exists ko such that |by(2)Y* —1| < € for all k > ko and all z € X

In other terminology, the Fubini-Study metric on L flattens uniformly into the initial metric

We shall prove a more precise version of this theorem. For the statement we need to introduce

the following notion. Locally on X we can find a suitable complex coordinate (z1,...,z,) of
X such that: (i) w = @Zyzl dz; A dz; (in other words, %(dzl,dfl...,dzn,dén) is an
orthonormal frame of T% with respect to the Hermitian metric), (ii) the (1, 1)-form ¢;(L, || - ||)

equals @ > i—y aj(z)dz; A dz; with a;(z) > 0.

Definition 3.1.5. The functions a1, ..., ay are called the eigenfunctions of ¢ (L, || - ||) with
respect to w (or with respect to the Hermitian metric on X ). The determinant is defined to be
the smooth function on X

detei (L] - ) = a1+ .

Theorem 3.1.6. When k — oo, the function

by,
k™ det er(L, || - [])

converges to 1 uniformly on X.

Theorem implies Theorem immediately.

3.2 Proof of the main theorem on the distortion function via
heat kernel

Let X be a connected compact Kéahler manifold of dimension n, and let dV' be the volume form
on X. Let L be a line bundle on X, endowed with a smooth Hermitian metric || - ||.

3.2.1 Anti-holomorphic Kodaira Laplacian and Harmonic forms

For any k > 1, denote by A%4(X, kL) the space of smooth global (0,q)-forms with values in
kL := L (i.e. global sections of (T%9)* @ L&¥). If ¢ = 0, notice that A%0(X, kL) is precisely
the space of smooth (real) sections of kL over X.

The Hermitian metric on X and the Hermitian metric on L together induce a Hermitian
metric on (Ty?)*® L which we denote by || ||.q- Then we can endow A%4(X, kL) with norms,
for example the L?-norm

1/2
lollze == (/X ua(a:)r\i,qdv) . Vo e AM(X,kL).

Each such norm defines a sesquilinear pairing (-,-), on A%4(X,kL). Denote by Lg(X ,kL) the
completion of A%4(X, kL) with respect to the L2-norm. It is a Hilbert space.

The differential operator 0: (T)O(’q)* — (T;)(’qﬂ)* induces a differential operator 0 ,: A% (X, kL) —
A%t (X kL). And Jy, has an adjoint gzgc A%t (X kL) — A%9(X, kL) with respect to the

. . a a*
given norms, determined by (O qu, u')g+1 = (u, Oy ju'),-
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Definition 3.2.1. The anti-holomorphic Kodaira Laplacian is
,l;q = gkvq—lg;’;,q—l + 52,(]51%‘1

with the first term being 0 if ¢ = 0.
A smooth (0, q)-form u is called @ harmonic form if A} u = 0.

In our case, we are interested in the operator

— 2
Op = 700 (3.2.1)

Notice that Ker(j, = KerAY .

The cohomology of the Dolbeault complex - -- — A%Y(X, kL) KN A% (X kL) — --- gives
H%(X, kL) ~ H1(X,Q% ® L®*) = HI(X,kL).
We state the following lemma without proof (the proof is not hard).

Lemma 3.2.2. A 0-closed form v € A%4(X,kL) is of minimal norm in u + Imd if and only if
du=0.

This lemma (formally) implies that the Dolbeault cohomology group H"4(X, kL) is repre-
sented exactly by solutions of two first-order equations

Ou =0, g*u:(),

which can be replaced by the single second-order equation

%7qu =0.

Thus we have
HY(X, kL) ~ KerA{ , = Ker[J}.

In particular if ¢ = 0, then this realizes H°(X, kL) as the subspace Kerig of A%0(X kL).

In general, we have an L2-orthogonal decomposition
A%(X, kL) = Kerd), @ Imdy g1 ® Imdy, ;.

Recall that X is compact. We state the following (special case of a) theorem on the spectrum
of any self-adjoint elliptic operator which is semi-bounded.

Theorem 3.2.3 (Spectral theorem). The operator Of has discrete spectrum (of eigenvalues)
0=M< A< <Ap<r =0

and there exists a corresponding orthonormal basis consisting of smooth eigenforms {ip,}, i.e.
Optbm = Amtm for non-zero .

In general, this theorem can be applied to any self-adjoint elliptic operator P which is semi-
bounded (i.e. (Pu,u)r2 > —c|lul|3, for some fixed ¢ € R) and with 0 replaced by —c.
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3.2.2 Heat kernel associated with the anti-holomorphic Kodaira Laplacian

We shall assume the following proposition which claims the existence of the heat kernel, which
is our main tool to prove Theorem [3.1.6

Proposition 3.2.4. The operator EZ admits a smooth (heat) kernel e} (t,x,y), uniquely deter-
mined by the following properties:

(i) It is a smooth function on Rsg x X x X taking values in End(( D)* @ LR,
(ii) (% +Og)el = 0 with O, acting on the x-variable.
(i) el (t,x,y) — &y (Dirac function) when t — 07.

More concretely, (ii) and (iii) mean the following: For each wg(x), there exists a unique
smooth solution u = u(t, z): Rso x X — End((Ty%)* © L®*) to the heat equation

which can be obtained as

u(t,:r)—/XeZ(t,x,y)uo(y)dy. (3.2.2)

We sometimes call ef (¢, 2, y) the fundamental solution of (% +0k)u = 0. Tt is known that under
the eigenbasis given by Theorem [3.2.3] we have

Htwy) =Y e () @, (1),

m>1

We shall be interested in the diagonal of the heat kernel, which for simplicity we denote by

el(t,x) :==ef(t,z,x) Ze A4y (z2)

(3.2.3)

for the L?-orthonormal eigenbasis (), ) given by Theorem here we abuse the notation
since there can be more than 1 eigenforms for each .

The following theorem is the main theorem on heat kernel expansion and is of fundamental
importance. We state the theorem without proof.

Let aq,...,a, be the eigenfunctions of ¢1(L, || - ||) with respect to the Hermitian metric on
X. For any multi-index J, set @y 1=} ;5 a; — > ey oj. Define

Zlleq et (@)

ego(t, SC) = 011(13) e Ozn(:E) Hn (etaj(x) _ e*taj(ff)) )
j=1

(3.2.4)

Theorem 3.2.5. There exists a real number € > 0 with the following property. When k — oo,
the function k"€l (t, ) converges to el (t,x) uniformly with respect to x € X and t € (0, k*).
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3.2.3 Application to the proof of Theorem [3.1.6

Let us prove Theorem by using the results on heat kernel above.
Let (A, 1)) be an L?-orthonormal eigenbasis for the operator ﬁz from Theorem Recall
that H(X, kL) is precisely the subspace Kerﬁg of A%°(X kL). Thus

Ze Ma(@) 17,0 = be(@) + e la@)lRo (3.2.5)

A>0

where the second equality follows from (3.1.3)).
We will study the asymptotic behavior of e} (¢, z) and of €D (¢, z)—by(z) = Y- o0 e ||[¥r(z) ”2,0
separately.

By Theorem with ¢ = 0, we get

n

et ) = al(x)~--an(a:)H ; L

§ gy E™ + o(E™)
7j=1

(&

uniformly in # € X and in t € (0, k*¢) for a fixed e. Taking t = k¢ — oo, we get
eQ(kS, ) ~ ay(x) - an(z)k™ (3.2.6)

On the other hand for each A > 0, we have e_t)‘/QHw,\(:U)H%’0 < el(t/2,z) by (3:2.5). Thus

Zef”\lwx Hko < e(t/2,x) Zeft/\ﬂ (3.2.7)

A>0 A>0

Lemma 3.2.6. Let A > 0 be an eigenvalue of ﬁg. For any eigenfunction vy associated with X,
the (0,1)-form Oy, is an eigenform for ﬁ,lg associated with .

Sometimes we say that the positive spectrum of ﬁg injects into the positive spectrum of ﬁ,lg.
Notice that this lemma immediately implies that 0y = 0v)) if and only if 1) = .

Proof. We have iﬁw = M. Applying 9 to both sides, we get 99 Ohy = (k/2)A01py. Thus
71 — —
O (01)) = AOwy. _ B

It remains to show that 0v¥y # 0. Suppose 0v¥y = 0. Then ) is a holomorphic function
on X, and hence is constant since X is compact. But then Egzm = 0, so ¥y = 0, which is a
contradiction. O

These (0, 1)-forms 9 are still orthogonal to each other, but they do not necessary have
L?-norm 1 (and hence should be normalized).

By Lemma and (3.2.3), we have

5 2
Zeft)\Halﬁ)\(kal e,{:(t,x).
=5 el

Integrating on X and by the definition of the L?-norm, we get

Zet)‘</ ek (t,x)dV. (3.2.8)

A>0 X
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Now (3.2.7) and ({3.2.8]) together yield
> e PMatallt < chit/2,a) [ ehte/2.0av. (329)
X

A>0

By Theorem with ¢ = 1, we get

R 1 1
ellf(t’ .’L’) ! (x) o Oén($) Z e2tay(z) _ 1 H 1— 672taj/(x) K"+ O(kn)
J=1 J'#i ‘

uniformly in z € X and in t € (0,%%). Set ag := 2inf;, a;(z) > 0. Then ei(¢,2) is uniformly
bounded above by Ce™@!k™ for some real number C' > 0. Letting t = k¢, we get

(k< /2, ) / eL (kS /2, 2)dV < Ce—o0k 2n
X

which converges to 0 uniformly in € X when k — oo. Thus by (3.2.9) we have

Z e_ke/\||¢,\(:n)|\%70 — 0 when k — o (3.2.10)
A>0

uniformly in x € X.
Let ¢t = k€ in (3.2.5)), Theorem immediately follows from (3.2.6)) and (3.2.10)). O
3.2.4 Application to a lower bound of the smallest non-zero eigenvalue

Lemma 3.2.7. Let ug be the smallest non-zero eigenvalue of ﬁg on X. Then

limkinf Wi = Qg

where ag = 2inf; ; aj(z) > 0 for the eigenfunctions ai,...,an of ci(L, || - ||) with respect to the
Hermiatian metric on X.

Proof. By (.2.8), we have e~ < [, ¢} (¢,2)dV. By Theorem with ¢ = 1, we get that
e,lg(k:e, x) is uniformly bounded above in x € X by Ce™®!k™ for some real numbers C' > 0 and

€ > 0 by the argument as above. Thus e < Ce™ @ k" Taking the log of both sides and
letting £ — oo, we can conclude. O

3.3 L2-existence

Let X be a connected (not necessarily compact) Kéahler manifold of dimension n with Kéahler
form w, and let dV,, = w""/n! be the volume form on X.
Let L be a line bundle on X, endowed with a smooth Hermitian metric || - ||.

3.3.1 Setup

Denote by A??(X, L) the space of compactly supported smooth global (p, q)-forms with values
in L (i.e. global sections of (T%?)* ® L which are compactly supported). The Hermitian metric
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on X and the Hermitian metric on L together induce a Hermitian metric on (T%7)* ® L which
we denote by | - |p4 Then we can endow A??(X, L) with the L?-norm

1/2
ol = ([ lo@Raan) . voeazx.o)
X

This norm defines a sesquilinear pairing (-, )72 on AP4(X, L).

Denote by L2 (X, L) the completion of A??(X,L) with respect to the L?-norm. It is a
Hilbert space.

Let A := A, be the adjoint of the operator wA: AP9(X, L) — APTH7T (X L) with respect
to the L?-norm. Then we have a differential operator

Ay = 2mer(Ly || - [N, A] = 2mer (L, || - ||) A oA — Ao 2mey (L, || - |)A (3.3.1)
on APY(X L) for all p,q > 1.

Example 3.3.1. Consider X = C™ with the standard metric, and L = Ox with the trivial
metric (i.e. (Ox,| -||) is the trivial Hermitian line bundle on C"). Then w = 2mwci1(Ox, || -||) =
@ > i—1dzj Adz;. For each j, denote by e;: APY(C™) — AZTY(CM) the operator dzjA (resp.
g ADY(C™) — APITH(C™) the operator dZjA). Then their adjoints satisfy e5(dzgNdZy) =0 if
jéJ and e;(dzj NdzyANdZy) = 2dz; ANdZp (since the length of dzj is 2), and E;(dZJ/\dZJ/) =
04 j & J and Ej(déj ANdzy ANdzZy) = 2dzy AdzZy. In this case, wA = @Eeﬁj and
= —@ Y.eje;. Thus A, = %Z(Ejéj —ejej).

Also we have d =Y 0;e; = > €;0;, where 9;(Y frpdzygAdzy) = ag%j/ dzyAdzy. Then

9 =-Y 0.

We need to extend the differential operators d and A, to Lqu (X, L). First, notice that A,
extends to an operator on the whole L2 (X, L) because both 2mei(L, || - [[)A and A, do. Next,
the differential operator 9: A9(X, L) — A29"1(X, L) then has an adjoint " : AP (X, L) —
ARY(X, L) with respect to the L2-norm. Let domd C Laq(X, L) consist of those u for which du,
computed in the sense of distribution (i.e. using (Qu,v)2 := (u,d v) 2 for all v € AP (X L)),
is in Lg,q 4+1(X, L). Similarly we can define domd".

3.3.2 Classical L2-existence

Theorem 3.3.2 (Classical L2-existence). Assume X is geodesic complete for the Riemannian
metric determined by w.

Assume that the operator A, is positive definite everywhere in L§7q(X, L). Assume p > 0,
g>1andue€ le)’q(X, L) satisfies Ou = 0 (in the sense of distributions) and (A u,u) 2 < oo.

Then there exists f € Lg,qq(Xa L) such that f = and || f||3. < (A5 u, u)rz.

We shall assume the following lemma, which is an easy application of the Bochner-Kodaira—
Nakano identity (which itself is an easy computation via the Hodge identities).

Lemma 3.3.3. For any v € APY(L) with ¢ > 1, we have

190]|72 + 1107 0]|72 = (Awo, v) 2.
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Proof of Theorem[3.3.4 Both Kerd and Im@" are closed subspaces of L2 (X,L). General theory

of Hilbert spaces gives the orthogonal decomposition Liq(X ,L) = Kerd & Imd".
Denote for simplicity by C := (A, u) 2 < co. Consider the linear functional

Imd" C L2 (X,L) = C,  Jve (v,u)pe. (3.3.2)
We shall prove that the norm of this linear functional is bounded by v/C, i.e.

2 e~
% <C  forallvedomd . (3.3.3)
10" 0]z
We start with v € flg’qul(X ,L), and write v = v; + v2 according to the decomposition
Lqu(X , L) = Kerd & Imd". Then Lemma applied to v1 implies

107 0] 72 = 10701172 = (Awvr,v1) 2.
On the other hand, Cauchy—Schwarz yields
(v, w) 2] = [{o1,0) 2 [* < (Awvr, v1) 2 (A, w) 2.

Thus holds true for all v € AT (X L).

To claim for all v € domg*, we need to use the geodesic completeness of w. Indeed,
under this assumption, the Andreotti—Vesentini lemma says that Ag’qul(X , L) is dense in Imd"
(for the graph norm of 8", i.e the graph norm of v is ||v||z2 + |0 v||2), and hence we can

conclude for ((3.3.3).

Thus we can apply the Riesz representation theorem to the continuous linear functional

(3.3.2) to conclude that (3.3.2) is represented by an element f € szq_l(X ,L) of L?>norm

<V, i.e. (v,u)2 = (D v, f)2 for all v € domd . Therefore df = u as distributions. We are
done. O

3.3.3 Hormander’s L2-existence theorem

Theorem 3.3.4. Assume X carries a Kdhler form @ such that X is geodesic complete for the
Riemannian metric determined by @.

Assume cy(L, || - ||) > 0. Assume ¢ > 1 and u € L}, (X, L) satisfies du = 0 (in the sense of
distributions) and (A u,u) 2 < 0o.

Then there exists f € Lgl,q—l(X’ L) such that 8f = u and || f||2, < (A5 u, u)re.

Remark 3.3.5. (i) A particularly important case for which X carries such a complete Kahler
form @ is as follows: X = X'\ Z where X' is a compact Kahler manifold and Z is an
analytic subvariety.

(i1) Since ci(L, || - ||) > 0, locally on X we can find a suitable complex coordinate (z1,. .., zp)
of X such that: (i) w = \/T—TZ;;:1 dz; A dzj, (i) the (1,1)-form ci(L,| - ||) equals
@Z;‘:l aj(z)dz; A dzj with aj(x) > 0. By the computation from Ezample |3.3.1), we

have then A, = %Z] ozj(éjéj — e;-ej), which simplifies to gzj ajeje; for (n,q)-forms

(this is why we are constraint to (n,q)-forms!). Thus A, is positive definite.

With this observation, we shall reduce Theorem [3.3.4] to Theorem [3.3.2] using the following
monotonicity result.
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Proposition 3.3.6 (Monotonicity). Assume X has two Kdhler metrics w,w’ such that W' > w
pointwise. Then for any positive (1,1)-form B, we have

|2 dVy < Jul2dV,, (18, Awlu, w2, dViy > ([B, Awlu,u) 2 ,dVi,
for all (n, q)-form w.

Here is a brief explanation on the proof of Proposition [3.3.6] The conclusion can be checked locally,
and hence it suffices to check for X = C”, w the standard Kéhler form, and v’ = (v/—1/2) > v;dz; AdZ;
for v; > 1. The proof is then a direct computation.

