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Chapter 0

Quick Summary on the Height
Machine

0.1 Weil height on projective spaces

Let us start with the simplest case. Let x ∈ P1(Q). There is a unique way to write x as [a : b]
with a, b ∈ Z and gcd(a, b) = 1. Set

h(x) := logmax{|a|, |b|}.

For a general number field K, we use the following normalized valuations at places of K:

(i) For v ∈ MK,f a non-archimedean place, v is above a prime number p ∈ Z. We take the
absolute value ∥ · ∥v : K → R such that ∥p∥v = p−1;

(ii) For v ∈ MK,∞ = Hom(K,C) an archimedean place, v corresponds to an embedding
σ : K → C. We take ∥ · ∥v : K → R to be ∥x∥v := |σ(x)|[Kv :R].

Notice that ∥ · ∥v is an absolute value unless v is a complex place, i.e. Kv = C.

Let Q be an algebraic closure of Q.

Definition 0.1.1. Let x = [x0 : · · · : xn] ∈ Pn(Q). The (absolute logarithmic Weil) height
of x is defined to be

h(x) :=
1

[K : Q]

∑
v∈MK

logmax{∥x0∥v, . . . , ∥xn∥v},

where K ⊆ Q is a number field such that xj ∈ K for all j.
We also set H(x) := eh(x) to be the multiplicative height.

The Weil height is a well-defined function on Pn(Q), i.e. it is independent of the choice of
K and independent of the choice of the homogeneous coordinates. This can be proved using the
product formula. Also one can check that this definition coincides with the one for P1(Q) above.

The following properties are of fundamental importance for the Height Machine.

Theorem 0.1.2. We have:

- (Positivity/Lower Bound) h(x) ≥ 0 for all x ∈ Pn(Q);

7



8 CHAPTER 0. QUICK SUMMARY ON THE HEIGHT MACHINE

- (Northcott Property) For each B ≥ 0 and D ≥ 1, the following set is a finite set

{x ∈ Pn(Q) : h(x) ≤ B, [Q(x) : Q] ≤ D}.

Lemma 0.1.3. The action of the Galois group Gal(Q/Q) on Pn(Q) leaves the height invariant.
More precisely, for any x ∈ Pn(Q) and any σ ∈ Gal(Q/Q), we have h(σ(x)) = h(x).

0.2 Height Machine

Let X be an irreducible projective variety defined over Q. Denote by RX(Q) the set of functions
X(Q) → R, and by O(1) the subset of bounded functions.

The Height Machine associates to each line bundle L ∈ Pic(X) a unique class of functions

RX(Q)/O(1), i.e. a map

hX : Pic(X) → RX(Q)/O(1), L 7→ hX,L. (0.2.1)

Let hX,L : X(Q) → R a representative of the class hX,L; it is called a height function associated
with (X,L).

Construction 0.2.1. One can construct hX,L as follows. In each case below, hX,L depends on
some extra data and hence is not unique. However, it can be shown that any two choices differ
by a bounded functions on X(Q), and thus the class of hX,L is well-defined.

(i) If L is very ample, then the global sections of L give rise to a closed immersion ι : X → Pn

for some n, such that ι∗O(1) ≃ L. Set hX,L = h ◦ ι, with h the Weil height on Pn from
Definition 0.1.1.

(ii) If L is ample, then L⊗m is very ample for some m≫ 1. Set hX,L = (1/m)hX,L⊗m.

(iii) For an arbitrary L, there exist ample line bundles L1 and L2 on X such that L ≃ L1⊗L⊗−1
2

by general theory of Algebraic Geometry. Set hX,L = hX,L1 − hX,L2.

Here are some basic properties of the Height Machine. Moreover, the construction (0.2.1) is
also uniquely determined by the normalization, additivity, and functoriality.

Proposition 0.2.2. We have

- (Normalization) Let h be the Weil height from Definition 0.1.1. Then for all x ∈ Pn(Q),
we have

hPn,O(1)(x) = h(x) +O(1).

- (Additivity) Let L and M be two line bundles on X. Then for all x ∈ X(Q), we have

hX,L⊗M (x) = hX,L(x) + hX,M (x) +O(1).

- (Functoriality) Let ϕ : X → Y be a morphism of irreducible projective varieties and let L
be a line bundle on Y . Then for all x ∈ X(Q), we have

hX,ϕ∗L(x) = hY,L(ϕ(x)) +O(1).

- (Lower Bound) If s ∈ H0(X,L) is a global section, then for all x ∈ (X \ div(s))(Q) we
have

hX,L(x) ≥ O(1).
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- (Northcott property) Assume L is ample. Let K0 be a number field on which X is defined.
Then for any d ≥ 1 and any constant B, the set

{x ∈ X(K) : [K : K0] ≤ d, hX,L(x) ≤ B}

is a finite set.

The O(1)’s that appear in the proposition depend on the varieties, line bundles, morphisms,
and the choices of the representatives in the classes of height functions. But they are independent
of the points on the varieties.

A natural question arises at this point:

Question: What should one do to get a genuine function X(Q) → R from a line bundle L?
Or, in other words, to choose a nice representative hX,L?

Here is a naive way: one can always fix a representative by fixing every operation needed to
define hL (for example, the basis of H0(X,L) giving the embedding of X into some PN if L is
very ample).

In the next section, we will see that a canonical choice of hX,L exists when (X,L) defines a
polarized dynamical system, after Néron and Tate.

In general, we use Arakelov Geometry for this purpose. This is the main content of this course.

0.3 Normalized height function, after Néron and Tate

Let X be an irreducible projective variety defined over Q. Let L ∈ Pic(X).

Assume there exists ϕ : X → X is a morphism satisfying ϕ∗L ≃ L⊗α for some integer α > 1.
The following theorem gives a canonical representative of hX,L.

Theorem 0.3.1. There exists a unique height function

ĥX,ϕ,L : X(Q) → R

with the following properties.

(i) ĥX,ϕ,L(x) = hX,L(x) +O(1) for all x ∈ X(Q),

(ii) ĥX,ϕ,L(ϕ(x)) = αĥX,ϕ,L(x) for all x ∈ X(Q).

The height function ĥX,ϕ,L depends only on the isomorphism class of L. Moreover, it can be
computed as the limit

ĥX,ϕ,L(x) = lim
n→∞

1

αn
hX,L(ϕ

n(x)) (0.3.1)

with ϕn the n-fold iterate of ϕ.

Before moving on to the proof, let us have a digest. The morphism ϕ induces a Z-linear map
ϕ∗ : Pic(X) → Pic(X).[1] Tensoring with R gives a linear map ϕ∗ : Pic(X) ⊗Z R → Pic(X) ⊗Z R of real
vector spaces of finite dimension. Say L is non-trivial. Then the assumption ϕ∗L ≃ L⊗α implies that L
is an eigenvector for the eigenvalue α. The assumption α > 1 guarantees that the Tate Limit Process
(0.3.1) will work in the end.

We finish this section by two examples of normalized height.

[1]The “addition” on the group Pic(X) is ⊗.
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Example 0.3.2. Let X = Pn and L = O(1). Let ϕ : Pn → Pn be given by homogeneous
polynomials of degree d > 1, then ϕ∗O(1) ≃ O(d) = O(1)⊗d. If ϕ([x0 : · · · : xn]) = [xd0 : · · · : xdn],
then one can check that ĥPn,ϕ,O(1) is precisely the Weil height h.

Notice that ϕ restricted to the algebraic torus Gn
m ⊆ Pn is precisely the multiplication-by-d

morphism. Using this observation, one can prove the following Kronecker’s Theorem: For any
ζ := (ζ1, . . . , ζn) ∈ Gn

m(Q) = (Q∗
)n, we have h(ζ) = 0 if and only if each component ζj is a root

of unity.

A more important example for the Tate Limit Process (0.3.1) is the definition of the Néron–
Tate heights on abelian varieties. Let X = A be an abelian variety and L be a symmetric line
bundle, i.e. [−1]∗L ≃ L. Then [n]∗L ≃ L⊗n2

for the multiplication-by-n map. Taking n = 2
gives the Néron–Tate height on A, which we denote by ĥA,L.

The following theorem summarizes some important properties of ĥA,L. Notice that by (i),
in the definition of the Néron–Tate height we can replace the morphism [2] : A → A by [n] for
any n ≥ 2.

Theorem 0.3.3. Assume L is ample.

(i) For each N ∈ Z, we have ĥA,L([N ]x) = N2ĥA,L(x) for all x ∈ A(Q).

(ii) ĥA,L(x) ≥ 0 for all x ∈ A(Q), and ĥA,L(x) = 0 if and only if x is a torsion point.

(iii) For each finitely generated subgroup Γ of A(Q), the R-linearly extension of ĥA,L is a
quadratic form on Γ⊗Z R which is furthermore positive definite.



Chapter 1

Hermitian line bundles on SpecOK
and positivity

In the whole chapter, let K be a number field and OK be its ring of integers. It is known that
SpecOK is not a projective scheme. A key idea in Arakelov Geometry is to identify SpecOK with
the set of finite places of K and then compactify SpecOK by adding the archimedean places.

1.1 Hermitian line bundles and arithmetic divisors on SpecOK

Definition 1.1.1. A Hermitian line bundle on SpecOK is a pair L := (L, ∥ · ∥), where L is
a line bundle on SpecOK and ∥ · ∥ = {∥ · ∥σ}σ : K↪→C is a collection of Hermitian metrics ∥ · ∥σ
on each Lσ = H0(SpecOK ,L)⊗σ C satisfying ∥s∥σ = ∥s∥σ for all s ∈ H0(SpecOK ,L).

We say that such collections of metrics are invariant under complex conjugation. Notice
that H0(SpecOK ,L) is a projective OK-module of rank 1, and each Lσ is a C-vector space of
dimension 1. Thus ∥ · ∥σ is determined by ∥s∥σ for any non-zero rational section s of L.

Next we introduce the group of isometric classes of Hermitian line bundles on SpecOK ,
denoted by P̂ic(SpecOK). The identity element is the trivial Hermitian line bundle, the multi-
plication is the tensor product, and the inverse is the dual.

Definition 1.1.2. (i) An isometry between two Hermitian line bundles L and L′
on SpecOK

is an isomorphism
i : L → L′

of line bundles on SpecOK satisfying

∥s∥σ = ∥i(s)∥σ, ∀s ∈ H0(SpecOK ,L), ∀σ : K ↪→ C.

(ii) The trivial Hermitian line bundle on SpecOK is (OSpecOK
, | · |) where | · |σ is the

absolute value at each archimedean place σ.

(iii) The tensor product of two Hermitian line bundles L and L′
on SpecOK is defined to be

L ⊗ L′
:= (L ⊗ L′, ∥ · ∥∥ · ∥′).

(iv) The dual of a Hermitian line bundle L on SpecOK is defined to be

L∨
:= (L∨, ∥ · ∥∨)

11



12 CHAPTER 1. HERMITIAN LINE BUNDLES ON SpecOK AND POSITIVITY

where L∨ := Hom(L,OSpecOK
) and, for each t ∈ H0(SpecOK ,L∨),

∥t∥∨σ :=
|t(s)|
∥s∥σ

for any non-zero s ∈ Lσ.

Definition-Lemma 1.1.3. Let L be a Hermitian line bundle on SpecOK . For any non-zero
s ∈ H0(SpecOK ,L), the number

d̂eg(L) := log#
(
H0(SpecOK ,L)/sOK

)
−

∑
σ : K↪→C

log ∥s∥σ (1.1.1)

does not depend on the choice of s.

This number d̂eg(L) is called the arithmetic degree of L.

The proof is an application of the product formula. We will postpone it to Proposition 1.1.7,
using the relation between Hermitian line bundles and arithmetic divisors introduced below.

In Algebraic Geometry, line bundles and (Cartier) divisors are closely related. In Arakelov
Geometry, we also have the notion of arithmetic divisors.

Definition 1.1.4. An arithmetic divisor is a formal finite sum

D =
∑

p∈MK,f

np[p] +
∑

σ : K↪→C
nσ[σ] (1.1.2)

with np ∈ Z, nσ ∈ R and nσ = nσ.

A principal arithmetic divisor is of the form

d̂iv(α) :=
∑

p∈MK,f

ordp(α)[p]−
∑

σ : K↪→C
log |σ(α)|[σ]

for some α ∈ K∗.

In (1.1.2), we usually denote by Df :=
∑

p∈MK,f
np[p] the finite part of D and by D∞ :=∑

σ : K↪→C nσ[σ] the infinite part of D.

We will also introduce the following groups, where the group law is clear:

D̂iv(SpecOK) := {arithmetic divisors on SpecOK},

P̂rin(SpecOK) := {principal arithmetic divisors on SpecOK},

Ĉl(SpecOK) := D̂iv(SpecOK)/P̂rin(SpecOK).

Definition 1.1.5. The arithmetic degree of an arithmetic divisor D of the form (1.1.2) is
defined to be

d̂eg(D) :=
∑

p∈MK,f

np log#(OK/p) +
∑

σ : K↪→C
nσ.

The product formula immediately implies that any principal arithmetic divisor has arithmetic
degree 0. Thus we get a group homomorphism

d̂eg : Ĉl(SpecOK) → R. (1.1.3)
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Proposition 1.1.6. We have a group homomorphism

D̂iv(SpecOK) → P̂ic(SpecOK), D 7→ O(D), (1.1.4)

where for D = Df +
∑

σ nσ[σ], the Hermitian line bundle O(D) is defined to be (O(Df), ∥ · ∥σ)
with ∥1∥σ := exp(−nσ) for the canonical 1 of O(Df) (i.e. the divisor of 1 is Df).

And this group homomorphism induces a group isomorphism

Ĉl(SpecOK)
∼−→ P̂ic(SpecOK). (1.1.5)

The inverse of (1.1.5) is called the arithmetic first Chern class and is denoted by ĉ1.
By constructions, the group homomorphism (1.1.4) is compatible with the forgetful maps

D̂iv(SpecOK) → Div(SpecOK), D 7→ Df , and P̂ic(SpecOK) → Pic(SpecOK), L 7→ L. Thus the
isomorphism (1.1.5) is an extension of the natural isomorphism Cl(OK) ≃ Pic(SpecOK).

Proof. It is easy to check that (1.1.4) is a group homomorphism.

For any d̂iv(α) ∈ P̂rin(SpecOK), it is not hard to check that the isomorphism α : OSpecOK
→

O(div(α)) induces an isometry between the trivial Hermitian line bundle on SpecOK and d̂iv(α).

Thus we have a group homomorphism Ĉl(SpecOK) → P̂ic(SpecOK).

The inverse is defined as follows. For any L ∈ P̂ic(SpecOK), let s be a non-zero rational
section of LK and set

d̂iv(s) := div(s) +
∑
σ

(− log ∥s∥σ)[σ]. (1.1.6)

If we have two non-zero rational sections s and s′, then s = αs′ for some α ∈ K∗. Then
d̂iv(s)− d̂iv(s′) is a principal arithmetic divisor. Thus we obtain a group homomorphism

P̂ic(SpecOK) → Ĉl(SpecOK), L 7→ d̂iv(s).

It is not hard to check that this is the desired inverse.

Proposition 1.1.7. The following diagram of group homomorphisms commutes:

Ĉl(SpecOK)
∼ //

d̂eg
��

P̂ic(SpecOK)

d̂eg
��

R = // R,

(1.1.7)

where the top arrow is the one induced by (1.1.4).

Proof. By the definitions of the arithmetic degrees ((1.1.1) and Definition 1.1.5) and the in-
verse of the top arrow (1.1.6), it suffices to prove the following claim. For any non-zero
s ∈ H0(SpecOK ,L), we have

#
(
H0(SpecOK ,L)/sOK

)
=
∏
p

#(OK/p)
ordp(s).

Write M := H0(SpecOK ,L). Then for each p, the localization Mp is a free OK,p-module of rank
1 and M/sOK ≃ ⊕pMp/sOK,p. Thus the desired equality holds true. We are done.

We finish this section by stating a lemma which compares P̂ic(SpecOK) ≃ Ĉl(SpecOK) and
Pic(SpecOK) ≃ Cl(OK). The proof is easy.
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Lemma 1.1.8. Let ρ1, . . . , ρr1 be the real embeddings of K and σ1, σ1, . . . , σr2 , σr2 be the complex
embeddings. Then We have the following exact sequence:

1 → µK → O∗
K

logK−−−→ Rr1+r2 ℓ−→ Ĉl(SpecOK) → Cl(OK) → 1,

where µK is the group of roots of unities contained in K, logK is given by α 7→ (log |σ(α)|)σ : K↪→C,

ℓ : (a1, . . . , ar1 , b1, . . . , br2) 7→
r1∑
i=1

ai[ρi] +

r2∑
i=1

bi([σi] + [σi]),

and Ĉl(SpecOK) → Cl(OK) is the forgetful map.

1.2 Hermitian vector bundles on SpecOK

Hermitian vector bundles are higher rank generalizations of Hermitian line bundles, for which
there is a rich theory. In this course, we focus on: Even to study Hermitian line bundles on
SpecOK , it turns out to be sometimes helpful to study the more general Hermitian vector bundles
as will be shown in §1.3.

Definition 1.2.1. A Hermitian coherent sheaf on SpecOK is a pair E := (E , ∥ · ∥), where
E is an OK-module of finite type and ∥ · ∥ = {∥ · ∥σ}σ : K↪→C is a collection of Hermitian metrics
∥ · ∥σ on each Eσ := E ⊗σ C such that ∥e∥σ = ∥e∥σ for all e ∈ E and all σ : K ↪→ C.

If moreover E is a projective OK-module, then E is called a Hermitian vector bundle.

We define the rank of E , denoted by rk(E), to be the rank of E as anOK-module. A Hermitian
coherent sheaf E on SpecOK is a Hermitian vector bundle if and only if E is torsion-free.

The category of vector bundles on SpecOK is equivalent to the category projective OK-
modules of finite rank. Using this one sees that any Hermitian line bundle on SpecOK is a
Hermitian vector bundle on SpecOK .

Definition 1.2.2. Let E and F be Hermitian coherent sheaves (or Hermitian vector bundles)
on SpecOK . A morphism

φ : E → F
is a morphism between the underlying projective OK-modules such that ∥φ(e)∥σ ≤ ∥e∥σ for all
σ : K ↪→ C and all e ∈ Eσ.

Thus we can define the category of Hermitian coherent sheaves on SpecOK , and the full
sub-category of Hermitian vector bundles on SpecOK .

1.2.1 Several constructions on SpecOK

Short exact sequence Let E be a Hermitian coherent sheaf on SpecOK .
Let F be a submodule of E and consider the quotient E → G := E/F . The restriction of the

Hermitian metrics ∥ · ∥σ to Fσ for each σ : K ↪→ C gives rise to a Hermitian sub-coherent sheaf
F of E . The quotient metrics, i.e. for each σ and each g ∈ Gσ,

∥g∥G,σ := inf
e∈Eσ , e 7→g

∥e∥σ,

define a quotient Hermitian coherent sheaf G of E . We have a short exact sequence in the
category of Hermitian coherent sheaves on SpecOK

0 → F → E → G → 0.
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If F = Etor, then G is a Hermitian vector bundle.

Direct sum Let E and F be Hermitian coherent sheaves on SpecOK . The direct sum E ⊕ F
is defined to be (E ⊕ F , ∥ · ∥E + ∥ · ∥F ). It is a Hermitian vector bundle if both E and F are
Hermitian vector bundles. The rank is rk(E) + rk(F).

Tensor product Let E and F be Hermitian coherent sheaves on SpecOK . The tensor product

E ⊗F is defined to be (E ⊗F , ∥ · ∥E∥ · ∥F ). It is a Hermitian vector bundle if both E and F are
Hermitian vector bundles. The rank is rk(E)rk(F).

Dual and homomorphism Let E be a Hermitian coherent sheaf on SpecOK . Its dual E∨
is

defined to be (E∨, ∥ · ∥∨), where E∨ := Hom(E ,OK) and

∥v∥σ := sup
e∈Eσ

|v(e)|σ
∥e∥σ

for all σ ∈MK,∞ and all v ∈ E∨
σ .

It is a Hermitian vector bundle if E is a Hermitian vector bundle. The rank is rk(E).
More generally, let E and F be Hermitian coherent sheaves on SpecOK . Then the homo-

morphism Hom(E ,F) is defined to be E∨ ⊗F . It is a Hermitian vector bundle if both E and F
are Hermitian vector bundles. The rank is rk(E)rk(F).

Determinant Let E be a Hermitian vector bundle on SpecOK of rank n. The determinant of
E is defined to be det E := (

∧n E , ∥ · ∥det), where for each σ : K ↪→ C, the metric ∥ · ∥det,σ is the
unique metric on (

∧n E)σ such that

∥e1 ∧ · · · ∧ en∥det,σ = 1

for any orthonormal basis {e1, . . . , en} of the normed Euclidean space (Eσ, ∥ · ∥σ).
Notice that the determinant is always a Hermitian line bundle on SpecOK . Now we can

define:

Definition 1.2.3. Let E be a Hermitian vector bundle on SpecOK . The arithmetic degree
of E is defined to be

d̂eg(E) := d̂eg(det E).

Let us look at the example and particularly important case where K = Q. Since the class
number of Q is 1, any projective module of finite rank is a free module. Consider a Hermitian
vector bundle E = (E , ∥ · ∥). Let {v1, . . . , vn} be a Z-basis of E . Then v := v1 ∧ · · · ∧ vn is a
Z-basis of det E :=

∧n E . Thus

d̂eg(E) = log#(det E/Zv)− log ∥v∥ = − log ∥v∥ = −1

2
log det (h(vi, vj)) ,

where h(·, ·) is the Hermitian form on EC, i.e. h(v′, v′) = ∥v′∥2 for all v′ ∈ EC.
On the other hand, let {e1, . . . , en} be an orthonormal basis of ER. Then we have an isomor-

phism ER
∼−→ Rn with E identified with a lattice in Rn. Let covol(ER/E) denote the co-volume

of this lattice, namely the volume of any fundamental domain of this lattice for the Lebesgue
measure on ER.

For each i, we have vi =
∑

j aijej for some aij ∈ R. Then h(vi, vj) =
∑

k aikajk. Thus

det (h(vi, vj)) = det(AtA) = det(A)2 for the matrix A = (aij). Therefore we have

d̂eg(E) = − log covol(ER/E). (1.2.1)
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1.2.2 Pullback, pushforward, norm

LetK ⊆ K ′ be an inclusion of number fields, and f : SpecOK′ → SpecOK the induced morphism;
then f is finite of degree d := [K ′ : K].

Pullback Let E be a Hermitian vector bundle on SpecOK of rank n. Define its pullback f∗E
as follows. First, set f∗E := E ⊗OK

OK′ ; then f∗E is a projective OK′-module of rank n. Next,
for any embedding σ′ : K ′ ↪→ C, its restriction to K (denoted by σ) is an embedding of K into
C, and the canonical isomorphism (f∗E) ⊗σ′ C = E ⊗σ C gives the desired metric ∥ · ∥σ′ on
(f∗E)σ′ = (f∗E)⊗σ′ C.

Proposition 1.2.4. The pullback f∗ commutes with direct sums, tensor products, and taking
determinants. Moreover,

d̂egf∗E = [K ′ : K]d̂egE .

Proof. The first claim is easy to check and we leave it as an exercise. To prove the second claim,
it then suffices to check for Hermitian line bundles.

Let ℓ ∈ E \ {0}. Then

d̂eg(E) = log#(E/ℓOK)−
∑

σ : K↪→C
log ∥ℓ∥σ =

∑
p∈MK,f

ordp(ℓ) log#(OK/p)−
∑

σ : K↪→C
log ∥ℓ∥σ.

Thus

d̂eg(f∗E) =
∑

p′∈MK′,f

ordp′(ℓ) log#(OK′/p′)−
∑

σ′ : K′↪→C

log ∥ℓ∥σ′

=
∑

p∈MK,f

∑
p′|p

ordp′(ℓ) log#(OK′/p′)−
∑

σ : K↪→C

∑
σ′|σ

log ∥ℓ∥σ′

=
∑

p∈MK,f

d · ordp(ℓ) log#(OK/p)−
∑

σ : K↪→C
d log ∥ℓ∥σ

= d · d̂eg(E).

We are done.

Pushforward Let E ′
be a Hermitian vector bundle on SpecOK′ of rank n. Define its pushforward

f∗E
′
as follows. First, the underlying projective module f∗E ′ is set to be E ′, viewed as an OK-

module of rank dn which is again projective (locally free). Next, for any embedding σ : K ↪→ C,
the tensor product OK′ ⊗OK ,σ C is canonically isomorphic to⊕

σ′|σ
C :=

⊕
σ′ : K′↪→C, σ′|K=σ

C.

Thus we have a canonical isomorphism

(f∗E ′)σ = E ′ ⊗OK ,σ C = E ′ ⊗OK′ (OK′ ⊗OK ,σ C) =
⊕

σ′|σ
E ′
σ′ .

Thus the desired Hermitian metric is given by: for any e = (e′σ′)σ′|σ ∈ (f∗E ′)σ, set

∥e∥2σ :=
∑
σ′|σ

dσ′/σ∥e′σ′∥2σ′ , (1.2.2)

where dσ′/σ = 2 if σ′ is a complex place and σ is a real place, and dσ′/σ = 1 otherwise.
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Sometimes, it is more convenient to put a singular metric, by changing (1.2.2) to

∥e∥max,σ := max
σ′|σ

∥e′σ′∥σ′ . (1.2.3)

We denote by fmax,∗E
′
:= (f∗E ′, ∥ · ∥max).

Example 1.2.5. A particularly important case is when f : SpecOK → SpecZ is induced by the
inclusion Q ⊆ K (we changed our notation for this particular case). Let L be a Hermitian line
bundle on SpecOK . Then f∗L is a vector bundle on SpecZ which must be trivial since the class
number of Q is 1. Under the identification of vector bundles and projective modules, this is
equivalent to say that H0(SpecOK ,L) is a projective OK-module of rank 1, and is free if viewed
as a Z-module. Moreover, we have

H0(SpecOK ,L)⊗Z C =
⊕

σ : K↪→C
Lσ.

For any s = (sσ)σ ∈ H0(SpecOK ,L)⊗Z C, we then have

∥s∥max = max
σ

{∥sσ∥}.

Set

H0(SpecOK ,L)R := {s = (sσ)σ ∈ H0(SpecOK ,L)⊗Z C : sσ = sσ for all σ}. (1.2.4)

Then H0(SpecOK ,L) is a lattice in H0(SpecOK ,L)R, and ∥·∥max induces a norm on H0(SpecOK ,L)R.

We will come back to this example later.