Proof of Theorem[3.53.4 For every € > 0, set w, := w + ew. Since ¢1(L, || - ||) > 0, we can apply
Proposition to B =2mcy(L,] - ||) and to w and W’ = w, to get that u is L? with respect to
we and

<A;€1u, U>L2,wE < <A;1uv U>L2,W'

It is known that w, is complete (because @ is), i.e. X is geodesically complete for the
Riemannian metric determined by w.. The argument of Remark (i) shows that A, is
positive definite. Thus we can apply Theorem to the Kéhler manifold (X,w.). So we

obtain an f. € L? (X, L) (with L? with respect to w.) satisfying 0fc = u and || fc[|%. v, <
(Ajtu,u)rz2 . In particular, the family (f) is locally bounded in the L?-norm, and hence we

can extract a weal limit f in L2 . (locally L?-coefficients), which is the required f. O

3.3.4 Weighted L?-existence

To prove the L?-extension theorem in the next section, we need a fancier version of Hérmander’s
L?-existence theorem by introducing weights on the operator A,,. Let us explain this.
Let n,A: X — Ry be smooth functions. Define

Byaw = [(m2mer (L, || - ||) = V—180n — V—=1X"1oy AOn) A, Ayl (3.3.4)

Theorem 3.3.7. Assume X carries a Kdhler form & such that X is geodesic complete for the
Riemannian metric determined by @.
Assume that the (1,1)-form n2mer (L, || - ||) — V/=100n — /—=1X"10n A On is positive.
Assume ¢ > 1 and u € L%’Q(X, L) satisfies Ou = 0 (in the sense of distributions) and

<B;/1\,MU7U>L2 < 00.
Then there exists f € L2 (X, L) such that f = u and
foP f 2 »
< -y < .
H Vi A ? N2+ X2, T 2<B777>\,wu7u>L2

The proof follows the same line as Theorem [3.3.4, The extra information needed is the
following estimate: For all (n, ¢)-forms u, we have

(B, 3wt w)zz < |2+ N0 ul[7 |1 27

-1

AW
We close this section with the following variant of Theorem [3.3.7] which applies to singular

Hermitian metric on L, i.e. in the following theorem we do not assume the Hermitian metric

| - || on L to be smooth in contrast to the general setting of this section.

Theorem 3.3.7". Assume that X is compact. Assume that the Hermitian metric || - | on L is
smooth outside a proper analytic subset Z of X. Assume that the (1,1)-form n2mci(L,| - ||) —
V—=100n — /=1IX"10n A On is positive on X \ Z.

The conclusion of Theorem[3.3.7 still holds true in this setting.
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Proof. By a result of Demailly (c.f. “Estimations L? pour opérateur O d’un fibré vectoriel
holomorphe semi-positif au-dessus d’une variété kihlérienne compléte”), X \ Z carries a Kahler
form for which X \ Z is geodesic complete. Hence we can apply Theorem to X \ Z to
get an L2-solution f. Then f extends to the whole X by a lemma of Demailly (Lemma 6.9 of
loc.cit.). O

3.4 L’-extension

Let X be a connected compact Kéhler manifold of dimension n with Kéhler form w, and let
dVx ., = w"™/n! be the volume form on X.
Let Kx := A" T% be the canonical line bundle on X.

Theorem 3.4.1 (L?-extension). Let L be a line bundle on X, endowed with a smooth Hermitian
metric || - ||.

Let Y be the zero of a holomorphic section s € HY(X, Lo) of another Hermitian line bundle
(Lo, || - llo) on X. Assume c1(L,|| - ||) — (1L + 0)c1(Lo, || - llo) > 0 for a positive rational number
d>0.

Then for any f € HO(Y,L + Kx), there exists F € H(X,L + Kx) such that F|y = f and

/ QHF—”QQdVX,w < 72-3271'/ HfHZdVYM. (3.4.1)
x |Isllg(log |ls[lo) y lldsllg
Here we use the following abuse of notation: use || - || (resp. || - |jo) to denote the Hermitian

metric on L 4+ Kx induced by || - || on L and w on X (resp. on Lo ® T% induced by || - ||o on Lg
and w on X). Moreover, ds induces a vector bundle isomorphism T /Ty — Lg along Y, and
hence is a section of ((T'x|y)/Ty)* ® Loy (~ Oy) C T% ® Ly.

Remark 3.4.2. There are more general versions of L?-extension. One can replace the line
bundle Ly by a vector bundle of rank r (and hence Y has codimension r) and modify the as-
sumptions accordingly. The Hermitian metric on Ly does not play an important role. We refer
to Demailly’s paper “On the Ohsawa—Takegoshi-Manivel L? extension theorem”.

In the proof of arithmetic Hilbert—Samuel, we will take L to be L' — Kx and L to be (1/N)L’
for a very ample line bundle L' and an integer N > 1.

The whole section is divided into steps of the proof of Theorem [3.4.1

3.4.1 Construction of a smooth extension foo and truncation
By partition of unity, we can find a smooth section
Fro EC®(X,L+Kx) = A%(X,L + Kx) ~ A"(X, L)
such that
(i) fooly = f,
(i) Ofoc =0o0n Y.

Since we do not know about foo far away from Y, we will consider a truncation ﬁ of foo with
support in a small tubular neighborhood ||s||o < € of Y as follows. Take a bumping function
0: R — [0, 1] satisfying the following properties: 6 is smooth, |#'| < 3 and

0(t) {1 fort <1/2

0 fort>1.
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For € > 0 small, consider the truncation

fe 1= 0(e2sl[5) foo-
Then f.|y = f, and f(z) =0 for all € X with ||s(z)]|o > e.

3.4.2 Construction of weights
We make use of the standard subharmonic function
o = log(||s]|2 + €2). (3.4.2)

and the following inequality (we omit this computation using the Chern connection and Lagrange
inequality) to compute the twisted curvature:

V—=1090. > /-1 Is H 806/\8 s H 16 s2mer (Lo, || - [lo)- (3.4.3)
0 0

Recall that ||s||3: X — R is a smooth function. Hence

e = supyex [|s(2)§ < oo (3.4.4)

since X is compact. We may rescale the metric |- ||o so that o € (0,1/0), because the conclusion

(3.4.1)) is unchanged under this operation.
Let xo: (—00,0] = (—00,0], t — t —log(1 —t). Then 2¢t < xo(t) < t, 1 < x; < 2, and

Xo(t) =1/(1—t)%.
Let 1. := € — xo(0¢). Then 1 > € — log(e™2* + €2). For € > 0 small enough, we thus have
Ne > 2. We can compute

—00n. = x((0e)000 + X0 (0c)doe A Do, OMe N One = xp(0e)?00c A Do
Let Ae := x4(0c)?/x0(0c). Then
Y _185776 Y _1)\;18776 /\5776 =V _1X6(Ue)8506

for which we have a lower bound from (3.4.3)).

We are interested in the metric on L defined by ||-||||s||o 2, for a reason which will be explained
in the next step. By the Poincaré-Lelong formula (Theorem , we have /—1901og ||s||3 >
—2mey (Lo, || - |lo) with equality on X \ Y. So on X \ Y, we have that

O(L, e, ) :=ne2mer (L, || - llsllg™) — V=100 — vV=1A"One A One
>2a(2mci (L, || - |) = 2mer (Lo, || - lo)) — V=180n — v/ =1\ '0ne A Dne

s 2
z2w(2ac1<L,||-||>—<2a+xg<ae>wgﬂ|[%”i)é>cl<Lo,||-||o>> I e AT
v (L) - 0+ Do ] -I) + VT, ST A

€2 =
Zﬁmane A One (3.4.5)

is positive, where the last inequality follows from « € (0,1/9) and the assumption that ¢ (L, || -
II) = (L +6)ci(Lo, | - |lo) > 0. Notice that Example then implies

2
B = [O(L, 6, )\, M) > —————— (DA o (D A)* (3.4.6)
XQ(JG)HSHO

as an operator on (n, q)-forms.

0776 A 5776
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3.4.3 Estimate the partial derivative

Next we wish to construct a holomorphic extension from the smooth extension ]A”; For this
purpose we wish to solve the equation du. = 0f., with the constraint uely = 0, so that fe — ue
will be a desired holomorphic extension. Our tool to solve this differential equation is the
L?-existence theorem discussed in the last section (notice that df. is a d-closed smooth (n,1)-
form). Since codimY = 1, the extra constraint u|y = 0 will be satisfied if ||uc||||s||y* is locally
integrable near Y. This is why we change the metric on L to be | -||||s|ly 2. Notice that this new
metric is singular along Y, so we need to apply the version of Theorem for the L?-existence.
We start by computing 8f.. Observe that 1 + € 2||s]|3 = e 2e%. Thus we have

0f = 20 (2 |slI)Dlls§A foot0(e 2 1518)Dfoe = (1€ 2[slI)0 (2| 15) e foo (e > [113)D ox

Both terms on the RHS have supports in ||s]jo < e.
The first term, which is the main term, can be written as

g = (L2 YsllR)e (2 slE)xb(oe) ™ Ine A foo.

To estimate (B! £1), g£1)> 12, notice that (3.4.6) implies

/ ad)lls 2
e, ) = |, @) < o @n) ol = bl (@) @), ) < X000 200 0.

Thus by letting v = BZ1(0n. A u) = B;lggl) and u = (1 + 6_2HsH%)H’(e_z||S||(2))X6(a€)_1foo,
pointwise on X we get

(B g, 9M) < Nslige (1 + e 2l1s13)%6 (e lIsl13) I foo 1 < 36 foo

because x((€) > 1 on Suppg6 C{llsllo < €}. So

(B g™, V) 1 /X (B9, M) 5|52V < 36 / 1 FoolPl1sl15 2V .

l[sllo<e

When € — 04, this integral becomes

S /Y 1£121ds g 2dVv-

Thus
timsup (5197, gV} 12 < 36 87 [ sl Vo
Y

e—0Tt

The second term on the RHS in the expression of 5}; converges uniformly to 0 on every compact
set when ¢ — 07 and hence has no contribution in the limit. More precisely, write gg ) =
0(e~2||s]|2)0f~. Then g = O(||slo) since foo|y = 0. Thus (B 1", ¢ 2, (¢, B-1gP) 2,

<Bglg£2),g£2)>L2 are O(¢€) because they are all integrals over ||s|lo < e. Hence

limsup(B.'0f.,0f.) 2 = limsup(B. ' (g +¢@), gV 4¢3 2 < 36-87 / 1£112]|ds]lg 2dVyre < oo.
Y

e—0t e—0t



50 CHAPTER 3. PREPARATION ON ANALYSIS

3.4.4 Conclusion by L*-existence
Apply Theorem to the Hermitian metric || - ||[|s]g? on L, Z =Y, ¢ =1 and u = df.. We
then obtain g. such that dg. = Jf. and

lgel*lIsllg®

dVy,, <728 2|\ dsllg2d Vi
[ avy, < 72w [ 1Plasl v,

In particular, g.ly = 0 since ||g||?||s|lg? is locally integrable. Set

F. ::]?e_ge-

Then F, is an L%-extension of f to the whole X such that OF., =0 on X \ Y.
We have 7. = e —xo(0¢) > e—0c and A\ = (1—0¢)?+ (1 —0.). Thus nc+Ae > 02 —4do+2+¢
with o = log(||s]|2 + €2). So

el llsllg
— dVyy < —
X Met A Ko = (log 6)2

because f; is uniformly bounded with support in ||s|lo < €. Therefore, by using [t + u|> <
(14 K)[t? + (1 + k1) |u|?, with k = |loge|, we obtain

”15||2 -1 / 2 -2 -1
dVx ., < (14 |loge 72 - 87 ds||g“dVy, + O(|loge .
. TRl Ve < (1 hogel =727 | 1Pl *avy + O(logel ™

Similarly we can show that || F¢||z2 is bounded above by a constant independent of € (when € > 0
is small enough). Thus we can extract a weak limit F' of the family {F.}.. Then

|7 [ Wil
a5 dVx ., < 72327 ds dVy .
. Tt T y 17 sl "V

It remains to prove that F' is holomorphic. Since we are applying Theorem toq=1,
ge s smooth (because 9 is elliptic in bidegree (0,0)). Hence F. is smooth. Notice that 9F, = 0
on X \Y. So F¢ is holomorphic on X \ Y, and hence is holomorphic on the whole X because F¢
is L? near Y. Therefore the weak limit F' is holomorphic. We are done. O



Chapter 4

Proof of Arithmetic Hilbert—Samuel

With the preparation in the previous chapter, we prove the arithmetic Hilbert—Samuel theorem
for vol,, and L in the following setup in this chapter. We follow the approach of Abbes-Bouche.
Let K be a number field and let Ok be its ring of integers.
Let X be a projective arithmetic variety of dimension n+ 1 and let £ be a smooth Hermitian
line bundle. We furthermore consider the case where X — SpecZ factors through SpecOg and
that the generic fiber X is smooth and irreducible.

Theorem 4.0.1. Assume L is very ample on X and c1(L) > 0. Then
. x(kL) —nt1
lim ———————— L 4.0.1
Fovoo k1) (1 + 1) (40.1)
when k — 00.

In other words, the sup-limit in the definition of vol,(£) (Definition [2.5.10)) is an actually

limit under the assumption of the theorem, and vol, (L) = piany

In the proof, we will use the Hilbert—Samuel theorem in algebraic geometry. Let P be the
Hilbert polynomial of Lx on Xk, i.e. P(k) = dim H°(Xg,kLg) for k > 1. Tt is known that
deg P = n with leading coefficient L7, /n!.

4.1 Framework of the proof

4.1.1 Revision on the statement

We start by recalling the objects appearing in the statement of Theorem
First we have the embedding

0— H(X, L) = HY(X, L)R, (4.1.1)

with HY(X, £)g a real vector space of finite dimension defined in (2.5.2)) and H°(X, £) a lattice.
In fact, the structural morphism X — SpecZ factors through SpecR for an order R in a number
field K, such that the generic fiber X is irreducible, and

HY(X,L)g = {s = (s0)s € H'(X,L)c = P HY(X,,L,) : so = 55 for all o}.

o: K—C
We shall use the sup-norm on H°(X, £)r defined as follows:

- For any s = (s5)s € HY(X, L)R, define ||s|lsup := sup, sex, (|55 (2)])).

o1
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Set B(L) to be the unit ball in H(X, £)g defined by the sup-norm || - ||sup. Then

vol(B(L))

X(£) := log covol(H(X, L)r/H(X, L))

(4.1.2)

is independent of the choice of the Haar measure on H°(X, £)g. This finishes the explanation

of the limit in (4.0.1)).

We also need to define an L2-norm on H°(X, L) for the proof of Theorem For this,
consider the positive (1,1)-form c; (£) on X(C) =[], X,. For each o: K < C, the positive
(1,1)-form ¢1(L,) is a Kédhler form on &,. We normalize it to

Cl(z )
fX Cl r /\n/nl)l/n

which is still a K&hler form on X, and the volume of X, for the associated volume form dV is
1.

Wy 1=

Now we define the L?-norm on H°(X, L)g to be:
- For any s = (s,), € H*(X, L), define |s||;2 := sup, (S, Ils( x)||2dV,) /2.

It is a fundamental question in Arakelov Geometry to compare the sup-norm and the L2-
norm. We shall prove later on, using the distortion function discussed in the following
result.

Proposition 4.1.1. There exists a constant ¢ > 0 such that for all N > 1 and all s € H°(X, kL),
we have
Isllzz < lsllsup < P (k)25 2.

In fact, this ¢ can be chosen to be \/SUPxeX((C) br(x)/P(k), where by, is the distortion function.

Theorem |3.1.6| guarantees ¢ > 0.

4.1.2 A tale of three volumes

Consider the embedding (#.1.1). We shall define three volume forms on H°(X,kL)r for each
k>1:

(i) V)]asup such that the volume of B(kL) has volume 1;

(ii) V§ ;2 such that the volume of the unit ball in H(X,kL)g defined by the L?-norm || - || 12
has volume 1;

(iii) V)]f—’a for each real number o € R defined below by Definition (which we will call
77](?,04)7 with M = @kzo HO(X, ]C,C)

A key point to prove arithmetic Hilbert—Samuel is to compare V)? sup with V)? , and the compar-
ison is done via VX 12- The statements of these comparisons and their consequence on arithmetic
Hilbert-Samuel will be discussed in the next subsection.

In this subsection, we give the definition of VX o We start by defining the following gener-
alization of the arithmetic Euler characteristic in the context of geometry of numbers.
For any M a finitely generated Z-module of rank r > 1, define for each volume form 7 on My
(i.e. an element n € detr(Mpg)) the following

x(M,n) := —log(covol, (Mg /M)) + log(#M;or) (4.1.3)
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where M := M /M. In fact, can be defined in this context for M = H%(X, L) and n
the volume form determined by the sup-norm. The function y is additive: for 0 — M; — My —
M3 — 0 an exact sequence and 7; € detr(M;Rr) (j € {1,2,3,}) such that 72 = m1 ® 73 in the
induced isomorphism detg(Mar) ~ detr(M; r) @ detr(Msr), we have

X(Ma,m2) = x(My,m) + x(Ms,n3). (4.1.4)

Back to our case. Let M = @, M}, be a graduated Og-module of finite type, and let Py,
be the Hilbert polynomial. A typical case for us is when M = ;- H O(X, kL) with Hilbert

polynomial P.

Definition 4.1.2. Let a € R be a real number. Define ny o € detg(Mg) to be the volume form
determined by the equation

k—1

X(My,mia) = @ > Pu(h) + x(Ok) P (k)
=0

with the canonical volume form on Ok.

The following lemma is easy to prove. It is the reason that the 7y . is of interest to us. It
does not hold for the L*-volume forms.

Lemma 4.1.3. Let 0 - MM — M@ - MG — 0 be an ezact sequence of graduated O -
modules of finite type, with ®y: det(M,g?ﬂ)g) ~ det(M,g’lﬂ)g) ® det(M,iié) the induced isomorphism.

Then for each a € R, we have @k(n,?c)y) = 77,(;2! ® n,(il for the volume forms defined in Defini-

tion[{.1.2

4.1.3 Comparison of the three volumes and consequence on arithmetic Hilbert—
Samuel

We need to compare the three volume forms on H°(X', kL)g. Define the positive functions

Vk 2 Vksu
fx(k,a) = 2250 (k) = 220 (4.1.5)
VX,a VX,LQ

with £k > 1 and o € R.
Proposition 4.1.4. loghx (k) = o(k™+1).
Proof. This follows immediately from Proposition O
The following proposition will be proved in the next section.
Proposition 4.1.5. There exists an affine function n: R — R such that
log fx (k,a) = n(a)k™ ™ + o(k" ). (4.1.6)

In particular, there exists a unique real number ag such that log fx (k,ag) = o(k™1).



54 CHAPTER 4. PROOF OF ARITHMETIC HILBERT-SAMUEL

Proof of Theorem [6.2.4 assuming Proposition[4.1.5. By (4.1.2) and the definition of V)’}’SUP, we
have

X(kL) = —logcovolyy (HO(X,kL)r/H(X, kL)).
,sup
Thus Definition Proposition and Proposition together yield

k-1

X(EL) = X(H(X, kL), V¥ o) + log hx (k) +log fx (k,a0) = ag Y P(j) + o(k™"1)
j=0

Since deg P = n and P has leading coefficient L', /n!, we then have

o Odoﬁ?{
x(kL) = (n+1)!

kn—f—l + 0(k7n+1).

Thus the LHS converges to agL’% when & — oco. The real number o can be read off in the
proof of Proposition where we will see that gL} = L™, We are done. O

4.2 Algebraic part of the proof of Proposition 4.1.5

The goal of this section is to prove Proposition [4.1.5] assuming an analytic result which will be
proved in the next section.

4.2.1 Fundamental short exact sequence

Recall our assumption that £ is very ample on X. Hence there exists a closed immersion
L X — ]P’gK with *O(1) ~ L. By Bertini’s theorem, up to taking a finite extension of K
there exists a non-zero global section ¢ of O(1) on PgK such that div(¢) N Xk is a subvariety of
dimension n — 1 of Xk, which is furthermore irreducible smooth if n > 2 (if n = 1 we can only
guarantee the reducedness).

Set s := 1*(£). Then s € HY(X,L£). The ideal sheaf of div(s), which is £2~!, admits a
primary decomposition L&~ =7 N J where J has vertical support and Z defines a flat closed
subscheme ) over SpecOx whose generic fiber is irreducible smooth if n > 2 and is reduced if
n = 1. Moreover dim)yY =n =dim X — 1.

Thus for k£ > 1, we have the following exact sequence:

0— HY X, kL+T) — HY (X, kL) — H (Y, kL|y) — 0. (4.2.1)
Tensoring R yields, by definition of Z,

0— HYX,(k—1)L)r = HY (X, kL)r — H*(Y,kL|y)r — 0. (4.2.2)

4.2.2 Volume forms on the spaces

Our goal is to compare the volume forms V)'g’ ;2 and V)]a o on H(X, kL)g for each real number
a € R, by induction on n = dim Xk. Hence it is desirable to study the respective volume forms
on H(Y,kL|y)r and on HO(X, (k — 1)L)g.

On H°(Y, kL|y)r, we have the volume forms

- V}’ﬁ 12, where the L?-norm is defined using the same construction above Proposition

but with £|y;
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- V§, defined by Defintion [4.1.2}

They are related by V¥, = fy (k, a)VY o
On H°(X, (k — 1)E)R, we have the volume forms
- Vs

- ZF1 by applying Definition to M =Dy HOX, (k+1)L+1T).
Set tx(k—1,0) == VY, /Zk=1.
Apply Lemma to the exact sequence (4.2.1)). Then we get V)l;i’ o= V{}; o ® ZF=1. Thus

k k k-1
VX,L2 VY,L2 ® VX L2

fx(k,a> o fy(k‘,a)tx(k' — l,a)'

Denoting by

(k) % (4.2.3)
g(k) : — 2.
VkL2 ® VX L2
Then we have
log fx(k,a) =logtx(k —1,a) + log fy (k, o) — log g(k). (4.2.4)

The second term on the RHS will be handled by induction hypothesis.
The following proposition will be proved in the next section using analytic method. It handles
the third term of the RHS of (4.2.4).

Proposition 4.2.1. When k — oo, we have

1
— 1
e 1 g 9(®) - > / og|s(z)|*dV;

o: K—C

with the volume form dV, on X, defined above Proposition (via ¢1(Ly)).

4.2.3 Further treatment
Consider the following exact sequences of sheaves:

0-ZT-J—-T—->I®0x/J —0,
0-Z-J—=INJ=LE"T1 =T :=Tor'(Ox/I,0x/T) — 0.

Then 7 has support in Supp(J), which is vertical over SpecOk. For k > 1, we have exact
sequences since L is ample

0— HY X, kLAT-T)— HY X, KkL+T)— HY (X, kLAT+Ox/T) — 0,
0— HYX,kL+T-J)— H(X,(k—1)L) = HY(X,kL+T) =0

where we write + for ® as usual. The last terms in both short exact sequences are torsion.
So applying the additivity of the arithmetic Euler characteristic (4.1.4) to both short exact
sequences above and taking the difference, we obtain

logtx(k—1,a)—log fx(k—1,0a) = log #H(X,kL+AT+Ox/T) —log #H (X, kL+T). (4.2.5)
Combining with , we thus obtain

log fx (k,a)—log fx(k—1,a) = log fy (k,a)—log g(k)+log #H* (X, kL+T+Ox | T)—log #H (X, kLAT).
(4.2.6)



56 CHAPTER 4. PROOF OF ARITHMETIC HILBERT-SAMUEL

4.2.4 Proof of Proposition 4.1.5 assuming Proposition 4.2.1

We do induction on n = dim Xx > 0.
When n = 0, we need to do a bit more, i.e. we assume Xx to be reduced but not
necessarily irreducible. In this case X = SpecR with R a finite Og-algebra which is reduced.

By definition (4.1.5)), we have
log fx (k, ) = —x(KL, VX o) + X(KL, VX 12).

Notice that the Hilbert polynomial of Ly is constant. Hence Definition implies that
x(kL, V)’g .,) is an affine function in k. The function x(kL, V{Z 12) is also affine in k, by arithmetic
Riemann-Roch applied to SpecR (we have seen this when R = Ok as Theorem m whose
proof is a direct computation; in general we reduce to the case where R is an order of a number
field and prove the similar result by computation). Hence we are done in this base step.

For general n > 1, we use (4.2.6]) to analyze log fx(k,a) —log fx(k — 1, ).

When n = 1, recall our choice s € HO(X,L) satisfies that div(sg) is reduced. When
n > 2, the generic fiber Yk is smooth by choice of the global section s € H%(X,£). In both
cases, we can apply our induction hypothesis and get log fy (k, ) = n'(a)k™ + o(k™). And
log g(k) = Ak™ + o(k™) by Proposition

For log #H(X,kL+Z+Ox/J) and log #H%(X, kL +T), decompose Supp(J) into disjoint
union of connected subvarieties of dimension < n (they are all contained in vertical fibers). The
Hilbert—Samuel formula in algebraic geometry then implies that both terms are of the form
k™ + o(k™).

Therefore, log fx (k,a)—log fx(k—1,a) = cok™+o0(k™). So there exists a function n: R — R
such that

log fx (k, ) = n(a)k™ ™ + o(k" ).

It remains to show that 7 is affine. For this, notice that Definition implies
log fx (k, o) —log fx(k,a) = c(ar — o/ )k ! + o(k™ 1),

where c¢ is the leading coefficient of Z?;S P(j). Thus n(a) —n(a’) = c(a— ') for all o, € R.
So n is affine. Better, we have ¢ = L} /(n + 1)!. We are done.

4.3 Analytic part of the proof

We will prove Proposition and Proposition in this section. This finishes the proof of
Theorem [6.2.4]

Because both results are analytic, we rephrase our setting as follows to ease notation.

Let X be a projective manifold of dimension n > 1, and let (L, || - ||) be a smooth Hermitian
line bundle on X (so that ci(L, || - ||) is a Kéhler form on X). Let w be the scalar of ¢1(L, || - )
such that fX dV =1 for the volume form dV = w™/n! on X. Let P be the Hilbert polynomial,
i.e. P(k) = dim H°(X,kL) for k > 1. In the setting of Theorem [6.2.4] (see §4.1.1)), these are
X=X, (L, -])= @] - |ls), and w = w, for each o: K — C.

By abuse of notation, we still use || - || to denote the Hermitian metric on kL = L®* for each
kE>1 (in it was denoted by |- [|x). The norms || - [lsup and || - || 2 on H°(X, kL) are defined
by ||s|lsup := sup,cx |s(z)|| and ||s]|2, = [ [[s(z)||*dV (for s € HY(X,kL)).




4.3. ANALYTIC PART OF THE PROOF 57

4.3.1 Comparison of || - ||syp and || - || 2

Let us prove Proposition |4.1.4} i.e. there exists a real number ¢ > 0 such that
Isllz2 < lsllsup < cP(R)2|1s]| 2 (4.3.1)

for all k> 1 and all s € H(X,kL).

The first inequality of is clearly true by definition.

Let s € H°(X,kL). Since X is compact, there exists € X such that ||s||sup = ||s()]|. Take
an orthonormal basis s1,...,sy (with N = P(k)) of H%(X,kL) with respect to the L?-norm.
We may choose sg, ..., sy such that sa(x) =--- = sy(z) = 0. Then we can write

N
s = E aij
j=1

with a; € C. So s(z) = a151(2), |72 = X la;[*. Thus [|s|Z,, = [|s(@)[* = |aa [*[|s1(2)]]*.
Now we use the distortion function by: X — R defined by bi(z) = Z;vzl l|sj(z)||> from

(3.1.3). Then ||s||gup = |a1|?bg (). Therefore

IsllZup < lsllz2bx(x)-

Let ¢ := \/sup,cx bp(z)/P(k). Notice that sup,ex bg(z) < oo since X is compact. So ¢ < oo.
Moreover, ¢ > 0 by the main theorem on the distortion function (Theorem [3.1.6)). Hence we are
done.

4.3.2 Setup and first estimates to prove Proposition [4.2.1

Let s € H°(X, L) such that Y := div(s) is connected smooth if n > 2 (reduced if n = 1). For
k > 1, we have the following exact sequence
0— H°X,(k—1)L) 2 H(X, kL) — H(Y,kL|y) — 0. (4.3.2)
For the L?-volumes forms V)’g_LlQ, V)’E 12 and V{f 12 induced by the L?-norms on the three spaces
in the exact sequence, define the comparison function
k
_ VX,LQ
VE . @ Vi

g(k) :

We shall prove Proposition i.e.

1

- _ 2
Pl R0k) - /XlogHs(a;)H AV when k — oc. (4.3.3)

We shall make use of (4.3.2). The volume form V)’?’ 12 induces a quotient volume form Vq’fLQ
on HO(Y, kL|y), via the quotient L*-norm | - [|, 2 on H°(Y,kL|y). Define

Vk
(k) =

T yk
-V(.Z7L2

> 0.
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The volume form V§ |, also induces a subspace volume form VskZZl on H°(X, (k — 1)L) via the

multiplication by s, via the subspace L?-norm lv]ls.02 := [[sv]|12 for all v € HO(X, (k- 1)L).
Define .
V
5(k) = — >0,
Ve

Finally define

o(k) = VE >0
X,L2
Then we have
g(k) = (m. (4.3.4)

We prove the following estimates in this subsection.
Proposition 4.3.1. log p(k) = o(k™).
Proposition 4.3.2. logy(k) = o(k").

The estimate of log (k) will be proved in the next subsection (Proposition [4.3.3)). These
information will be put together to prove .

Let @ be the Hilbert polynomial of L|y on Y, i.e. Q(k) = dim H°(Y,kL|y) for k> 1. Then
deg@Q =dimY =n —1.

Proof of Proposition[{.3.1. Let a: R — R which sends m to the volume of the unit ball of R™
for the usual volume form.
is a short exact sequence of C-vector spaces. Take a || - || 2-orthonormal basis of
HY(X, kL) over C, {sq,... s 8P(k—1)» 15 - - - s tQ(k) }» such that {s71s1,..., S_]'Sp(k_l)} isa || L2-
orthonormal basis of H%(X, (k—1)L) and the quotients {[t1], ..., [tqu)]} is a ||, z2-orthonormal
basis of H°(Y, kL|y). Then
1

k _
VX,L2 = a(P(k: — 1) n Q(k’)) S1/\- - ‘/\SP(k—l)/\tl/\' . '/\tQ(k) /\ V—=1s1A" AV 71813(;6_1)/\\/ —1t A - AV *1tQ(k)

and similarly for VS’I‘TL_Q1 and quLQ. Thus we get

We are done. O

To prove Proposition we need a comparison of || - ||, 2 and || - ||y, z2.

lg,
Proof of Proposition[{.3.3. We claim: there exist kg > 0 and B > 0 such that
[tllg.z2 < Blitlly,z2 (4.3.5)

for all k > kg and all t € H°(Y, kL|y). To prove this, we use the L?-extension Theorem
More precisely, (L, || - ||) in Theorem is taken to be kL — Kx endowed with the natural
smooth metric for £ > 1 and (Lo, || - ||) in Theorem is taken to be (L, || - ||). Then the
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assumptions of Theorem are satisfied for k > 1. Hence for t € H(Y,kL|y), there exists
T € H(X, kL) such that T|y =t and

[ o Y
« TolEaog 2" = M1y

for a constant M depending only on Y. Thus (4.3.5|) holds true because the LHS of the inequality
above is > ¢T3, > coHtﬂng, with cg := [|s]|52 (log ||s]lsup) ™ > 0 a positive real number.

On the other hand, |- |ly.z2 < |- [ly;sup < || - |lg,sup, Which by Proposition is furthermore
< cQ(k)V?| - g2 Hence
Q)M ly,ee < I g2 < Bl lly, -

Therefore logv(k) = o(k™) since deg@ =n — 1. O

4.3.3 Last estimate for the proof of Proposition 4.2.1

We prove in this subsection the following proposition. Notice that this finishes the proof of

(4.3.3) (i.e. Proposition |4.2.1)) in view of (4.3.4]), Proposition and Proposition [4.3.2]
Proposition 4.3.3. logd(k) = P(k) [y log||s(z)|*dV + o(k™).

We start the proof by giving another expression of §(k). Write m,: HO(X, kL) 2 HO(X, (k+
1)L) for the first morphism in (4.3.2)) with k replaced by k + 1, and write m} for its dual under
the L2-norms. Set Gk, == my omg,. Then

(u, st} 2 = / Is|2[ul2dV  for all u € HO(X, kL). (4.3.6)
X

The eigenvalues of ¢, s can be obtained as follows. There exists a || - || p2-orthonormal basis
{31,...,5n5} of H(X,kL) (with N = P(k)) which is orthogonal for norm ||- ||, 72 on H(X, kL).
Then the eigenvalues of ¢y, 5 are

Aj = [ls3511Z =/XHSH2H§J'H2<1V

with j € {1,...,N}.
Lemma 4.3.4. §(k) = det ¢y s = vazl Aj.

Proof. By choice of the basis {51, ...,5n}, the matrix of the Hermitian pairing (-, -), 72 obtained
from || - ||5 r2, under this basis of H°(X, kL), is diag(X1, ..., An). Hence

V)?’L2:a(N)§1A~--A§NA¢?1§1/\.../\\/Tl’SVN

V;kLQ = a(N) . )\1_1/2'51 A A )\]_\,1/2§N A \/_71)\1—1/2»51 Ao A \/_71)\]—\71/2»5]\].

So d(k) = TI/L, Aj = det ¢y s O

This lemma tells us that % log 0(k) is precisely the logarithm of the geometric mean of
the eigenvalues \; of ¢ ;. Thus rescaling the metric || - || does not change the conclusion of
Proposition So from now on, we may and so assume

Ilsup < 1. (4.3.7)
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Thus \; < 1forall j € {1,...,N}.
Now we are ready to proceed to the proof of Proposition

Let us show

k—o00

liminf P(k)~ ! log §(k) > / log ||s||2dV. (4.3.8)
X

By assumption, [y [|5;[?°dV =1 for all j € {1,...,N}. So Jensen’s inequality implies (where
the measure is ||s;/|dV)

log A, =10g/XHS|!2H§jH2dVZ /X(logHS\\z)H%HQdV

Taking sum over j € {1,...,N = P(k)} and recalling the distortion function by = Y [/5;||
defined in (3.1.3]), we get

by,
P(k)

N
P(k)_llogd(k):P(k)_lzlog/\j2/ log ||s]|? av. (4.3.9)
j=1 X

Hence (4.3.8) follows from the main theorem on the distortion function (Theorem [3.1.6)).
It remains to prove the hard direction

limsup P(k) ™ log d(k) < / log || s]|2dV. (4.3.10)
k—o0 X

The proof goes through tilings of X, i.e. a disjoint union of finitely many connected open
subsets of X whose union is dense in X; we will furthermore assume each such connected open
subset to have smooth boundary. We have assumed ||s||syp < 1, so to control 6(k) = det ¢y,
it suffices to work on subspaces of H°(X,kL). Ideally, we would be able prove if
we could find a subspace of H(X, kL) of dimension ~ P(k) which has an orthonormal basis
with supports in a suitable tiling, so that eventually becomes an equality. This is not
possible in the holomorphic category, and we need to extend our discussion to anti-holomorphic
analysis discussed in All is not lost: we can approximate holomorphic sections by near
holomorphic sections subcoordinate to finer and finer tilings.