Norm of Hermitian line bundles Let L′
be a Hermitian line bundle on SpecOK′ . We wish to define

the norm NormK′/K(L′
) ∈ P̂ic(SpecOK), which corresponds to the pushforward of the arithmetic class

group (even though we have not defined what it means), i.e.

f∗ĉ1(L
′
) = ĉ1(NormK′/K(L′

)).

for the arithmetic first Chern class ĉ1 (the inverse of (1.1.5)).
Let (Ui) be an open cover of SpecOK such that L′|f−1(Ui) is trivial for each i. Choose a section

ϵi ∈ H0(f−1(Ui),L′) which generates L′ everywhere on f−1(Ui). Then the line bundle L′ is represented by
the 1-cocycle (fij) defined as follows: for each pair (i, j) and Uij := Ui∩Uj , fij ∈ H0(f−1(Uij),O×

SpecOK′ )

is the unique invertible function on f−1(Uij) such that ϵi = fijϵj .
The underlying line bundle NormK′/K(L′) is then defined to be the line bundle on SpecOK determined

by the 1-cocycle NormK′/K(fij), relative to the open cover (Ui). It admits a canonical trivialization over
Ui with generator NormK′/K(ϵi).

The Hermitian metrics are defined as follows. Let σ : K ↪→ C. Then we have a canonical isomorphism

NormK′/K(L′)σ =
⊗

σ′|σ
L′
σ′ .

This defines a canonical Hermitian metric on NormK′/K(L′)σ.

1.3 Positivity of Hermitian line bundles on SpecOK

Let L be a Hermitian line bundle on SpecOK .

Definition 1.3.1. The Hermitian line bundle L is said to be ample (resp. nef) if d̂eg(L) > 0

(resp. d̂eg(L) ≥ 0).
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We will prove a criterion for ampleness (Theorem 1.3.8) which is the arithmetic version of the
criterion for ample line bundles over curves. For this we need to introduce the sets of effective
sections and of strictly effective sections of L.

Definition 1.3.2. Define

Ĥ0(L) := {s ∈ H0(SpecOK ,L) : ∥s∥σ ≤ 1, ∀σ},

Ĥ0
s (L) := {s ∈ H0(SpecOK ,L) : ∥s∥σ < 1, ∀σ}.

Lemma 1.3.3. Both Ĥ0(L) and Ĥ0
s (L) are finite sets.

Proof. It suffices to prove the result for Ĥ0(L). By Example 1.2.5, Ĥ0(L) is the set of lattice
points in H0(SpecOK ,L)R contained in the unit ball defined by the norm induced by ∥ · ∥max.
Thus it is a finite set.

Definition 1.3.4. Define

ĥ0(L) := log#Ĥ0(L),

ĥ0s (L) := log#Ĥ0
s (L).

By definition of arithmetic degree (1.1.1), L is ample if ĥ0s (L) > 0 and is nef if ĥ0(L) > 0.
As indicated by the proof of Lemma 1.3.3, we are interested in counting the number of lattice

points in a unit ball, both contained in a Euclidean space. In general this is not an easy task.
But there are tools in the theory of geometry of numbers which we can use.

1.3.1 Geometry of numbers

Consider the pairs M = (M, ∥ · ∥) where M is a free Z-module of finite rank of r ≥ 1 and ∥ · ∥ is
a norm on MR =M ⊗Z R. Thus the natural map M →MR makes M into a lattice in MR. An
example is the one obtained from H0(SpecOK ,L) and ∥ · ∥max from Example 1.2.5.

Set

Ĥ0(M) := {m ∈M : ∥m∥ ≤ 1}, ĥ0(M) := log#Ĥ0(M);

Ĥ0
s (M) := {m ∈M : ∥m∥ < 1}, ĥ0s (M) := log#Ĥ0

s (M).

Minkowski’s First Theorem is a tool to prove the existence of a non-zero small lattice point, via
the quantity χ(M) defined as below. Denote by B(M) := {m ∈MR : ∥m∥ ≤ 1} the unit ball in
MR. Fix a Haar measure on MR and let

χ(M) := log
vol(B(M))

covol(MR/M)
, (1.3.1)

which is independent of the choice of the Haar measure. This is an arithmetic analogue of the
Euler characteristic.

By Minkowski’s First Theorem, ĥ0(M) > 0 if χ(M) > r log 2. The following is a quantitative
version:

Theorem 1.3.5. We have
ĥ0(M) ≥ χ(M)− r log 2. (1.3.2)

Moreover, there exists a non-zero m ∈M such that

− log ∥m∥ ≥ χ(M)

r
− log 2.
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To prove Theorem 1.3.5, we use a common trick called Variational Principle in Arakelov
Geometry. For any real number c, set

M(c) := (M, e−c∥ · ∥).

It is not hard to check that
χ(M(c)) = χ(M) + cr.

Proof. Consider the universal covering

u : MR →MR/M.

For c ∈ R, there exists a point y ∈MR/M such that

#
(
u−1(y) ∩B(M(c))

)
≥ vol(B(M(c)))/covol(MR/M).

Otherwise we would have vol(B(M(c))) < covol(MR/M) · vol(B(M(c)))/covol(MR/M).
Take m0 ∈ u−1(y) ∩ B(M(c)). For any m ∈ u−1(y) ∩ B(M(c)), we have m −m0 ∈ M and

∥m−m0∥ ≤ 2ec, and therefore m−m0 ∈ Ĥ0(M(c+ log 2)). Hence

ĥ0(M(c+ log 2)) ≥ log#
(
u−1(y) ∩B(M(c))

)
.

The two inequalities above together with the definition of χ(M(c)) yield

ĥ0(M(c+ log 2)) ≥ χ(M(c)) = χ(M) + cr.

Thus we get (1.3.2) by letting c = − log 2.
Now for any c ∈ R, we have

ĥ0(M(−c)) ≥ χ(M(−c))− r log 2 = χ(M)− rc− r log 2.

Thus for all c < χ(M)/r − log 2, there exists a non-zero m ∈M such that ec∥m∥ ≤ 1. In other
words, for any ϵ > 0, there exists a non-zero mϵ ∈M with

− log ∥mϵ∥ ≥ χ(M)

r
− log 2− ϵ.

Taking a sequence {ϵn}n≥1 decreasing to 0, the corresponding sequence {mn}n≥1 takes finitely
many values since mn are lattice points in a bounded ball. Thus we find an m ∈M with

− log ∥m∥ ≥ χ(M)

r
− log 2− ϵn

with ϵn → 0. It suffices to take n→ ∞.

Proposition 1.3.6. We have

ĥ0s (M) ≤ ĥ0(M) ≤ ĥ0s (M) + r log 3.

Proof. We will prove the desired comparison by the following: For any c > 0, we have

ĥ0(M(−c)) ≤ ĥ0(M) ≤ ĥ0(M(−c)) + rc+ r log 3. (1.3.3)

In fact, the desired inequality follows directly from (1.3.3) by letting c→ 0.
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Let us prove (1.3.3). We only need to prove the second inequality. For any t > 0, set
B(t) := {m ∈ MR : ∥m∥ ≤ t} the ball of radius t centered at 0. Then vol(B(t)) = trvol(B(1)).
Notice that B(t) = B(M(log t)).

Now consider B(1 + 2−1e−c). Let us also consider all the balls of radius 2−1e−c centered at
points in M ∩B(1) = Ĥ0(M); all these small balls are contained in B(1 + 2−1e−c). Thus there
exists a point m ∈ B(1 + 2−1e−c) which is contained in N of these small balls, with

N ≥ #Ĥ0(M) · vol(B(2−1e−c))

vol(B(1 + 2−1e−c))
= #Ĥ0(M)

1

(1 + 2ec)r
.

Thus
logN ≥ ĥ0(M)− r(c+ log 3).

Let x1, . . . , xN be the centers of these small balls. Then xi −m ∈ B(2−1e−c). Hence xi − x1 ∈
B(e−c) for all i. In particular we find N points in Ĥ0(M(−c)). Therefore we can conclude.

1.3.2 Ampleness and nefness

Let L be a Hermitian line bundle on SpecOK .
We relate Hermitian line bundles with the theory of geometry of numbers as follows. LetM =

(M, ∥ ·∥) be the pair as in §1.3.1 obtained from H0(SpecOK ,L) and ∥ ·∥max from Example 1.2.5.
Then by definition, we have

Ĥ0(L) = Ĥ0(M), ĥ0(L) = ĥ0(M);

Ĥ0
s (L) = Ĥ0

s (M), ĥ0s (L) = ĥ0s (M).

We also set
χ(L) := χ(M). (1.3.4)

The following arithmetic Riemann–Roch theorem is not hard to prove.

Theorem 1.3.7 (Arithmetic Riemann–Roch over SpecOK). χ(L) = d̂egL + χ(OSpecOK
, | · |).

Here | · | is the trivial norm on SpecOK .

Theorem 1.3.8. The followings are equivalent:

(i) L is ample,

(ii) ĥ0s (L
⊗m

) > 0 for m≫ 1,

(iii) for any Hermitian line bundle M on SpecOK , we have ĥ0s (L
⊗m ⊗M) > 0 for m≫ 1.

Proof. (iii) clearly implies (ii).

(ii) implies (i): Take a non-zero s ∈ Ĥ0
s (L

⊗m
). Then by definition of arithmetic degree

(1.1.1), we have d̂eg(L⊗m
) > 0. But d̂eg(L⊗m

) = md̂eg(L) by Proposition 1.1.7. Thus L is
ample.

(i) implies (iii): By Theorem 1.3.7, we have

χ(L⊗m ⊗M) = md̂eg(L) + d̂eg(M) + χ(OSpecOK
, | · |).

Since d̂eg(L) > 0, for m≫ 1 we have χ(L⊗m ⊗M) > [K : Q] log 6. Thus ĥ0s (L
⊗m ⊗M) > 0

by Theorem 1.3.5 and Proposition 1.3.6.



Chapter 2

Hermitian line bundles on projective
arithmetic varieties

In this chapter, we define Hermitian line bundles on arithmetic varieties, explain how to use them
to define the height machine, and discuss about their positivity (nefness, ampleness, bigness).

2.1 Review on complex geometry

2.1.1 Complex spaces (complex analytic varieties)

Definition 2.1.1. Let Ω be a connected open subset of Cn for some n ≥ 1. A complex analytic
subset V of Ω is the vanishing locus V = V (f1, . . . , fm) of holomorphic function f1, . . . , fm on
Ω.

For Ω and V as in the definition, let OΩ be the sheaf of holomorphic functions on Ω, and set

OV := (OΩ/(f1, . . . , fm)) |V . (2.1.1)

This makes (V,OV ) a locally ringed space. We call such pairs (V,OV ) local models of complex
spaces.

Definition 2.1.2. A complex space (or complex analytic variety) is a locally ringed space
(X,OX) where

- X is a locally compact Hausdorff space,

- OX is a structure sheaf

such that (X,OX) is locally isomorphic to a local model (V,OV ) defined above.
When the structure sheaf is clear, we by abuse of notation write X for the complex space.

With this definition, one can define morphisms between complex spaces, holomorphic func-
tions on complex spaces, etc.

Notice that complex manifolds are precisely complex spaces which are smooth. Moreover, for
any complex space X, its regular locus Xreg is open and dense in X, and is naturally a complex
manifold. The singular locus Xsing = X \Xreg is a closed complex subspace of X.

Definition 2.1.3. Let X be a complex space. A smooth function on X is a continuous
function f : X → R such that for any x ∈ X, there exists an open neighborhood Ux of x in X
and an analytic map i : Ux → Ω (with Ω open in Cn for some n ≥ 1) satisfying the following
property: i(Ux) is closed in Ω and f |Ux = f̃ |i(Ux) ◦ i with f̃ a smooth function on Ω.

21
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2.1.2 Forms and currents

Let us start with the case of complex manifolds (smooth complex spaces) M .
We start with the real forms and currents. For each r ≥ 0, let

Ar(M) := space of smooth complex valued r-forms on M,

Ar
c(M) := spaced of compactly supported smooth complex valued r-forms on M.

The topology on Ar(M) is defined using the following semi-norms (with s,Ω, L varying for all
posibilities): For any Ω ⊆M a coordinate open subset, and any compact subset L ⊆ Ω and any
s ∈ Z≥0, define the semi-norm

psL(u) := sup
x∈L

max
|I|=r, |α|≤s

|DαuI(x)| (2.1.2)

for any r-form u =
∑

I uIdxI on Ω. In other words, a sequence {un} in Ar(M) converges
to a form u ∈ Ar(M) if and only if the following holds true: for each compact subset of every
coordiante neighborhood, the sequence {u−un} and the sequences of higher derivatives converge
to 0 uniformly.

The topology on Ar
c(M) is simply the sub-space topology induced by Ar

c(M) ⊆ Ar(M).

Definition 2.1.4. A current of dimension r on M is a complex linear functional T : Ar
c(M) →

C which is continuous in the topology on Ar
c(M) defined above.

We use Dr(M) to denote the space of currents of dimension r, and

DdimR M−r(M) := Dr(M). (2.1.3)

We call dimRM − r the degree of a current in this space. For T ∈ Dr(M) and α ∈ Ar
c, write

⟨T, α⟩ := T (α) ∈ C. (2.1.4)

Example 2.1.5. (i) Let Z ⊆ M be a complex subspace of M with dimC Z = r. Then the
Dirac operator

δZ := (u 7→
∫
Z
u)

is an element in D2r(M).

(ii) For any f ∈ Ar(M) with L1
loc-coefficients, we have

Tf := (u 7→
∫
M
f ∧ u) ∈ DdimR M−r(M) = Dr(M).

The map f 7→ Tf then makes Ar(M) into a subspace of Dr(M).

This explains the terminology of “degree” of a current: a degree r current can be written
as
∑

|I|=r uIdxI with each uI a distribution.

Next we separate the holomorphic and anti-holomorphic parts. For each r ≥ 0, we have a
decomposition into (p, q)-forms Ar(M) =

⊕
p+q=r A

p,q(M). Define

Ap,q
c (M) := Ap,q(M) ∩Ar

c(M)

Dp,q(M) := {T ∈ Dp+q(M) : T (u) = 0 for all u ∈ Ar,s
c (M) with r ̸= p} (2.1.5)

DdimC M−p,dimC M−q(M) := Dp,q(M).
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Example 2.1.6. (i) In Example 2.1.5.(i), we have furthermore

δZ ∈ Dr,r(M) = DdimM−r,dimM−r(M).

If Z is a divisor, i.e. codimMZ = 1, then we get a (1, 1)-current δZ .

(ii) In Example 2.1.5.(ii), if we furthermore assume f ∈ Ap,q(M), then Tf ∈ Dp,q(M). Thus
f 7→ Tf makes Ap,q(M) into a subspace of Dp,q(M).

Now we are ready to discuss the general case of complex spaces (X,OX).

At each x ∈ X, we have a local model (V,OV ) with x ∈ V closed in some connected open
subset Ω of Cn for some n ≥ 1. Recall that OV is a quotient of OΩ.

Definition 2.1.7. A smooth (p, q)-form on X is a smooth (p, q)-form α on Xreg such that
for any x ∈ X and the local model above, α extends to a smooth (p, q)-form on Ω.

Let Ap,q
X be the sheaf of smooth (p, q)-forms on X. Then on each local model V , we have

Ap,q
X |V = Ap,q

Ω /{u : i∗u = 0}

where i is Xreg ∩ V ⊆ V ⊆ Ω.

For each n ≥ 0, define An
X :=

⊕
p+q=nA

p,q
X . There are natural differential operators

∂ : Ap,q
X → Ap+1,q

X , ∂ : Ap,q
X → Ap,q+1

X

d = ∂ + ∂ : An
X → An+1

X

for all p, q, n ≥ 0. We have ∂2 = ∂
2
= d2 = 0 and thus ∂∂ = −∂∂. We furthermore introduce

dc :=
1

2π
√
−1

(∂ − ∂). (2.1.6)

Then ddc =
√
−1
π ∂∂.

Denote by Ap,q(X) := Ap,q
X (X). Denote by Ap,q

c (X) ⊆ Ap,q(X) the subspace of compactly
supported (p, q)-forms. A (p, q)-form α on X is said to be closed if dα = 0.

Currents on X are defined in a similar way to the smooth case. We omit it here. The
differential operators above can also be applied to currents by considering the duality. More
precisely, d = ∂ + ∂ where

∂ : Dp,q(X) → Dp+1,q(X), ∂ : Dp,q(X) → Dp,q+1(X)

are defined according to the formulae:

⟨∂T, α⟩ := (−1)p+q+1⟨T, ∂α⟩ for all α ∈ AdimX−p−1,dimX−q
c (X)

⟨∂T, α⟩ := (−1)p+q+1⟨T, ∂α⟩ for all α ∈ AdimX−p,dimX−q−1
c (X).

A (p, q)-current T on X is said to be closed if dT = 0.
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2.1.3 Positivity and the Poincaré–Lelong Formula

Definition 2.1.8. On an open subset Ω ⊆ Cn, a (1, 1)-current u =
√
−1
∑
ujkdzj ∧ dzk (with

each ujk a distribution) is said to be (semi-)positive if the associated Hermitian form ξ 7→∑
ujkξjξk is (semi-)positivie on Cn.

If each ujk is a smooth function, then we recover the definition of (semi-)positive (1, 1)-forms.
Let (X,OX) be a complex space.

Definition 2.1.9. (i) A smooth (1, 1)-form on X is said to be (semi-)positive if locally it
is (semi-)positive.

(ii) A (1, 1)-current T ∈ D1,1(X) is said to be (semi-)positive if locally it is (semi-)positive.

An equivalent way to define semi-positive (1, 1)-current is to use the duality: T ∈ D1,1(X)
is semi-positive if and onoy if T (η ∧ η) ≥ 0 for all η ∈ An−1,0

c (X).

Proposition 2.1.10. Let T ∈ D1,1(X) be a closed (1, 1)-current. Then T is semi-positive if and only if
locally T can be written as

√
−1∂∂ log |u| for some plurisubharmonic function u.

We end this section with the following result.

Theorem 2.1.11 (Poincaré–Lelong Formula for meromorphic functions). Let X be a complex
space and let f be a meromorphic function. Then as (1, 1)-currents on X, we have

√
−1

2π
∂∂ log |f |2 = δdiv(f).

2.2 Hermitian line bundles in complex geometry

Let X be a complex space.

2.2.1 Hermitian metrics on holomorphic line bundles

Let L be a holomorphic line bundle on X.

Definition 2.2.1. A smooth (resp. continuous) Hermitian metric ∥ · ∥ of L on X is the
assignment of a C-metric ∥ · ∥ to the fiber L(x) above each point x ∈ X, which varies smoothly
(resp. continuously). More precisely, for any open subset U of X and any section s of L|U → U ,
the function ∥s(x)∥2 is smooth (resp. continuous) in x ∈ U .

We call (L, ∥ · ∥) a smooth/continuous Hermitian line bundle on X.
Next we define the curvature form/current of the Hermitian line bundle L on X. We need

the following preparation. The line bundle L is determined by: (i) an open cover {Uα} of X
with L|Uα ≃ Uα × C, (ii) 1-cocyles {gαβ} which are nowhere-zero holomorphic functions on
Uα ∩ Uβ. The Hermitian metric corresponds to the collection (Uα, hα)α with hα : Uα → R>0,
with hβ|gαβ|2 = hα on Uα ∩ Uβ; indeed hα is ∥ · ∥2 locally on Uα.

Now consider the (1, 1)-current −
√
−1
2π ∂∂ log hα on Uα; if the Hermitian metric is smooth then

it is a (1, 1)-form. Since hβ|gαβ|2 = hα on Uα ∩ Uβ, we have log hα + log gαβ + log gαβ = log hβ
for some local branch of log gαβ. But gαβ is holomorphic, so ∂ log gαβ = ∂ log gαβ = 0. Thus

−
√
−1
2π ∂∂ log hα = −

√
−1
2π ∂∂ log hβ on Uα ∩ Uβ. In other words, these local (1, 1)-currents patch

together to a (1, 1)-current on the whole X, and it is a (1, 1)-form if the Hermitian metric is

smooth. Sometimes we also use −
√
−1
π ∂∂ log ∥ · ∥ to denote this current.
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Definition 2.2.2. The curvature current of (L, ∥ · ∥), denoted by c1(L, ∥ · ∥), is the (1, 1)-
current on X defined above. It is called the curvature form if the Hermitian metric is smooth.

It is clear that c1(L, ∥ · ∥) is a closed since d = ∂ + ∂ and ∂2 = ∂
2
= 0.

Theorem 2.2.3 (Poincaré–Lelong Formula for Hermitian line bundles). As (1, 1)-currents, we
have

c1(L, ∥ · ∥) = −
√
−1

π
∂∂ log ∥s∥+ δdiv(s)

for any non-zero meromorphic section s of L.

Proof. Let s be a non-zero meromorphic section of L over X. Then s corresponds to (Uα, sα)α
with sα : Uα → C with sα = gαβsβ. Then ∥s∥ =

√
hα|sα| on Uα. Thus log ∥s∥2 = log hα +

log |sα|2. The conclusion then follows by definition of c1(L, ∥ · ∥) and Theorem 2.1.11.

Definition 2.2.4. A Hermitian metric ∥ · ∥ on L is said to be (semi-)positive if c1(L, ∥ · ∥) is
a (semi-)positive current.

By Proposition 2.1.10, ∥ · ∥ is semi-positive if and only if the following holds true: For any local
section s of L which is everywhere non-vanishing over an open subset U of X, the function −2 log ∥s(x)∥
is plurisubharmonic.

We close this subsection by stating the following results when X is projective, i.e. X is the
analytification of a projective variety.

Proposition 2.2.5. Let (L, ∥ · ∥) be a Hermitian line bundle on X. Then

(i) c1(L, ∥ · ∥) represents the cohomology class of L in H2(X,C) under the natural map
H1(X,O∗

X) → H2(X,C);

(ii) we have ∫
X
c1(L, ∥ · ∥)∧ dimX = degL(X).

Moreover if X is furthermore smooth, then Kodaira’s embedding theorem asserts the follow-
ing: a holomorphic line bundle L on X is ample if and only if L has a positive metric.

2.2.2 Green’s functions

Let D be a Cartier divisor on X. Denote by |D| the support of D.

Definition 2.2.6. A smooth (resp. continuous) Green’s function gD of D over X is a
function

gD : X \ |D| → R

such that the following holds true: for any meromorphic function f over an open subset U of X
with div(f) = D|U , the function gD + log |f | can be extended to a smooth (resp. continuous) on
U .

We say that such a function gD has logarithmic singularity along D.

It is well-known that line bundles and Cartier divisors are closely related. The correspondence
can be extended to:
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1. Given a smooth/continuous Hermitian line bundle (L, ∥ · ∥) on X, for any meromorphic
section s of L on X, we obtain a pair

d̂iv(s) := (div(s),− log ∥s∥)

with − log ∥s∥ clearly a smooth/continuous Green’s function of div(s) over X.

2. Conversely given a pair (D, gD) consisting of a Cartier divisor and a smooth/continuous
Green’s function, we can associated a smooth/continuous Hermitian line bundle (O(D), ∥ ·
∥gD) where ∥ · ∥gD is defined by ∥sD∥gD := e−gD for the canonical section sD of O(D) (i.e.
div(sD) = D).

By this correspondence, we can make the following definitions.

Definition 2.2.7. The Chern current of the pair (D, gD), where gD is a Green’s function of
D over X, is defined to be c1(O(D), ∥ · ∥gD). We denote it by c1(D, gD).

Definition 2.2.8. A Green’s function gD of D over X is said to be (semi-)positive if c1(D, gD)
is a (semi-)positive current.

We close this subsection by stating the following Stokes’ Formula which allows logarithmic
singularity.

Theorem 2.2.9. Let X be an irreducible projective complex space of dimension n. Let α be a
closed (n− 1, n− 1)-form on X. Let L,M be Hermitian line bundles on X. Let l (resp. m) be
a non-zero rational section of L (resp. of M) such that their divisors intersect properly. Then∫

X
(log ∥l∥)c1(M) ∧ α−

∫
[div(m)]

(log ∥l∥)α =

∫
X
(log ∥m∥)c1(L) ∧ α−

∫
[div(l)]

(log ∥m∥)α (2.2.1)

and both equal

2

∫
X\(|div(l)|∪|div(m)|)

(d log ∥l∥) ∧ (dc log ∥m∥) ∧ α. (2.2.2)

Here the divisors in (2.2.1) are the Weil divisors, and the integrals on div(l) and on div(m)
are induced from those on prime Weil divisors by linearity. The supports of the divisors in
(2.2.2) are supports of Cartier divisors.

2.3 Height via Hermitian line bundles on arithmetic varieties

2.3.1 Hermitian line bundles on projective arithmetic varieties

Definition 2.3.1. An arithmetic variety is an integral scheme X which is flat, separated,
and of finite type over SpecZ. It is said to be (quasi-)projective if the structure morphism
X → SpecZ is (quasi-)projective.

From an arithmetic variety X , we obtain a complex space

X (C) := HomSpecZ(SpecC,X ),

with the complex conjugation acting on X (C) via its action on SpecC. Moreover, if X → SpecZ
factors through SpecR for an order R in a number field K, then X (C) =

∐
σ : K↪→CXσ(C), with

Xσ(C) = HomSpecσ(K)(SpecC,X ).

Let X be a projective arithmetic variety.
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Definition 2.3.2. A Hermitian line bundle on X is a pair L = (L, ∥ · ∥) consisting of a
line bundle L on X and a Hermitian metric ∥ · ∥ of L(C) on X (C) which is invariant under the
complex conjugation, i.e. ∥s(x)∥ = ∥s(x)∥ for all local sections s of L and all x ∈ X (C) at which
s is defined.

We make the following assumption on the Hermitian metric ∥ · ∥: it is the quotient of two
semi-positive metrics (called integrable). This automatically holds true for smooth metrics, by
using the Fubini–Study metric which will be introduced in (3.1.1).

We can also define the group of isomorphism classes of Hermitian line bundles on X , which
will be denote by P̂ic(X ). The identity element is the trivial Hermitian line bundle, the multi-
plication is the tensor product, and the inverse is the dual.

Definition 2.3.3. (i) An isomorphism (or isometry) between two Hermitian line bundles

L = (L, ∥·∥) and L′
= (L′, ∥·∥′) on X is an isomorphism i : L → L′ such that ∥·∥ = i∗∥·∥′.

(ii) The trivial Hermitian line bundle on X is defined to be OX := (OX , | · |) where | · | is
the usual absolute value.

(iii) The tensor product of two Hermitian line bundles L = (L, ∥ · ∥) and L′
= (L′, ∥ · ∥′) on

X is L ⊗ L′
:= (L ⊗ L′, ∥ · ∥∥ · ∥′).

(iv) The dual of a Hermitian line bundle L on X is defined to be L∨
:= (L∨, ∥ · ∥∨), where

L∨ := Hom(L,OX ) and ∥ · ∥∨ is the dual metric.

We also have the definition of arithmetic divisors.

Definition 2.3.4. An arithmetic divisor on X is a pair D = (D, gD) consisting of a Cartier
divisor D on X and a Green’s function gD of D(C) on X (C) which is invariant under the
complex conjugation, i.e. gD(x) = gD(x) for all x ∈ X (C) \ |D(C)|.