Fix a tiling © of X (which is an open subset of X). Then € is the disjoint union of finitely
many connected open subsets 1,...,8; of X

Recall the anti-holomorphic Kodaira Laplacian A} from Definition (with ¢ = 0) and
the heat operator O := (2/k)AY. They acts on the Hilbert space L?(X, kL), and H°(X, kL) can
be identified with the closed subspace Ker(J, C L?(X,kL). The L?-orthogonal decomposition

L*(X, kL) = Ker(J, ® Kerﬁé defines the Bergman projector
U LA(X, kL) — KerOy = H°(X, kL). (4.3.11)

Let us consider the differential operator [y o, which is the restriction of O to Q with the
Dirichlet condition on the boundary 9. Moreover, Oy g also have discrete spectrum.

Now we can define near holomorphic sections. For any real number p > 0, denote by Hy (€2, i)
the direct sum of eigenspaces of [y,  associated with eigenvalues < y. We have a canonical way
to obtain holomorphic sections from near holomorphic ones via Wy, (@ ,.)-

Similarly we can define Hy (€25, ) for each j € {1,...,l}. Then Hy(Q, p) = @2:1 Hi (25, ).

Recall our assumption that ¢1(L, | - ||) = 2apw for some oy > 0.

The following lemma says that the Bergman projector injects Hy (€2, 1) quasi-isometrically
into H°(X, kL), for y small enough and k > 1.
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Lemma 4.3.5. Assume pu < ag. Then for k> 1, Wily, () is injective and
24
|Ur(u) — ullre < a—OHuHLz for all uw € Hp(Q, ).

Proof. By Lemma the smallest non-zero eigenvalue of [, is > o for k> 1.

Let u € KerWy. Then u € Kerﬁi, and hence ||[Ogul|z2 > aollulp2 > pllul|z2 by the previous
paragraph. Now if u € Hy (9, u) N KerWy, then the definition of Hy (€2, 1) furthermore implies
u = 0. This establishes the injectivity.

For u € Hy (2, ), set  :=u — Wi (u). Then u € Kerﬁi, and hence ||[Oxu|z2 > aol|t]|z2 by
the previous paragraph. So

aollullzz < 1Ok(Pru — w)llre < [WeOpulr2 + [1Tpullre < 2Ckull 2 < 2pfullre,

where the second inequality is the triangular inequality, and the last inequality is by definition
of Hy(Q, p). O

The next lemma says that the Bergman projector is also a quasi-isometry for the quadratic
form g, defined by gr(u) = [y [|s]|*lu*dV. Recall that gz(u) = (u,drs(u))2 for u €

HO(X, kL) by [E3.6).

Lemma 4.3.6. Assume p < og. Then for k> 1, we have

dp o p 8
mw—mmwms(ﬂ)w@<m%-
(&%) (675} (&7))

Proof. We have
gk () — qe (Vi (u))] = ‘/X 11 ([feel|* II‘I’k(U)IIQ)dV‘ < HSHsup/X [l = [k (w)|?] aV.

We have assumed ||s||lsup < 1. So (by |[v1]? — |v2[?| < |v1 — va|* + 2|vaJv1 — va)

ke (w) = ae(Pr(w))] < [lu = Wr(u)||72 + 2/X 1@k (@)] - [llull = 2x(u)ll|dV

< lu = Wr(u)l|72 + 2 Wr(u)]| 2w — Uk (u)]| 2

< Jlu = Cp(u)| 72 + 2]l g2 llu — r(u)]| L2
Now the conclusion follows from Lemma [£3.5 O

The last estimate we need is the following:
Lemma 4.3.7. For each j € {1,...,l}, we have
dim Hy (4, k~Y%) = P(k)vol(;) + o(k™).

As a consequence, dim Hy(Q, k=1/6) = P(k) 4 o(k") since vol(Q) = vol(X) = 1.
Proof. The differential operator Oy q, (restriction of Oy to €; with Dirichlet condition on the boundary)
also admits a heat kernel e o, (¢, 2,y), with condition (iii) of Proposition[3.2.4replaced by ey o, (t,09;,y) =

0 on the boundary 9€2;. Denote by ey q,(t,7) := ex,q,(t,7,2). Then the Tocalization process of proving
the heat kernel expansion implies

lim |[lex(t,z) — er,q,(t, )| =0
k—o0
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uniformly in ¢ € X and t € [1,T}], as long as Tx = o(vk). Consider an L?-orthonormal eigenbasis
(A, a)x (resp. (A, p5)) for Oy (resp. for O q,). Integrating over X yields

Ze*)‘t )vol(2 Ze”‘t

for k > 1, uniformly in ¢ € [1,T}]. The conclusion then follows by setting ¢t = k'/4 using an argument
similar to the estimate of the second term of (3.2.5)) (use i,lg and ii,Qj, and the injectivity of the positive

spectrum of iz(,ﬂj) into that of i,lc(’ﬂj)). O

Now we are ready to finish the proof of (4.3.10f), which is what is left to prove Proposi-
tion [4.3.3

Proof of (4.3.10). Since ||s|[sup < 1, we have
o(k) = det ¢y s = det(q| go(x,kr)) < det(qrlw, (@)

Lemma implies

1 2dim Hy (Q,p)
> det(qk o \Ijk‘Hk(Q,M))

det(qrlw, (3, (2.) < (1—2/1,/040

We shall use the following elementary result in linear algebra: the determinant of a positive-
definite Hermitian matrix is bounded above by the product of the diagonal entries. Recall
Q= szl ;. Now for each k and each j € {1 ., 1}, take an orthonormal basis {h }m of

Hi (2, 1) (hence fQj ||h7(£)||2dV = 1). Then {h }mj is an orthonormal basis of Hj (2, p) =
@;:1 Hi(Qj, ). Then
det(qr © Wrlag, ) < [ ar o Te(r)),

m7j

while Lemma implies that
8 . 8 8
a0 Ui (D) < qu(hD) + 2 = / IsIZ1A9) 2V + 2 < supljs|f? + 2.
Qg Q; ap T Q; Qg

Combining the inequalities above, we get

!
log d(k) < 2dim Hp (2, p) log(1 — 2p/ ) + Zlog (sup IIs||* + 8u/ao> dim M (5, p). (4.3.12)
i=1 i

Fix € € (0, %) Take p = ape. Then ||s]|sup + 8p1/cp < 1. Now

Zlog(sup ||2+8,u/a0> vol(© Zsuplog |s]|? + 8¢)vol(€2;) %/ log(||s|* 4+ 8€)dV, (4.3.13)
X

J

where the limit is on taking finer and finer tilings of X. More precisely, by letting the diameter
of Q tend to 0%.
Thus the conclusion follows from Lemma|4.3.7, (4.3.12)), and (4.3.13)), by letting e — 0F. [




Chapter 5

Adelic line bundles

In §0.3] we have seen that polarized dynamical systems can sometimes give normalized height functions,
which are genuine functions in contrast to the abstract height machine. The Weil height on PV can be
obtained in this way. Another important case is the Néron—Tate height on abelian varieties.

In we explained how to use arithmetic models (with Hermitian line bundles) to find represen-
tatives of each class of height functions constructed by the height machine.

It is desirable to express each normalized height in in the framework of This is the case for
the Weil height, as shown in Example When an abelian variety has good reduction everywhere, it
is also possible to do so using the Néron model and the cubist metric. However, if the abelian variety does
not have good reduction everywhere, it is not possible to define the Néron—Tate height using arithmetic

models as in

To solve this problem, S. Zhang defined and studied adelically metrized line bundles (adelic line
bundles for short) over projective varieties, by putting suitable metrics at the places of bad reduction.
All the normalized heights from can be defined in this framework. This tool is fundamental in the
solution of the famous Bogomolov Conjecture by Ullmo and S. Zhang.

More recently, Yuan and S. Zhang generalized this framework to adelic line bundles over quasi-
projective varieties. On the one hand, this allows to study the normalized height functions in family.
On the other hand, it turns out that many other height functions can be defined in this framework, for
example the Faltings height as a function on the moduli space of principally polarized abelian varieties.
This powerful theory opens another chapter of Arakelov Geometry.

In the whole chapter, we take K to be a number field, and X to be an irreducible quasi-
projective variety defined over K.

5.1 Limit construction for the geometric setting

Via Q C K, we can see X as a quasi-projective variety over SpecQ.

In this section, we construct the category of geometric adelic line bundles on X, denoted
by Pic(X/Q). Roughly speaking, they are line bundles on X which can be extended to a line
bundle on “some compatification” of X.

If X itself is projective, then the construction is void. Nevertheless, in practice we often need
to work with quasi-projective varieties which are not projective, for example moduli spaces.

5.1.1 Q-line bundles

We define the category of Q-line bundles on X, denoted by Pic(X)q, as follows:

63
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Definition 5.1.1. A Q-line bundle on X is a pair (a,L) (often written as aL) with a € Q
and L a line bundle on X. A morphism of two Q-line bundles aL and a’L' is defined to be

IEANERT / /
Hom(aL,a’L") := lim Hom(amL,a'mL")
where m runs over all positive integers such that am,a'm € Z.

Denote by Pic(X)g the group of isomorphism classes of Q-line bundles on X. We can define
nef, ample, big Q-line bundles on projective varieties.

Definition 5.1.2. A Q-line bundle aL on X is said to be nef (ample, big) if amL is for some
positive integer m such that amlL is a usual line bundle on X.

Next we define sections of Q-line bundles.
Definition 5.1.3. Let aL € Pic(X)q.

(i) A (global) section of aL on X is an element of HY(X,aL) := Hom(Ox,aL) = lim H(X,amL)
where m runs over all positive integers with am € 7Z.

(ii) A rational section of alL on X is an element of Hom(O,,aL,) = lim H°(n,amL),
> &b am,
where n is the generic point of X and m runs over all positive integers with am € Z.

(iii) For a (rational) section s of aL on X, represented by (Sm)m, define

div(s) := (1/m)div(sy,) € Div(X) ®z Q =: Div(X)q.

For two elements Dy, Dy € Div(X)qg, we write D; < Dy if m(Dy — D) is a usual effective
Cartier divisor for some positive integer m.
5.1.2 Model geometric adelic line bundles and boundary norm/topology

Now we are ready to define model geometric adelic line bundles on X as follows.

Definition 5.1.4. The category of model geometric adelic line bundles on X, denoted by 7/7E(X/Q)mod,
is defined to be the category of pairs (X', L") with

- X' is a compactification of X, i.e. a projective variety defined over K which contains X
as an open subset;

- L' is a Q-line bundle on X', such that L'|x is isomorphic to a usual line bundle on X .

Adelic line bundles are, roughly speaking, limits of sequences of model adelic line bundles.
In order for the limit process to make sense, we need to introduce a suitable Cauchy condition
for a sequence of model adelic line bundles. Let us explain it now.

For each compatification X’ of X, denote by Div(X’, X) := Div(X')g ®piy(x), Div(X), i.e.
the group of Q-divisors on X’ whose restriction to X is a usual Cartier divisor.

Definition 5.1.5. The group of model geometric adelic divisors is defined to be
Div(X/Q)mod := @X’ Div(X', X) (5.1.1)

with X' running over all compactifications of X .
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Notice that there is a partial order < on m(X/Q)mod. For any D1, Ds € m(X/Q)mod,
there exists a compactification X’ such that both D; and Dy can be represented by elements
(by abuse of notation still denoted by Dy, D) in Div(X’, X) C Div(X')g. We say that D1 < Ds
as elements in ]SF/(X/Q)mOd if this is the case in Div(X’)g. It is not hard to check that this
partial ordering on ISE(X /Q)moq is well-defined.

With this in hand, we can define the boundary topology on ]5;/(X /Q)moq as follows. Fix a
compactification X of X such that X\ X is a divisor, which we call Dy. Then Dy € Div(Xy, X),
which gives rise to an element in ISR/(X /Q)mod which is still denoted by Dy. The following
boundary norm on ISR/(X/Q)mOd (we use the convention inf(()) = o)

I 1Dy : Div(X/Q)moa — [0,00], D+ inf{e € Qug: —eDy < D < eDy} (5.1.2)

then induces a topology on 5;1()( /Q)mod, by defining a neighborhood basis at 0. This is the
boundary topology.

Here is an easy lemma on the properties of the boundary norm. The “Moreover” part implies
that the boundary topology does not depend on the choice of Xj.

Lemma 5.1.6. For any D, D’ € ﬁ/(X/Q)mod, we have
(i) |D|lp, =0 if and only if D =0,
(i) [|D + D'l p, < | Dllpy + D'l g

(i1i) ||laD||p, < |a| - ||D||p, for any a € Z\ {0}, with < if and only if D # 0 and aD = 0 both
hold in Div(X).

Moreover, if X(, is another compactification of X such that Dy := X{\ X is a divisor, then there
exists a real number v > 1 such that 7 - [y < ||+ [lpy <7l - [[py-

5.1.3 Geometric adelic line bundles and adelic divisors

Definition 5.1.7. A geometric adelic divisor on X is an equivalence class of Cauchy se-
quences in Div(X/Q)moq, Cauchy for the boundary topology on Div(X/Q)mod-

The group of geometric adelic divisors on X is denoted by ISR/(X /Q), with the obvious
binary operation.

Definition 5.1.8. A geometric adelic line bundle on X is a pair (L, (X;, L;, ;)i>1) with
- L is a line bundle on X;
- (Xi, Li) € Pic(X/Q)mod;
- Ui: L — Li|x is an isomorphism in Pic(X)q;

such that the sequence {div(&[l—l)}izl satisfies the Cauchy condition defined using the boundary
topology on ]Si;(X/Q)mod.

The category of geometric adelic line bundles is denoted by 7/DE(X/Q) The group of isomor-
phism classes of geometric adelic line bundles, with ® being the binary operation, is denoted by

Pic(X/Q).
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We need to explain that the sequence {div(£;¢;')};>1 is indeed a sequence in 5;/()( /Q)mod-
For each 7 > 1, we have an isomorphism &-ffl : Li|x — L;|x of Q-line bundles on X, and hence
a rational map &-61_1: Ly --» L;. Hence div(&él_l) is a model adelic divisor for each i > 1, i.e.
div(£4;") € Div(X/Q)moa.

Next we will establish a canonical isomorphism between ﬁl\c(X /Q) with GI(X /Q), the group
of geometric adelic divisor classes. We should first of all define C1(X/Q). We start by defin-

ing Prin(X/Q)moq = lim Prin(X’), where X’ runs over all the compactifications of X and
Prin(X’) is the group of principal divisors on X’. Then we can define

CI(X/Q) := Div(X/Q)/Prin(X/Q)mod. (5.1.3)

Lemma 5.1.9. The group %(X/Q)mod is discrete in B;/(X/Q)mod under the boundary topol-
0gy.

Before moving on to the proof, let us see an immediate corollary. If we let
ClU(X/Q)moa = Div(X/Q)mod/Prin(X/Q)moa = lim ,(Div(X’, X)/Prin(X")), (5.1.4)

then CAI(X/AQ)mOd is dense in él(X/Q) by Lemma In other words, él(X/Q) is the com-
pletion of C1(X/Q)mod-

Proof of Lemma[5.1.9 Assume that there exists a sequence {D; };>1 in %(X /Q)mod converg-
ing to 0. Then there exists a sequence {¢; € Qs0};>1 such that ¢, — 0 and €Dy + D; > 0 in
ISRI(X /Q)moa for all i > 1. Assume D; is represented by div(f;) for a compactification X; of X
and a rational function f; € Q(X;)* = Q(X)*. Recall the compactification Xy used to define
the boundary topology. Then ¢;Dy £ div(f;) > 0 in Div(X()g. Hence Div(f;) = 0 on Xy by
taking €; to be small enough. We are done. O

Proposition 5.1.10. There is a canonical isomorphism
Cl(X/Q) = Pic(X/Q).

Proof. We write the two morphisms.

For any {D;}i>1 € I/)RI(X /Q), assume each D; is defined on the compactification X;. Then
L; := O(D;) is a Q-line bundle on X;. Notice that D;|x = D;|y for all i > 1. Hence we get a
line bundle L := O(D;|x) on X and isomorphisms ¢;: L — L;|x for each ¢ > 1. It is not hard
to check the Cauchy condition for the sequence div(¢;¢;") = D; — D;. This defines the desired
homomorphism

Div(X/Q) — Pic(X/Q).

It is not hard to check that P/rEl(X /Q)moq is in the kernel.
To see the surjectivity: given any (L, (Xj, L, ¢;)i>1) in Pic(X/Q), take a nonzero rational
section s of L on X, and set

div(s) := {div(x, £,)(s) + div(€l7 ) bis1, (5.1.5)

where div(x, 1,)(s) means to see s as a rational section of L; on X7, and take the corresponding
divisor. This defines the desired element in Cl(X/Q). O
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5.1.4 Positivity
Definition 5.1.11. An adelic line bundle L € 7/DE(X/Q) is said to be:

(i) strongly nef if it is isomorphic to an object (L, (X, Li, 4;)i>1) where each L; is nef on
Xi;'

(ii) nef if there exists a strongly nef M € 7/31\(:(X/@) such that aL + M is strongly nef for all
positive integers a;

(i4i) integrable if it is isomorphic to the difference of two strongly nef adelic line bundles.

We will use TDi\C(X/Q)Snef (resp. TDTC(X/Q)nef, 7/7-1\0(X/Q)mt) to denote the full subcategories
of Plc(X /Q) of of strongly nef (resp. nef, integrable) ones. We will use Plc(X /Q)snet (resp.
PlC(X/Q)nef, PlC(X/Q)mt) to denote the corresponding subsets of Plc(X/Q) It is a semi-
subgroup (resp, semi-subgroup, subgroup).

For any L = (L, {X;, Li, {; }i>1) € ﬁ(X/Q), we define
H(X,L):={s € H'(X, L) : div(s) > 0}. (5.1.6)

It is known that HO(X, E) is a finite-dimensional vector space.

In height theory, elements in play the same role as global sections on X when X is
projective. Indeed, given a non-zero element s € HY(X, E), then roughly speaking the height
function defined by L has a lower bound outside (TR/(S) which is proper Zariski closed.

Definition-Theorem 5.1.12. The following limit exists and is defined to be the volume of
L = (L, {X;, Li, l; }i>1):

. X
Vol(X, ) = lim \(GmX)!

0
L o oy e dim H°(X, mL). (5.1.7)

Moreover, B
vol(X, L) = lim vol(X;, L;).

1— 00

Definition 5.1.13. An adelic line bundle L € TDE(X/Q) is said to be big if vol(X, L) > 0.
Let n = dim X. We also have an intersection pairing in this situation
Pic(X/Q)", = R,  (Ly,...,Lp)+ Ly Ly. (5.1.8)
Theorem 5.1.14 (Hilbert-Samuel). Assume L is nef. Then vol(X,L) = L".

Theorem 5.1.15 (Siu). If L and M are nef adelic line bundles, then

vol(X,L — M) > L" —nL" ' M.

5.2 Adelic line bundles as limits of the model ones

Next we turn to the arithmetic setting and try to find arithmetic objects which will define the
height functions as desired. We will do the limit construction in the following steps.

(i) Consider all the quasi-projective models U of X, i.e. U is an integral scheme which is
quasi-projective over SpecOf such that X is open in the generic fiber U. These quasi-
projective models form an inverse system.
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(ii) Define for each quasi-projective model U the category of adelic line bundles 7/71\(:(2/{ /Z) and
the group of adelic divisors Div(U/Z).

(iii) Define Pic(X/Z) to be ling, Pic( /Z) where the limit is taken on the inverse system of
quasi-projective models of X. Similarly define ﬁRI(X /L) = ling, ]5;(2/{ /Z).

We call 7/3E(X /Z) the category of adelic line bundles on X, and ISR/(X /Z) the group of adelic
divisors on X. The group of isomorphism classes of adelic line bundles on X will be denoted
by ﬁl\c(X /Z), which ® being the binary operation. Similarly, we use the notation 151\(:(7/{ /Z) and
Pic(U/Z)mod to denote the groups of isomorphism classes of (model) adelic line bundles on .

Steps (i) and (iii) are formal. Step (ii) is the crucial step. In this section, we will define
7/3E(U/Z) as a suitable completion of model adelic line bundles ﬁ(U/Z)mod and define ]51\\/(2/{/2)
as a suitable completion of model adelic divisors 61?7(1/{ /Z)mod-

5.2.1 Model adelic line bundles on ¢/ and boundary topology

Let U be an integral scheme which is quasi-projective over SpecOx .
Definition 5.2.1. A model adelic line bundle on U is a pair (X,L) consisting of:

- a projective model X of U, i.e. an integral scheme which is projective over SpecOk and
which contains U as an open subscheme;

- a Q-Hermitian line bundle L = (L, || - ||) on X such that L]y is a isomorphic to a usual
line bundle on U.

Here, Q-Hermitian line bundles are defined in the same way to the geometric case (Defini-
tion with L replaced by £, and we also have the corresponding nefness, ampleness, and
bigness for Q-Hermitian line bundles.

The category of model adelic line bundles on U is denoted by 7/3E(Z/l /Z)mod, and the group
of isomorphism classes of model adelic line bundles is denoted by 151\(3(1/{ /Z) mod-

To define model adelic divisors, we need to first of all define arithmetic (Q, Z)-divisors. Let
X be a projective model of U.

Definition 5.2.2. An arithmetic (Q,Z)-divisors on (X,U) is a Q-arithmetic divisor D =
(D,gp) € Div(X)qg such that Dy is a usual divisor on U. It is said to be nef if D is nef in

——

Div(X)q.

The group of arithmetic (Q, Z)-divisors on (X,U) is denoted by ]SF/(X ,U). There is a partial

ordering < on Div(X,U): D < D' it D' — D is effective as a Q-arithmetic divisor on X and
D/’M — D‘u > 0onU.

Definition 5.2.3. The group of model adelic divisors on U is defined to be

Div(U /Z)moa := lim Div(X, U) (5.2.1)
X

where X runs over all projective models of U.



5.2. ADELIC LINE BUNDLES AS LIMITS OF THE MODEL ONES 69

ANotice that the partial ordering on ]51;(2\,’ ,U) defined above induces a partial ordering < on
Div(U/Z) mod-

We also have a boundary topology on ]SR/(Z/{ /Z)mod defined as follows. Fix a projective model
X of U and a strictly effective divisor Dy = (Dp, go) on Xy such that |Dg| = Xy \U. Such a pair
(Xo, Do) is called a boundary divisor. Then Dg gives rise to an element in ]5;(1/{ /Z)mod which
we still denote by Dg. Then the boundary norm is defined to be (inf((}) is set to be oo)

|- I, : DivU/Z)mmoa — [0,00], D+ inf{e € Qso: —eDg < D < €Dy} (5.2.2)

This boundary norm induces a topology on m(X /Z)mod, by defining a neighborhood basis at
0. This is the boundary topology.

As in the geometric, we also have the following lemma, which asserts that the boundary
topology does not depend on the choice of the pair (Xp, Do).

Lemma 5.2.4. For any D,D € ISR(X/Z)mOd, we have
(i) HEHBO =0 if and only if D =0,
s — —
(i) |1D+ Dlip, < [Pllg, + 1D 15,

(iii) llaD| g, < la| - |Dllp, for any a € Z\ {0}, with < if and only if Dy # 0 and aDJy = 0
both hold in Div(U).

Moreover, if (Xé,bg) is another boundary divisor, then there exists a real number r > 1 such
that 11| - Ip, < |- I, < 7ll- 13-
5.2.2 Adelic line bundles and adelic divisors on U/

Let U be an integral scheme which is quasi-projective over SpecOf .

Definition 5.2.5. An adelic divisor on U is an equivalence class of Cauchy sequences in
Div(U/Z)mod, Cauchy for the boundary topology.

The group of adelic divisors on X is denoted by ISRI(Z/{ /Z), with the obvious binary operation.
Definition 5.2.6. An adelic line bundle on U is a pair (£, (X;, L, l;)i>1) with

- L is a line bundle on U;

- (A, L) € PiclU/Z)umoa;

- Uit L — Li|y is an isomorphism in Pic(U)g;

such that the sequence {(Ti\v(&ffl)}izl satisfies the Cauchy condition defined using the boundary
topology on ]SE(Z/{/Z)mOd.

The category of adelic line bundles is denoted by TJE(Z/{/Z) The group of isomorphism classes
of geometric adelic line bundles, with ® being the binary operation, is denoted by ISI\C(U/Z)

We need to explain that the sequence {&i\v(&ﬁfl)}izl is indeed a sequence in Div(U /Z)mod-
For each i > 1, we have an isomorphism &[1_1: L1y — Li|y of Q-line bundles on U, and hence
a rational map &6;1: L1 — L;. Hence &i\v(&ﬁfl) is a model adelic divisor for each ¢ > 1, i.e.
div(¢:67Y) € Div(U/Z)mod.
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Next we will establish a canonical isomorphism between 151\c(u /Z) with CL(U/Z), the group
of adelic divisor classes. We should first of all define C1(¢//Z). For each projective model X of
U, there is a natural homomorphism ISR/(X ) — 51?/(2( ,U), which makes P/rl\n(X ) a subgroup of
Div(X,U). Hence we can define

Prin(U/Z)moa 1= lim ,, Prin(X),
where X runs over all the projective models of ¢. Then we can define
Cl(U/Z) := Div(U/Z)/Prin(U | Z)mod. (5.2.3)

Lemma 5.2.7. The group %(U/Z)mod is discrete in ﬁf(U/Z)mod under the boundary topol-
0gy.

We omit the proof but state the following immediate corollary. If we let
CUU/Z)moa = Div(U/Z)moa/Prin(U [ Z)mea = liny, (Div(X,U)/Prin(X)), (5.2.4)

then Cl(U/Z)moa is dense in C1(1//Z) by Lemma In other words, CI(I//Z) is the completion
of ClU/7Z)moa-

Proposition 5.2.8. There is a canonical isomorphism
ClU/Z) = Pic(U /7).

Proof. We write the two morphisms.

For any {D;};>1 € 15;(1/{ /7Z), assume each D; is defined on the projective model X;. Then
L; .= O(D;) is a Q-Hermitian line bundle on X;. Notice that D;|yy = D1y for all i > 1. Hence
we get a line bundle £ := O(D1|y) on U and isomorphisms ¢;: L — L,y for each i > 1. It is
not hard to check the Cauchy condition for the sequence &i\v(&ﬁfl) = D; — D;. This defines a
homomorphism

Div(U/Z) — Pic(U 7).

Now assume that {D;};>1 is in the kernel of this homomorphism. Then there exists an iso-
morphism from (O, (Xy, Ox,,1)) to (L, (X;, L;,¢;)). Hence we have an isomorphism Oy —
O(D1]y), which is given by the multiplication by some f € HY(U, Oy)* with div(f) = D1y =0
on U. The further properties of the isomorphism are equivalent to that D; converges to —&1\\7( f)
in ]5;(2/{ /Z)mod- Hence the kernel of the group homomorphism above is P/I"EI(Z/{ /Z)mod- S0 we
have an injective group homomorphism

Cl(U/Z) — PicU /7).
To see the surjectivity: given any (L, (X;, L;,¢;)i>1) in 7/7E(Z/I/Z), take a nonzero rational
section s of £ on U, and set

div(s) := {div y, 7,)(s) + div(lil; ) }i1, (5.2.5)

where d/i:/( X Zl)(s) means to see s as a rational section of L; on A7, and take the corresponding
arithmetic divisor. This defines the desired element in Cl(U//Z). O
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5.2.3 Nefness and integrability

Let U be an integral scheme which is quasi-projective over SpecOx .
Definition 5.2.9. An adelic line bundle L € ﬁ(U/Z) is said to be:

(i) strongly nef if it is isomorphic to an object (L, (X;, L;, l;)i>1) where each L; is nef on
Xi;

(ii) nef if there exists a strongly nef M € 7/3E(U/Z) such that al + M is strongly nef for all
positive integers a;

(i7i) integrable if it is isomorphic to the difference of two strongly nef adelic line bundles.

We will use Pic(U/Z)snet (vesp. Pic(U/L)net, Pic(U[Z)int) to denote the full subcategories
of 7/DE(U /Z) of strongly nef (resp. nef, integrable) ones. We will use fjl\c(u /Z)snet (reSp.
FTi\c(L{ /Z) et Pic(U /Z)int) to denote the corresponding subsets of 15Tc(u /Z). 1t is a semi-subgroup
(resp, semi-subgroup, subgroup).

5.2.4 Generic fiber of adelic line bundles

Now we go back to our original situation, where X is an irreducible quasi-projective variety
defined over K.
Recall the definition at the beginning of this section that

Pic(X/Z) := liny, Pic(U/Z), Pic(X/Z) = lim, Pic(U/Z), Div(X/Z) :=lim, Div(U/Z)

with ¢ running over all quasi-projective models of X.
Proposition implies immediately

Proposition 5.2.10. There is a canonical isomorphism
ClX/Z) := hﬂu ClU/Z) — Pic(X/7Z).
For any projective model X of X, i.e. an integral scheme which is projective over SpecOg
such that X is open in Xk, the generic fiber X is by definition a projective model of X. Hence
the natural map Pic(X) — Pic(Xk) induces a group homomorphism

Pic(X/Z) — Pic(X/Q). (5.2.6)

Definition 5.2.11. For any adelic line bundle L € lsi\c(X/Z), the image under (5.2.6)) is called
the generic fiber of L. It is often denoted by L.

Let P be one of the symbols {snef, nef, int}. Then we define
Pic(X/Z)p :=limy, PicU/Z)p, Pic(X/Z)p = liny, Pic(Ud/Z)p.
It is not hard to check that (5.2.6) restricts to

Pic(X/Z)p — Pic(X/Q)p.
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5.3 Metrized line bundles on Berkovich analytification

A second way to understand adelic line bundles is to see them as metrized line bundles on
the Berkovich analytification of X. In this section, we explain Berkovich analytification and
metrized line bundles.

Let k be a Banach ring, i.e. a ring with a norm | - |gay, which is complete for the induced
topology. For example, Z with the archimedean absolute value |- |, Z, with the p-adic absolute
value |- |, or any field endowed with the trivial absolute value |- |o (Jalo = 1 for all a # 0).

Let Y be a scheme over Speck. In our discussion, we assume Y to be separated and of finite

type.

5.3.1 Berkovich analytification

In this subsection, we explain and recollect some results on Berkovich analytifications.

Definition 5.3.1. The (Berkovich) analytification of Y, denoted by (Y/k)*™ or Y?*" for
short, is defined as follows.
If Y = SpecA, then

- as a set, Y*" is defined to be the space M(A) = M(A/k) of multiplicative semi-norms on A
whose restriction to k is bounded by | - |Ban. For each y € M(A), denote the corresponding
semi-norm on A by |- |,: A = R. For any f € A, write |f|, as |f(y)|, which give a
real-valued function |f| on M(A).

- the topology on X is the weakest one such that the function |f|: M(A) — R is continuous
forall f € A.

In general, take an affine open cover {SpecA;} of Y, and define Y*" to be the union of
M(A;), glued canonically. The topology on Y?" is the weakest one such that each M(A;) is
open.

It is known that Y2" is locally compact and Hausdorff. If k¥ = C with the standard absolute
value, then Y*" is homeomorphic to Y (C) (and so coincides with the usual analytification). If
k = R with the standard absolute value, then Y*" is homeomorphic to Y (C) quotient by the
complex conjugation.

In general, we have a decomposition

Yo = Y[00] U Y [f] (5.3.1)

into the subsets of archimedean and non-archimedean semi-norms. The trivial norm is by
definition non-archimedean.
In what follows, when k = Z, we always take | - |gan on Z to be the absolute value |- |

Example 5.3.2. Let us look at (SpecZ)®*. It is the union of the closed-line segments
0,1 = {] - |5 :0< t <1}

and the closed-line segments
[0,00]p == {| - [;,: 0 <t < o0}

for all finite prime numbers p > 0, by identifying the endpoints |- | and |- ]g for all p with the
trivial norm |- |o on Z. In particular, (SpecZ)®® is compact and path-connected.
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For convenience, denote by
U0:|'|07 Uoo:|'|007 Uf)o:’ tooa Up:|'|p> ’U;;:| ;7
and by
(0? 1]00? (07 1)007 (07 OO]P? [07 Oo)]’? (07 OO)P
the sub-intervals of the line segments obtained by removing one or two endpoints; for example
(0,00)p ={]- |, : 0 <t < o0}
And (SpecQ/Z)™ is (SpecZ)™™ with vy° removed for all p > 0, when we see SpecQ as a
scheme over SpecZ via Z C Q. If we consider the trivial norm on Q, then (SpecQ/Q)*" is {vg}.

Lemma 5.3.3. If Y is projective over k, then Y2" is compact.
Here are several basic notions concerning Y 2".

Definition 5.3.4. (i) (Residue field) For each y € Y*", define the residue field H, as
follows. Take an affine open M(A) such that y € M(A). The semi-norm |- |, induces a
norm on the integral domain A/Kerx(|-|,). Then Hy is defined to be the completion of the
fraction field of A/Ker(]-|,). Notice that|-|,: A — R can be decomposed into

A, (5.3.2)
where | - | is the multiplicative norm on H, induced by |- |,. We thus write A — H,, f —
f(y). This notion generalizes to an arbitrary Y*". By (5.3.2), each y € Y?" gives rise to
a k-morphism

¢y: SpecH, — Y. (5.3.3)

(ii) (Contraction) The contraction map x: Y*" — Y is defined as follows. It suffices to
define for M(A). For each y € M(A), define k(y) := Ker(| - |,) € SpecA.

(iii) (Injection) For each x € Speck, the trivial norm on the integral domain k/x induces a
semi-norm |- |50 on k. Assume that each such |-|z0 is bounded by |-|Ban. This assumption
holds true in the three cases considered at the beginning of this subsection (Z, Z,, any field
with the trivial norm).

The injection map ¢: Y — Y2 is defined as follows. It suffices to define for Y = SpecA.
For p € SpecA, denote by |- |0 the semi-norm on A induced by the trivial norm on A/p.
Then set 1(y) == | [p,0-

(iv) (Reduction) If Y is proper over k, then we can also define a reduction map r: YY" — Y
as follows.