A principal arithmetic divisor is of the form

d̂iv(f) := (div(f),− log |f |)

where f ∈ Q(X )∗ is a non-zero rational function on X .

We make the following assumption on the Green’s function gD: it is the quotient of two semi-
positive Green’s functions (called integrable). This automatically holds true if gD is smooth, by
the result for Hermitian line bundles and Proposition 2.3.5 below.

We have the following groups, where the group laws are clear:

D̂iv(X ) := {arithmetic divisors on X},

P̂rin(X ) := {principal arithmetic divisors on X},

Ĉl(X ) := D̂iv(X )/P̂rin(X ).

Proposition 2.3.5. We have a group homomorphism

D̂iv(X ) → P̂ic(X ), D = (D, gD) 7→ O(D) = (O(D), ∥ · ∥D) (2.3.1)

where ∥ · ∥D is defined by ∥sD∥D = e−gD with sD the canonical section of O(D) (i.e. div(sD) =
D). Moreover this group homomorphism induces a canonical isomorphism

Ĉl(X )
∼−→ P̂ic(X ). (2.3.2)
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Proof. The proof is similar to Proposition 1.1.6. Let us write down the inverse map P̂ic(X ) →
Ĉl(X ). For each L = (L, ∥ · ∥), let s be a non-zero rational section of LQ and set

d̂iv(s) := (div(s),− log ∥s∥). (2.3.3)

Then the inverse is L 7→ d̂iv(s).

2.3.2 Height machine via Hermitian line bundles

Let X be a projective variety over Q, and let L ∈ Pic1(X). Then X and L are defined over
some number field K, with X → SpecK the structural morphism.

Definition 2.3.6. We say that a pair (X ,L) is an arithmetic model of (X,L) over OK if

(i) X is an integral model of X, i.e X is an integral scheme, projective and flat over SpecOK ,
such that XK := X ×SpecOK

SpecK ≃ X (notice that X is naturally an arithmetic variety
via Z ⊆ OK);

(ii) L is a Hermitian line bundle on X extending L, i.e. LK ≃ L under the identification
XK ≃ X.

Fix an arithmetic model (X ,L) of (X,L) over OK . Let us construct the height on X
associated with (X ,L), denoted by

hL : X(Q) → R (2.3.4)

as follows.

Consider a point x ∈ X(K ′) with K ′/K a finite extension. Then x : SpecK ′ → X. The
valuative criterion of properness thus gives rise to a unique morphism x : SpecOK′ → X such
that the following diagram commutes:

SpecK ′ x //

��

X = XK

��
SpecOK′

x // X

where the vertical maps are induced by the inclusions OK′ ⊆ K ′ and OK ⊆ K.

Define

hL(x) :=
1

[K ′ : K]
d̂egx∗L. (2.3.5)

Definition-Lemma 2.3.7. Let K ′′/K ′ be a finite extension. Let x0 : SpecOK′′ → X be the
morphism determined by x ∈ X(K ′′). Then

1

[K ′ : K]
d̂egx∗L =

1

[K ′′ : K]
d̂egx∗0L.

Thus hL(x) in (2.3.5) extends to a well-defined function X(Q) → R, which is the desired height
function (2.3.4).

Proof. This follows easily from Proposition 1.1.7, the definition of the arithmetic degrees of arith-
metic divisors on SpecOK′ and on SpecOK′′ (Definition 1.1.5), and the fact that

∑
v∈MK′′ ev/v0fv/v0 =

[K ′′ : K ′] with (in the sum) v0 ∈MK′ the place below v.
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Example 2.3.8. Let (X,L) = (PN ,O(1)) be defined over Q, and take the arithmetic model
(X ,L) = (PN

Z ,O(1)) with the metric on O(1) as follows: For each s = a0X0 + . . . + aNXN ∈
H0(PN

C ,O(1)), set

∥s(x)∥ :=
|a0x0 + . . .+ aNxN |
max{|x0|, . . . , |xN |}

for any x = [x0 : · · · : xN ] ∈ PN (C). Then it is not hard to check that hO(1)
is precisely the Weil

height on PN (Q).

Proposition 2.3.9. For each arithmetic model (X ,L) of (X,L) over OK , the function hL is a
height function associated with (X,L).

Proof. We start by showing that hL1
− hL2

is bounded on X(Q) for any two arithmetic models

(X1,L1) and (X2,L2) of (X,L). Let X be the Zariski closure of

X
∆−→ X ×SpecK X → X1 ×SpecOK

X2.

Write fi : X → Xi for the i-th projection. Then by definition we have hf∗
i Li

= hLi
for i ∈ {1, 2}.

On the other hand, f∗1L1 − f∗2L2 is trivial on the generic fiber X = XK . Thus hf∗
1L1−f∗

2L2
is

bounded on X(Q) since we can take the global section to be 1 in the computation of d̂eg. Hence

hL1
− hL2

= hf∗
1L1

− hf∗
2L2

= hf∗
1L1−f∗

2L2

is bounded on X(Q).

So the conclusion of the proposition does not depend on the choice of the arithmetic model.
By linearity/additivity, we may and do assume that L is very ample on X, i.e. there exists an
embedding i : X ↪→ PN

K such that i∗O(1) ≃ L. Then i extends to i : X → PN
OK

for the Zariski

closure X of X in PN
OK

. Then the conclusion follows from Example 2.3.8. We are done.

2.4 Self-intersection of Hermitian line bundles on arithmetic va-
rieties

2.4.1 Review on intersection of line bundles in algebraic geometry

Let X be a projective variety defined over an algebraically closed field k. Let Pic(X) be the
Picard group, i.e. the isomorphism classes of line bundles on X.

Definition 2.4.1 (multiplicity in complete intersection). Let R be a noetherian local domain of
Krull dimension n. For f1, . . . , fn ∈ R \ {0} such that |div(f1)| ∩ · · · ∩ |div(fn)| has dimension
0 in SpecR, define

ordR(f1, . . . , fn) = lengthRR/(f1, . . . , fn).

By linearity, this definition extends to, for K = Frac(R),

ordR : (K∗)n → Z

for f1, . . . , fn ∈ K∗ such that |div(f1)| ∩ · · · ∩ |div(fn)| has dimension 0 in SpecR.
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Definition 2.4.2. Let D1, . . . , Dr be Cartier divisors on X which intersect properly, i.e. |D1| ∩
· · · ∩ |Dr| is pure of codimension r in X. Define the r-cocycle of X

D1 · · ·Dr :=
∑

Y⊆X integral
codimXY=r

ordOX,ηY
(D1, . . . , Dr)[Y ],

where ηY is the generic point of Y .

Notice that when r = 1, the right hand side is just the Weil divisor associated with D1. To
distinguish Cartier and Weil divisors, we use [D] to denote the Weil divisor associated with the
Cartier divisor D.

On the other hand, for r = dimX, we can furthermore define the degree of D1 · · ·DdimX to
be

deg(D1 · · ·DdimX) :=
∑

P∈X(k)

ordOX,P
(D1, . . . , DdimX).

Lemma 2.4.3. Let d = dimX. Let L1, . . . , Ld ∈ Pic(X). There exist rational sections si of Li

on X for each i ∈ {1, . . . , d} such that div(s1), . . . ,div(sd) intersect properly.

Notice that div(si) ∈ Div(X) is mapped to Li under Div(X) → Cl(X) = Div(X)/Prin(X)
∼−→

Pic(X), where Div(X) is the group of Cartier divisors on X and Prin(X) is the subgroup of
principal Cartier divisors.

Definition 2.4.4. Let d = dimX. The intersection pairing

Pic(X)d → Z

is defined to be define
L1 · · ·Ld := deg(div(s1) · · · div(sd)) (2.4.1)

for the rational sections s1, . . . , sd obtained from Lemma 2.4.3, where the right hand side is
Definition 2.4.2 with r = d.

Lemma 2.4.5. The intersection pairing Pic(X)d → Z can equivalently defined inductively as
follows. When d = 1, it is the composite

Pic(X)
∼−→ Cl(X) = Div(X)/Prin(X)

deg−−→ Z.

For general d ≥ 2, we have

L1 · · ·Ld =
∑
i

miL1|Yi · · ·Ld−1|Yi (2.4.2)

where
∑

imi[Yi] is the Weil divisor for any rational section sd of Ld on X.

Proof. When d = 1, this is immediately true by the discussion below Definition 2.4.2.
For general d ≥ 2, by multi-linearity (definition of ord) we can reduce to the case where

L1, . . . , Ld are all very ample. Then both sides of (2.4.2) equal

dimk Odiv(s1)∩···∩div(sd)

for some global sections si ∈ H0(X,Li) such that dim |div(s1)|∩· · ·∩|div(sd)| = 0, and div(s1)∩
· · ·∩div(sd) is the scheme-theoretic intersection in X. We can replace sd by any rational section
(which is fsd for some f ∈ K(X)∗) since L1 · · ·Ld−1 · OX = 0.
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Proposition 2.4.6 (Projection Formula). Let f : X ′ → X be a surjective morphism of projective
varieties over a field. Assume dimX ′ = d. Then for any L1, . . . , Ld ∈ Pic(X), we have

f∗L1 · · · f∗Ld = deg(f)L1 · · ·Ld.

Here we use the convention that

deg(f) =

{
0 if dimX < dimX ′

[K(X ′) : K(X)] if dimX = dimX ′.

As suggested by (2.4.2), it is convenient to define the intersection pairing restricted to integral
closed subschemes of X. Let Y be a closed subvariety of X of dimension r, and let L1, . . . , Lr ∈
Pic(X). Define

L1 · · ·Lr · Y := L1|Y · · ·Lr|Y .

By linearity, this definition extends to a map

Pic(X)r × Zr(X) → Z (2.4.3)

with Zr(X) the group of r-cycles on X, i.e. the abelian group generated by integral closed
subschemes of X of dimension r. In stating the Projection Formula, it is then convenient to
introduce

f∗ : Zr(X
′) → Zr(X), (2.4.4)

where for Y ′ an integral closed subscheme of X we have

f∗([Y
′]) =

{
0 if dim f(Y ′) < dimY ′

deg(Y ′ → f(Y ′))[f(Y ′)] if dim f(Y ′) = dimY ′.

In particular, if f : X ′ → X is generically finite, then f∗([X
′]) = (deg f)[X].

2.4.2 Top intersection number of Hermitian line bundles on projective arith-
metic varieties

Let X be a projective arithmetic variety, with X → SpecZ the structural morphism. Now we
turn to the intersection theory of Hermitian line bundles on X .

Definition 2.4.7. An integral closed subscheme Y of X is said to be:

(i) horizontal if Y is flat over SpecZ (notice that Y → Z is then surjective),

(ii) vertical if the image of Y → SpecZ is a point.

Let n + 1 = dimX . Let Zr(X ) be the group of r-cycles on X , i.e. i.e. the abelian group
generated by integral closed subschemes of X of dimension r.

To define the arithmetic version of the top self-intersection, we start with the definition of
the arithmetic degree for n = 0. When n = 0, we have X = SpecR for some order R of a
number field K. If R = OK , then the we have the arithmetic degree d̂eg : P̂ic(SpecOK) → R
from (1.1.1). For general R, we take the same definition with OK replaced by R.
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Definition 2.4.8. Define the intersection pairing

P̂ic(X )n+1 → R

and, more generally (for r ≤ n+ 1)

P̂ic(X )r × Zr(X ) → R,

as follows.

(i) When n = 0, this is precisely d̂eg. For n ≥ 1 and L1, . . . ,Ln+1 ∈ P̂ic(X ), define

L1 · · · Ln+1 := L1 · · · Ln · [div(sn+1)]−
∫
X (C)

log ∥sn+1∥c1(L1) · · · c1(Ln), (2.4.5)

with sn an arbitrary rational section of Ln+1 on X (and [div(sn+1)] is the Weil divisor);

(ii) For L1, . . . ,Lr ∈ P̂ic(X ) and an integral closed subscheme Y of X of dimension r, define
L1 · · · Lr · Y inductively on r according to:

(a) If Y is horizontal, then set

L1 · · · Lr · Y := L1|Y · · · Lr|Y . (2.4.6)

(b) If Y is vertical, then the image of Y → SpecZ is (p) for some prime number p and
hence we view Y as a scheme over SpecFp (and hence over SpecFp). Set

L1 · · · Lr · Y := (L1|Y · · · Lr|Y) log p. (2.4.7)

Theorem 2.4.9. The pairing P̂ic(X )n+1 → R is well-defined, multi-linear and symmetric.

Proof. Take si to be a rational section of Li such that div(s1), . . . ,div(sn+1) intersect properly in X . Set

L1 · · · Ln−1 · d̂iv(sn) · d̂iv(sn+1) := L1 · · · Ln−1 (div(sn) · div(sn+1))

−
∫
[div(sn+1)](C)

log ∥sn∥c1(L1) · · · c1(Ln−1)−
∫
X (C)

log ∥sn+1∥c1(L1) · · · c1(Ln).

By induction on n, we then get the definition of d̂iv(s1) · · · d̂iv(sn+1) and have

L1 · · · Ln+1 = d̂iv(s1) · · · d̂iv(sn+1).

By Stokes’ Formula (Theorem 2.2.9), we have

L1 · · · Ln−1 · d̂iv(sn) · d̂iv(sn+1) = L1 · · · Ln−1 · d̂iv(sn+1) · d̂iv(sn).

Thus we obtain
L1 · · · Ln−1 · Ln · Ln+1 = L1 · · · Ln−1 · Ln+1 · Ln.

This proves the symmetry by induction on n. The multi-linearity then follows easily. Moreover, the

symmetry and induction on n implies that L1 · · · Ln·d̂iv(f) = 0 for all f ∈ K(X )∗. Hence well-defined.

We also have the Projection Formula for the arithmetic case.

Proposition 2.4.10. Let f : X ′ → X be a morphism of projective arithmetic varieties. For
[Y ′] ∈ Zr(X ′) and L1, . . . ,Lr ∈ P̂ic(X ), we have

f∗L1 · · · f∗Lr · [Y ′] = L1 · · · Lr · f∗[Y ′],

where f∗ : Zr(X ′) → Zr(X ) is defined in the same way as in the geometric case (2.4.4).
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2.5 Positivity of Hermitian line bundles on projective arith-
metic varieties

2.5.1 Review on nef and big line bundles in algebraic geometry

Let X be a projective variety defined over a field k, and let L ∈ Pic(X). Let d = dimX.

Definition 2.5.1. The line bundle L is called nef (numerically effective) if L · C ≥ 0 for any
closed subcurve C ⊆ X.

In fact, if L is nef, then LdimY · Y ≥ 0 for any irreducible closed subvariety Y of X. Thus,
nef line bundles are the boundary of the cone of ample line bundle because, by the criterion of
Nakai–Moishezon, L is ample if and only if LdimY · Y > 0 for any irreducible closed subvariety
Y of X.

Use the symbol + to denote the binary operation on the group Pic(X) (so L + L′ means
L⊗ L′). For n ∈ Z≥1, write nL for L⊗n. Denote by h0(nL) := dimkH

0(X,nL).

Definition-Lemma 2.5.2. The limit

vol(L) := lim
n→∞

d!

nd
h0(nL)

exists, and is called the volume of L.

Definition 2.5.3. The line bundle L is said to be big if vol(L) > 0.

Both definitions are stable under base change, i.e.

Lemma 2.5.4. Assume k ⊆ k′ is an inclusion of fields. Then L is a nef (resp. big) line bundle
on X if and only if Lk′ is a nef (resp. big) line bundle on Xk′.

In height theory, if we have a big line bundle L on X, then by definition there exists a global
section s of nL on X for some n ≫ 1. Thus the height function hL has a lower bound outside
|div(s)| by “Lower Bound” of Proposition 0.2.2. In fact, in algebraic geometry, we furthermore
have:

Theorem 2.5.5. The line bundle L is big if and only if mL = A+O(E) for some m > 1, some
ample line bundle A and some effective divisor E on X.

Here are two important theorems to check the bigness of certain line bundles under suitable
nefness assumption.

Theorem 2.5.6 (Hilbert–Samuel). Assume L is nef. Then vol(L) = Ld.

Theorem 2.5.7 (Siu’s inequality). If L and M are nef line bundles, then

vol(L−M) ≥ Ld − dLd−1 ·M.

In particular, if L is nef and big, then mL−M is big for m≫ 1.

If k = C and L carries a smooth Hermitian metric ∥ · ∥, then we can use the curvature
form c1(L, ∥ · ∥) to check the nefness and bigness. Indeed, in this case for any irreducible closed
subvariety Y of X, we have

LdimY · Y =

∫
Y reg(C)

c1(L, ∥ · ∥)∧ dimY ,

where the integral is on the regular locus of Y (or equivalently, the desingularization of Y and
then take the pullback of c1(L, ∥ · ∥)). Hence we have:

(i) L is nef if c1(L, ∥ · ∥) ≥ 0;

(ii) if c1(L, ∥ · ∥) ≥ 0, then L is big if and only if c1(L, ∥ · ∥)∧d ̸≡ 0.
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2.5.2 Arithmetic volumes

Let X be a projective arithmetic variety. Let n+ 1 = dimX .
Let L ∈ P̂ic(X ) be a Hermitian line bundle. Define

H0(X ,L) := {s ∈ H0(X ,L) : ∥s∥sup ≤ 1}, (2.5.1)

where ∥s∥sup = supx∈X (C) ∥s(x)∥ is the usual supremum norm on H0(X ,L)C.
The proof of the following lemma is important, especially the construction of the real Eu-

clidean space H0(X ,L)R (which generalizes Example 1.2.5).

Lemma 2.5.8. H0(X ,L) is a finite set.

Proof. The structural morphism X → SpecZ factors through SpecR for an order R in a number
field K, such that the generic fiber XK is irreducible. We have

H0(X ,L)C = H0(X (C),L(C)) =
⊕

σ : K↪→C
H0(Xσ,Lσ),

with Xσ = HomSpecσ(K)(SpecC,X ) and Lσ defined similarly. Set

H0(X ,L)R := {s = (sσ)σ ∈ H0(X ,L)C : sσ = sσ for all σ}. (2.5.2)

Then ∥ · ∥sup induces a norm on H0(X ,L)R, and H0(X ,L) = H0(X ,L) ∩B(L) with

B(L) = {s ∈ H0(X ,L)R : ∥s∥sup ≤ 1}.

So H0(X ,L) is the set of lattice points contained in the unit ball, which is a finite set.

Notice that we are again back in the context of Geometry of Numbers discussed in §1.3.1,
with M = H0(X ,L) and ∥ · ∥sup.

Now define
h0(L) := log#H0(X ,L). (2.5.3)

Elements in H0(X ,L) are usually called small sections or effective sections (we will explain this
second terminology at the end of this section).

Definition-Proposition 2.5.9. The sup-limit

vol(L) := lim sup
N→∞

h0(NL)
Nn+1/(n+ 1)!

exists, and is called the (arithmetic) volume of L.
In practice, it is not easy to count the number of lattice points. Instead, here is a number

which approximates this number in an asymptotic way and is easier to handle. Fix any Haar
measure on H0(X ,L)R, and set

χ(L) := log
vol(B(L))

covol(H0(X ,L)R/H0(X ,L))
, (2.5.4)

which is independent of the choice of the Haar measure (not hard to check). The quantitative
version of Minkowski’s first theorem (Theorem 1.3.5) then yields

h0(L) ≥ χ(L)− h0(LQ) log 2. (2.5.5)

Thus we can make the following definition:

Definition 2.5.10. The χ-volume of L is defined to be the sup-limit

volχ(L) := lim sup
N→∞

χ(NL)
Nn+1/(n+ 1)!

.

(2.5.5) furthermore implies that volχ(L) ≤ vol(L).
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2.5.3 Arithmetic nefness, bigness, and ampleness

Let X be a projective arithmetic variety, and let n+ 1 = dimX .

Definition 2.5.11. A Hermitian line bundle L = (L, ∥ · ∥) ∈ P̂ic(X ) is said to be:

(1) nef if

(i) c1(L, ∥ · ∥) ≥ 0;

(ii) L · Y ≥ 0 for any integral 1-dimensional subscheme Y of X .

(2) weakly ample if L is nef and LQ is ample.

(3) ample if L is weakly ample and LdimY · Y > 0 for any integral subscheme Y of X .

Definition 2.5.12. A Hermitian line bundle L = (L, ∥ · ∥) ∈ P̂ic(X ) is said to be big if
vol(L) > 0.

In height theory, suppose (X ,L) is an arithmetic model of (X,L) with X a projective variety.
If theHermitian line bundle L is big, then by definition there exists a global section s of NL on
X with ∥s∥sup ≤ 1 for some N ≫ 1. Thus the height function hL is bounded below by 0 outside
the generic fiber of |div(s)|, by the definition of hL (2.3.5). Thus instead of having only a lower
bound, we have positivity.

Theorem 2.5.13 (Arithmetic Hilbert–Samuel). Assume L is nef. Then vol(L) = Ln+1
.

Theorem 2.5.14 (Arithmetic Siu). Assume L and M are nef Hermitian line bundles on X .
Then

vol(L −M) ≥ Ln+1 − (n+ 1)Ln · M.

Indeed, both theorems still hold true with vol replaced by volχ. For volχ and for weakly
ample L, the Arithmetic Hilbert–Samuel Formula is a consequence of Gillet–Soulé’s arithmetic
Riemann–Roch theorem and an estimate of analytic torsions by Bismut–Vasserot (with refine-
ment by Zhang); a direct proof was later on given by Abbès–Bouche. For vol and L ample,
the Arithmetic Hilbert–Samuel Formula by Zhang by furthermore using his arithmetic Nakai–
Moishezon theorem. Moriwaki extended these results to nef Hermitian line bundle (with con-
tinuous metrics). Arithmetic Siu is a result of Yuan.

In the next chapters, we will present the proof of Abbès–Bouche of the Arithmetic Hilbert–
Samuel Formula.

We close this section with the following discussion on the effectiveness of arithmetic divisors.
Let D = (D, gD) be an arithmetic divisor on X .

Definition 2.5.15. We say that D is effective (resp. strictly effective) if D ≥ 0 and gD ≥ 0
(resp. D ≥ 0 and gD > 0).

Recall that O(D) is the Hermitian line bundle on X with the metric ∥ · ∥ determined by
∥sD∥ = e−gD . Thus if D is effective, then h0(O(D)) > 0. Conversely, if a Hermitian line bundle
L on X satisfies h0(L) > 0, then there exists a non-zero s ∈ H0(X ,L) such that ∥s(x)∥ ≤ 1 for

all x ∈ X (C), and hence the arithmetic divisor d̂iv(s) = (div(s),− log ∥s∥) is effective.
For this reason, we sometimes call elements in H0(X ,L) effective sections, and say that L is

effective if h0(L) > 0.



36 CHAPTER 2. HERMITIAN LINE BUNDLES ON ARITHMETIC VARIETIES



Chapter 3

Preparation on analysis for the proof
of Arithmetic Hilbert–Samuel

The goal of this chapter is to discuss about some analytic tools and results which will be used
to prove the Arithmetic Hilbert–Samuel Theorem (for which we follow the approach of Abbès–
Bouche) in the next chapter.

3.1 Distortion function

3.1.1 Fubini–Study metric

Let X be a connected complex manifold of dimension n, endowed with a smooth Hermitian
metric (i.e. a J-invariant positive-definite Hermitian inner product h(·, ·) on TX where J is the
complex structure on X). This Hermitian metric induces a positive (1, 1)-form ω = −Imh on
X, and hence a volume form dV := ω∧n/n! on X. Notice that h can be recovered from ω and
J via the formula h(u, v) = ω(u, Jv)−

√
−1ω(u, v).

Definition 3.1.1. Such a complex manifold X is called a Kähler manifold if ω is closed.

If X is a Kähler manifold, we usually call ω its Kähler form.

Example 3.1.2. For X = Pn, the Fubini–Study metric is defined as follows. We have the
standard projection Cn+1 \ {0} → Pn by viewing Pn as the space consisting of all complex lines
in Cn+1. The standard Hermitian metric on Cn+1 defines the following (1, 1)-form on Pn

ωFS =

√
−1

2π
∂∂ log(|z0|2 + · · ·+ |zn|2)

with (z0, . . . , zn) the standard coordinate of Cn+1. To see this, consider any open subset U ⊆ Pn

such that natural projection admits a lifting Z : U → Cn+1 \ {0}. Thenany other lifting Z ′

differs from Z by a non-zero holomorphic function f , and hence ∂∂ log |Z ′|2 = ∂∂ log |fZ|2 =
∂∂ log |Z|2 + ∂∂ log(ff) = ∂∂ log |Z|2. Thus the local (1, 1)-forms ∂∂ log |Z|2, with U varying,
patch together to a global (1, 1)-form, which is exactly (2π/

√
−1)ωFS.

Notice that dωFS = 0, i.e. ωFS is closed.

To see that ωFS is a positive (1, 1)-form, it suffices to prove that it is positive at one point since
ω is invariant under the group action of U(n+1) on Pn (which is transitive). Use {w1, . . . , wn}

37
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to denote the standard coordinate on the open subset U0 := {z0 ̸= 0} ⊆ Pn, i.e. wj = zj/z0.
Then

ωFS|U0 =

√
−1

2π
∂∂ log(1 +

∑
wjwj) =

√
−1

2π

(∑
dwj ∧ dwj

1 +
∑
wjwj

− (
∑
wjdwj) ∧ (

∑
wj ∧ dwj)

(1 +
∑
wjwj)2

)
,

which is
√
−1
2π

∑
dwj ∧ dwj at [1 : 0 : · · · : 0]. Thus ωFS is positive.

By the discussion above, ωFS defines a Hermitian metric on Pn, which is called the Fubini–
Study metric.

By Example 3.1.2, the analytification of any smooth quasi-projective variety is a Kähler
manifold.

Another way to see the Fubini–Study metric on Pn is as via a suitable Hermitian metric ∥·∥FS
on OPn(1) as follows. The coordinate functions X0, . . . , Xn form a basis of H0(Pn,OPn(1)). At
each point x = [x0 : · · · : xn] ∈ Pn, define for a global section s = a0X0 + · · ·+ aNxN

∥s(x)∥FS :=
|a0x0 + · · ·+ aNxN |√
|x0|2 + · · ·+ |xN |2

. (3.1.1)

Then one can check that c1(OPn(1), ∥ · ∥FS) = ωFS.

3.1.2 Distortion function

Let X be a compact Kähler manifold. Let L be a line bundle on X, endowed with a smooth
Hermitian metric ∥ · ∥ which is positive, i.e. c1(L, ∥ · ∥) is a positive (1, 1)-form on X. By the
Kodaira embedding theorem, L is an ample line bundle on X (and hence X is projective). Now
for each k ≥ 0, denote by kL := L⊗k, Vk := H0(X, kL) the space of holomorphic sections of kL
on X, and

Φk : X → P(V ∨
k ), x 7→ Hx = {σ ∈ Vk : σ(x) = 0}. (3.1.2)

Then Φk is a closed immersion with Φ∗
kOP(V ∨

k )(1) ≃ kL for all k ≫ 1.