Each y € Y*[f] gives rise to a k-morphism SpecH, — Y by (5.3.3), and the valuative
criterion of properness gives a uniquely extends it to a k-morphism SpecR, — Y (where
Ry is the valuation ring of Hy). Then r(y) is the image of the unique closed point of
SpecR,.

For y € Y*[oo|, we still have a morphism SpecH, — Y. Here H, is isomorphic to R or
C. Define r(y) to be the image of SpecH,,.

Example 5.3.2". In (SpecZ)*. For each finite prime p, the residue field of U; = |§, is Qp
when t € (0,00) and is F, when t = co. The residue field of vl = ||, is R when t € (0,1].
The residue field of vy is Q.

The contraction map leaves vy° = | - |3° stable and sends all other points to vo = | - |o.

The injection map sends the prime (p) to vy° = |- [3°, and sends (0) to vo = | - |o.

The reduction map sends (0,00], to vy°, and sends [0, 1] to vo.
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Lemma 5.3.5. Any morphism f:Y — Y’ induces a continuous map f*: Y2 — Y’ For any
v € Y3 the fiber Y21 := (f3)~L(v), defined as a subspace of Y", is canonically homeomorphic
to the Berkovich space (Yi,/Hy)™.

With this lemma in hand, we have study the structure of the analytification of Y#" for k = Z.
This applies to any arithmetic variety Y — SpecZ and also to our quasi-projective variety X
(defined over a number field K) via Z C Q C K.

We have a structure map Y?" = (Y/Z)*" — M(Z), which gives a disjoint union

Y :UUGM@Y”' (5.3.4)

The most distinguished fibers are
T N L
We can furthermore decompose, according to the structure of M(Z), into

(i) Y, =Yt = (Yo/Q)*" under the trivial norm of Q;

triv

(ii) Vi = (Yr,/Fp)*" under the trivial norm of F,, for finite primes p;
(iii) Y (0oc),» Homeomorphic to Y x (0, 00) for finite primes p;
(iv) Y (o). » homeomorphic to Y™ x (0,1].

Lemma 5.3.6. The subset Y\ Y (Specz) 15 dense in Y.

Let us go back to our situation where X is a quasi-projective variety defined over a number
field K. We close this subsection with the following lemma.

Lemma 5.3.7. Let X — U be a quasi-projective model of X. Then the induced map X3 — U3
is continuous, injective, and with a dense image. Better, the set of v € X?" corresponding to
discrete or archimedean valuations of H, is dense in U".

5.3.2 Metrized line bundle and arithmetic divisors on Y?"

Let L be a line bundle on Y. At each point y € Y*", denote by ¥ := k(y) which is a point of
Y. The fiber L*'(y) of L at y is defined to be the H,-line L(y) ®y) H,, or equivalently the
completion of the fiber L(y) of L on g for the semi-norm |- [,. In terms of (5.3.3)), L*"(y) = ¢; L.

Definition 5.3.8. A metrized line bundle L = (L, | - ||) on Y®® is a pair where L is a line
bundle on'Y and || - || is a continuous metric on Y?*". Here a continuous metric of L on Y2
is defined to be a continuous metric on ]_[yeyan L*(y) which is compatible with the semi-norms
on Oy, i.e. for each y € Y, assign a norm | - ||, on L*(y) such that || fl|, = |flyll€lly
for all f € Hy and all £ € L*(y), and that for any local section ¢ of L on Y the function
1€)== ||€(y)]ly is continuous in y € Y*".

The category of metrized line bundle on Y®" is denoted by 7/DE(Y”), and the group of
isomorphism classes of metrized line bundles on Y?" is denoted by Pic(Y?").
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Definition 5.3.9. An arithmetic divisor on Y is a pair D = (D, g) where D is a Cartier
divisor on'Y and g is a continuous Green’s function of |D|*™ on Y®", i.e. a continuous function
g: Y2\ |D|* — R such that for any rational function f on an open subset V of Y with
div(f) = D|y, the function g+ log|f| extends to a continuous function on V3",

An arithmetic divisor on Y is said to be principal if it is of the form d/l:/'(f) = (div(f), —log|f|)
for some non-zero rational function of f on Y.

The group of arithmetic divisors on Y?" is denoted by ﬁf(Yan), and the subgroup of prin-
cipal arithmetic divisors is denoted by Prin(Y®"). We also have the following definition of
effectiveness.

Definition 5.3.10. An arithmetic divisor D = (D, g) on Y is called effective (resp. strictly
effective) if D is effective and g > 0 (resp. g > 0) on Y\ |D|?".

The Green’s function ¢ in this setting contains information not only on Y?"[oc], but also
Y2n[f]. Later on we shall see an example (Lemma|5.4.4)) that the effectiveness of D is guaranteed
by g > 0. This is not the case if we do not consider the Berkovich analytification.

In both Pic(Y?") and Div(Y™"), there is a distinguished class which is of particular interest.

Definition 5.3.11. A metrized line bundle L = (L, | - ||) on Y3, or its metric || - ||, is called
norm-equivariant if any points y,y’ € Y*" satisfying |- |, = | - |ty, for some 0 <t < oo locally
on Oy, we have || -|ly = || - |I}, (more precisely, for any rational section s of L on Y such that

these two points y,y' are in Y\ |div(s)[2, we have ||s(y)|| = ||s(y)]|*)-

An arithmetic divisor D = (D,g) on Y®, or its Green’s function g, is called norm-
equivariant if for any y,y’ € Y\ |D|*" satisfying |- |, = | - \;, for some 0 <t < oo locally on
Oy, we have g(y) = tg(y').

By definition, every principal arithmetic divisor is norm-equivariant. Denote by 7/3E(Yan)eqv
the full sub-category of norm-equivariant metrized line bundles on Y*", and Pic(Y*")cqv and
Div(Y®")eqy similarly. We have the following proposition.

Proposition 5.3.12. There is a natural group isomorphism
Cl(Y?) := Div(Y™)/Prin(Y™") = Pic(Y?).
Moreover, it sends restricts to
CUY ™ )oqy 1= Div(Y™)eqy /Prin(Y™) =5 Pic(Y*)oqy.

Proof. We write the two group homomorphisms.

Let D = (D, g) € Div(Y®"). Define O(D) := (O(D),|| - ||g), with ||splly = e™¢ where sp is
the canonical section of O(D) (i.e. div(sp) = D). If D is principal, then it is not hard to check
that O(D) is isomorphic to the trivial metrized line bundle.

Conversely let L = (L,|| - ||) be a metrized line bundle on Y. Let s be a rational section of
L on Y, and define

divyan(s) := (div(s), — log||s]|).
This gives the desired inverse. O

When k& = Z, a norm-equivariant Green’s function or a norm-equivariant metric on a line
bundle on Y2" is uniquely determined by its restriction to the disjoint union of the distinguished
fibers Y71 = Yg" and Y;»* = Y{§" for all finite primes p. This follows from Lemma W
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5.4 Adelic line bundles as metrized line bundles

For our quasi-projective variety X defined over a number field K, we view X as a scheme over
SpecZ via Z C Q C K. Then we can apply the disjoint union decomposition to X. In
particular, we get a fiber X7 = X" = (X/Q)*" (under the trivial norm of Q) of X*" = (X/Z)*"
(with the Banach norm on Z being the archimedean absolute value).

The goal of this section is to prove the following theorem.

Theorem 5.4.1. We have the following commutative diagram of homomorphisms of groups:

Pic(X/Z) > Pic(X™)qy (5.4.1)

| |

Pic(X/Q) > Pic(X3, Jeqv
where the left vertical arrow is taking the generic fiber L — Z, and the right vertical arrow is
obtained by pulling back of X322 C X?".

triv

In the proof we shall see that the top arrow in exists and is injective with X replaced
by any quasi-projective arithmetic variety U (in fact it becomes an isomorphism for I/, but not
for X).

We also have the corresponding version for arithmetic divisors and arithmetic divisor classes,
in view of Proposition [5.2.10| and Proposition

Theorem 5.4.1". We have the following natural injective group homomorphisms
Div(X/Z)— Div(X™) g, CUX/Z)— CUX™) oy (5.4.2)

Moreover strong results hold true with X replaced by any quasi-projective arithmetic variety U,
where the homomorphisms are isomorphisms.

5.4.1 Construction over projective arithmetic varieties

Let X be a projective arithmetic variety, i.e. a separated integral scheme of finite type over
SpecZ with projective structural morphism. Let us construct a functor

Pic(X) = Pie(X™)eqy (5.4.3)

where @(X ) is the category of Hermitian line bundles on X'.
Let £ = (L,] - ||) be a Hermitian line bundle on X. We define a metric of £ on X" as
follows. Recall the decomposition (5.3.1])

X = X oc] U X*f]

and its refinement below (5.3.4). Now || - || gives a metric || - [|** of £ on X2 = X2", because
g™ = X(C)/Gal(C/R) and the metric || - || is invariant under the complex conjugation. This
metric extends to X*"[oco]] by norm-equivariance (Definition as follows: For any x €
X2 [oo], write (2/,t) € AZ" x (0,1] for the coordinate under the homeomorphism X*"[co] =
X = Ao x (0,1] (with (0,1]ec = {vi, : 0 < ¢ < 1}), then set || - [|3* == (|| - [|5)". Notice
that || - ||*" is continuous on X?"[co] by construction.
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To define the metric of £ at a point x € X**[f], we use (the construction of the) special-
ization map r: X?*"[f] — X by the properness of X — SpecZ. More precisely, the point x
gives a morphism ¢, : SpecH, — X which, by the valuative criterion of properness, extends to
¢S SpecR; — X for the valuation ring R, of Hy. Then (¢3)*L is a free module over R, of rank
1. Let s; be the basis of this free module. Define the metric || - [|2" on £2"(x) = ¢%L by letting
l|s2||2 = 1. Notice that this construction does not use the Hermitian metric on L.

Lemma 5.4.2. Let U be a Zariski open subset of X. Assume x € X" satisfies r(x) € U. Then
T €U,

Proof. This is clearly true if z € X*"[oc], by definition of r. Now assume z € X?"[f]. Recall
that r(z) = ¢5(m;) where m; is the unique closed point of SpecR,.

It suffices to prove ¢3(R;) € U. Assume not. Then ¢,: SpecH, — X factors through
X \ U which is itself proper, and hence its (unique) extension ¢ also factors through X \ U,
contradicting r(z) € U. O

15 continuous.

Lemma 5.4.3. The metric || - ||**

Proof. We first prove the continuity of || - [|*" on X?"[f]. Let r: X*" — X be the specialization
map, i.e. r(x) = ¢3(m,) where m, is the unique closed point of SpecR,. Let {y}m>1 be a
sequence in X**[f] converging to x € X*"[f], and let ¢ be a local section of £ on X. We need to
prove that |[£(z,,)[|*" converges to |[¢(x)|*".

Take an open cover Uy, ..., U, of X such that each U; contains r(z) and trivializes £ (such
an open cover exists). Then z € U by Lemma On the other hand, ¢|;;, can be seen as a
regular function on U;, which we denote by f;. Then |{(z)[|*" = | fi2-

For each ¢, denote by I; the set of m > 1 such that r(z,,) € U;. Then I1U---UI, = Z~y. Now
takei € {1,...,n} and m € I;. By Lemmal[5.4.2 z,, € U*™. And then |[¢(zp,)|* = |filz,, by the

discussion in the previous paragraph. So limpyer, [|[0(2m)||*" = immer, | file,, = |file = [[€(x)||*"
for each i € {1,...,n}.
Next, we check the continuity of || - [[*" when X*"[oo] approaches A;". Let {y,}m>1 be a

sequence in X'*"[oo] converging to a point x € A" and let £ be a local section of £ on X. We
need to prove that ||[¢(x,,)]|*" converges to ||¢(x)|/*".

Write (zpm,tm,) for the point z,, under the homeomorphism X?"[cc] = X(%ill]oo ~ AP x
(0,1]. Then t, — 0 by assumption on {x,}m>1. Assume I is a subsequence of Z-( such
that limy,er zm = 2 € &, Take an open subset U of & which contains r(z) and r(z) such
that L[y is trivial (such an U exists). Then z,z € U*" by Lemma [5.4.2l Up to removing
finitely many elements in I, we may and do assume that z,,, z,,, € U™ for all m € I. Notice
that ¢|;y can be seen as a regular function on & which we denote by f, and |[4(z)||*" = |f|s
since x € Uy C U[f]. Now f extends to a rational function on X which we still call f.
Then f~!4 is a rational section of £ on X such that & N |div(f~1¢)| = 0. In particular, we
have [[(/~10) ) [ = (1(F0) ) [ = [[(£~16) (zm) [ by definition of | - [[* (the first
equality is the definition of norm-equivariance Definition , so [[(f710)(zm)]|™ — 1 when
m — 00. So limmer [{(zm)||*™ = limper | flz,, = |fla = [[€(2)]™

Now the conclusion follows because || - ||*" is clearly continous on X?"[co]. O

The construction ([5.4.3)) can be translated into a group homomorphism
Div(X) = Div(X™)eqy. (5.4.4)

Let D = (D,g) be an arithmetic divisor on X. The desired Green’s function g of |D|*® on
X as follows. Now g: X(C) \ [D(C)| — R naturally gives a Green’s function on &7 =



78 CHAPTER 5. ADELIC LINE BUNDLES

AE" = X(C)/Gal(C/R) since g is invariant under the complex conjugation. It extends to a
Green’s function g on X*"[oc] by norm-equivariance (Definition [5.3.11)): For any = € X*"[cc],
write (2/,t) € A2 x (0,1] for the coordinate under the homeomorphism X*"[co] = X ~
X2 % (0,1] (with (0,1]ec = {vh, : 0 < ¢ < 1}), and then set g(z) = tg(z’).

For z € (X'\ |D|)*[f], take a Zariski open U of X such that r(x) € U and that Dy = div(f)
for some f € Q(U)*. Then g(x) is defined to be —log|f|..

The continuity of g on X"\ |D|*" follows from Lemma It self-improves to that g
is a Green’s function of |D|*" on X?", by applying the continuity to the arithmetic divisor
(D —divy(f),g+1og|f|s) for any rational function f on an open subset V of X with div(f) =
Dl|y.

The Green’s function g contains much more information than g. As a particular instance,
we have the following lemma.

Lemma 5.4.4. Assume X is normal. Let D = (D, g) be an arithmetic divisor on X and let § be
the associated Green’s function on X®*. Then D is effective if and only if g > 0 on X%\ |D|*".

Proof. Only the “if” part needs to be checked. Assume g > 0. We only need to check the
effectiveness of D. For any v € X of codimension 1, we need to show that the valuation ord, (D)
in the local ring Oy, is non-negative. Consider the point § := exp(—ord,) of X*". Let f be a
local equation of D in an open neighborhood of v in X, then by definition we have

g(§) = —log|fle = —log(exp(—ord, f)) = ord, f = ord,(D).

Hence we are done. O

5.4.2 Construction over quasi-projective arithmetic varieties

Let U be a quasi-projective arithmetic variety, i.e. a separated integral scheme of finite type
over SpecZ with quasi-projective structural morphism. Now let us construct a functor

PicU/Z) = Pic(U™)eqr (5.4.5)

and prove that it is fully-faithful. Notice that this proves the existence of the top arrow in (5.4.1])
and its injectivity, with X replaced by U.

Construction of ([5.4.5)
Let £ = (L, (X, Li, 4;)i>1) € 7/7E(Z/{/Z) Each £; induces a metric ||-||?" of £; on X as was done

in the previous subsection. Then we get a metric || - ||; on £ by pulling back via the isomorphism
bii L= Loy
Let us show that || - ||; converges pointwise to a metric || - || of £ on U*"; then the image of

L under (5.4.5) is set to be £ := (L, ]| - ||).

Let (Xp, Do) be a boundary divisor. Write go for the Green’s function of Dy on X" induced
by Dg via (5.4.4). By the definition of ﬁE(U/Z), the sequence {cTi\V(&El_l)}iZl is Cauchy in
ISR/(U/Z)mOd, i.e. there exists a sequence {¢;};>1 of positive rational numbers tending to 0 such
that the following inequality holds true in ISRI(U /Z) mod:

—e; Dy < div(6ity ) — div(l;t;) < e;Do, Vi >j> 1.
Write f; :=log(|| - [li/|| - [[1) as a continuous function on U**. Then the condition above implies

—€ig0 < fi — fj < €go, Vizj=>1. (5.4.6)
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The verification is by a detour of using the constructions of (5.4.3) and (5.4.4)), and Proposi-
tion relating ].:/)I\C(Z/{/Z) with ﬁl\v(U/Z) (resp. Proposition |5.3.12| ralating f’i\c(uan) with
ﬁRz(uan)). Thus {f;} is uniformly convergent to a continuous function on any compact subset
of U*".

Recall that U*" is locally compact. So {f;} converges pointwise to a continuous function f
on U*. Hence || - ||; converges pointwise to a continuous metric || - || such that

—eigo < log([| - [I/1 - l;) < €90, Vi =1. (5.4.7)

Fully-faithfulness of ([5.4.5))

Let us show that there exists a canonical isomorphism
®: Hom(Oy,, L) = Hom(Oy, L) (5.4.8)

where Oy, = (Oy, (X0, Oxy, 1)) and Oy = (Oy, || - |lo) are the identity elements.

Elements of both sides of ® are represented by regular sections s of £ which are everywhere
non-vanishing on &. Such a section s gives an element of the RHS if and only if ||s|| = 1 on ",
or equivalently if and only if (Il:f(s) =0 in ]SRI(Z/{‘“). Such a section s gives an element of the
LHS if and only if div(s) = 0 in Div(U/Z).