On kL, we have the natural Hermitian metric ∥ · ∥k, which is the metric of (L, ∥ · ∥)⊗k. On
the other hand, we have the Fubini–Study metric on OP(V ∨

k )(1) as defined by (3.1.1). Thus its
pullback via Φk defines a Hermitian metric on kL, which we call ∥ · ∥kFS .

Thus on kL, we have two Hermitian metrics: ∥ · ∥k and ∥ · ∥kFS .

Definition 3.1.3. The k-th distortion function is

bk : X → R, x 7→
∥ξ∥2k
∥ξ∥2

kFS

for any ξ ∈ (kL)x \ {0}.

Here is a more explicit expression of the distortion function. On Vk we have the L2-norm
defined by

∥s∥2L2 =

∫
X
∥s(x)∥2kdV for all s ∈ Vk = H0(X, kL).

Then Vk is canonically isomorphic to V ∨
k , by sending v 7→ ⟨v,−⟩L2 for the inner product deter-

mined by the L2-norm. Let s1, . . . , sN be an orthonormal basis of Vk = H0(X, kL) for this L2-
norm. Then it is not hard to compute that Φk(x) = [s1(x) : · · · : sN (x)] under Vk =

⊕N
j=1Csj .

Then ∥ξ∥2
kFS = (∥s1(x)∥2k + · · ·+ ∥sN (x)∥2k)−1∥ξ∥2k by (3.1.1). Thus

bk(x) =
N∑
j=1

∥sj(x)∥2k. (3.1.3)
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3.1.3 Main result on the distortion function

The main result about the distortion function is the following:

Theorem 3.1.4. The function (bk)
1/k converges to 1 uniformly on X. Namely for any ϵ > 0,

there exists k0 such that |bk(x)1/k − 1| < ϵ for all k ≥ k0 and all x ∈ X.

In other terminology, the Fubini–Study metric on L flattens uniformly into the initial metric
∥ · ∥.

We shall prove a more precise version of this theorem. For the statement we need to introduce
the following notion. Locally on X we can find a suitable complex coordinate (z1, . . . , zn) of

X such that: (i) ω =
√
−1
2

∑n
j=1 dzj ∧ dzj (in other words, 1√

2
(dz1,dz1 . . . ,dzn, dzn) is an

orthonormal frame of T ∗
X with respect to the Hermitian metric), (ii) the (1, 1)-form c1(L, ∥ · ∥)

equals
√
−1
2

∑n
j=1 αj(x)dzj ∧ dzj with αj(x) > 0.

Definition 3.1.5. The functions α1, . . . , αn are called the eigenfunctions of c1(L, ∥ · ∥) with
respect to ω (or with respect to the Hermitian metric on X). The determinant is defined to be
the smooth function on X

det c1(L, ∥ · ∥) := α1 · · ·αn.

Theorem 3.1.6. When k → ∞, the function

bk
kn det c1(L, ∥ · ∥)

converges to 1 uniformly on X.

Theorem 3.1.6 implies Theorem 3.1.4 immediately.

3.2 Proof of the main theorem on the distortion function via
heat kernel

Let X be a connected compact Kähler manifold of dimension n, and let dV be the volume form
on X. Let L be a line bundle on X, endowed with a smooth Hermitian metric ∥ · ∥.

3.2.1 Anti-holomorphic Kodaira Laplacian and Harmonic forms

For any k ≥ 1, denote by A0,q(X, kL) the space of smooth global (0, q)-forms with values in
kL := L⊗k (i.e. global sections of (T 0,q

X )∗ ⊗ L⊗k). If q = 0, notice that A0,0(X, kL) is precisely
the space of smooth (real) sections of kL over X.

The Hermitian metric on X and the Hermitian metric on L together induce a Hermitian
metric on (T 0,q

X )∗⊗L⊗k which we denote by ∥·∥k,q. Then we can endow A0,q(X, kL) with norms,
for example the L2-norm

∥σ∥L2 :=

(∫
X
∥σ(x)∥2k,qdV

)1/2

, ∀σ ∈ A0,q(X, kL).

Each such norm defines a sesquilinear pairing (·, ·)q on A0,q(X, kL). Denote by L2
q(X, kL) the

completion of A0,q(X, kL) with respect to the L2-norm. It is a Hilbert space.
The differential operator ∂ : (T 0,q

X )∗ → (T 0,q+1
X )∗ induces a differential operator ∂k,q : A

0,q(X, kL) →
A0,q+1(X, kL). And ∂k,q has an adjoint ∂

∗
k,q : A

0,q+1(X, kL) → A0,q(X, kL) with respect to the

given norms, determined by (∂k,qu, u
′)q+1 = (u, ∂

∗
k,qu

′)q.
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Definition 3.2.1. The anti-holomorphic Kodaira Laplacian is

∆′′
k,q := ∂k,q−1∂

∗
k,q−1 + ∂

∗
k,q∂k,q

with the first term being 0 if q = 0.

A smooth (0, q)-form u is called a harmonic form if ∆′′
k,qu = 0.

In our case, we are interested in the operator

□
q
k :=

2

k
∆′′

k,q. (3.2.1)

Notice that Ker□
q
k = Ker∆′′

k,q.

The cohomology of the Dolbeault complex · · · → A0,q(X, kL)
∂−→ A0,q+1(X, kL) → · · · gives

H0,q(X, kL) ≃ Hq(X,Ω0
X ⊗ L⊗k) = Hq(X, kL).

We state the following lemma without proof (the proof is not hard).

Lemma 3.2.2. A ∂-closed form u ∈ A0,q(X, kL) is of minimal norm in u+ Im∂ if and only if
∂
∗
u = 0.

This lemma (formally) implies that the Dolbeault cohomology group H0,q(X, kL) is repre-
sented exactly by solutions of two first-order equations

∂u = 0, ∂
∗
u = 0,

which can be replaced by the single second-order equation

∆′′
k,qu = 0.

Thus we have

Hq(X, kL) ≃ Ker∆′′
k,q = Ker□

q
k.

In particular if q = 0, then this realizes H0(X, kL) as the subspace Ker□
0
k of A0,0(X, kL).

In general, we have an L2-orthogonal decomposition

A0,q(X, kL) = Ker□
q
k ⊕ Im∂k,q−1 ⊕ Im∂

∗
k,q+1.

Recall that X is compact. We state the following (special case of a) theorem on the spectrum
of any self-adjoint elliptic operator which is semi-bounded.

Theorem 3.2.3 (Spectral theorem). The operator □
q
k has discrete spectrum (of eigenvalues)

0 = λ1 ≤ λ2 ≤ · · · ≤ λm ≤ · · · → ∞

and there exists a corresponding orthonormal basis consisting of smooth eigenforms {ψm}, i.e.
□

q
kψm = λmψm for non-zero ψm.

In general, this theorem can be applied to any self-adjoint elliptic operator P which is semi-
bounded (i.e. (Pu, u)L2 ≥ −c∥u∥2L2 for some fixed c ∈ R) and with 0 replaced by −c.
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3.2.2 Heat kernel associated with the anti-holomorphic Kodaira Laplacian

We shall assume the following proposition which claims the existence of the heat kernel, which
is our main tool to prove Theorem 3.1.6.

Proposition 3.2.4. The operator □
q
k admits a smooth (heat) kernel eqk(t, x, y), uniquely deter-

mined by the following properties:

(i) It is a smooth function on R>0 ×X ×X taking values in End((T 0,q
X )∗ ⊗ L⊗k).

(ii) ( ∂
∂t +□k)e

q
k = 0 with □

q
k acting on the x-variable.

(iii) eqk(t, x, y) → δy (Dirac function) when t→ 0+.

More concretely, (ii) and (iii) mean the following: For each u0(x), there exists a unique
smooth solution u = u(t, x) : R≥0 ×X → End((T 0,q

X )∗ ⊗ L⊗k) to the heat equation{
( ∂
∂t +□

q
k)u = 0

u(0, x) = u0(x),

which can be obtained as

u(t, x) =

∫
X
eqk(t, x, y)u0(y)dy. (3.2.2)

We sometimes call eqk(t, x, y) the fundamental solution of ( ∂
∂t +□k)u = 0. It is known that under

the eigenbasis given by Theorem 3.2.3, we have

eqk(t, x, y) =
∑
m≥1

e−λmtψm(x)⊗ ψ∗
m(y).

We shall be interested in the diagonal of the heat kernel, which for simplicity we denote by

eqk(t, x) := eqk(t, x, x) =
∑
λ

e−λt∥ψλ(x)∥2k,q (3.2.3)

for the L2-orthonormal eigenbasis (λ, ψλ)λ given by Theorem 3.2.3; here we abuse the notation
since there can be more than 1 eigenforms for each λ.

The following theorem is the main theorem on heat kernel expansion and is of fundamental
importance. We state the theorem without proof.

Let α1, . . . , αn be the eigenfunctions of c1(L, ∥ · ∥) with respect to the Hermitian metric on
X. For any multi-index J , set αJ :=

∑
j ̸∈J αj −

∑
j∈J αj . Define

eq∞(t, x) := α1(x) · · ·αn(x)

∑
|J |=q e

tαJ (x)∏n
j=1(e

tαj(x) − e−tαj(x))
. (3.2.4)

Theorem 3.2.5. There exists a real number ϵ > 0 with the following property. When k → ∞,
the function k−neqk(t, x) converges to eq∞(t, x) uniformly with respect to x ∈ X and t ∈ (0, k2ϵ).
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3.2.3 Application to the proof of Theorem 3.1.6

Let us prove Theorem 3.1.6 by using the results on heat kernel above.

Let (λ, ψλ)λ be an L2-orthonormal eigenbasis for the operator □
0
k from Theorem 3.2.3. Recall

that H0(X, kL) is precisely the subspace Ker□
0
k of A0,0(X, kL). Thus

e0k(t, x) =
∑
λ

e−tλ∥ψλ(x)∥2k,0 = bk(x) +
∑
λ>0

e−tλ∥ψλ(x)∥2k,0 (3.2.5)

where the second equality follows from (3.1.3).

We will study the asymptotic behavior of e0k(t, x) and of e0k(t, x)−bk(x) =
∑

λ>0 e
−tλ∥ψλ(x)∥2k,0

separately.

By Theorem 3.2.5 with q = 0, we get

e0k(t, x) =

α1(x) · · ·αn(x)
n∏

j=1

1

1− e−2tαj(x)

 kn + o(kn)

uniformly in x ∈ X and in t ∈ (0, k2ϵ) for a fixed ϵ. Taking t = kϵ → ∞, we get

e0k(k
ϵ, x) ∼ α1(x) · · ·αn(x)k

n. (3.2.6)

On the other hand for each λ > 0, we have e−tλ/2∥ψλ(x)∥2k,0 < e0k(t/2, x) by (3.2.5). Thus∑
λ>0

e−tλ∥ψλ(x)∥2k,0 < e0k(t/2, x)
∑
λ>0

e−tλ/2 (3.2.7)

Lemma 3.2.6. Let λ > 0 be an eigenvalue of □
0
k. For any eigenfunction ψλ associated with λ,

the (0, 1)-form ∂ψλ is an eigenform for □
1
k associated with λ.

Sometimes we say that the positive spectrum of □
0
k injects into the positive spectrum of □

1
k.

Notice that this lemma immediately implies that ∂ψλ = ∂ψ′
λ if and only if ψλ = ψ′

λ.

Proof. We have □
0
kψλ = λψλ. Applying ∂ to both sides, we get ∂∂

∗
∂ψλ = (k/2)λ∂ψλ. Thus

□
1
k(∂ψλ) = λ∂ψλ.

It remains to show that ∂ψλ ̸= 0. Suppose ∂ψλ = 0. Then ψλ is a holomorphic function

on X, and hence is constant since X is compact. But then □
0
kψλ = 0, so ψλ = 0, which is a

contradiction.

These (0, 1)-forms ∂ψλ are still orthogonal to each other, but they do not necessary have
L2-norm 1 (and hence should be normalized).

By Lemma 3.2.6 and (3.2.3), we have

∑
λ>0

e−tλ
∥∂ψλ(x)∥2k,1
∥∂ψλ∥2L2

< e1k(t, x).

Integrating on X and by the definition of the L2-norm, we get∑
λ>0

e−tλ <

∫
X
e1k(t, x)dV. (3.2.8)
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Now (3.2.7) and (3.2.8) together yield

∑
λ>0

e−tλ∥ψλ(x)∥2k,0 < e0k(t/2, x)

∫
X
e1k(t/2, x)dV. (3.2.9)

By Theorem 3.2.5 with q = 1, we get

e1k(t, x) =

α1(x) · · ·αn(x)

n∑
j=1

1

e2tαj(x) − 1

∏
j′ ̸=j

1

1− e−2tαj′ (x)

 kn + o(kn)

uniformly in x ∈ X and in t ∈ (0, k2ϵ). Set α0 := 2 infj,x αj(x) > 0. Then e1k(t, x) is uniformly
bounded above by Ce−α0tkn for some real number C > 0. Letting t = kϵ, we get

e0k(k
ϵ/2, x)

∫
X
e1k(k

ϵ/2, x)dV ≤ C ′e−α0kϵk2n

which converges to 0 uniformly in x ∈ X when k → ∞. Thus by (3.2.9) we have∑
λ>0

e−kϵλ∥ψλ(x)∥2k,0 → 0 when k → ∞ (3.2.10)

uniformly in x ∈ X.

Let t = kϵ in (3.2.5), Theorem 3.1.6 immediately follows from (3.2.6) and (3.2.10).

3.2.4 Application to a lower bound of the smallest non-zero eigenvalue

Lemma 3.2.7. Let µk be the smallest non-zero eigenvalue of □
0
k on X. Then

lim inf
k

µk ≥ α0

where α0 := 2 infj,x αj(x) > 0 for the eigenfunctions α1, . . . , αn of c1(L, ∥ · ∥) with respect to the
Hermitian metric on X.

Proof. By (3.2.8), we have e−tµk <
∫
X e1k(t, x)dV . By Theorem 3.2.5 with q = 1, we get that

e1k(k
ϵ, x) is uniformly bounded above in x ∈ X by Ce−α0tkn for some real numbers C > 0 and

ϵ > 0 by the argument as above. Thus etµk < Ce−α0kϵkn. Taking the log of both sides and
letting k → ∞, we can conclude.

3.3 L2-existence

Let X be a connected (not necessarily compact) Kähler manifold of dimension n with Kähler
form ω, and let dVω = ω∧n/n! be the volume form on X.

Let L be a line bundle on X, endowed with a smooth Hermitian metric ∥ · ∥.

3.3.1 Setup

Denote by Ap,q
c (X,L) the space of compactly supported smooth global (p, q)-forms with values

in L (i.e. global sections of (T p,q
X )∗ ⊗L which are compactly supported). The Hermitian metric
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on X and the Hermitian metric on L together induce a Hermitian metric on (T p,q
X )∗ ⊗ L which

we denote by | · |p,q. Then we can endow Ap,q
c (X,L) with the L2-norm

∥σ∥L2 :=

(∫
X
|σ(x)|2p,qdVω

)1/2

, ∀σ ∈ Ap,q
c (X,L).

This norm defines a sesquilinear pairing ⟨·, ·⟩L2 on Ap,q(X,L).

Denote by L2
p,q(X,L) the completion of Ap,q

c (X,L) with respect to the L2-norm. It is a
Hilbert space.

Let Λ := Λω be the adjoint of the operator ω∧ : Ap,q
c (X,L) → Ap+1,q+1

c (X,L) with respect
to the L2-norm. Then we have a differential operator

Aω := [2πc1(L, ∥ · ∥)∧,Λ] = 2πc1(L, ∥ · ∥) ∧ ◦Λ− Λ ◦ 2πc1(L, ∥ · ∥)∧ (3.3.1)

on Ap,q
c (X,L) for all p, q ≥ 1.

Example 3.3.1. Consider X = Cn with the standard metric, and L = OX with the trivial
metric (i.e. (OX , ∥ · ∥) is the trivial Hermitian line bundle on Cn). Then ω = 2πc1(OX , ∥ · ∥) =√

−1
2

∑n
j=1 dzj ∧ dzj. For each j, denote by ej : A

p,q
c (Cn) → Ap+1,q

c (Cn) the operator dzj∧ (resp.

ej : A
p,q
c (Cn) → Ap,q+1

c (Cn) the operator dzj∧). Then their adjoints satisfy e∗j (dzJ ∧dzJ ′) = 0 if
j ̸∈ J and e∗j (dzj ∧dzJ ∧dzJ ′) = 2dzJ ∧dzJ ′ (since the length of dzj is 2), and e∗j (dzJ ∧dzJ ′) =

0 if j ̸∈ J ′ and e∗j (dzj ∧ dzJ ∧ dzJ ′) = 2dzJ ∧ dzJ ′. In this case, ω∧ =
√
−1
2

∑
ejej and

Λ = −
√
−1
2

∑
e∗je

∗
j . Thus Aω = 1

4

∑
(eje

∗
j − e∗jej).

Also we have ∂ =
∑
∂jej =

∑
ej∂j, where ∂j(

∑
fJJ ′dzJ ∧dzJ ′) =

∑ ∂fJJ′
∂zj

dzJ ∧dzJ ′. Then

∂
∗
= −

∑
∂je

∗
j .

We need to extend the differential operators ∂ and Aω to L2
p,q(X,L). First, notice that Aω

extends to an operator on the whole L2
p,q(X,L) because both 2πc1(L, ∥ · ∥)∧ and Λω do. Next,

the differential operator ∂ : Ap,q
c (X,L) → Ap,q+1

c (X,L) then has an adjoint ∂
∗
: Ap,q+1

c (X,L) →
Ap,q

c (X,L) with respect to the L2-norm. Let dom∂ ⊆ L2
p,q(X,L) consist of those u for which ∂u,

computed in the sense of distribution (i.e. using ⟨∂u, v⟩L2 := ⟨u, ∂∗v⟩L2 for all v ∈ Ap,q+1
c (X,L)),

is in L2
p,q+1(X,L). Similarly we can define dom∂

∗
.

3.3.2 Classical L2-existence

Theorem 3.3.2 (Classical L2-existence). Assume X is geodesic complete for the Riemannian
metric determined by ω.

Assume that the operator Aω is positive definite everywhere in L2
p,q(X,L). Assume p ≥ 0,

q ≥ 1 and u ∈ L2
p,q(X,L) satisfies ∂u = 0 (in the sense of distributions) and ⟨A−1

ω u, u⟩L2 <∞.

Then there exists f ∈ L2
p,q−1(X,L) such that ∂f = u and ∥f∥2L2 ≤ ⟨A−1

ω u, u⟩L2.

We shall assume the following lemma, which is an easy application of the Bochner–Kodaira–
Nakano identity (which itself is an easy computation via the Hodge identities).

Lemma 3.3.3. For any v ∈ Ap,q
c (L) with q ≥ 1, we have

∥∂v∥2L2 + ∥∂∗v∥2L2 ≥ ⟨Aωv, v⟩L2 .
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Proof of Theorem 3.3.2. Both Ker∂ and Im∂
∗
are closed subspaces of L2

p,q(X,L). General theory

of Hilbert spaces gives the orthogonal decomposition L2
p,q(X,L) = Ker∂ ⊕ Im∂

∗
.

Denote for simplicity by C := ⟨A−1
ω u, u⟩L2 <∞. Consider the linear functional

Im∂
∗ ⊆ L2

p,q(X,L) → C, ∂
∗
v 7→ ⟨v, u⟩L2 . (3.3.2)

We shall prove that the norm of this linear functional is bounded by
√
C, i.e.

|⟨v, u⟩L2 |2

∥∂∗v∥2
L2

≤ C for all v ∈ dom∂
∗
. (3.3.3)

We start with v ∈ Ap,q+1
c (X,L), and write v = v1 + v2 according to the decomposition

L2
p,q(X,L) = Ker∂ ⊕ Im∂

∗
. Then Lemma 3.3.3 applied to v1 implies

∥∂∗v∥2L2 = ∥∂∗v1∥2L2 ≥ ⟨Aωv1, v1⟩L2 .

On the other hand, Cauchy–Schwarz yields

|⟨v, u⟩L2 |2 = |⟨v1, u⟩L2 |2 ≤ ⟨Aωv1, v1⟩L2⟨A−1
ω u, u⟩L2 .

Thus (3.3.3) holds true for all v ∈ Ap,q+1
c (X,L).

To claim (3.3.3) for all v ∈ dom∂
∗
, we need to use the geodesic completeness of ω. Indeed,

under this assumption, the Andreotti–Vesentini lemma says that Ap,q+1
c (X,L) is dense in Im∂

∗

(for the graph norm of ∂
∗
, i.e the graph norm of v is ∥v∥L2 + ∥∂∗v∥L2), and hence we can

conclude for (3.3.3).
Thus we can apply the Riesz representation theorem to the continuous linear functional

(3.3.2) to conclude that (3.3.2) is represented by an element f ∈ L2
p,q−1(X,L) of L2-norm

≤
√
C, i.e. ⟨v, u⟩L2 = ⟨∂∗v, f⟩L2 for all v ∈ dom∂

∗
. Therefore ∂f = u as distributions. We are

done.

3.3.3 Hörmander’s L2-existence theorem

Theorem 3.3.4. Assume X carries a Kähler form ω̂ such that X is geodesic complete for the
Riemannian metric determined by ω̂.

Assume c1(L, ∥ · ∥) > 0. Assume q ≥ 1 and u ∈ L2
n,q(X,L) satisfies ∂u = 0 (in the sense of

distributions) and ⟨A−1
ω u, u⟩L2 <∞.

Then there exists f ∈ L2
n,q−1(X,L) such that ∂f = u and ∥f∥2L2 ≤ ⟨A−1

ω u, u⟩L2.

Remark 3.3.5. (i) A particularly important case for which X carries such a complete Kähler
form ω̂ is as follows: X = X ′ \ Z where X ′ is a compact Kähler manifold and Z is an
analytic subvariety.

(ii) Since c1(L, ∥ · ∥) > 0, locally on X we can find a suitable complex coordinate (z1, . . . , zn)

of X such that: (i) ω =
√
−1
2

∑n
j=1 dzj ∧ dzj, (ii) the (1, 1)-form c1(L, ∥ · ∥) equals

√
−1
2

∑n
j=1 αj(x)dzj ∧ dzj with αj(x) > 0. By the computation from Example 3.3.1, we

have then Aω = π
2

∑
j αj(eje

∗
j − e∗jej), which simplifies to π

2

∑
j αjeje

∗
j for (n, q)-forms

(this is why we are constraint to (n, q)-forms!). Thus Aω is positive definite.

With this observation, we shall reduce Theorem 3.3.4 to Theorem 3.3.2 using the following
monotonicity result.
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Proposition 3.3.6 (Monotonicity). Assume X has two Kähler metrics ω, ω′ such that ω′ ≥ ω
pointwise. Then for any positive (1, 1)-form β, we have

|u|2ω′dVω′ ≤ |u|2ωdVω, ⟨[β,Λw′ ]u, u⟩L2,ω′dVω′ ≥ ⟨[β,Λw]u, u⟩L2,ωdVω

for all (n, q)-form u.

Here is a brief explanation on the proof of Proposition 3.3.6. The conclusion can be checked locally,
and hence it suffices to check for X = Cn, ω the standard Kähler form, and ω′ = (

√
−1/2)

∑
γjdzj ∧ dzj

for γj ≥ 1. The proof is then a direct computation.

Proof of Theorem 3.3.4. For every ϵ > 0, set ωϵ := ω + ϵω̂. Since c1(L, ∥ · ∥) ≥ 0, we can apply
Proposition 3.3.6 to β = 2πc1(L, ∥ · ∥) and to ω and ω′ = ωϵ to get that u is L2 with respect to
ωϵ and

⟨A−1
ωϵ
u, u⟩L2,ωϵ

≤ ⟨A−1
ω u, u⟩L2,ω.

It is known that ωϵ is complete (because ω̂ is), i.e. X is geodesically complete for the
Riemannian metric determined by ωϵ. The argument of Remark 3.3.5.(ii) shows that Aωϵ is
positive definite. Thus we can apply Theorem 3.3.2 to the Kähler manifold (X,ωϵ). So we
obtain an fϵ ∈ L2

n,q−1(X,L) (with L2 with respect to ωϵ) satisfying ∂fϵ = u and ∥fϵ∥2L2,ωϵ
≤

⟨A−1
ωϵ
u, u⟩L2,ωϵ

. In particular, the family (fϵ) is locally bounded in the L2-norm, and hence we
can extract a weal limit f in L2

loc (locally L2-coefficients), which is the required f .

3.3.4 Weighted L2-existence

To prove the L2-extension theorem in the next section, we need a fancier version of Hörmander’s
L2-existence theorem by introducing weights on the operator Aω. Let us explain this.

Let η, λ : X → R>0 be smooth functions. Define

Bη,λ,ω := [
(
η2πc1(L, ∥ · ∥)−

√
−1∂∂η −

√
−1λ−1∂η ∧ ∂η

)
∧, Λω]. (3.3.4)

Theorem 3.3.7. Assume X carries a Kähler form ω̂ such that X is geodesic complete for the
Riemannian metric determined by ω̂.

Assume that the (1, 1)-form η2πc1(L, ∥ · ∥)−
√
−1∂∂η −

√
−1λ−1∂η ∧ ∂η is positive.

Assume q ≥ 1 and u ∈ L2
n,q(X,L) satisfies ∂u = 0 (in the sense of distributions) and

⟨B−1
η,λ,ωu, u⟩L2 <∞.

Then there exists f ∈ L2
n,q−1(X,L) such that ∂f = u and∥∥∥∥ f√

η + λ

∥∥∥∥2
L2

≤ 2

∥∥∥∥ f

η1/2 + λ1/2

∥∥∥∥2
L2

≤ 2⟨B−1
η,λ,ωu, u⟩L2 .

The proof follows the same line as Theorem 3.3.4. The extra information needed is the
following estimate: For all (n, q)-forms u, we have

⟨B−1
η,λ,ωu, u⟩L2 ≤ ∥(η1/2 + λ1/2)∂

∗
u∥2L2∥η1/2∂u∥2L2 .

We close this section with the following variant of Theorem 3.3.7 which applies to singular
Hermitian metric on L, i.e. in the following theorem we do not assume the Hermitian metric
∥ · ∥ on L to be smooth in contrast to the general setting of this section.

Theorem 3.3.7′. Assume that X is compact. Assume that the Hermitian metric ∥ · ∥ on L is
smooth outside a proper analytic subset Z of X. Assume that the (1, 1)-form η2πc1(L, ∥ · ∥) −√
−1∂∂η −

√
−1λ−1∂η ∧ ∂η is positive on X \ Z.

The conclusion of Theorem 3.3.7 still holds true in this setting.
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Proof. By a result of Demailly (c.f. “Estimations L2 pour l’opérateur ∂ d’un fibré vectoriel
holomorphe semi-positif au-dessus d’une variété kählérienne complète”), X \Z carries a Kähler
form for which X \ Z is geodesic complete. Hence we can apply Theorem 3.3.7 to X \ Z to
get an L2-solution f . Then f extends to the whole X by a lemma of Demailly (Lemma 6.9 of
loc.cit.).

3.4 L2-extension

Let X be a connected compact Kähler manifold of dimension n with Kähler form ω, and let
dVX,ω = ω∧n/n! be the volume form on X.

Let KX :=
∧n T ∗

X be the canonical line bundle on X.

Theorem 3.4.1 (L2-extension). Let L be a line bundle on X, endowed with a smooth Hermitian
metric ∥ · ∥.

Let Y be the zero of a holomorphic section s ∈ H0(X,L0) of another Hermitian line bundle
(L0, ∥ · ∥0) on X. Assume c1(L, ∥ · ∥) − (1 + δ)c1(L0, ∥ · ∥0) > 0 for a positive rational number
δ > 0.

Then for any f ∈ H0(Y,L+KX), there exists F ∈ H0(X,L+KX) such that F |Y = f and∫
X

∥F∥2

∥s∥20(log ∥s∥0)2
dVX,ω ≤ 72 · 32π

∫
Y

∥f∥2

∥ds∥20
dVY,ω. (3.4.1)

Here we use the following abuse of notation: use ∥ · ∥ (resp. ∥ · ∥0) to denote the Hermitian
metric on L+KX induced by ∥ · ∥ on L and ω on X (resp. on L0 ⊗ T ∗

X induced by ∥ · ∥0 on L0

and ω on X). Moreover, ds induces a vector bundle isomorphism TX/TY
∼−→ L0 along Y , and

hence is a section of ((TX |Y )/TY )∗ ⊗ L0|Y (≃ OY ) ⊆ T ∗
X ⊗ L0.

Remark 3.4.2. There are more general versions of L2-extension. One can replace the line
bundle L0 by a vector bundle of rank r (and hence Y has codimension r) and modify the as-
sumptions accordingly. The Hermitian metric on L0 does not play an important role. We refer
to Demailly’s paper “On the Ohsawa–Takegoshi–Manivel L2 extension theorem”.

In the proof of arithmetic Hilbert–Samuel, we will take L to be L′−KX and L0 to be (1/N)L′

for a very ample line bundle L′ and an integer N ≫ 1.

The whole section is divided into steps of the proof of Theorem 3.4.1.

3.4.1 Construction of a smooth extension f̃∞ and truncation

By partition of unity, we can find a smooth section

f̃∞ ∈ C∞(X,L+KX) = A0,0(X,L+KX) ≃ An,0(X,L)

such that

(i) f̃∞|Y = f ,

(ii) ∂f̃∞ = 0 on Y .

Since we do not know about f̃∞ far away from Y , we will consider a truncation f̃ϵ of f̃∞ with
support in a small tubular neighborhood ∥s∥0 < ϵ of Y as follows. Take a bumping function
θ : R → [0, 1] satisfying the following properties: θ is smooth, |θ′| ≤ 3 and

θ(t) =

{
1 for t ≤ 1/2

0 for t ≥ 1.
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For ϵ > 0 small, consider the truncation

f̃ϵ := θ(ϵ−2∥s∥20)f̃∞.

Then f̃ϵ|Y = f , and f̃(x) = 0 for all x ∈ X with ∥s(x)∥0 ≥ ϵ.

3.4.2 Construction of weights

We make use of the standard subharmonic function

σϵ = log(∥s∥20 + ϵ2). (3.4.2)

and the following inequality (we omit this computation using the Chern connection and Lagrange
inequality) to compute the twisted curvature:

√
−1∂∂σϵ ≥

√
−1

ϵ2

∥s∥20
∂σϵ ∧ ∂σϵ −

∥s∥20
∥s∥20 + ϵ2

2πc1(L0, ∥ · ∥0). (3.4.3)

Recall that ∥s∥20 : X → R is a smooth function. Hence

e−2α := supx∈X ∥s(x)∥20 <∞ (3.4.4)

since X is compact. We may rescale the metric ∥ ·∥0 so that α ∈ (0, 1/δ), because the conclusion
(3.4.1) is unchanged under this operation.

Let χ0 : (−∞, 0] → (−∞, 0], t 7→ t − log(1 − t). Then 2t ≤ χ0(t) ≤ t, 1 ≤ χ′
0 ≤ 2, and

χ′′
0(t) = 1/(1− t)2.
Let ηϵ := ϵ − χ0(σϵ). Then ηϵ ≥ ϵ − log(e−2α + ϵ2). For ϵ > 0 small enough, we thus have

ηϵ ≥ 2α. We can compute

−∂∂ηϵ = χ′
0(σϵ)∂∂σϵ + χ′′

0(σϵ)∂σϵ ∧ ∂σϵ, ∂ηϵ ∧ ∂ηϵ = χ′
0(σϵ)

2∂σϵ ∧ ∂σϵ.

Let λϵ := χ′
0(σϵ)

2/χ′′
0(σϵ). Then

−
√
−1∂∂ηϵ −

√
−1λ−1

ϵ ∂ηϵ ∧ ∂ηϵ =
√
−1χ′

0(σϵ)∂∂σϵ

for which we have a lower bound from (3.4.3).
We are interested in the metric on L defined by ∥·∥∥s∥−2

0 , for a reason which will be explained
in the next step. By the Poincaré–Lelong formula (Theorem 2.2.3), we have

√
−1∂∂ log ∥s∥20 ≥

−2πc1(L0, ∥ · ∥0) with equality on X \ Y . So on X \ Y , we have that

Θ(L, ϵ, s) :=ηϵ2πc1(L, ∥ · ∥∥s∥−2
0 )−

√
−1∂∂ηϵ −

√
−1λ−1

ϵ ∂ηϵ ∧ ∂ηϵ
≥2α(2πc1(L, ∥ · ∥)− 2πc1(L0, ∥ · ∥0))−

√
−1∂∂ηϵ −

√
−1λ−1

ϵ ∂ηϵ ∧ ∂ηϵ

≥2π

(
2αc1(L, ∥ · ∥)−

(
2α+ χ′

0(σϵ)
∥s∥20

∥s∥20 + ϵ2

)
c1(L0, ∥ · ∥0)

)
+
√
−1

ϵ2

χ′
0(σϵ)∥s∥20

∂ηϵ ∧ ∂ηϵ

≥4πα

(
c1(L, ∥ · ∥)− (1 +

1

α
)c1(L0, ∥ · ∥0)

)
+
√
−1

ϵ2

χ′
0(σϵ)∥s∥20

∂ηϵ ∧ ∂ηϵ

≥
√
−1

ϵ2

χ′
0(σϵ)∥s∥20

∂ηϵ ∧ ∂ηϵ (3.4.5)

is positive, where the last inequality follows from α ∈ (0, 1/δ) and the assumption that c1(L, ∥ ·
∥)− (1 + δ)c1(L0, ∥ · ∥0) > 0. Notice that Example 3.3.1 then implies

Bϵ := [Θ(L, ϵ, s)∧,Λω] ≥
ϵ2

χ′
0(σϵ)∥s∥20

(∂ηϵ∧) ◦ (∂ηϵ∧)∗ (3.4.6)

as an operator on (n, q)-forms.
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3.4.3 Estimate the partial derivative

Next we wish to construct a holomorphic extension from the smooth extension f̃ϵ. For this
purpose we wish to solve the equation ∂uϵ = ∂f̃ϵ, with the constraint uϵ|Y = 0, so that f̃ϵ − uϵ
will be a desired holomorphic extension. Our tool to solve this differential equation is the
L2-existence theorem discussed in the last section (notice that ∂f̃ϵ is a ∂-closed smooth (n, 1)-
form). Since codimY = 1, the extra constraint uϵ|Y = 0 will be satisfied if ∥uϵ∥2∥s∥−2

0 is locally
integrable near Y . This is why we change the metric on L to be ∥ · ∥∥s∥−2

0 . Notice that this new
metric is singular along Y , so we need to apply the version of Theorem 3.3.7′ for the L2-existence.

We start by computing ∂f̃ϵ. Observe that 1 + ϵ−2∥s∥20 = ϵ−2eσϵ . Thus we have

∂f̃ϵ = ϵ−2θ′(ϵ−2∥s∥20)∂∥s∥20∧f̃∞+θ(ϵ−2∥s∥20)∂f̃∞ = (1+ϵ−2∥s∥20)θ′(ϵ−2∥s∥20)∂σϵ∧f̃∞+θ(ϵ−2∥s∥20)∂f̃∞.

Both terms on the RHS have supports in ∥s∥0 ≤ ϵ.

The first term, which is the main term, can be written as

g(1)ϵ := (1 + ϵ−2∥s∥20)θ′(ϵ−2∥s∥20)χ′
0(σϵ)

−1∂ηϵ ∧ f̃∞.

To estimate ⟨B−1
ϵ g

(1)
ϵ , g

(1)
ϵ ⟩L2 , notice that (3.4.6) implies

|⟨∂ηϵ∧u, v⟩|2 = |⟨u, (∂ηϵ)∗v⟩|2 ≤ |u|2||(∂ηϵ)∗v|2 = |u|2⟨(∂ηϵ)(∂ηϵ)∗v, v⟩ ≤
χ′
0(σϵ)∥s∥20
ϵ2

|u|2⟨Bϵv, v⟩.

Thus by letting v = B−1
ϵ (∂ηϵ ∧ u) = B−1

ϵ g
(1)
ϵ and u = (1 + ϵ−2∥s∥20)θ′(ϵ−2∥s∥20)χ′

0(σϵ)
−1f̃∞,

pointwise on X we get

⟨B−1
ϵ g(1)ϵ , g(1)ϵ ⟩ ≤ ∥s∥20ϵ−2(1 + ϵ−2∥s∥20)2θ′(ϵ−2∥s∥20)2∥f̃∞∥2 ≤ 36∥f̃∞∥2

because χ′
0(ϵ) ≥ 1 on Suppg

(1)
ϵ ⊆ {∥s∥0 ≤ ϵ}. So

⟨B−1
ϵ g(1)ϵ , g(1)ϵ ⟩L2 =

∫
X
⟨B−1

ϵ g(1)ϵ , g(1)ϵ ⟩∥s∥−2
0 dVX,ω ≤ 36

∫
∥s∥0≤ϵ

∥f̃∞∥2∥s∥−2
0 dVX,ω.

When ϵ→ 0+, this integral becomes

8π

∫
Y
∥f∥2∥ds∥−2

0 dVY,ω.

Thus

lim sup
ϵ→0+

⟨B−1
ϵ g(1)ϵ , g(1)ϵ ⟩L2 ≤ 36 · 8π

∫
Y
∥f∥2∥ds∥−2

0 dVY,ω.

The second term on the RHS in the expression of ∂f̃ϵ converges uniformly to 0 on every compact

set when ϵ → 0+ and hence has no contribution in the limit. More precisely, write g
(2)
ϵ :=

θ(ϵ−2∥s∥20)∂f̃∞. Then g
(2)
ϵ = O(∥s∥0) since f̃∞|Y = 0. Thus ⟨B−1

ϵ g
(1)
ϵ , g

(2)
ϵ ⟩L2 , ⟨g(1)ϵ , B−1

ϵ g
(2)
ϵ ⟩L2 ,

⟨B−1
ϵ g

(2)
ϵ , g

(2)
ϵ ⟩L2 are O(ϵ) because they are all integrals over ∥s∥0 ≤ ϵ. Hence

lim sup
ϵ→0+

⟨B−1
ϵ ∂f̃ϵ, ∂f̃ϵ⟩L2 = lim sup

ϵ→0+
⟨B−1

ϵ (g(1)ϵ +g(2)ϵ ), g(1)ϵ +g(2)ϵ ⟩L2 ≤ 36·8π
∫
Y
∥f∥2∥ds∥−2

0 dVY,ω <∞.



50 CHAPTER 3. PREPARATION ON ANALYSIS

3.4.4 Conclusion by L2-existence

Apply Theorem 3.3.7′ to the Hermitian metric ∥ · ∥∥s∥−2
0 on L, Z = Y , q = 1 and u = ∂f̃ϵ. We

then obtain gϵ such that ∂gϵ = ∂f̃ϵ and∫
X

∥gϵ∥2∥s∥−2
0

ηϵ + λϵ
dVX,ω ≤ 72 · 8π

∫
Y
∥f∥2∥ds∥−2

0 dVY,ω

In particular, gϵ|Y = 0 since ∥gϵ∥2∥s∥−2
0 is locally integrable. Set

Fϵ := f̃ϵ − gϵ.

Then Fϵ is an L
2-extension of f to the whole X such that ∂Fϵ = 0 on X \ Y .

We have ηϵ = ϵ−χ0(σϵ) ≥ ϵ−σϵ and λϵ = (1−σϵ)2+(1−σϵ). Thus ηϵ+λϵ ≥ σ2ϵ −4σϵ+2+ϵ
with σϵ = log(∥s∥20 + ϵ2). So ∫

X

∥f̃ϵ∥2∥s∥−2
0

ηϵ + λϵ
dVX,ω ≤ M

(log ϵ)2

because f̃ϵ is uniformly bounded with support in ∥s∥0 ≤ ϵ. Therefore, by using |t + u|2 ≤
(1 + k)|t|2 + (1 + k−1)|u|2, with k = | log ϵ|, we obtain∫

X

∥Fϵ∥2

∥s∥20(log(∥s0∥2 + ϵ2))2
dVX,ω ≤ (1 + | log ϵ|−1)72 · 8π

∫
Y
∥f∥2∥ds∥−2

0 dVY,ω +O(| log ϵ|−1).

Similarly we can show that ∥Fϵ∥L2 is bounded above by a constant independent of ϵ (when ϵ > 0
is small enough). Thus we can extract a weak limit F of the family {Fϵ}ϵ. Then∫

X

∥F∥2

∥s∥20(log ∥s0∥)2
dVX,ω ≤ 72 · 32π

∫
Y
∥f∥2∥ds∥−2

0 dVY,ω.

It remains to prove that F is holomorphic. Since we are applying Theorem 3.3.7′ to q = 1,
gϵ is smooth (because ∂ is elliptic in bidegree (0, 0)). Hence Fϵ is smooth. Notice that ∂Fϵ = 0
on X \Y . So Fϵ is holomorphic on X \Y , and hence is holomorphic on the whole X because Fϵ

is L2 near Y . Therefore the weak limit F is holomorphic. We are done.



Chapter 4

Proof of Arithmetic Hilbert–Samuel

With the preparation in the previous chapter, we prove the arithmetic Hilbert–Samuel theorem
for volχ and L in the following setup in this chapter. We follow the approach of Abbès–Bouche.

Let K be a number field and let OK be its ring of integers.
Let X be a projective arithmetic variety of dimension n+1 and let L be a smooth Hermitian

line bundle. We furthermore consider the case where X → SpecZ factors through SpecOK and
that the generic fiber XK is smooth and irreducible.

Theorem 4.0.1. Assume L is very ample on X and c1(L) > 0. Then

lim
k→∞

χ(kL)
kn+1/(n+ 1)!

−→ Ln+1
(4.0.1)

when k → ∞.

In other words, the sup-limit in the definition of volχ(L) (Definition 2.5.10) is an actually

limit under the assumption of the theorem, and volχ(L) = Ln+1
.

In the proof, we will use the Hilbert–Samuel theorem in algebraic geometry. Let P be the
Hilbert polynomial of LK on XK , i.e. P (k) = dimH0(XK , kLK) for k ≫ 1. It is known that
degP = n with leading coefficient Ln

K/n!.

4.1 Framework of the proof

4.1.1 Revision on the statement

We start by recalling the objects appearing in the statement of Theorem 6.2.4.
First we have the embedding

0 → H0(X ,L) → H0(X ,L)R, (4.1.1)

with H0(X ,L)R a real vector space of finite dimension defined in (2.5.2) and H0(X ,L) a lattice.
In fact, the structural morphism X → SpecZ factors through SpecR for an order R in a number
field K, such that the generic fiber XK is irreducible, and

H0(X ,L)R := {s = (sσ)σ ∈ H0(X ,L)C =
⊕

σ : K↪→C
H0(Xσ,Lσ) : sσ = sσ for all σ}.

We shall use the sup-norm on H0(X ,L)R defined as follows:

- For any s = (sσ)σ ∈ H0(X ,L)R, define ∥s∥sup := supσ,x∈Xσ
(∥sσ(x)∥).

51
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Set B(L) to be the unit ball in H0(X ,L)R defined by the sup-norm ∥ · ∥sup. Then

χ(L) := log
vol(B(L))

covol(H0(X ,L)R/H0(X ,L))
(4.1.2)

is independent of the choice of the Haar measure on H0(X ,L)R. This finishes the explanation
of the limit in (4.0.1).

We also need to define an L2-norm on H0(X ,L)R for the proof of Theorem 6.2.4. For this,
consider the positive (1, 1)-form c1(L) on X (C) =

∐
σ Xσ. For each σ : K ↪→ C, the positive

(1, 1)-form c1(Lσ) is a Kähler form on Xσ. We normalize it to

ωσ :=
c1(Lσ)

(
∫
Xσ
c1(Lσ)∧n/n!)1/n

,

which is still a Kähler form on Xσ, and the volume of Xσ for the associated volume form dVσ is
1.

Now we define the L2-norm on H0(X ,L)R to be:

- For any s = (sσ)σ ∈ H0(X ,L)R, define ∥s∥L2 := supσ(
∫
Xσ

∥s(x)∥2dVσ)1/2.

It is a fundamental question in Arakelov Geometry to compare the sup-norm and the L2-
norm. We shall prove later on, using the distortion function discussed in §3.1, the following
result.

Proposition 4.1.1. There exists a constant c > 0 such that for all N ≥ 1 and all s ∈ H0(X , kL),
we have

∥s∥L2 ≤ ∥s∥sup ≤ cP (k)1/2∥s∥L2 .

In fact, this c can be chosen to be
√
supx∈X (C) bk(x)/P (k), where bk is the distortion function.

Theorem 3.1.6 guarantees c > 0.

4.1.2 A tale of three volumes

Consider the embedding (4.1.1). We shall define three volume forms on H0(X , kL)R for each
k ≥ 1:

(i) V k
X,sup such that the volume of B(kL) has volume 1;

(ii) V k
X,L2 such that the volume of the unit ball in H0(X , kL)R defined by the L2-norm ∥ · ∥L2

has volume 1;

(iii) V k
X,α for each real number α ∈ R defined below by Definition 4.1.2 (which we will call

ηk,α), with M =
⊕

k≥0H
0(X , kL).

A key point to prove arithmetic Hilbert–Samuel is to compare V k
X,sup with V k

X,α, and the compar-

ison is done via V k
X,L2 . The statements of these comparisons and their consequence on arithmetic

Hilbert–Samuel will be discussed in the next subsection.
In this subsection, we give the definition of V k

X,α. We start by defining the following gener-
alization of the arithmetic Euler characteristic (1.3.1) in the context of geometry of numbers.
For any M a finitely generated Z-module of rank r ≥ 1, define for each volume form η on MR
(i.e. an element η ∈ detR(MR)) the following

χ(M,η) := − log(covolη(MR/M)) + log(#Mtor) (4.1.3)
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where M := M/Mtor. In fact, (4.1.2) can be defined in this context for M = H0(X ,L) and η
the volume form determined by the sup-norm. The function χ is additive: for 0 →M1 →M2 →
M3 → 0 an exact sequence and ηj ∈ detR(Mj,R) (j ∈ {1, 2, 3, }) such that η2 = η1 ⊗ η3 in the
induced isomorphism detR(M2,R) ≃ detR(M1,R)⊗ detR(M3,R), we have

χ(M2, η2) = χ(M1, η1) + χ(M3, η3). (4.1.4)

Back to our case. Let M =
⊕

kMk be a graduated OK-module of finite type, and let PM

be the Hilbert polynomial. A typical case for us is when M =
⊕

k≥0H
0(X , kL) with Hilbert

polynomial P .

Definition 4.1.2. Let α ∈ R be a real number. Define ηk,α ∈ detR(MR) to be the volume form
determined by the equation

χ(Mk, ηk,α) = α
k−1∑
j=0

PM (j) + χ(OK)PM (k)

with the canonical volume form on OK .

The following lemma is easy to prove. It is the reason that the ηk,α is of interest to us. It
does not hold for the L2-volume forms.

Lemma 4.1.3. Let 0 → M (1) → M (2) → M (3) → 0 be an exact sequence of graduated OK-

modules of finite type, with Φk : det(M
(2)
k,R) ≃ det(M

(1)
k,R) ⊗ det(M

(3)
k,R) the induced isomorphism.

Then for each α ∈ R, we have Φk(η
(2)
k,α) = η

(1)
k,α ⊗ η

(3)
k,α for the volume forms defined in Defini-

tion 4.1.2.

4.1.3 Comparison of the three volumes and consequence on arithmetic Hilbert–
Samuel

We need to compare the three volume forms on H0(X , kL)R. Define the positive functions

fX(k, α) :=
V k
X,L2

V k
X,α

, hX(k) :=
V k
X,sup

V k
X,L2

(4.1.5)

with k ≥ 1 and α ∈ R.

Proposition 4.1.4. log hX(k) = o(kn+1).

Proof. This follows immediately from Proposition 4.1.4.

The following proposition will be proved in the next section.

Proposition 4.1.5. There exists an affine function η : R → R such that

log fX(k, α) = η(α)kn+1 + o(kn+1). (4.1.6)

In particular, there exists a unique real number α0 such that log fX(k, α0) = o(kn+1).
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Proof of Theorem 6.2.4 assuming Proposition 4.1.5. By (4.1.2) and the definition of V k
X,sup, we

have
χ(kL) = − log covolV k

X,sup
(H0(X , kL)R/H0(X , kL)).

Thus Definition 4.1.2, Proposition 4.1.4, and Proposition 4.1.5 together yield

χ(kL) = χ(H0(X , kL), V k
X,α0

) + log hX(k) + log fX(k, α0) = α0

k−1∑
j=0

P (j) + o(kn+1)

Since degP = n and P has leading coefficient Ln
K/n!, we then have

χ(kL) =
α0Ln

K

(n+ 1)!
kn+1 + o(kn+1).

Thus the LHS converges to α0Ln
K when k → ∞. The real number α0 can be read off in the

proof of Proposition 4.1.5, where we will see that α0Ln
K = Ln+1

. We are done.

4.2 Algebraic part of the proof of Proposition 4.1.5

The goal of this section is to prove Proposition 4.1.5, assuming an analytic result which will be
proved in the next section.

4.2.1 Fundamental short exact sequence

Recall our assumption that L is very ample on X . Hence there exists a closed immersion
ι : X → PN

OK
with ι∗O(1) ≃ L. By Bertini’s theorem, up to taking a finite extension of K

there exists a non-zero global section ℓ of O(1) on PN
OK

such that div(ℓ) ∩XK is a subvariety of
dimension n− 1 of XK , which is furthermore irreducible smooth if n ≥ 2 (if n = 1 we can only
guarantee the reducedness).

Set s := ι∗(ℓ). Then s ∈ H0(X ,L). The ideal sheaf of div(s), which is L⊗−1, admits a
primary decomposition L⊗−1 = I ∩ J where J has vertical support and I defines a flat closed
subscheme Y over SpecOK whose generic fiber is irreducible smooth if n ≥ 2 and is reduced if
n = 1. Moreover dimY = n = dimX − 1.

Thus for k ≫ 1, we have the following exact sequence:

0 → H0(X , kL+ I) → H0(X , kL) → H0(Y, kL|Y) → 0. (4.2.1)

Tensoring R yields, by definition of I,

0 → H0(X , (k − 1)L)R
·s−→ H0(X , kL)R → H0(Y, kL|Y)R → 0. (4.2.2)

4.2.2 Volume forms on the spaces

Our goal is to compare the volume forms V k
X,L2 and V k

X,α on H0(X , kL)R for each real number
α ∈ R, by induction on n = dimXK . Hence it is desirable to study the respective volume forms
on H0(Y, kL|Y)R and on H0(X , (k − 1)L)R.

On H0(Y, kL|Y)R, we have the volume forms

- V k
Y,L2 , where the L2-norm is defined using the same construction above Proposition 4.1.4

but with L|Y ;
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- V k
Y,α defined by Defintion 4.1.2.

They are related by V k
Y,L2 = fY (k, α)V

k
Y,α.

On H0(X , (k − 1)L)R, we have the volume forms

- V k−1
X,L2 ;

- Zk−1
α , by applying Definition 4.1.2 to M =

⊕
k≥0H

0(X , (k + 1)L+ I).

Set tX(k − 1, α) := V k−1
X,L2/Z

k−1
α .

Apply Lemma 4.1.3 to the exact sequence (4.2.1). Then we get V k
X,α = V k

Y,α ⊗ Zk−1
α . Thus

V k
X,L2

fX(k, α)
=

V k
Y,L2 ⊗ V k−1

X,L2

fY (k, α)tX(k − 1, α)
.

Denoting by

g(k) :=
V k
X,L2

V k
Y,L2 ⊗ V k−1

X,L2

. (4.2.3)

Then we have
log fX(k, α) = log tX(k − 1, α) + log fY (k, α)− log g(k). (4.2.4)

The second term on the RHS will be handled by induction hypothesis.
The following proposition will be proved in the next section using analytic method. It handles

the third term of the RHS of (4.2.4).

Proposition 4.2.1. When k → ∞, we have

1

P (k − 1)
log g(k) → −

∑
σ : K↪→C

∫
Xσ

log ∥s(x)∥2dVσ

with the volume form dVσ on Xσ defined above Proposition 4.1.4 (via c1(Lσ)).

4.2.3 Further treatment

Consider the following exact sequences of sheaves:

0 → I · J → I → I ⊗OX /J → 0,
0 → I · J → I ∩ J = L⊗−1 → T := Tor1(OX /I,OX /J ) → 0.

Then T has support in Supp(J ), which is vertical over SpecOK . For k ≫ 1, we have exact
sequences since L is ample

0 → H0(X , kL+ I · J ) → H0(X , kL+ I) → H0(X , kL+ I +OX /J ) → 0,
0 → H0(X , kL+ I · J ) → H0(X , (k − 1)L) → H0(X , kL+ T ) → 0

where we write + for ⊗ as usual. The last terms in both short exact sequences are torsion.
So applying the additivity of the arithmetic Euler characteristic (4.1.4) to both short exact
sequences above and taking the difference, we obtain

log tX(k−1, α)− log fX(k−1, α) = log#H0(X , kL+I+OX/J )− log#H0(X , kL+T ). (4.2.5)

Combining with (4.2.4), we thus obtain

log fX(k, α)−log fX(k−1, α) = log fY (k, α)−log g(k)+log#H0(X , kL+I+OX/J )−log#H0(X , kL+T ).
(4.2.6)
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4.2.4 Proof of Proposition 4.1.5 assuming Proposition 4.2.1

We do induction on n = dimXK ≥ 0.