Recall that ﬁR/(U/Z)mOd = lim ]Sin(X,Z/{) with X running over all projective models of U.
We may assume & to be normal by taking normalization. Then by Lemma[5.4.4] an element in
]51?/(2/{ /Z) is effective if and only if its image in ]Si\v(l/{a‘“)eqV is effective. This gives the desired
isomorphism .

Now let £,Z € Pic(U/Z) with images £, L™" € PicU™). Applying (5.4.8) to (£)" ® L,

we get a canonical isomorphism
Hom(Ox,, (L) ® L) = Hom(Oy, (™) & L),

and hence a canonical isomorphism

Hom(zl, L) = Hom(zlan, ™.
This proves that the functor (5.4.5)) is fully-faithful.
In terms of adelic divisors
The construction ([5.4.5)) can be converted to
Div(U/Z) = DivU™)eqe,  and  CUU/Z) — CUU™)oqy- (5.4.9)

Here is a more concrete way for this construction of (5.4.9) for which we focus on the first
homomorphism. For each projective model X' of U, the analytification map (5.4.4]) induces a
map

Div(X,U) = DivU™)eqv, D = (D,g) — (Dlu, ).

By direct limit, this map gives ]51?/(?1 /Z)moa — ﬁ(uan)eqv. Now we wish to extend this map
to (5.4.9). Fix a boundary divisor (Xp, Do) of U. Let {(D;, gi)}i>1 € ﬁR/(U/Z), i.e. a Cauchy
sequence in ISF/(U /Z)mod, With each D; a divisor of a projective model X; of &. Then there
exists a sequence {€; € Qso};>1 with ¢; — 0 and
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Write g; for the Green’s function of D; on X induced by D; = (D;, g;) via (5.4.4), for each
i > 0 (this includes the boundary divisor). Notice that Di|yy = D2y = ---, and we denote by
D this divisor on Y. Let us show that {g;};>1 converges to a Green’s function of D on U*".

Indeed, (5.4.10)) implies that
—€j90 < gi — gj < €590, Vi>j>1. (5.4.11)

Thus {g;} is uniformly convergent to a continuous function on any compact subset of U?".
Recall that U4*" is locally compact. So {g;} converges pointwise to a continuous function g on
U?", which is the desired Green’s function.

Now ([5.4.9) is defined by sending {(D;, ¢;) }i>1 + (D, g).

5.4.3 Proof of Theorem [5.4.1]

Consider the functor

Pie(X/2) = lim Pie(U,/2) lim PI(U™ gy (5.4.12)
u u

which is fully-faithful since (5.4.5)) is. For any quasi-projective model U of X, the map X?" — (/"
induces a natural map Pic(U*")eqv — Pic(X*)eqv. Thus we have a functor

lim PicU™)eqe — Pic(X™)eqy- (5.4.13)
u

Now composing the two functors above, we obtain
Pic(X/Z) = Pic(X*™)eqv (5.4.14)

which gives the top arrow of (5.4.1]).
Now let us prove that (5.4.13) is fully-faithful. The upshot is that the top arrow of (5.4.1))

is injective.
We start by showing that the natural functor

lim Pic(l) — Pic(X) (5.4.15)
u

is fully-faithful. Fix a quasi-projective model Uy of X. It is not hard to show that the system
{U} can be taken to be the inverse system of open subscheme of U, containing X. Now take
L, L' two line bundles on some open neighborhood of X in Uy. Then the map

@Ho(u, £'eL) - HY(X, LV e L)
u

is injective since both sides are subgroups of rational sections of £V ® £" on X, and is surjective
because any rational section s of £V ® £’ regular and nowhere vanishing on X must be regular
and nowhere vanishing on a neighborhood of X in Uy. In other words,

@Hom(£|u,£'|u) ~ Hom(L|x, L' |x),
u
whereas the fully-faithfulness of (5.4.15)). Hence (5.4.13)) is fully-faithful by Lemma |5.3.

Next we turn to the bottom arrow of ([5.4.1)). In fact, we can simply repeat the construction
in §5.4.1]if X is projective (replace X' /Z by X/Q; notice that the construction is easier since
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X = X?f] in this case), and then pass to quasi-projective X after a similar but easier

construction as in §5.4.2] This establishes the bottom arrow of and proves its injectivity,

and at the same time proves the commutativity of the diagram . O
As for Theorem the desired homomorphisms are

Div(X/Z) = lim Div(t/Z) lim DIV (U™)eqy — DIV(X™)egy,
u u

Cl(x/z) = lig Cl(/2) ling CLU™ ey — CLX™)aqy.
u u

Here the last maps in both compositions are induced by X C /. Similar to Lemma [5.4.4] we
have the following:

Lemma 5.4.5. An adelic divisor D € ]SE(X/Z) is effective if and only if its image D €
Div(X®)eqv is effective.

5.5 Families of polarized dynamical systems and abelian schemes

Let S be an irreducible quasi-projective variety defined over a number field K. Let (X, f, L) be
a weakly polarized dynamical system over S, i.e.

- X is an integral scheme, projective and flat over S
- f: X — X is an S-morphism;
- L € Pic(X) such that f*L ~ gL for some integer ¢ > 1.

Recall that 7/31\(:(X/Z) = lim, 7/71\0(1/{/2), and there is a natural functor 7/DI\C(U/Z) — Pic(X),
(L, (X;, Li,li)i>1) = L|x. Thus we have a natural forgetful functor

Pic(X/Z) = Pic(X). (5.5.1)

Theorem 5.5.1. There exists an adelic line bundle Ly € 7/71\C(X/Z) extending L, i.e. the image
of ff under the forgetful functor above is L, satisfying the following properties:

(i) Ly is f-invariant, i.e. f*Ly ~qLy in 7/3E(X/Z)

(ii) Assume L is relatively ample over S. Then Ly is nef in 7/DI\C<X/Z) If S has an affine
quasi-projective model over Z, then ff is strongly nef.

Moreover as an element in f’i\c(X/Z)Q, the extension Ly is uniquely determined by condition
(i).

This theorem in particular applies to any abelian scheme A — S with a relatively ample
symmetric line bundle £ on A. In this case f can be taken to be [n], and ¢ = n? (n > 2). It
turns out that the resulting adelic line bundle does not depend on the choice of n, so it suffices
to take n = 2.

Remark 5.5.2. In practice, we sometimes need to work with the following slightly more general
situation. Let L € Pic(X)q such that f*L ~ gL for some rational number ¢ > 1. Then in

Theorem we obtain an Ly € ﬁ(X/Z)Q, with ﬁ(X/Z)Q defined in the obvious way.
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5.5.1 Construction and f-invariance

Take a projective model m: X — S of X — S, i.e. a projective model S of S over Z and a
flat morphism 7: X — S of projective schemes over Z such that the base change X xg S — S
is isomorphic to X — S (so that we identify X xs S = X). Take a Hermitian line bundle
L= (L] | € Pic(X) such that £|x = L.

For each positive integer i, we wish to extend the morphism f?: X — X to integral models,
where f? is the i-fold iterate of f. First, the composite X i) X — X gives a rational map
X --» X. Next after taking normalization we obtain a morphism f;: X; — X. Denote by
;. X; — S the induced map to S. Now we have

)f
X

—

f oo f

k3

with the arrows in the top row being S-morphisms and the arrows in the bottom row being
S-morphisms. -

Set Zz = q*ifi*f € PiC(XZ')Q.

Now let us take an open subscheme V of § containing S, such that U := Xy, is projective and
flat over V and that f: X — X extends to a morphism fy: U — U with f*L ~ qL extending to
an isomorphism f};Ly = gLy in Pic(Ud). Now, we have X;p = Xy =U for all i > 1.

Start with the isomorphism in Pic(U)g

0: Ly — ¢ fHLly.
Applying ¢! [y to £ successively , we obtain canoncial isomorphisms
Ly = q ' 5Ly = a2 ()7 Ly = - = a7 (f5) 'Ly

in Pic(U)q. Notice that L;yy = ¢~*(f;)'Ly by definition of £;. Hence we obtain an isomorphism
in Pic(U)qg
Ei: ,CV — ﬁz‘u

for each 7 > 1. Thus we obtain

(Ly, (X, Li, £i)i>1) (5.5.2)

with £y € Pic(U), (X;, L;) a model adelic line bundle on U for each i > 1, and £;: Ly ~ L;|y
for each 7 > 1. -

Let us show now that the sequence converges in 7/7E(Z/I/Z), i.e. {div(€07 M) }isy is
a Cauchy sequence under the boundary topology. The upshot is that it then gives an object
Lye 7/7E(X/Z) which is f-invariant.

Up to blowing up S along S\ V, we may and do assume that there is a boundary divisor
(S, Dy) of V. Then we get a boundary divisor (X, 7*Dy) of U.

View the isomorphism ¢: £y — ¢! fyLy as a rational map L — L. This defines a model

adelic divisor al\v(f) in ISRI(L[ /Z)mod Whose image in Div(Uf) is 0. Hence there exists r > 0 such
that

—Tﬂ*ﬁo < d/l:/'(g) < rm*Dy

—

in Div(U)mod-
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By construction, the isomorphism £i+1€;1 : Lily = Lit1]y is obtained from ¢: Ly — q*1f§£y
by applying (q_lf{})i. Accordingly, the rational map EiHE;l : L; —-» Li,1 is obtained from
0: L --» L1 by applying (¢~ f*)". Hence we have

—%71'*50 < (TI\V(EZ+1€;1) < ?T{'*Eo (5.5.3)
in m(U)mod. Thus {cTi\V(&Kfl)}izl is a Cauchy sequence under the boundary topology. We are
done for the existence.

Now let us give a vigorous proof of via a precise explanation of the sentence in italic
above. Write Xy = X and Ly = L for convenience. There exists a projective model Y of U over
Z and morphisms 71: Y1 — X and 71: Y1 — X)), extending the identity map U — U, such that
the rational map £: £y --» £ is given by a morphism

Lo — T L1

over )1. Moreover for each ¢ > 1, there exists a projective model Y; 1 of U over Z, together

with morphisms

/
Tit1: Vir1 = Xip1, Tipq: Vie1 = X

extending the identity map & — U, and a morphism
gi: Yit1 = N1

extending the morphism f{',: U — U. Then the rational map €i+1€i_1: L; —-» L1 is realized

as a morphism (¢;414; 1) 751 Li — 771 Liy1 over Vi1, by applying ¢ 'gf to ¢ via g;. As a

consequence, we have the following equality in ISRI(MH)@
div((li16; 1)) = q g div(l)).

Denote by 7{: V1 — S and 7} 1 : Viy1 — S the structural morphisms. Notice that gfm}*Dy =
wgilﬁo is equal to 7* Dy in Div(U)meq. Thus (5.5.3) holds true.

5.5.2 Nefness

We shall only focus on the case where S has an affine quasi-projective model V over Z. In this
case, we can assume that S is an open subscheme of V, and then L is in fact ample on X (not
just relatively ample). Hence we can start by choosing (X, £) with £ nef. Then every L; is nef
on X; by pullback, and therefore ff is strongly nef by definition.

5.5.3 Uniqueness

To prove the uniqueness, we start with the case where L = Ox is the trivial line bundle.
Use Theorem and in particular the canonical injective map

Pic(X/Z) — Pic(X™)eqy.

The image of Ly, denoted by f;n, is then represented by an element (0, g) of BF/(X“) because L = Ox.
In particular, the Green’s function g is actually a continuous function on X?®". The condition f *ff ~ qff
then implies the following equality in Div(X?"):

(0, f*g — qg9) = (div(a), —log |cr|), for some o € Q(X)*.
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Now that div(a) = 0, we have that « € H°(X, O%). Restricted to each fiber of X — §27 the difference
fr9 —qg = —log|al

is then constant.

Let v € S* with residue field H,. The fiber X2" is the Berkovich space (Xp,/H,)*". Denote by
Jmax and gmin the global maximal value and global minimal value of the continuous function g on the
compact space X2". As f: X2 — X2" is surjective, the relation f*¢g = gqg+ ¢, (for a number ¢,) implies
Jmax = (Ymax + Cv, Whereas gmax = —¢,/(¢ — 1). Similarly gmin = —¢»/(¢ — 1). Hence g is constant on
X2 So f*g =g on X"

Therefore we have (1 — q) - (0,g) = (div(a), —log |a|). Hence (1 — q)Ly is trivial in Pic(X/Z). So L;
is 0 in Pic(X/Z)q.

Now we turn to an arbitrary L. If ff and flf are two f-invariant extensions, then ff — f} is an
f-invariant of Ox. Hence the discussion above implies that L — f/f is 0 in Pic(X/Z)g. So Ly = f/f in
lgi:(X /Z)g. This establishes the uniqueness.



Chapter 6

Height theory via adelic line bundles

In the whole chapter, we take K to be a number field, and X to be a quasi-projective variety
defined over K. Let n = dim X.

6.1 Height via adelic line bundles

In §2.3.2] we defined height functions on projective varieties via Hermitian line bundles, using
the arithmetic degree of Hermitian line bundles over SpecOg. This degree map was generalized
to the intersection pairing (Definition .

In this section, we explain how the definitions extend when we use adelic line bundles on X.

6.1.1 Adelic line bundles on SpecK and arithmetic degree

Let us start by computing lsiz(SpecK /7). 1t is easier to do the computation with adelic divisors.
Denote by X = SpecOpx. For any open subscheme U of X, we have

Div(U /Z)mod = Div(X,U), Prin(U)meq = Prin(X)

since X is the only normal projective model of U.
Set £ := X \ U endowed with the reduced scheme structure. Then we have

ISiTI(X,L{) :{Z ny[v] + Z ny [V'] + Z Nelo] :ny € Z, ny € Q, n, =nz € R for all o}

velU| v'e|€| o: K—=C
~(Pre(@P e H R.
velU| v'€|E| cEMK 00

Taking the boundary divisor € := (£,1) = > _vele|uMy o, V], We can compute the completion and
get

DivU/Z) ={ > nmul + D nuft |+ D nelo]:n, €Z, ny €R, ny =ng € R for all o}

veU| v'€E|E| o: K—=C
(6.1.1)
~(Doe( B ®.
veU| VE|E|UM K oo

Hence we have

Div(SpecK/Z) =lim(P z)a( € R), (6.1.2)

U yelu| VEIE|UMK oo

85
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and an arithmetic degree map -
deg: Div(SpecK/Z) — R (6.1.3)

induced by the group homomorphism Div(U//Z) — R, e g o VI, ko nelo] =
YoM Dy M + D, N
It is clear that factors through él(SpecK /Z), and hence we have the arithmetic degree
map via Proposition [5.2.10]
deg: Pic(SpecK/Z) — R. (6.1.4)

This arithmetic degree is compatible with the arithmetic degree of Hermitian line bundles
on SpecOk (1.1.1)) in the following sense. By definition of Div(SpecOf) and (6.1.2)), we have a

natural group homomorphism

Div(SpecOx) = (P Z)& ( @ R) — Div(Speck/Z),
UE‘Xl UGMK,OO

which induces
v: Pic(SpecOk) — Pic(SpecK/Z).

Then deg o ¢ is precisely the arithmetic degree map defined by -

We close this subsection by the following formula for deg Let L € Plc(SpeCK /Z). Write
(L, || - ||A) for the image of L under the canonical map Plc(SpecK/Z) o~ Plc((SpecK/Z) M eqv
from (5.4.1)). Then || - ||4 is uniquely determined by the collection of K,-metrics {||- |, on L ®x
Kv}ve My by norm-equivariance. Moreover, for any ¢ € L\ {0}, we have ||{|, = 1 for all but
finitely many v € Mg . The following lemma is not hard to check and we leave it as an exercise.

Lemma 6.1.1. Under the notation above, we have

deg(L) =~ Y loglels  for any ¢ € L\ {0},
veEMg

where €, = 2 if v is a complex place and €, = 1 otherwise. The RHS is well-defined by the
Product Formula.

In this terminology, ¢ sends (L, | - ||) to (Lxk, | - [|a), with |£|[, := inf{la| : a € Q, £ €
al ROk OKU}-

6.1.2 Height function defined by adelic line bundles
Let L € Pic(X/Z).
Definition 6.1.2. The height function defined by L is

deg(z’Gal(@/K)m)

7 X(Q) = R, T K(x): K]

Here, Z|Gal(@/K) is the image of L under f’i\c(X/Z)int — lsi\c(Gal(@/K)a:/Z)int.

Example 6.1.3. Assume X is irreducible projective. Assume L € Pic( ) ample such that
f*L ~ qL for some f: X — X and q € Z~1. Then by Theorem there exists Lf €

7/7E(X/Z)nef extending L such that f*Ly ~ qL¢. Then hff is in the class of the height function
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of hx 1, and satisfies hz, (f(z)) = qhg (x) for all z € X(Q). Hence hz, equals the normalized

height function ﬁx,ﬁL from Theorem .

This in particular applies to any abelian variety A and any symmetric ample line bundle L
on A, both defined over Q. So the Néron—Tate height on A is a height function defined by an
adelic line bundle L on A.

Better, if we have an abelian scheme A — S with S an irreducible quasi-projective variety,
and L a relatively ample symmetric line bundle on A; all defined over Q. Then Theorem
gives an L € T)E(A/Z)nef such that hz is precisely the fiberwise Néron—Tate height defined by
L.