Base step When n = 0, we need to do a bit more, i.e. we assume XK to be reduced but not
necessarily irreducible. In this case X = SpecR with R a finite OK-algebra which is reduced.
By definition (4.1.5), we have

log fX(k, α) = −χ(kL, V k
X,α) + χ(kL, V k

X,L2).

Notice that the Hilbert polynomial of LK is constant. Hence Definition 4.1.2 implies that
χ(kL, V k

X,α) is an affine function in k. The function χ(kL, V k
Y,L2) is also affine in k, by arithmetic

Riemann–Roch applied to SpecR (we have seen this when R = OK as Theorem 1.3.7 whose
proof is a direct computation; in general we reduce to the case where R is an order of a number
field and prove the similar result by computation). Hence we are done in this base step.

Induction For general n ≥ 1, we use (4.2.6) to analyze log fX(k, α)− log fX(k − 1, α).

When n = 1, recall our choice s ∈ H0(X ,L) satisfies that div(sK) is reduced. When
n ≥ 2, the generic fiber YK is smooth by choice of the global section s ∈ H0(X ,L). In both
cases, we can apply our induction hypothesis and get log fY (k, α) = η′(α)kn + o(kn). And
log g(k) = λkn + o(kn) by Proposition 4.2.1.

For log#H0(X, kL+I+OX/J ) and log#H0(X , kL+T ), decompose Supp(J ) into disjoint
union of connected subvarieties of dimension ≤ n (they are all contained in vertical fibers). The
Hilbert–Samuel formula in algebraic geometry then implies that both terms are of the form
c′kn + o(kn).

Therefore, log fX(k, α)− log fX(k−1, α) = c0k
n+o(kn). So there exists a function η : R → R

such that

log fX(k, α) = η(α)kn+1 + o(kn+1).

It remains to show that η is affine. For this, notice that Definition 4.1.2 implies

log fX(k, α)− log fX(k, α′) = c(α− α′)kn+1 + o(kn+1),

where c is the leading coefficient of
∑k−1

j=0 P (j). Thus η(α)− η(α′) = c(α− α′) for all α, α′ ∈ R.
So η is affine. Better, we have c = Ln

K/(n+ 1)!. We are done.

4.3 Analytic part of the proof

We will prove Proposition 4.1.4 and Proposition 4.2.1 in this section. This finishes the proof of
Theorem 6.2.4.

Because both results are analytic, we rephrase our setting as follows to ease notation.

Let X be a projective manifold of dimension n ≥ 1, and let (L, ∥ · ∥) be a smooth Hermitian
line bundle on X (so that c1(L, ∥ · ∥) is a Kähler form on X). Let ω be the scalar of c1(L, ∥ · ∥)
such that

∫
X dV = 1 for the volume form dV = ωn/n! on X. Let P be the Hilbert polynomial,

i.e. P (k) = dimH0(X, kL) for k ≫ 1. In the setting of Theorem 6.2.4 (see §4.1.1), these are
X = Xσ, (L, ∥ · ∥) = (σ, ∥ · ∥σ), and ω = ωσ for each σ : K ↪→ C.

By abuse of notation, we still use ∥ · ∥ to denote the Hermitian metric on kL = L⊗k for each
k ≥ 1 (in §3.1 it was denoted by ∥ · ∥k). The norms ∥ · ∥sup and ∥ · ∥L2 on H0(X, kL) are defined
by ∥s∥sup := supx∈X ∥s(x)∥ and ∥s∥2L2 :=

∫
X ∥s(x)∥2dV (for s ∈ H0(X, kL)).
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4.3.1 Comparison of ∥ · ∥sup and ∥ · ∥L2

Let us prove Proposition 4.1.4, i.e. there exists a real number c > 0 such that

∥s∥L2 ≤ ∥s∥sup ≤ cP (k)1/2∥s∥L2 (4.3.1)

for all k ≥ 1 and all s ∈ H0(X, kL).

The first inequality of (4.3.1) is clearly true by definition.

Let s ∈ H0(X, kL). Since X is compact, there exists x ∈ X such that ∥s∥sup = ∥s(x)∥. Take
an orthonormal basis s1, . . . , sN (with N = P (k)) of H0(X, kL) with respect to the L2-norm.
We may choose s2, . . . , sN such that s2(x) = · · · = sN (x) = 0. Then we can write

s =
N∑
j=1

ajsj

with aj ∈ C. So s(x) = a1s1(x), ∥s∥2L2 =
∑

|aj |2. Thus ∥s∥2sup = ∥s(x)∥2 = |a1|2∥s1(x)∥2.
Now we use the distortion function bk : X → R defined by bk(x) =

∑N
j=1 ∥sj(x)∥2 from

(3.1.3). Then ∥s∥2sup = |a1|2bk(x). Therefore

∥s∥2sup ≤ ∥s∥L2bk(x).

Let c :=
√
supx∈X bk(x)/P (k). Notice that supx∈X bk(x) < ∞ since X is compact. So c < ∞.

Moreover, c > 0 by the main theorem on the distortion function (Theorem 3.1.6). Hence we are
done.

4.3.2 Setup and first estimates to prove Proposition 4.2.1

Let s ∈ H0(X,L) such that Y := div(s) is connected smooth if n ≥ 2 (reduced if n = 1). For
k ≫ 1, we have the following exact sequence

0 → H0(X, (k − 1)L)
s−→ H0(X, kL) → H0(Y, kL|Y ) → 0. (4.3.2)

For the L2-volumes forms V k−1
X,L2 , V

k
X,L2 and V k

Y,L2 induced by the L2-norms on the three spaces
in the exact sequence, define the comparison function

g(k) :=
V k
X,L2

V k
Y,L2 ⊗ V k−1

X,L2

.

We shall prove Proposition 4.2.1, i.e.

1

P (k − 1)
log g(k) → −

∫
X
log ∥s(x)∥2dV when k → ∞. (4.3.3)

We shall make use of (4.3.2). The volume form V k
X,L2 induces a quotient volume form V k

q,L2

on H0(Y, kL|Y ), via the quotient L2-norm ∥ · ∥q,L2 on H0(Y, kL|Y ). Define

γ(k) :=
V k
Y,L2

V k
q,L2

> 0.
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The volume form V k
X,L2 also induces a subspace volume form V k−1

s,L2 on H0(X, (k − 1)L) via the

multiplication by s, via the subspace L2-norm ∥v∥s,L2 := ∥sv∥L2 for all v ∈ H0(X, (k − 1)L).
Define

δ(k) :=
V k
X,L2

V k
s,L2

> 0.

Finally define

φ(k) :=
V k−1
s,L2 ⊗ V k

q,L2

V k
X,L2

> 0.

Then we have

g(k) =
φ(k)

δ(k − 1)γ(k)
. (4.3.4)

We prove the following estimates in this subsection.

Proposition 4.3.1. logφ(k) = o(kn).

Proposition 4.3.2. log γ(k) = o(kn).

The estimate of log δ(k) will be proved in the next subsection (Proposition 4.3.3). These
information will be put together to prove (4.3.3).

Let Q be the Hilbert polynomial of L|Y on Y , i.e. Q(k) = dimH0(Y, kL|Y ) for k ≫ 1. Then
degQ = dimY = n− 1.

Proof of Proposition 4.3.1. Let a : R → R which sends m to the volume of the unit ball of Rm

for the usual volume form.
(4.3.2) is a short exact sequence of C-vector spaces. Take a ∥ · ∥L2-orthonormal basis of

H0(X, kL) over C, {s1, . . . , sP (k−1), t1, . . . , tQ(k)}, such that {s−1s1, . . . , s
−1sP (k−1)} is a ∥·∥s,L2-

orthonormal basis ofH0(X, (k−1)L) and the quotients {[t1], . . . , [tQ(k)]} is a ∥·∥q,L2-orthonormal

basis of H0(Y, kL|Y ). Then

V k
X,L2 =

1

a(P (k − 1) +Q(k))
s1∧· · ·∧sP (k−1)∧t1∧· · ·∧tQ(k)

∧√
−1s1∧· · ·∧

√
−1sP (k−1)∧

√
−1t1∧· · ·∧

√
−1tQ(k)

and similarly for V k−1
s,L2 and V k

q,L2 . Thus we get

φ(k) =
a(P (k − 1)) · a(Q(k))

a(P (k))
.

We are done.

To prove Proposition 4.3.2, we need a comparison of ∥ · ∥q,L2 and ∥ · ∥Y,L2 .

Proof of Proposition 4.3.2. We claim: there exist k0 > 0 and B > 0 such that

∥t∥q,L2 ≤ B∥t∥Y,L2 (4.3.5)

for all k ≥ k0 and all t ∈ H0(Y, kL|Y ). To prove this, we use the L2-extension Theorem 3.4.1.
More precisely, (L, ∥ · ∥) in Theorem 3.4.1 is taken to be kL − KX endowed with the natural
smooth metric for k ≫ 1 and (L0, ∥ · ∥) in Theorem 3.4.1 is taken to be (L, ∥ · ∥). Then the
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assumptions of Theorem 3.4.1 are satisfied for k ≫ 1. Hence for t ∈ H0(Y, kL|Y ), there exists
T ∈ H0(X, kL) such that T |Y = t and∫

X

∥T∥2L2

∥s∥2
L2(log ∥s∥L2)2

dV ≤M∥t∥2Y,L2

for a constantM depending only on Y . Thus (4.3.5) holds true because the LHS of the inequality
above is ≥ c0∥T∥2L2 ≥ c0∥t∥2q,L2 , with c0 := ∥s∥−2

sup(log ∥s∥sup)−2 > 0 a positive real number.

On the other hand, ∥ · ∥Y,L2 ≤ ∥ · ∥Y,sup ≤ ∥ · ∥q,sup, which by Proposition 4.1.4 is furthermore

≤ cQ(k)1/2∥ · ∥q,L2 . Hence

(cQ(k)1/2)−1∥ · ∥Y,L2 ≤ ∥ · ∥q,L2 ≤ B∥ · ∥Y,L2 .

Therefore log γ(k) = o(kn) since degQ = n− 1.

4.3.3 Last estimate for the proof of Proposition 4.2.1

We prove in this subsection the following proposition. Notice that this finishes the proof of
(4.3.3) (i.e. Proposition 4.2.1) in view of (4.3.4), Proposition 4.3.1, and Proposition 4.3.2.

Proposition 4.3.3. log δ(k) = P (k)
∫
X log ∥s(x)∥2dV + o(kn).

We start the proof by giving another expression of δ(k). Writems : H
0(X, kL)

s−→ H0(X, (k+
1)L) for the first morphism in (4.3.2) with k replaced by k+ 1, and write m∗

s for its dual under
the L2-norms. Set ϕk,s := m∗

s ◦ms. Then

⟨u, ϕk,su⟩L2 =

∫
X
∥s∥2∥u∥2dV for all u ∈ H0(X, kL). (4.3.6)

The eigenvalues of ϕk,s can be obtained as follows. There exists a ∥ · ∥L2-orthonormal basis
{s̃1, . . . , s̃N} of H0(X, kL) (with N = P (k)) which is orthogonal for norm ∥·∥s,L2 on H0(X, kL).
Then the eigenvalues of ϕk,s are

λj := ∥ss̃j∥2L2 =

∫
X
∥s∥2∥s̃j∥2dV

with j ∈ {1, . . . , N}.

Lemma 4.3.4. δ(k) = detϕk,s =
∏N

j=1 λj.

Proof. By choice of the basis {s̃1, . . . , s̃N}, the matrix of the Hermitian pairing ⟨·, ·⟩s,L2 obtained
from ∥ · ∥s,L2 , under this basis of H0(X, kL), is diag(λ1, . . . , λN ). Hence

V k
X,L2 = a(N)s̃1 ∧ · · · ∧ s̃N ∧

√
−1s̃1 ∧ · · · ∧

√
−1s̃N

V k
s,L2 = a(N) · λ−1/2

1 s̃1 ∧ · · · ∧ λ−1/2
N s̃N ∧

√
−1λ

−1/2
1 s̃1 ∧ · · · ∧

√
−1λ

−1/2
N s̃N .

So δ(k) =
∏N

j=1 λj = detϕk,s.

This lemma tells us that 1
P (k) log δ(k) is precisely the logarithm of the geometric mean of

the eigenvalues λj of ϕk,s. Thus rescaling the metric ∥ · ∥ does not change the conclusion of
Proposition 4.3.3. So from now on, we may and so assume

∥s∥sup < 1. (4.3.7)
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Thus λj < 1 for all j ∈ {1, . . . , N}.
Now we are ready to proceed to the proof of Proposition 4.3.3.

Proof of ≥ Let us show

lim inf
k→∞

P (k)−1 log δ(k) ≥
∫
X
log ∥s∥2dV. (4.3.8)

By assumption,
∫
X ∥s̃j∥2dV = 1 for all j ∈ {1, . . . , N}. So Jensen’s inequality implies (where

the measure is ∥s̃j∥dV )

log λj = log

∫
X
∥s∥2∥s̃j∥2dV ≥

∫
X
(log ∥s∥2)∥s̃j∥2dV.

Taking sum over j ∈ {1, . . . , N = P (k)} and recalling the distortion function bk =
∑

∥s̃j∥2
defined in (3.1.3), we get

P (k)−1 log δ(k) = P (k)−1
N∑
j=1

log λj ≥
∫
X
log ∥s∥2 bk

P (k)
dV. (4.3.9)

Hence (4.3.8) follows from the main theorem on the distortion function (Theorem 3.1.6).

Proof of ≤ It remains to prove the hard direction

lim sup
k→∞

P (k)−1 log δ(k) ≤
∫
X
log ∥s∥2dV. (4.3.10)

The proof goes through tilings of X, i.e. a disjoint union of finitely many connected open
subsets of X whose union is dense in X; we will furthermore assume each such connected open
subset to have smooth boundary. We have assumed ∥s∥sup < 1, so to control δ(k) = detϕk,s
it suffices to work on subspaces of H0(X, kL). Ideally, we would be able prove (4.3.10) if
we could find a subspace of H0(X, kL) of dimension ∼ P (k) which has an orthonormal basis
with supports in a suitable tiling, so that (4.3.9) eventually becomes an equality. This is not
possible in the holomorphic category, and we need to extend our discussion to anti-holomorphic
analysis discussed in §3.2.1. All is not lost: we can approximate holomorphic sections by near
holomorphic sections subcoordinate to finer and finer tilings.

Fix a tiling Ω of X (which is an open subset of X). Then Ω is the disjoint union of finitely
many connected open subsets Ω1, . . . ,Ωl of X

Recall the anti-holomorphic Kodaira Laplacian ∆′′
k from Definition 3.2.1 (with q = 0) and

the heat operator □k := (2/k)∆′′
k. They acts on the Hilbert space L2(X, kL), and H0(X, kL) can

be identified with the closed subspace Ker□k ⊆ L2(X, kL). The L2-orthogonal decomposition

L2(X, kL) = Ker□k ⊕Ker□
⊥
k defines the Bergman projector

Ψk : L
2(X, kL) → Ker□k = H0(X, kL). (4.3.11)

Let us consider the differential operator □k,Ω, which is the restriction of □k to Ω with the
Dirichlet condition on the boundary ∂Ω. Moreover, □k,Ω also have discrete spectrum.

Now we can define near holomorphic sections. For any real number µ > 0, denote byHk(Ω, µ)
the direct sum of eigenspaces of □k,Ω associated with eigenvalues ≤ µ. We have a canonical way
to obtain holomorphic sections from near holomorphic ones via Ψk|Hk(Ω,µ).

Similarly we can define Hk(Ωj , µ) for each j ∈ {1, . . . , l}. Then Hk(Ω, µ) =
⊕l

j=1Hk(Ωj , µ).
Recall our assumption that c1(L, ∥ · ∥) = 2α0ω for some α0 > 0.
The following lemma says that the Bergman projector injects Hk(Ω, µ) quasi-isometrically

into H0(X, kL), for µ small enough and k ≫ 1.
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Lemma 4.3.5. Assume µ < α0. Then for k ≫ 1, Ψk|Hk(Ω,µ) is injective and

∥Ψk(u)− u∥L2 ≤ 2µ

α0
∥u∥L2 for all u ∈ Hk(Ω, µ).

Proof. By Lemma 3.2.7, the smallest non-zero eigenvalue of □k is ≥ α0 for k ≫ 1.

Let u ∈ KerΨk. Then u ∈ Ker□
⊥
k , and hence ∥□ku∥L2 ≥ α0∥u∥L2 ≥ µ∥u∥L2 by the previous

paragraph. Now if u ∈ Hk(Ω, µ) ∩ KerΨk, then the definition of Hk(Ω, µ) furthermore implies
u = 0. This establishes the injectivity.

For u ∈ Hk(Ω, µ), set ũ := u−Ψk(u). Then ũ ∈ Ker□
⊥
k , and hence ∥□kũ∥L2 ≥ α0∥ũ∥L2 by

the previous paragraph. So

α0∥ũ∥L2 ≤ ∥□k(Ψku− u)∥L2 ≤ ∥Ψk□ku∥L2 + ∥□ku∥L2 ≤ 2∥□ku∥L2 ≤ 2µ∥u∥L2 ,

where the second inequality is the triangular inequality, and the last inequality is by definition
of Hk(Ω, µ).

The next lemma says that the Bergman projector is also a quasi-isometry for the quadratic
form qk defined by qk(u) :=

∫
X ∥s∥2∥u∥2dV . Recall that qk(u) = ⟨u, ϕk,s(u)⟩L2 for u ∈

H0(X, kL) by (4.3.6).

Lemma 4.3.6. Assume µ < α0. Then for k ≫ 1, we have

|qk(u)− qk(Ψk(u))| ≤
4µ

α0

(
µ

α0
+ 1

)
∥u∥2L2 <

8µ

α0
∥u∥2L2 .

Proof. We have

|qk(u)− qk(Ψk(u))| =
∣∣∣∣∫

X
∥s∥2(∥u∥2 − ∥Ψk(u)∥2)dV

∣∣∣∣ ≤ ∥s∥sup
∫
X

∣∣∥u∥2 − ∥Ψk(u)∥2
∣∣ dV.

We have assumed ∥s∥sup < 1. So (by
∣∣|v1|2 − |v2|2

∣∣ ≤ |v1 − v2|2 + 2|v2||v1 − v2|)

|qk(u)− qk(Ψk(u))| ≤ ∥u−Ψk(u)∥2L2 + 2

∫
X
∥Ψk(u)∥ ·

∣∣∥u∥ − ∥Ψk(u)∥
∣∣dV

≤ ∥u−Ψk(u)∥2L2 + 2∥Ψk(u)∥L2∥u−Ψk(u)∥L2

≤ ∥u−Ψk(u)∥2L2 + 2∥u∥L2∥u−Ψk(u)∥L2

Now the conclusion follows from Lemma 4.3.5.

The last estimate we need is the following:

Lemma 4.3.7. For each j ∈ {1, . . . , l}, we have

dimHk(Ωj , k
−1/6) = P (k)vol(Ωj) + o(kn).

As a consequence, dimHk(Ω, k
−1/6) = P (k) + o(kn) since vol(Ω) = vol(X) = 1.

Proof. The differential operator □k,Ωj (restriction of □k to Ωj with Dirichlet condition on the boundary)
also admits a heat kernel ek,Ωj

(t, x, y), with condition (iii) of Proposition 3.2.4 replaced by ek,Ωj
(t, ∂Ωj , y) =

0 on the boundary ∂Ωj . Denote by ek,Ωj
(t, x) := ek,Ωj

(t, x, x). Then the localization process of proving
the heat kernel expansion implies

lim
k→∞

∥ek(t, x)− ek,Ωj
(t, x)∥ = 0
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uniformly in x ∈ X and t ∈ [1, Tk], as long as Tk = o(
√
k). Consider an L2-orthonormal eigenbasis

(λ, ψλ)λ (resp. (λ̃, ψλ̃)) for □k (resp. for □k,Ωj
). Integrating over X yields

(
∑
λ̃

e−λ̃t)vol(Ωj) =
∑
λ

e−λt + o(1)

for k ≫ 1, uniformly in t ∈ [1, Tk]. The conclusion then follows by setting t = k1/4, using an argument

similar to the estimate of the second term of (3.2.5) (use □
1
k and □

1
k,Ωj

, and the injectivity of the positive

spectrum of □
0

k(,Ωj) into that of □
1

k(,Ωj)).

Now we are ready to finish the proof of (4.3.10), which is what is left to prove Proposi-
tion 4.3.3.

Proof of (4.3.10). Since ∥s∥sup < 1, we have

δ(k) = detϕk,s = det(qk|H0(X,kL)) ≤ det(qk|Ψk(Hk(Ω,µ))).

Lemma 4.3.5 implies

det(qk|Ψk(Hk(Ω,µ))) ≤
(

1

1− 2µ/α0

)2 dimHk(Ω,µ)

det(qk ◦Ψk|Hk(Ω,µ)).

We shall use the following elementary result in linear algebra: the determinant of a positive-
definite Hermitian matrix is bounded above by the product of the diagonal entries. Recall

Ω =
∐l

j=1Ωj . Now for each k and each j ∈ {1, . . . , l}, take an orthonormal basis {h(j)m }m of

Hk(Ωj , µ) (hence
∫
Ωj

∥h(j)m ∥2dV = 1). Then {h(j)m }m,j is an orthonormal basis of Hk(Ω, µ) =⊕l
j=1Hk(Ωj , µ). Then

det(qk ◦Ψk|Hk(Ω,µ)) ≤
∏
m,j

qk ◦Ψk(h
(j)
m ),

while Lemma 4.3.6 implies that

qk ◦Ψk(h
(j)
m ) ≤ qk(h

(j)
m ) +

8µ

α0
=

∫
Ωj

∥s∥2∥h(j)m ∥2dV +
8µ

α0
≤ sup

Ωj

∥s∥2 + 8µ

α0
.

Combining the inequalities above, we get

log δ(k) ≤ 2 dimHk(Ω, µ) log(1− 2µ/α0) +

l∑
j=1

log

(
sup
Ωj

∥s∥2 + 8µ/α0

)
dimHk(Ωj , µ). (4.3.12)

Fix ϵ ∈ (0,
1−∥s∥sup

8 ). Take µ = α0ϵ. Then ∥s∥sup + 8µ/α0 < 1. Now

∑
j

log

(
sup
Ωj

∥s∥2 + 8µ/α0

)
vol(Ωj) =

∑
j

sup
Ωj

log(∥s∥2 + 8ϵ)vol(Ωj) →
∫
X

log(∥s∥2 + 8ϵ)dV, (4.3.13)

where the limit is on taking finer and finer tilings of X. More precisely, by letting the diameter
of Ω tend to 0+.

Thus the conclusion follows from Lemma 4.3.7, (4.3.12), and (4.3.13), by letting ϵ→ 0+.



Chapter 5

Adelic line bundles

In §0.3, we have seen that polarized dynamical systems can sometimes give normalized height functions,
which are genuine functions in contrast to the abstract height machine. The Weil height on PN can be
obtained in this way. Another important case is the Néron–Tate height on abelian varieties.

In §2.3.2, we explained how to use arithmetic models (with Hermitian line bundles) to find represen-
tatives of each class of height functions constructed by the height machine.

It is desirable to express each normalized height in §0.3 in the framework of §2.3.2. This is the case for
the Weil height, as shown in Example 2.3.8. When an abelian variety has good reduction everywhere, it
is also possible to do so using the Néron model and the cubist metric. However, if the abelian variety does
not have good reduction everywhere, it is not possible to define the Néron–Tate height using arithmetic
models as in §2.3.2.

To solve this problem, S. Zhang defined and studied adelically metrized line bundles (adelic line
bundles for short) over projective varieties, by putting suitable metrics at the places of bad reduction.
All the normalized heights from §0.3 can be defined in this framework. This tool is fundamental in the
solution of the famous Bogomolov Conjecture by Ullmo and S. Zhang.

More recently, Yuan and S. Zhang generalized this framework to adelic line bundles over quasi-
projective varieties. On the one hand, this allows to study the normalized height functions in family.
On the other hand, it turns out that many other height functions can be defined in this framework, for
example the Faltings height as a function on the moduli space of principally polarized abelian varieties.
This powerful theory opens another chapter of Arakelov Geometry.

In the whole chapter, we take K to be a number field, and X to be an irreducible quasi-
projective variety defined over K.

5.1 Limit construction for the geometric setting

Via Q ⊆ K, we can see X as a quasi-projective variety over SpecQ.

In this section, we construct the category of geometric adelic line bundles on X, denoted
by P̂ic(X/Q). Roughly speaking, they are line bundles on X which can be extended to a line
bundle on “some compatification” of X.

If X itself is projective, then the construction is void. Nevertheless, in practice we often need
to work with quasi-projective varieties which are not projective, for example moduli spaces.

5.1.1 Q-line bundles

We define the category of Q-line bundles on X, denoted by Pic(X)Q, as follows:

63
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Definition 5.1.1. A Q-line bundle on X is a pair (a, L) (often written as aL) with a ∈ Q
and L a line bundle on X. A morphism of two Q-line bundles aL and a′L′ is defined to be

Hom(aL, a′L′) := lim−→m→∞Hom(amL, a′mL′)

where m runs over all positive integers such that am, a′m ∈ Z.

Denote by Pic(X)Q the group of isomorphism classes of Q-line bundles on X. We can define
nef, ample, big Q-line bundles on projective varieties.

Definition 5.1.2. A Q-line bundle aL on X is said to be nef (ample, big) if amL is for some
positive integer m such that amL is a usual line bundle on X.

Next we define sections of Q-line bundles.

Definition 5.1.3. Let aL ∈ Pic(X)Q.

(i) A (global) section of aL on X is an element of H0(X, aL) := Hom(OX , aL) = lim−→m
H0(X, amL)

where m runs over all positive integers with am ∈ Z.

(ii) A rational section of aL on X is an element of Hom(Oη, aLη) = lim−→m
H0(η, amL),

where η is the generic point of X and m runs over all positive integers with am ∈ Z.

(iii) For a (rational) section s of aL on X, represented by (sm)m, define

div(s) := (1/m)div(sm) ∈ Div(X)⊗Z Q =: Div(X)Q.

For two elements D1, D2 ∈ Div(X)Q, we write D1 ≤ D2 if m(D2 −D1) is a usual effective
Cartier divisor for some positive integer m.

5.1.2 Model geometric adelic line bundles and boundary norm/topology

Now we are ready to define model geometric adelic line bundles on X as follows.

Definition 5.1.4. The category of model geometric adelic line bundles on X, denoted by P̂ic(X/Q)mod,
is defined to be the category of pairs (X ′, L′) with

- X ′ is a compactification of X, i.e. a projective variety defined over K which contains X
as an open subset;

- L′ is a Q-line bundle on X ′, such that L′|X is isomorphic to a usual line bundle on X.

Adelic line bundles are, roughly speaking, limits of sequences of model adelic line bundles.
In order for the limit process to make sense, we need to introduce a suitable Cauchy condition
for a sequence of model adelic line bundles. Let us explain it now.

For each compatification X ′ of X, denote by Div(X ′, X) := Div(X ′)Q ⊗Div(X)Q Div(X), i.e.
the group of Q-divisors on X ′ whose restriction to X is a usual Cartier divisor.

Definition 5.1.5. The group of model geometric adelic divisors is defined to be

D̂iv(X/Q)mod := lim−→X′ Div(X ′, X) (5.1.1)

with X ′ running over all compactifications of X.
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Notice that there is a partial order ≤ on D̂iv(X/Q)mod. For any D1, D2 ∈ D̂iv(X/Q)mod,
there exists a compactification X ′ such that both D1 and D2 can be represented by elements
(by abuse of notation still denoted by D1, D2) in Div(X ′, X) ⊆ Div(X ′)Q. We say that D1 ≤ D2

as elements in D̂iv(X/Q)mod if this is the case in Div(X ′)Q. It is not hard to check that this

partial ordering on D̂iv(X/Q)mod is well-defined.

With this in hand, we can define the boundary topology on D̂iv(X/Q)mod as follows. Fix a
compactificationX0 ofX such thatX0\X is a divisor, which we callD0. ThenD0 ∈ Div(X0, X),

which gives rise to an element in D̂iv(X/Q)mod which is still denoted by D0. The following

boundary norm on D̂iv(X/Q)mod (we use the convention inf(∅) = ∞)

∥ · ∥D0 : D̂iv(X/Q)mod → [0,∞], D 7→ inf{ϵ ∈ Q>0 : −ϵD0 ≤ D ≤ ϵD0} (5.1.2)

then induces a topology on D̂iv(X/Q)mod, by defining a neighborhood basis at 0. This is the
boundary topology.

Here is an easy lemma on the properties of the boundary norm. The “Moreover” part implies
that the boundary topology does not depend on the choice of X0.

Lemma 5.1.6. For any D,D′ ∈ D̂iv(X/Q)mod, we have

(i) ∥D∥D0 = 0 if and only if D = 0,

(ii) ∥D +D′∥D0 ≤ ∥D∥D0 + ∥D′∥D0,

(iii) ∥aD∥D0 ≤ |a| · ∥D∥D0 for any a ∈ Z \ {0}, with < if and only if D ̸= 0 and aD = 0 both
hold in Div(X).

Moreover, if X ′
0 is another compactification of X such that D′

0 := X ′
0 \X is a divisor, then there

exists a real number r > 1 such that r−1∥ · ∥D0 ≤ ∥ · ∥D′
0
≤ r∥ · ∥D0.

5.1.3 Geometric adelic line bundles and adelic divisors

Definition 5.1.7. A geometric adelic divisor on X is an equivalence class of Cauchy se-
quences in D̂iv(X/Q)mod, Cauchy for the boundary topology on D̂iv(X/Q)mod.

The group of geometric adelic divisors on X is denoted by D̂iv(X/Q), with the obvious
binary operation.

Definition 5.1.8. A geometric adelic line bundle on X is a pair (L, (Xi, Li, ℓi)i≥1) with

- L is a line bundle on X;

- (Xi, Li) ∈ Pic(X/Q)mod;

- ℓi : L→ Li|X is an isomorphism in Pic(X)Q;

such that the sequence {div(ℓiℓ−1
1 )}i≥1 satisfies the Cauchy condition defined using the boundary

topology on D̂iv(X/Q)mod.

The category of geometric adelic line bundles is denoted by P̂ic(X/Q). The group of isomor-
phism classes of geometric adelic line bundles, with ⊗ being the binary operation, is denoted by
P̂ic(X/Q).
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We need to explain that the sequence {div(ℓiℓ−1
1 )}i≥1 is indeed a sequence in D̂iv(X/Q)mod.

For each i ≥ 1, we have an isomorphism ℓiℓ
−1
1 : L1|X → Li|X of Q-line bundles on X, and hence

a rational map ℓiℓ
−1
1 : L1 99K Li. Hence div(ℓiℓ

−1
1 ) is a model adelic divisor for each i ≥ 1, i.e.

div(ℓiℓ
−1
1 ) ∈ D̂iv(X/Q)mod.

Next we will establish a canonical isomorphism between P̂ic(X/Q) with Ĉl(X/Q), the group
of geometric adelic divisor classes. We should first of all define Ĉl(X/Q). We start by defin-

ing P̂rin(X/Q)mod := lim−→X′ Prin(X
′), where X ′ runs over all the compactifications of X and

Prin(X ′) is the group of principal divisors on X ′. Then we can define

Ĉl(X/Q) := D̂iv(X/Q)/P̂rin(X/Q)mod. (5.1.3)

Lemma 5.1.9. The group P̂rin(X/Q)mod is discrete in D̂iv(X/Q)mod under the boundary topol-
ogy.

Before moving on to the proof, let us see an immediate corollary. If we let

Ĉl(X/Q)mod := D̂iv(X/Q)mod/P̂rin(X/Q)mod = lim−→X′(Div(X ′, X)/Prin(X ′)), (5.1.4)

then Ĉl(X/Q)mod is dense in Ĉl(X/Q) by Lemma 5.1.9. In other words, Ĉl(X/Q) is the com-
pletion of Ĉl(X/Q)mod.

Proof of Lemma 5.1.9. Assume that there exists a sequence {Di}i≥1 in P̂rin(X/Q)mod converg-
ing to 0. Then there exists a sequence {ϵi ∈ Q>0}i≥1 such that ϵi → 0 and ϵD0 ± Di ≥ 0 in

D̂iv(X/Q)mod for all i ≥ 1. Assume Di is represented by div(fi) for a compactification Xi of X
and a rational function fi ∈ Q(Xi)

∗ = Q(X)∗. Recall the compactification X0 used to define
the boundary topology. Then ϵiD0 ± div(fi) ≥ 0 in Div(X0)Q. Hence Div(fi) = 0 on X0 by
taking ϵi to be small enough. We are done.

Proposition 5.1.10. There is a canonical isomorphism

Ĉl(X/Q)
∼−→ P̂ic(X/Q).

Proof. We write the two morphisms.

For any {Di}i≥1 ∈ D̂iv(X/Q), assume each Di is defined on the compactification Xi. Then
Li := O(Di) is a Q-line bundle on Xi. Notice that Di|X = D1|U for all i ≥ 1. Hence we get a
line bundle L := O(D1|X) on X and isomorphisms ℓi : L → Li|X for each i ≥ 1. It is not hard
to check the Cauchy condition for the sequence div(ℓiℓ

−1
1 ) = Di −D1. This defines the desired

homomorphism

D̂iv(X/Q) → P̂ic(X/Q).

It is not hard to check that P̂rin(X/Q)mod is in the kernel.

To see the surjectivity: given any (L, (Xi, Li, ℓi)i≥1) in P̂ic(X/Q), take a nonzero rational
section s of L on X, and set

d̂iv(s) := {div(X1,L1)(s) + div(ℓiℓ
−1
1 )}i≥1, (5.1.5)

where div(X1,L1)(s) means to see s as a rational section of L1 on X1, and take the corresponding

divisor. This defines the desired element in Ĉl(X/Q).
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5.1.4 Positivity

Definition 5.1.11. An adelic line bundle L̃ ∈ P̂ic(X/Q) is said to be:

(i) strongly nef if it is isomorphic to an object (L, (Xi, Li, ℓi)i≥1) where each Li is nef on
Xi;

(ii) nef if there exists a strongly nef M̃ ∈ P̂ic(X/Q) such that aL̃+ M̃ is strongly nef for all
positive integers a;

(iii) integrable if it is isomorphic to the difference of two strongly nef adelic line bundles.

We will use P̂ic(X/Q)snef (resp. P̂ic(X/Q)nef , P̂ic(X/Q)int) to denote the full subcategories

of P̂ic(X/Q) of strongly nef (resp. nef, integrable) ones. We will use P̂ic(X/Q)snef (resp.

P̂ic(X/Q)nef , P̂ic(X/Q)int) to denote the corresponding subsets of P̂ic(X/Q). It is a semi-
subgroup (resp, semi-subgroup, subgroup).

For any L̃ = (L, {Xi, Li, ℓi}i≥1) ∈ P̂ic(X/Q), we define

H0(X, L̃) := {s ∈ H0(X,L) : d̂iv(s) ≥ 0}. (5.1.6)

It is known that H0(X, L̃) is a finite-dimensional vector space.
In height theory, elements in (5.1.6) play the same role as global sections on X when X is

projective. Indeed, given a non-zero element s ∈ H0(X, L̃), then roughly speaking the height

function defined by L̃ has a lower bound outside d̂iv(s) which is proper Zariski closed.

Definition-Theorem 5.1.12. The following limit exists and is defined to be the volume of
L̃ = (L, {Xi, Li, ℓi}i≥1):

vol(X, L̃) := lim
m→∞

(dimX)!

mdimX
dimH0(X,mL̃). (5.1.7)

Moreover,
vol(X, L̃) = lim

i→∞
vol(Xi, Li).

Definition 5.1.13. An adelic line bundle L̃ ∈ P̂ic(X/Q) is said to be big if vol(X, L̃) > 0.

Let n = dimX. We also have an intersection pairing in this situation (6.1.9)

P̂ic(X/Q)nint → R, (L̃1, . . . , L̃n) 7→ L̃1 · · · · · L̃d. (5.1.8)

Theorem 5.1.14 (Hilbert–Samuel). Assume L̃ is nef. Then vol(X, L̃) = L̃n.

Theorem 5.1.15 (Siu). If L̃ and M̃ are nef adelic line bundles, then

vol(X, L̃− M̃) ≥ L̃n − nL̃n−1M̃.

5.2 Adelic line bundles as limits of the model ones

Next we turn to the arithmetic setting and try to find arithmetic objects which will define the
height functions as desired. We will do the limit construction in the following steps.

(i) Consider all the quasi-projective models U of X, i.e. U is an integral scheme which is
quasi-projective over SpecOK such that X is open in the generic fiber UK . These quasi-
projective models form an inverse system.
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(ii) Define for each quasi-projective model U the category of adelic line bundles P̂ic(U/Z) and
the group of adelic divisors D̂iv(U/Z).

(iii) Define P̂ic(X/Z) to be lim−→U P̂ic(U/Z) where the limit is taken on the inverse system of

quasi-projective models of X. Similarly define D̂iv(X/Z) := lim−→U D̂iv(U/Z).

We call P̂ic(X/Z) the category of adelic line bundles on X, and D̂iv(X/Z) the group of adelic
divisors on X. The group of isomorphism classes of adelic line bundles on X will be denoted
by P̂ic(X/Z), which ⊗ being the binary operation. Similarly, we use the notation P̂ic(U/Z) and
P̂ic(U/Z)mod to denote the groups of isomorphism classes of (model) adelic line bundles on U .

Steps (i) and (iii) are formal. Step (ii) is the crucial step. In this section, we will define

P̂ic(U/Z) as a suitable completion ofmodel adelic line bundles P̂ic(U/Z)mod and define D̂iv(U/Z)
as a suitable completion of model adelic divisors D̂iv(U/Z)mod.

5.2.1 Model adelic line bundles on U and boundary topology

Let U be an integral scheme which is quasi-projective over SpecOK .

Definition 5.2.1. A model adelic line bundle on U is a pair (X ,L) consisting of:

- a projective model X of U , i.e. an integral scheme which is projective over SpecOK and
which contains U as an open subscheme;

- a Q-Hermitian line bundle L = (L, ∥ · ∥) on X such that L|U is a isomorphic to a usual
line bundle on U .

Here, Q-Hermitian line bundles are defined in the same way to the geometric case (Defini-
tion 5.1.1) with L replaced by L, and we also have the corresponding nefness, ampleness, and
bigness for Q-Hermitian line bundles.

The category of model adelic line bundles on U is denoted by P̂ic(U/Z)mod, and the group

of isomorphism classes of model adelic line bundles is denoted by P̂ic(U/Z)mod.

To define model adelic divisors, we need to first of all define arithmetic (Q,Z)-divisors. Let
X be a projective model of U .

Definition 5.2.2. An arithmetic (Q,Z)-divisors on (X ,U) is a Q-arithmetic divisor D =

(D, gD) ∈ D̂iv(X )Q such that D|U is a usual divisor on U . It is said to be nef if D is nef in

D̂iv(X )Q.

The group of arithmetic (Q,Z)-divisors on (X ,U) is denoted by D̂iv(X ,U). There is a partial

ordering ≤ on D̂iv(X ,U): D ≤ D
′
if D

′ − D is effective as a Q-arithmetic divisor on X and
D′|U −D|U ≥ 0 on U .

Definition 5.2.3. The group of model adelic divisors on U is defined to be

D̂iv(U/Z)mod := lim−→
X

D̂iv(X ,U) (5.2.1)

where X runs over all projective models of U .
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Notice that the partial ordering on D̂iv(X ,U) defined above induces a partial ordering ≤ on

D̂iv(U/Z)mod.

We also have a boundary topology on D̂iv(U/Z)mod defined as follows. Fix a projective model
X0 of U and a strictly effective divisor D0 = (D0, g0) on X0 such that |D0| = X0 \U . Such a pair

(X0, D0) is called a boundary divisor. Then D0 gives rise to an element in D̂iv(U/Z)mod which
we still denote by D0. Then the boundary norm is defined to be (inf(∅) is set to be ∞)

∥ · ∥D0
: D̂iv(U/Z)mod → [0,∞], D 7→ inf{ϵ ∈ Q>0 : −ϵD0 ≤ D ≤ ϵD0}. (5.2.2)

This boundary norm induces a topology on D̂iv(X/Z)mod, by defining a neighborhood basis at
0. This is the boundary topology.

As in the geometric, we also have the following lemma, which asserts that the boundary
topology does not depend on the choice of the pair (X0, D0).

Lemma 5.2.4. For any D,D
′ ∈ D̂iv(X/Z)mod, we have

(i) ∥D∥D0
= 0 if and only if D = 0,

(ii) ∥D +D
′∥D0

≤ ∥D∥D0
+ ∥D′∥D0

,

(iii) ∥aD∥D0
≤ |a| · ∥D∥D0

for any a ∈ Z \ {0}, with < if and only if DU ̸= 0 and aD|U = 0
both hold in Div(U).

Moreover, if (X ′
0, D

′
0) is another boundary divisor, then there exists a real number r > 1 such

that r−1∥ · ∥D0
≤ ∥ · ∥

D
′
0
≤ r∥ · ∥D0

.

5.2.2 Adelic line bundles and adelic divisors on U

Let U be an integral scheme which is quasi-projective over SpecOK .

Definition 5.2.5. An adelic divisor on U is an equivalence class of Cauchy sequences in
D̂iv(U/Z)mod, Cauchy for the boundary topology.

The group of adelic divisors onX is denoted by D̂iv(U/Z), with the obvious binary operation.

Definition 5.2.6. An adelic line bundle on U is a pair (L, (Xi,Li, ℓi)i≥1) with

- L is a line bundle on U ;

- (Xi,Li) ∈ P̂ic(U/Z)mod;

- ℓi : L → Li|U is an isomorphism in Pic(U)Q;

such that the sequence {d̂iv(ℓiℓ−1
1 )}i≥1 satisfies the Cauchy condition defined using the boundary

topology on D̂iv(U/Z)mod.

The category of adelic line bundles is denoted by P̂ic(U/Z). The group of isomorphism classes

of geometric adelic line bundles, with ⊗ being the binary operation, is denoted by P̂ic(U/Z).

We need to explain that the sequence {d̂iv(ℓiℓ−1
1 )}i≥1 is indeed a sequence in D̂iv(U/Z)mod.

For each i ≥ 1, we have an isomorphism ℓiℓ
−1
1 : L1|U → Li|U of Q-line bundles on U , and hence

a rational map ℓiℓ
−1
1 : L1 → Li. Hence d̂iv(ℓiℓ

−1
1 ) is a model adelic divisor for each i ≥ 1, i.e.

d̂iv(ℓiℓ
−1
1 ) ∈ D̂iv(U/Z)mod.
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Next we will establish a canonical isomorphism between P̂ic(U/Z) with Ĉl(U/Z), the group
of adelic divisor classes. We should first of all define Ĉl(U/Z). For each projective model X of

U , there is a natural homomorphism D̂iv(X ) → D̂iv(X ,U), which makes P̂rin(X ) a subgroup of

D̂iv(X ,U). Hence we can define

P̂rin(U/Z)mod := lim−→X P̂rin(X ),

where X runs over all the projective models of U . Then we can define

Ĉl(U/Z) := D̂iv(U/Z)/P̂rin(U/Z)mod. (5.2.3)

Lemma 5.2.7. The group P̂rin(U/Z)mod is discrete in D̂iv(U/Z)mod under the boundary topol-
ogy.

We omit the proof but state the following immediate corollary. If we let

Ĉl(U/Z)mod := D̂iv(U/Z)mod/P̂rin(U/Z)mod = lim−→X (D̂iv(X ,U)/P̂rin(X )), (5.2.4)

then Ĉl(U/Z)mod is dense in Ĉl(U/Z) by Lemma 5.2.7. In other words, Ĉl(U/Z) is the completion
of Ĉl(U/Z)mod.

Proposition 5.2.8. There is a canonical isomorphism

Ĉl(U/Z) ∼−→ P̂ic(U/Z).

Proof. We write the two morphisms.

For any {Di}i≥1 ∈ D̂iv(U/Z), assume each Di is defined on the projective model Xi. Then
Li := O(Di) is a Q-Hermitian line bundle on Xi. Notice that Di|U = D1|U for all i ≥ 1. Hence
we get a line bundle L := O(D1|U ) on U and isomorphisms ℓi : L → Li|U for each i ≥ 1. It is

not hard to check the Cauchy condition for the sequence d̂iv(ℓiℓ
−1
1 ) = Di −D1. This defines a

homomorphism

D̂iv(U/Z) → P̂ic(U/Z).

Now assume that {Di}i≥1 is in the kernel of this homomorphism. Then there exists an iso-
morphism from (OU , (X0,OX0 , 1)) to (L, (Xi,Li, ℓi)). Hence we have an isomorphism OU →
O(D1|U ), which is given by the multiplication by some f ∈ H0(U ,OU )

∗ with div(f) = D1|U = 0

on U . The further properties of the isomorphism are equivalent to that Di converges to −d̂iv(f)

in D̂iv(U/Z)mod. Hence the kernel of the group homomorphism above is P̂rin(U/Z)mod. So we
have an injective group homomorphism

Ĉl(U/Z) → P̂ic(U/Z).

To see the surjectivity: given any (L, (Xi,Li, ℓi)i≥1) in P̂ic(U/Z), take a nonzero rational
section s of L on U , and set

d̂iv(s) := {d̂iv(X1,L1)
(s) + d̂iv(ℓiℓ

−1
1 )}i≥1, (5.2.5)

where d̂iv(X1,L1)
(s) means to see s as a rational section of L1 on X1, and take the corresponding

arithmetic divisor. This defines the desired element in Ĉl(U/Z).
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5.2.3 Nefness and integrability

Let U be an integral scheme which is quasi-projective over SpecOK .

Definition 5.2.9. An adelic line bundle L ∈ P̂ic(U/Z) is said to be:

(i) strongly nef if it is isomorphic to an object (L, (Xi,Li, ℓi)i≥1) where each Li is nef on
Xi;

(ii) nef if there exists a strongly nef M ∈ P̂ic(U/Z) such that aL+M is strongly nef for all
positive integers a;

(iii) integrable if it is isomorphic to the difference of two strongly nef adelic line bundles.

We will use P̂ic(U/Z)snef (resp. P̂ic(U/Z)nef , P̂ic(U/Z)int) to denote the full subcategories

of P̂ic(U/Z) of strongly nef (resp. nef, integrable) ones. We will use P̂ic(U/Z)snef (resp.

P̂ic(U/Z)nef , P̂ic(U/Z)int) to denote the corresponding subsets of P̂ic(U/Z). It is a semi-subgroup
(resp, semi-subgroup, subgroup).

5.2.4 Generic fiber of adelic line bundles

Now we go back to our original situation, where X is an irreducible quasi-projective variety
defined over K.

Recall the definition at the beginning of this section that

P̂ic(X/Z) := lim−→U P̂ic(U/Z), P̂ic(X/Z) := lim−→U P̂ic(U/Z), D̂iv(X/Z) := lim−→U D̂iv(U/Z)

with U running over all quasi-projective models of X.

Proposition 5.2.8 implies immediately

Proposition 5.2.10. There is a canonical isomorphism

Ĉl(X/Z) := lim−→U Ĉl(U/Z) ∼−→ P̂ic(X/Z).

For any projective model X of X, i.e. an integral scheme which is projective over SpecOK

such that X is open in XK , the generic fiber XK is by definition a projective model of X. Hence
the natural map P̂ic(X ) → P̂ic(XK) induces a group homomorphism

P̂ic(X/Z) → P̂ic(X/Q). (5.2.6)

Definition 5.2.11. For any adelic line bundle L ∈ P̂ic(X/Z), the image under (5.2.6) is called
the generic fiber of L. It is often denoted by L̃.

Let P be one of the symbols {snef, nef, int}. Then we define

P̂ic(X/Z)P := lim−→U P̂ic(U/Z)P, P̂ic(X/Z)P := lim−→U P̂ic(U/Z)P.

It is not hard to check that (5.2.6) restricts to

P̂ic(X/Z)P → P̂ic(X/Q)P.
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5.3 Metrized line bundles on Berkovich analytification

A second way to understand adelic line bundles is to see them as metrized line bundles on
the Berkovich analytification of X. In this section, we explain Berkovich analytification and
metrized line bundles.

Let k be a Banach ring, i.e. a ring with a norm | · |Ban which is complete for the induced
topology. For example, Z with the archimedean absolute value | · |∞, Zp with the p-adic absolute
value | · |p, or any field endowed with the trivial absolute value | · |0 (|a|0 = 1 for all a ̸= 0).

Let Y be a scheme over Speck. In our discussion, we assume Y to be separated and of finite
type.

5.3.1 Berkovich analytification

In this subsection, we explain and recollect some results on Berkovich analytifications.

Definition 5.3.1. The (Berkovich) analytification of Y , denoted by (Y/k)an or Y an for
short, is defined as follows.

If Y = SpecA, then

- as a set, Y an is defined to be the space M(A) = M(A/k) of multiplicative semi-norms on A
whose restriction to k is bounded by | · |Ban. For each y ∈ M(A), denote the corresponding
semi-norm on A by | · |y : A → R. For any f ∈ A, write |f |y as |f(y)|, which give a
real-valued function |f | on M(A).

- the topology on Xan is the weakest one such that the function |f | : M(A) → R is continuous
for all f ∈ A.

In general, take an affine open cover {SpecAi} of Y , and define Y an to be the union of
M(Ai), glued canonically. The topology on Y an is the weakest one such that each M(Ai) is
open.

It is known that Y an is locally compact and Hausdorff. If k = C with the standard absolute
value, then Y an is homeomorphic to Y (C) (and so coincides with the usual analytification). If
k = R with the standard absolute value, then Y an is homeomorphic to Y (C) quotient by the
complex conjugation.

In general, we have a decomposition

Y an = Y an[∞] ∪ Y an[f] (5.3.1)

into the subsets of archimedean and non-archimedean semi-norms. The trivial norm is by
definition non-archimedean.

In what follows, when k = Z, we always take | · |Ban on Z to be the absolute value | · |∞

Example 5.3.2. Let us look at (SpecZ)an. It is the union of the closed-line segments

[0, 1]∞ := {| · |t∞ : 0 ≤ t ≤ 1}

and the closed-line segments

[0,∞]p := {| · |tp : 0 ≤ t ≤ ∞}

for all finite prime numbers p > 0, by identifying the endpoints | · |0∞ and | · |0p for all p with the
trivial norm | · |0 on Z. In particular, (SpecZ)an is compact and path-connected.
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For convenience, denote by

v0 = | · |0, v∞ = | · |∞, vt∞ = | · |t∞, vp = | · |p, vtp = | · |tp,

and by
(0, 1]∞, (0, 1)∞, (0,∞]p, [0,∞)p, (0,∞)p

the sub-intervals of the line segments obtained by removing one or two endpoints; for example
(0,∞)p = {| · |tp : 0 < t <∞}.

And (SpecQ/Z)an is (SpecZ)an with v∞p removed for all p > 0, when we see SpecQ as a
scheme over SpecZ via Z ⊆ Q. If we consider the trivial norm on Q, then (SpecQ/Q)an is {v0}.

Lemma 5.3.3. If Y is projective over k, then Y an is compact.

Here are several basic notions concerning Y an.

Definition 5.3.4. (i) (Residue field) For each y ∈ Y an, define the residue field Hy as
follows. Take an affine open M(A) such that y ∈ M(A). The semi-norm | · |y induces a
norm on the integral domain A/Ker(| · |y). Then Hy is defined to be the completion of the
fraction field of A/Ker(| · |y). Notice that | · |y : A→ R can be decomposed into

A→ Hy
|·|−→ R (5.3.2)

where | · | is the multiplicative norm on Hy induced by | · |y. We thus write A→ Hy, f 7→
f(y). This notion generalizes to an arbitrary Y an. By (5.3.2), each y ∈ Y an gives rise to
a k-morphism

ϕy : SpecHy → Y. (5.3.3)

(ii) (Contraction) The contraction map κ : Y an → Y is defined as follows. It suffices to
define for M(A). For each y ∈ M(A), define κ(y) := Ker(| · |y) ∈ SpecA.

(iii) (Injection) For each x ∈ Speck, the trivial norm on the integral domain k/x induces a
semi-norm | · |x,0 on k. Assume that each such | · |x,0 is bounded by | · |Ban. This assumption
holds true in the three cases considered at the beginning of this subsection (Z, Zp, any field
with the trivial norm).

The injection map ι : Y → Y an is defined as follows. It suffices to define for Y = SpecA.
For p ∈ SpecA, denote by | · |p,0 the semi-norm on A induced by the trivial norm on A/p.
Then set ι(y) := | · |p,0.

(iv) (Reduction) If Y is proper over k, then we can also define a reduction map r : Y an → Y
as follows.

Each y ∈ Y an[f] gives rise to a k-morphism SpecHy → Y by (5.3.3), and the valuative
criterion of properness gives a uniquely extends it to a k-morphism SpecRy → Y (where
Ry is the valuation ring of Hy). Then r(y) is the image of the unique closed point of
SpecRy.

For y ∈ Y an[∞], we still have a morphism SpecHy → Y . Here Hy is isomorphic to R or
C. Define r(y) to be the image of SpecHy.

Example 5.3.2′. In (SpecZ)an. For each finite prime p, the residue field of vtp = | · |tp is Qp

when t ∈ (0,∞) and is Fp when t = ∞. The residue field of vt∞ = | · |t∞ is R when t ∈ (0, 1].
The residue field of v0 is Q.