As an application of Lemma we have the following:

Lemma 6.1.4. Denote by (L,| -||) € f’i\c(Xan)eqv the image of L under the canomnical map
Pic(X/Z) =5 Pic(X™)eqy from (5.4.1). Then for any x € X(Q), we have

s L sl (6.1.5)

VEMEK 2€Cal(Q/K)zx g Ky

for any non-zero rational section s of L on X with x ¢ |div(s)|.

6.1.3 Top intersection number of adelic line bundles

For any projective arithmetic variety X of dimension n+1, Definition [2.4.8|defines an intersection
pairing
Pic(X) ! — R. (6.1.6)
Here, the index int refers to the integrability condition on the Hermitian metrics we consider;
see below Definition 2.3.21
Let us extend this intersection pairing to adelic line bundles over quasi-projective arithmetic
varieties.

Proposition 6.1.5. Let U be a quasi-projective arithmetic variety of dimension n + 1. Then
there exists a canonical multi-linear homomorphism, which is symmetric in the n + 1 variables,
= +1
PicU/Z); 7" — R (6.1.7)

extending the intersection pairing (6.1.6) above. Moreover, if L1,...,Lyy1 are nef adelic line

bundles on U, then the intersection number L - Lo - ... - Ly+1 > 0.

Before moving on to the proof, let us explain how (6.1.7)) induces an intersection pairing on
Pic(X/Z)int. Indeed, Pic(X/Z)int = ling, Pic(U/Z)int, and hence (6.1.7)) gives rise to a canonical
multi-linear homomorphism (still called the intersection pairing)

Pic(X/Z)' - R (6.1.8)
such that L; - ... -an > 0 if all L;’s are nef. When n = 0, this map is exactly d/e\g.

Similarly we have a canonical multi-linear homomorphism
Pic(X/Q), — R, (6.1.9)

such that El . En >0 if all Ei’s are nef.
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Proof of Proposition[6.1.5, By linearity, it suffices to define for strongly nef adelic line bundles.
The proof is easier to write down in terms of adelic divisors. So we take D1, ..., D41 € BE(U/Z) with
each O(D;) being a strongly nef adelic line bundle. We will define Dy - ... Dpq.

Fix a boundary divisor (X, Dg) of U, which define the boundary topology of ﬁ/(U/Z)mod. We may
furthermore assume O(Dy) to be a nef Hermitian line bundle.

For j € {1,...,n + 1}, the adelic divisor D, is represented by a Cauchy sequence {(X;, D;;)}i>1,
where each O(ﬁjyi) is a nef Hermitian line bundle on the projective model X; dominating X,. Here,
we assume that the model X; is independent of j which is always possible. There exists a sequence
{€; € Q=0}i>1 with ¢; — 0 such that

761‘E0 < Ej,i’ — Ej,i < Eibo, Vil >4

for any j € {1,...,n+1}.
For any subset J C {1,...,n+ 1}, consider the intersection number

—d—|J| —
agi =D HjeJ Dj,zw

We shall prove, by induction on |J|, that {a;};>1 is a Cauchy sequence, and hence converges in R. Then
the limit of the Cauchy sequence gives our desired definition of Dy -...- D,1 when J = {1,...,n+1}.

The base step |J| = 0 is trivial since there is nothing to prove in this case. Assume the claim holds
true for any |J| < r for some r > 0. We need to prove the result for |J| = r. Without loss of generality
assume that J = {1,2,...,r}. Then

—=d—r— _ —d—r—
ajir—aygi =Dy Dijy-Dpyp—Dy Dy Dy

s

r

—=d—r == _ —_ _ —d—
<Dy (Dii+¢€Do) - (Dri+e€Do)—Dy Di;---Dyy

_ r—|J'|
= €; Qg

JICJ

and similarly
r—|J'|
ag; — oy < € Qg
JCJ
So
r—|J’|
lagir —agi| < €; |l 0 — a4l
JCT

This shows that {a.;}; is a Cauchy sequence by induction hypothesis. Hence we are done for the definition

of (17).
The intersection pairing (6.1.7) is symmetric in the n + 1 variables because (6.1.6]) is. Moreover,

1:/’1\(:(2/1/2)"+1 is mapped to R> since (6.1.6)) maps 151\0(26)’”r1 to R>q. Now if L1, ..., L1 are nef adelic

snef nef

line bundles on U, then there exist strongly nef adelic line bundle M; (j € {1,...,n+ 1}) such that
al; + M is strongly nef for all a € Z~ for all j. Hence

(aZl + Ml) s (aZnH + Mn+1) >0
for all @ € Z~o. And hence the leading coefficient £; --- L, is non-negative. O

We also have the following projection formula, by taking limits of Proposition

Proposition 6.1.6. Let f: X' — X be a morphism of varieties defined over K. Assume

dim X’ = dim X = n. Then for any L,. .., Ly,y1 € Pic(X/Z), we have

Ly ...« f*Lpy1 =deg(f)L1- ... Lyt

with deg(f) = [K(X') : K(X)] if f is dominant and deg(f) = 0 otherwise.
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We close this section by defining the height of an arbitrary dimensional closed subvariety of
X.

Definition 6.1.7. Assume L is integrable. Let Z be a closed subvariety of X defined over Q.
Define the height of Z for L to be
(Z|Z/)dimZ+1

hilZ) = (dim Z + 1)(L| 5/ )dim 2

(6.1.10)

Here Z' = Gal(Q/K)Z, and L — L|y +— Ly is the image of L under f’i\c(X/Z)mt —
Pic(Z' [ Z)imt — Pic(Z'/Q)in.-

On the RHS of (6.1.10), the numerator is the arithmetic intersection pairing (6.1.8]), and
the second term of the denominator is the geometric intersection pairing (6.1.9). Of course this
height is well-defined only if (L|z/ )™ % £ 0.

6.2 Volume and bigness of adelic line bundles

We explained in §5.1.4] the volume and bigness of geometric adelic line bundles on X. As for
the geometric-arithmetic analogue in the classical situation, we can generalize the discussion to
adelic line bundles on X.

6.2.1 Effective/small sections
Let T € Pic(X/Z). Denote by
Pic(X/Z) — Pic(X/Q) — Pic(X), L+ L— L.
Define
HYX,I):={s € H(X,L) : div(s) > 0},  Rh%(X,I):=log#H(X,L), (6.2.1)
and recall
HYX,L)={s € H(X,L): div(s) > 0},  h°%X,L) =dim H*(X,L).

In the definition of H°(X, L), 51:/(5) means the (arithmetic) adelic divisor (5.2.5), while in the
definition of H%(X, L) it means the geometric adelic divisor (5.1.F).

We state the following lemma without giving the proof. The proof is not too complicated:
one first proves the finiteness result for the model case and then passes to Cauchy sequences.

Lemma 6.2.1. Both h°(X,L) and h°(X,L) are finite numbers.

Next, recall the diagram ([5.4.1). Let (L,| - ||) € lgl\(Z(X ) eqv be the metrized line bundle as
the image of Pic(X/Z). Then for any s € H°(X, L) and any v € (SpecZ)®", define

xe

I8llsup := sup [ls(@)ll,  l[sllvsup := sup [[s(x)]]. (6.2.2)
zeXan Xg,n

Then we have by construction of (5.4.1) and Lemma we have
HY(X, L) ={s € HOX,L) : ||sllsup <1},  H(X,L)={s€ HO(X,L): ||s]lopsup <1}.  (6.2.3)

By Lemma ht is non-negative outside |div(s)| if we can find a non-zero small section
s € HO(X, ).
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6.2.2 Volume and bigness

Definition-Theorem 6.2.2. The following limit exists and is defined to be the volume of L:

_ 1)!
ol(X,T) = lim PF 1)

m—oo mntl

RO(X, mL). (6.2.4)

Moreover, assume that L is represented by (£,{X;, Li, {;}i>1) on U for a quasi-projective model
U of X, then B B
vol(X, L) = lim vol(X;, £;).
1— 00
Definition 6.2.3. An adelic line bundle L € 7/35(X/Z) is said to be big if vol(X, L) > 0.

Theorem 6.2.4 (Arithmetic Hilbert-Samuel). Assume L is nef. Then vol(X, L) = Ay

Theorem 6.2.5 (Arithmetic Siu). If L and M are nef adelic line bundles on X, then

n+1

vol(X,L—M)>L"" —(n+1)L"M.

All the definitions and results extend to L € ISI\C(X /Z)q, i.e. Q-adelic line bundles on X.
Theorem 6.2.6 (continuity). Let L, My,..., M, € ISI\CI(X/Z) Then

lim  vol(L +t My + -+ +t.M,) = vol(L),

t1,...,tr—>0
with t1,...,t. rational numbers.

The following lemma states that the bigness of the generic fiber L of T is not far from the
bigness of L. In view of height theory, this is reasonable: having a non-zero small section yields
the non-negativity of hz, whereas having a non-zero section yields a lower bound of hy (both
outside the support of the divisor of the section).

Write f: X — SpecK for the structural morphism.

Lemma 6.2.7. Let N € 151\(:(K/Z) be an adelic line bundle with N)>0. Let L € 15;C(X/Z>
Assume that the generic fiber L of L is big (see Definition Then the adelic line
bundle L + cf*N € Pic(X/Z) is big for all rational numbers ¢ > 1.

6.2.3 The height inequality

In this subsection, we prove the following height inequality which plays a significant role in the
solution of many problems recently.

Theorem 6.2.8. Let m: X — S be a morphism of quasi-projective varieties defined over a
number field K. Let L € Pic(X/Z) and M € Pic(S/Z). Denote by L € Pic(X/Q) the generic
fiber of L.

(i) If L is big, then there exists € > 0 and a non-empty Zariski open subset U of X such that

hi(@) > ehyr(n(z), Ve U(Q).

(ii) Ifz is big, then there exist ¢ > 0 and € > 0 and a non-empty Zariski open subset U of X
such that

hi(x) > ehgp(n(x)) —c, Vo e U(Q).
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Proof. Let us prove (i). Assume L is big. Then vol(X, L) > 0.

We claim that there exists € € Qs such that vol(X, L—er*M) > 0. If L and M are nef, this
follows from Arithmetic Siu (Theorem and Arithmetic Hilbert—-Samuel (Theorem [6.2.4)).
In general, we use the continuity (Theorem to get that

lim vol(X, L — em*M) = vol(X, L) > 0.
e—0

Hence such an e exists.
Therefore there exists m € Z~q and a non-zero s € H(X, m(L — er*M)). Hence by (6.2.3)),
we have

W ewr(®) 20, Vo € (X \ |div(s))(Q).
Hence (i) holds true because hy___.37(x) = h(z) — ehgp(m(x)).
Now we prove (ii). Take N € lsi\(:(SpecK /Z) with &E(W) = 1. For the structural morphism

f: X — SpecK, denote by I'=L+ cf*N for a rational number ¢ > 0. By Lemma T is
big for ¢ > 1. Hence we can apply part (i) to (Z/,M) and conclude. O

6.2.4 A formula to compute the self-intersection of geometric adelic line bun-
dles

Let L € ﬁi\c(X/Z), and write (L, [|-]|) for its image under the injective homomorphism ISI\C(X/Z> —
Pic(X®)cqv. Each place v of K can be seen as a point in (SpecK/Z)*", which is over the point

vp € (SpecQ/Z)™ with p < co. Now || - ||, is a metric of L|xan, and hence defines a curvature
current c1(L),; at archimedean places this is —%85 log|| - ||, and we omit the discussion at

non-archimedean places.

Lemma 6.2.9. Let Ly,...,L, € Pji\c(X/Z)int, and let El, . ,En € FTi\c(X/Q)int be their generic
fibers. Then for any place v of K, we have

Ll'...-Ln_/ CI(LI)U"'CI(Zn)U-
Xan

In practice, take L € lgi\c(X/Z)int with generic fiber E, and let o: K < C. Then L" =

fXa (© €1 (L,)™ by Lemma [6.2.9, If L is known to be nef, then we can use Hilbert—Samuel to get

vol(X,L) = / c1(Lo)™.

+(C)

6.3 A brief discussion on equidistribution
6.3.1 Essential minimum and fundamental inequality

Definition 6.3.1. Let L € f)l\C(X/Z) Define the essential minimum to be

e1(X,L):= sup inf hg(z),

UCX z€U(Q)
where U runs over all Zariski open subsets of X.

The fundamental inequality is:
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Theorem 6.3.2. Let L € ]SI\C(X/Z) be nef such that its generic fiber L € ﬁl\c(X/@) is big. Then

1
n—+1

e1(X,L) > hz(X) > e1(X,L).

The second inequality is a weak version of Zhang’s successive minima theorem. The first
inequality is a consequence of the arithmetic Hilbert—Samuel formula with the following lemma,
which is an application of the Geometry of Numbers in and the formula for h from
Lemma

Lemma 6.3.3. For any positive integer m > 0 such that h®(X, mL) > 0, we have
- hO(X,mL) 2

61(X,L) >

 mhO(X, mi) m[K 0l

if the RHS is > 0.

6.3.2 Equidistribution

Let L € F/’i\c(X/Z)nef. Assume that deg;(X) = L™ > 0. Then the height
!

(n 4+ 1) degz (X)

from is well-defined. Define the equibrilium measure

h(X) =

1 _

- = ————cy(L)". 3.1
dlu’L,v degZ(X)Cl( )’U (63 )

A sequence {Z.,}m>1 in X(Q) is said to be generic if any proper closed subvariety of X
contains only finitely many terms in the sequence. The sequence is said to be small if hy(2,,) —
hz(X) when m — oo.

Let z € X(Q). Define O(z) := Gal(Q/K)z C X(Q), and set

1

T ——9, T 3.2
lu’ 5 #O(.’E) O( )XKKU (63 )

where the RHS is the dirac measure.

Theorem 6.3.4. Let {xy, }m>1 be a generic small sequence. Then the Galois orbit of {xm, }m>1
is equidistributed in X3 for dug , for any place v of K. This means: the weak convergence
Moo — dpg, holds on X3, d.e. for any compactly supported continuous function f on X3,
we have

! St — | fdug, (6.3.3)

#O(xm) YEO(@m) X 1 Ko Xan

Proof. The key approach is the wvariational principle of Szpiro-Ullmo—Zhang. The conditions
and the result do not change if we replace L by L + f*N for some N € f/’i\c(SpecK /Z)int
with d/e\g(ﬁ) > 0, where f: X — SpecK is the structural morphism. So we may assume that
"™ > 0. Then T is big, and hence Lis big.

Take M € Ker(lsi\c(X/Z)in»D — ].:/)I\C(X/Q)) Let € € Q*. By the first part of Theorem m
we have -
( I P M)n+1

er(X, L+ eM) > (n+1)degz(X)
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if L+ eM is nef. We have

—n+1

(L4 eM)" ™ =T"" +e(n+1)L"M + O(e).

Hence the RHS is > 0 if |¢] < 1 because "> 0. So

—n—+1 —Nn—=7
— I 4en+1)I"M )
X, L M) > .
eil(X,L+eM) > (n+ 1) deg: (X) + O(€e%)

By definitions of e; and of generic sequence, we have

A "I

1 p—
1)L
liminf Ay, (@) > 22+ D

2

Since {zpm }m>1 is small, we have
—n—+1

m hp(@m) = h(X) = (n+ f;degz(X) '

Therefore

"M
lim inf ehyz(2,,) > + O(€?). (6.3.4)

e = “degz (X)

Now letting ¢ — 0 and € — 0, we obtain

. LM
i, ar(Tm) = Ge %y

(6.3.5)

Now we wish to translate ((6.3.5) into (6.3.3). For this purpose, we would choose an M
associated with the function f. Roughly speaking, we would take M to be the trivial line
bundle Ox endowed with the metric || - ||, (for each place w of K), as a line bundle on X®",
such that ||1||, = e~ and ||1|l, = 1 for any w # v. Then the LHS of would be the LHS
of and the RHS of would be the RHS of .

While this idea can be performed directly if X is projective, we need to be more cautious
for our quasi-projective X. Now let us explain the execution in more details.

Assume L is represented by a Cauchy sequence (£, (X;, L£;,¢;)i>1) in 7/7E(Ll Jmod for a quasi-
projective model U of X. Assume that ¢: X; — A&} extends the identity morphism on U, and
denote by X; to be the generic fiber of X; which contains X as an open subvariety.

Let X] be another projective model of X;. Let M € ]E/’l\c(Xl’)Q with a fixed isomorphism
Mg — Ox,. Then it induces a metric || - ||, of Ox, on X{%, for any place w of K. Assume that
the metric [|1[|,, = 1 for any w # v. Denote by g = —log|[1]],; it is continuous on X{%. Then
by definition, we have

1 Fn= . e = \n
hi(wm) = Z0@n) Z 9(y), LM = lim £; M = lim gei(Li)y.

yGO(:vm)xKKU

So we get, by (6.3.5),

1 —
im o Y W) = gy lim [ el (L)), (6.3.6)
m—o0 #0(zy,) YO e K degZ(X) i—00 Jxan



94 CHAPTER 6. HEIGHT THEORY VIA ADELIC LINE BUNDLES

with g viewed as a function on X by the pullback via 5 = X5 — Xi.

Now vary g = —log||1]l,, which is a model function on X{% associated with (X{, M).
Gubler’s density theorem implies that the space of all such model functions is dense in C(X{%)
under the topology of uniform convergence. So holds true for any function in C(X{%).

Finally, assume f € C(XJ"), viewed as an element of C(X{7) by the open immersion

X — X;. Then

lim fa(Ly)y = lim fer(Li)ylxan = fa(L)y.

1—00 Xan 1—00 Xan Xan
v v v

And we can conclude by (6.3.6|) applied to f. O
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