The contraction map leaves v∞p = | · |∞p stable and sends all other points to v0 = | · |0.
The injection map sends the prime (p) to v∞p = | · |∞p , and sends (0) to v0 = | · |0.
The reduction map sends (0,∞]p to v∞p , and sends [0, 1]∞ to v0.
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Lemma 5.3.5. Any morphism f : Y → Y ′ induces a continuous map fan : Y an → Y ′an. For any
v ∈ Y ′an, the fiber Y an

v := (fan)−1(v), defined as a subspace of Y an, is canonically homeomorphic
to the Berkovich space (YHv/Hv)

an.

With this lemma in hand, we have study the structure of the analytification of Y an for k = Z.
This applies to any arithmetic variety U → SpecZ and also to our quasi-projective variety X
(defined over a number field K) via Z ⊆ Q ⊆ K.

We have a structure map Y an = (Y/Z)an → M(Z), which gives a disjoint union

Y an =
⋃

v∈M(Z)
Y an
v . (5.3.4)

The most distinguished fibers are

Y an
v∞ = Y an

R , Y an
vp = Y an

Qp
.

We can furthermore decompose, according to the structure of M(Z), into

(i) Y an
triv := Y an

v0 = (YQ/Q)an under the trivial norm of Q;

(ii) Y an
v∞p

= (YFp/Fp)
an under the trivial norm of Fp for finite primes p;

(iii) Y an
(0,∞)p

, homeomorphic to Y an
Qp

× (0,∞) for finite primes p;

(iv) Y an
(0,1]∞

, homeomorphic to Y an
R × (0, 1].

Lemma 5.3.6. The subset Y an \ Y an
ι(SpecZ) is dense in Y an.

Let us go back to our situation where X is a quasi-projective variety defined over a number
field K. We close this subsection with the following lemma.

Lemma 5.3.7. Let X → U be a quasi-projective model of X. Then the induced map Xan → Uan

is continuous, injective, and with a dense image. Better, the set of v ∈ Xan corresponding to
discrete or archimedean valuations of Hv is dense in Uan.

5.3.2 Metrized line bundle and arithmetic divisors on Y an

Let L be a line bundle on Y . At each point y ∈ Y an, denote by y := κ(y) which is a point of
Y . The fiber Lan(y) of L at y is defined to be the Hy-line L(y) ⊗k(y) Hy, or equivalently the
completion of the fiber L(y) of L on y for the semi-norm | · |y. In terms of (5.3.3), Lan(y) = ϕ∗yL.

Definition 5.3.8. A metrized line bundle L = (L, ∥ · ∥) on Y an is a pair where L is a line
bundle on Y and ∥ · ∥ is a continuous metric on Y an. Here a continuous metric of L on Y an

is defined to be a continuous metric on
∐

y∈Y an Lan(y) which is compatible with the semi-norms
on OY , i.e. for each y ∈ Y an, assign a norm ∥ · ∥y on Lan(y) such that ∥fℓ∥y = |f |y∥ℓ∥y
for all f ∈ Hy and all ℓ ∈ Lan(y), and that for any local section ℓ of L on Y the function
∥ℓ(y)∥ := ∥ℓ(y)∥y is continuous in y ∈ Y an.

The category of metrized line bundle on Y an is denoted by P̂ic(Y an), and the group of

isomorphism classes of metrized line bundles on Y an is denoted by P̂ic(Y an).
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Definition 5.3.9. An arithmetic divisor on Y an is a pair D = (D, g) where D is a Cartier
divisor on Y and g is a continuous Green’s function of |D|an on Y an, i.e. a continuous function
g : Y an \ |D|an → R such that for any rational function f on an open subset V of Y with
div(f) = D|V , the function g + log |f | extends to a continuous function on V an.

An arithmetic divisor on Y an is said to be principal if it is of the form d̂iv(f) := (div(f),− log |f |)
for some non-zero rational function of f on Y .

The group of arithmetic divisors on Y an is denoted by D̂iv(Y an), and the subgroup of prin-

cipal arithmetic divisors is denoted by P̂rin(Y an). We also have the following definition of
effectiveness.

Definition 5.3.10. An arithmetic divisor D = (D, g) on Y an is called effective (resp. strictly
effective) if D is effective and g ≥ 0 (resp. g > 0) on Y an \ |D|an.

The Green’s function g in this setting contains information not only on Y an[∞], but also
Y an[f]. Later on we shall see an example (Lemma 5.4.4) that the effectiveness of D is guaranteed
by g ≥ 0. This is not the case if we do not consider the Berkovich analytification.

In both P̂ic(Y an) and D̂iv(Y an), there is a distinguished class which is of particular interest.

Definition 5.3.11. A metrized line bundle L = (L, ∥ · ∥) on Y an, or its metric ∥ · ∥, is called
norm-equivariant if any points y, y′ ∈ Y an satisfying | · |y = | · |ty′ for some 0 ≤ t < ∞ locally

on OY , we have ∥ · ∥y = ∥ · ∥ty′ (more precisely, for any rational section s of L on Y an such that

these two points y, y′ are in Y an \ |div(s)|an, we have ∥s(y)∥ = ∥s(y′)∥t).
An arithmetic divisor D = (D, g) on Y an, or its Green’s function g, is called norm-

equivariant if for any y, y′ ∈ Y an \ |D|an satisfying | · |y = | · |ty′ for some 0 ≤ t <∞ locally on
OY , we have g(y) = tg(y′).

By definition, every principal arithmetic divisor is norm-equivariant. Denote by P̂ic(Y an)eqv
the full sub-category of norm-equivariant metrized line bundles on Y an, and P̂ic(Y an)eqv and

D̂iv(Y an)eqv similarly. We have the following proposition.

Proposition 5.3.12. There is a natural group isomorphism

Ĉl(Y an) := D̂iv(Y an)/P̂rin(Y an)
∼−→ P̂ic(Y an).

Moreover, it sends restricts to

Ĉl(Y an)eqv := D̂iv(Y an)eqv/P̂rin(Y
an)

∼−→ P̂ic(Y an)eqv.

Proof. We write the two group homomorphisms.
Let D = (D, g) ∈ D̂iv(Y an). Define O(D) := (O(D), ∥ · ∥g), with ∥sD∥g = e−g where sD is

the canonical section of O(D) (i.e. div(sD) = D). If D is principal, then it is not hard to check
that O(D) is isomorphic to the trivial metrized line bundle.

Conversely let L = (L, ∥ · ∥) be a metrized line bundle on Y an. Let s be a rational section of
L on Y , and define

d̂ivY an(s) := (div(s),− log ∥s∥).

This gives the desired inverse.

When k = Z, a norm-equivariant Green’s function or a norm-equivariant metric on a line
bundle on Y an is uniquely determined by its restriction to the disjoint union of the distinguished
fibers Y an

v∞ = Y an
R and Y an

vp = Y an
Qp

for all finite primes p. This follows from Lemma 5.3.6.
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5.4 Adelic line bundles as metrized line bundles

For our quasi-projective variety X defined over a number field K, we view X as a scheme over
SpecZ via Z ⊆ Q ⊆ K. Then we can apply the disjoint union decomposition (5.3.4) to X. In
particular, we get a fiberXan

triv = Xan
v0 = (X/Q)an (under the trivial norm ofQ) ofXan = (X/Z)an

(with the Banach norm on Z being the archimedean absolute value).
The goal of this section is to prove the following theorem.

Theorem 5.4.1. We have the following commutative diagram of homomorphisms of groups:

P̂ic(X/Z) �
� //

��

P̂ic(Xan)eqv

��

P̂ic(X/Q) �
� // P̂ic(Xan

triv)eqv

(5.4.1)

where the left vertical arrow is taking the generic fiber L 7→ L̃, and the right vertical arrow is
obtained by pulling back of Xan

triv ⊆ Xan.

In the proof we shall see that the top arrow in (5.4.1) exists and is injective with X replaced
by any quasi-projective arithmetic variety U (in fact it becomes an isomorphism for U , but not
for X).

We also have the corresponding version for arithmetic divisors and arithmetic divisor classes,
in view of Proposition 5.2.10 and Proposition 5.3.12.

Theorem 5.4.1′. We have the following natural injective group homomorphisms

D̂iv(X/Z) �
� // D̂iv(Xan)eqv, Ĉl(X/Z) �

� // Ĉl(Xan)eqv. (5.4.2)

Moreover strong results hold true with X replaced by any quasi-projective arithmetic variety U ,
where the homomorphisms are isomorphisms.

5.4.1 Construction over projective arithmetic varieties

Let X be a projective arithmetic variety, i.e. a separated integral scheme of finite type over
SpecZ with projective structural morphism. Let us construct a functor

P̂ic(X ) → P̂ic(X an)eqv (5.4.3)

where P̂ic(X ) is the category of Hermitian line bundles on X .
Let L = (L, ∥ · ∥) be a Hermitian line bundle on X . We define a metric of L on X an as

follows. Recall the decomposition (5.3.1)

X an = X an[∞] ∪ X an[f]

and its refinement below (5.3.4). Now ∥ · ∥ gives a metric ∥ · ∥an of L on X an
v∞ = X an

R , because
X an
R = X (C)/Gal(C/R) and the metric ∥ · ∥ is invariant under the complex conjugation. This

metric extends to X an[∞]] by norm-equivariance (Definition 5.3.11) as follows: For any x ∈
X an[∞], write (x′, t) ∈ X an

v∞ × (0, 1] for the coordinate under the homeomorphism X an[∞] =
X an
(0,1]∞

≃ X an
v∞ × (0, 1] (with (0, 1]∞ = {vt∞ : 0 < t ≤ 1}), then set ∥ · ∥anx := (∥ · ∥anx′ )t. Notice

that ∥ · ∥an is continuous on X an[∞] by construction.
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To define the metric of L at a point x ∈ X an[f], we use (the construction of the) special-
ization map r : X an[f] → X by the properness of X → SpecZ. More precisely, the point x
gives a morphism ϕx : SpecHx → X which, by the valuative criterion of properness, extends to
ϕ◦x : SpecRx → X for the valuation ring Rx of Hx. Then (ϕ◦x)

∗L is a free module over Rx of rank
1. Let sx be the basis of this free module. Define the metric ∥ · ∥anx on Lan(x) = ϕ∗xL by letting
∥sx∥anx = 1. Notice that this construction does not use the Hermitian metric on L.

Lemma 5.4.2. Let U be a Zariski open subset of X . Assume x ∈ X an satisfies r(x) ∈ U . Then
x ∈ Uan.

Proof. This is clearly true if x ∈ X an[∞], by definition of r. Now assume x ∈ X an[f]. Recall
that r(x) = ϕ◦x(mx) where mx is the unique closed point of SpecRx.

It suffices to prove ϕ◦x(Rx) ⊆ U . Assume not. Then ϕx : SpecHx → X factors through
X \ U which is itself proper, and hence its (unique) extension ϕ◦x also factors through X \ U ,
contradicting r(x) ∈ U .

Lemma 5.4.3. The metric ∥ · ∥an is continuous.

Proof. We first prove the continuity of ∥ · ∥an on X an[f]. Let r : X an → X be the specialization
map, i.e. r(x) = ϕ◦x(mx) where mx is the unique closed point of SpecRx. Let {xm}m≥1 be a
sequence in X an[f] converging to x ∈ X an[f], and let ℓ be a local section of L on X . We need to
prove that ∥ℓ(xm)∥an converges to ∥ℓ(x)∥an.

Take an open cover U1, . . . ,Un of X such that each Ui contains r(x) and trivializes L (such
an open cover exists). Then x ∈ Uan

i by Lemma 5.4.2. On the other hand, ℓ|Ui can be seen as a
regular function on Ui, which we denote by fi. Then ∥ℓ(x)∥an = |fi|x.

For each i, denote by Ii the set ofm ≥ 1 such that r(xm) ∈ Ui. Then I1∪· · ·∪In = Z>0. Now
take i ∈ {1, . . . , n} andm ∈ Ii. By Lemma 5.4.2, xm ∈ Uan

i . And then ∥ℓ(xm)∥an = |fi|xm by the
discussion in the previous paragraph. So limm∈Ii ∥ℓ(xm)∥an = limm∈Ii |fi|xm = |fi|x = ∥ℓ(x)∥an
for each i ∈ {1, . . . , n}.

Next, we check the continuity of ∥ · ∥an when X an[∞] approaches X an
v0 . Let {xm}m≥1 be a

sequence in X an[∞] converging to a point x ∈ X an
v0 and let ℓ be a local section of L on X . We

need to prove that ∥ℓ(xm)∥an converges to ∥ℓ(x)∥an.
Write (zm, tm) for the point xm under the homeomorphism X an[∞] = X an

(0,1]∞
≃ X an

v∞ ×
(0, 1]. Then tm → 0 by assumption on {xm}m≥1. Assume I is a subsequence of Z>0 such
that limm∈I zm = z ∈ X an

v∞ . Take an open subset U of X which contains r(x) and r(z) such
that L|U is trivial (such an U exists). Then x, z ∈ Uan by Lemma 5.4.2. Up to removing
finitely many elements in I, we may and do assume that xm, zm ∈ Uan for all m ∈ I. Notice
that ℓ|U can be seen as a regular function on U which we denote by f , and ∥ℓ(x)∥an = |f |x
since x ∈ Uan

v0 ⊆ Uan[f]. Now f extends to a rational function on X which we still call f .
Then f−1ℓ is a rational section of L on X such that U ∩ |div(f−1ℓ)| = ∅. In particular, we
have ∥(f−1ℓ)(xm)∥an = (∥(f−1ℓ)(zm)∥an)tm = ∥(f−1ℓ)(zm)∥tm by definition of ∥ · ∥an (the first
equality is the definition of norm-equivariance Definition 5.3.11), so ∥(f−1ℓ)(xm)∥an → 1 when
m→ ∞. So limm∈I ∥ℓ(xm)∥an = limm∈I |f |xm = |f |x = ∥ℓ(x)∥an.

Now the conclusion follows because ∥ · ∥an is clearly continous on X an[∞].

The construction (5.4.3) can be translated into a group homomorphism

D̂iv(X ) → D̂iv(X an)eqv. (5.4.4)

Let D = (D, g) be an arithmetic divisor on X . The desired Green’s function g̃ of |D|an on
X an as follows. Now g : X (C) \ |D(C)| → R naturally gives a Green’s function on X an

v∞ =
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X an
R = X (C)/Gal(C/R) since g is invariant under the complex conjugation. It extends to a

Green’s function g̃ on X an[∞] by norm-equivariance (Definition 5.3.11): For any x ∈ X an[∞],
write (x′, t) ∈ X an

v∞ × (0, 1] for the coordinate under the homeomorphism X an[∞] = X an
(0,1]∞

≃
X an
v∞ × (0, 1] (with (0, 1]∞ = {vt∞ : 0 < t ≤ 1}), and then set g̃(x) = tg(x′).
For x ∈ (X \ |D|)an[f], take a Zariski open U of X such that r(x) ∈ U and that D|U = div(f)

for some f ∈ Q(U)∗. Then g̃(x) is defined to be − log |f |x.
The continuity of g̃ on X an \ |D|an follows from Lemma 5.4.3. It self-improves to that g̃

is a Green’s function of |D|an on X an, by applying the continuity to the arithmetic divisor
(D− divX (f), g+ log |f |∞) for any rational function f on an open subset V of X with div(f) =
D|V .

The Green’s function g̃ contains much more information than g. As a particular instance,
we have the following lemma.

Lemma 5.4.4. Assume X is normal. Let D = (D, g) be an arithmetic divisor on X and let g̃ be
the associated Green’s function on X an. Then D is effective if and only if g̃ ≥ 0 on X an \ |D|an.

Proof. Only the “if” part needs to be checked. Assume g̃ ≥ 0. We only need to check the
effectiveness of D. For any v ∈ X of codimension 1, we need to show that the valuation ordv(D)
in the local ring OX ,v is non-negative. Consider the point ξ := exp(−ordv) of X an. Let f be a
local equation of D in an open neighborhood of v in X , then by definition we have

g̃(ξ) = − log |f |ξ = − log(exp(−ordvf)) = ordvf = ordv(D).

Hence we are done.

5.4.2 Construction over quasi-projective arithmetic varieties

Let U be a quasi-projective arithmetic variety, i.e. a separated integral scheme of finite type
over SpecZ with quasi-projective structural morphism. Now let us construct a functor

P̂ic(U/Z) → P̂ic(Uan)eqv (5.4.5)

and prove that it is fully-faithful. Notice that this proves the existence of the top arrow in (5.4.1)
and its injectivity, with X replaced by U .

Construction of (5.4.5)

Let L = (L, (Xi,Li, ℓi)i≥1) ∈ P̂ic(U/Z). Each Li induces a metric ∥·∥ani of Li on X an
i as was done

in the previous subsection. Then we get a metric ∥ ·∥i on L by pulling back via the isomorphism
ℓi : L

∼−→ Li|U .
Let us show that ∥ · ∥i converges pointwise to a metric ∥ · ∥ of L on Uan; then the image of

L under (5.4.5) is set to be Lan
:= (L, ∥ · ∥).

Let (X0, D0) be a boundary divisor. Write g̃0 for the Green’s function of D0 on X an
0 induced

by D0 via (5.4.4). By the definition of P̂ic(U/Z), the sequence {d̂iv(ℓiℓ−1
1 )}i≥1 is Cauchy in

D̂iv(U/Z)mod, i.e. there exists a sequence {ϵj}j≥1 of positive rational numbers tending to 0 such

that the following inequality holds true in D̂iv(U/Z)mod:

−ϵjD0 ≤ d̂iv(ℓiℓ
−1
1 )− d̂iv(ℓjℓ

−1
1 ) ≤ ϵjD0, ∀i ≥ j ≥ 1.

Write fi := log(∥ · ∥i/∥ · ∥1) as a continuous function on Uan. Then the condition above implies

−ϵj g̃0 ≤ fi − fj ≤ ϵj g̃0, ∀i ≥ j ≥ 1. (5.4.6)
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The verification is by a detour of using the constructions of (5.4.3) and (5.4.4), and Proposi-

tion 5.2.8 relating P̂ic(U/Z) with D̂iv(U/Z) (resp. Proposition 5.3.12 ralating P̂ic(Uan) with

D̂iv(Uan)). Thus {fi} is uniformly convergent to a continuous function on any compact subset
of Uan.

Recall that Uan is locally compact. So {fi} converges pointwise to a continuous function f
on Uan. Hence ∥ · ∥i converges pointwise to a continuous metric ∥ · ∥ such that

−ϵj g̃0 ≤ log(∥ · ∥/∥ · ∥j) ≤ ϵj g̃0, ∀j ≥ 1. (5.4.7)

Fully-faithfulness of (5.4.5)

Let us show that there exists a canonical isomorphism

Φ: Hom(OX0 ,L)
∼−→ Hom(OU ,L

an
) (5.4.8)

where OX0 = (OU , (X0,OX0 , 1)) and OU = (OU , ∥ · ∥0) are the identity elements.
Elements of both sides of Φ are represented by regular sections s of L which are everywhere

non-vanishing on U . Such a section s gives an element of the RHS if and only if ∥s∥ = 1 on Uan,

or equivalently if and only if d̂iv(s) = 0 in D̂iv(Uan). Such a section s gives an element of the

LHS if and only if d̂iv(s) = 0 in D̂iv(U/Z).
Recall that D̂iv(U/Z)mod = lim−→X D̂iv(X ,U) with X running over all projective models of U .

We may assume X to be normal by taking normalization. Then by Lemma 5.4.4, an element in
D̂iv(U/Z) is effective if and only if its image in D̂iv(Uan)eqv is effective. This gives the desired
isomorphism (5.4.8).

Now let L,L′ ∈ P̂ic(U/Z) with images Lan
,L′an ∈ P̂ic(Uan). Applying (5.4.8) to (L′

)∨ ⊗ L,
we get a canonical isomorphism

Hom(OX0 , (L
′
)∨ ⊗ L) ∼−→ Hom(OU , (L

′an
)∨ ⊗ Lan

),

and hence a canonical isomorphism

Hom(L′
,L) ∼−→ Hom(L′an

,Lan
).

This proves that the functor (5.4.5) is fully-faithful.

In terms of adelic divisors

The construction (5.4.5) can be converted to

D̂iv(U/Z) → D̂iv(Uan)eqv, and Ĉl(U/Z) → Ĉl(Uan)eqv. (5.4.9)

Here is a more concrete way for this construction of (5.4.9) for which we focus on the first
homomorphism. For each projective model X of U , the analytification map (5.4.4) induces a
map

D̂iv(X ,U) → D̂iv(Uan)eqv, D = (D, g) 7→ (D|U , g̃).

By direct limit, this map gives D̂iv(U/Z)mod → D̂iv(Uan)eqv. Now we wish to extend this map

to (5.4.9). Fix a boundary divisor (X0, D0) of U . Let {(Di, gi)}i≥1 ∈ D̂iv(U/Z), i.e. a Cauchy

sequence in D̂iv(U/Z)mod, with each Di a divisor of a projective model Xi of U . Then there
exists a sequence {ϵj ∈ Q>0}j≥1 with ϵj → 0 and

−ϵj(D0, g0) ≤ (Di −Dj , gi − gj) ≤ ϵj(D0, g0), ∀i ≥ j ≥ 1. (5.4.10)
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Write g̃i for the Green’s function of Di on X an
i induced by Di = (Di, gi) via (5.4.4), for each

i ≥ 0 (this includes the boundary divisor). Notice that D1|U = D2|U = · · · , and we denote by
D this divisor on U . Let us show that {g̃i}i≥1 converges to a Green’s function of D on Uan.
Indeed, (5.4.10) implies that

−ϵj g̃0 ≤ g̃i − g̃j ≤ ϵj g̃0, ∀i ≥ j ≥ 1. (5.4.11)

Thus {g̃i} is uniformly convergent to a continuous function on any compact subset of Uan.
Recall that Uan is locally compact. So {g̃i} converges pointwise to a continuous function g̃ on
Uan, which is the desired Green’s function.

Now (5.4.9) is defined by sending {(Di, gi)}i≥1 7→ (D, g̃).

5.4.3 Proof of Theorem 5.4.1

Consider the functor

P̂ic(X/Z) = lim−→
U

P̂ic(U/Z) lim of (5.4.5)−−−−−−−−→ lim−→
U

P̂ic(Uan)eqv, (5.4.12)

which is fully-faithful since (5.4.5) is. For any quasi-projective model U ofX, the mapXan → Uan

induces a natural map P̂ic(Uan)eqv → P̂ic(Xan)eqv. Thus we have a functor

lim−→
U

P̂ic(Uan)eqv → P̂ic(Xan)eqv. (5.4.13)

Now composing the two functors above, we obtain

P̂ic(X/Z) → P̂ic(Xan)eqv (5.4.14)

which gives the top arrow of (5.4.1).
Now let us prove that (5.4.13) is fully-faithful. The upshot is that the top arrow of (5.4.1)

is injective.
We start by showing that the natural functor

lim−→
U

Pic(U) → Pic(X) (5.4.15)

is fully-faithful. Fix a quasi-projective model U0 of X. It is not hard to show that the system
{U} can be taken to be the inverse system of open subscheme of U0 containing X. Now take
L,L′ two line bundles on some open neighborhood of X in U0. Then the map

lim−→
U
H0(U ,L∨ ⊗ L′) → H0(X,L∨ ⊗ L′)

is injective since both sides are subgroups of rational sections of L∨⊗L′ on X, and is surjective
because any rational section s of L∨ ⊗ L′ regular and nowhere vanishing on X must be regular
and nowhere vanishing on a neighborhood of X in U0. In other words,

lim−→
U

Hom(L|U ,L′|U ) ≃ Hom(L|X ,L′|X),

whereas the fully-faithfulness of (5.4.15). Hence (5.4.13) is fully-faithful by Lemma 5.3.7.
Next we turn to the bottom arrow of (5.4.1). In fact, we can simply repeat the construction

in §5.4.1 if X is projective (replace X/Z by X/Q; notice that the construction is easier since
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Xan = Xan[f] in this case), and then pass to quasi-projective X after a similar but easier
construction as in §5.4.2. This establishes the bottom arrow of (5.4.1) and proves its injectivity,
and at the same time proves the commutativity of the diagram (5.4.1).

As for Theorem 5.4.1′, the desired homomorphisms are

D̂iv(X/Z) = lim−→
U

D̂iv(U/Z) lim of (5.4.9)−−−−−−−−→ lim−→
U

D̂iv(Uan)eqv → D̂iv(Xan)eqv,

Ĉl(X/Z) = lim−→
U

Ĉl(U/Z) lim of (5.4.9)−−−−−−−−→ lim−→
U

Ĉl(Uan)eqv → Ĉl(Xan)eqv.

Here the last maps in both compositions are induced by X ⊆ U . Similar to Lemma 5.4.4, we
have the following:

Lemma 5.4.5. An adelic divisor D ∈ D̂iv(X/Z) is effective if and only if its image D
an ∈

D̂iv(Xan)eqv is effective.

5.5 Families of polarized dynamical systems and abelian schemes

Let S be an irreducible quasi-projective variety defined over a number field K. Let (X, f, L) be
a weakly polarized dynamical system over S, i.e.

- X is an integral scheme, projective and flat over S;

- f : X → X is an S-morphism;

- L ∈ Pic(X) such that f∗L ≃ qL for some integer q > 1.

Recall that P̂ic(X/Z) = lim−→U P̂ic(U/Z), and there is a natural functor P̂ic(U/Z) → Pic(X),

(L, (Xi,Li, ℓi)i≥1) 7→ L|X . Thus we have a natural forgetful functor

P̂ic(X/Z) → Pic(X). (5.5.1)

Theorem 5.5.1. There exists an adelic line bundle Lf ∈ P̂ic(X/Z) extending L, i.e. the image
of Lf under the forgetful functor above is L, satisfying the following properties:

(i) Lf is f -invariant, i.e. f∗Lf ≃ qLf in P̂ic(X/Z).

(ii) Assume L is relatively ample over S. Then Lf is nef in P̂ic(X/Z). If S has an affine
quasi-projective model over Z, then Lf is strongly nef.

Moreover as an element in P̂ic(X/Z)Q, the extension Lf is uniquely determined by condition
(i).

This theorem in particular applies to any abelian scheme A → S with a relatively ample
symmetric line bundle L on A. In this case f can be taken to be [n], and q = n2 (n ≥ 2). It
turns out that the resulting adelic line bundle does not depend on the choice of n, so it suffices
to take n = 2.

Remark 5.5.2. In practice, we sometimes need to work with the following slightly more general
situation. Let L ∈ Pic(X)Q such that f∗L ≃ qL for some rational number q > 1. Then in

Theorem 5.5.1 we obtain an Lf ∈ P̂ic(X/Z)Q, with P̂ic(X/Z)Q defined in the obvious way.
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5.5.1 Construction and f-invariance

Take a projective model π : X → S of X → S, i.e. a projective model S of S over Z and a
flat morphism π : X → S of projective schemes over Z such that the base change X ×S S → S
is isomorphic to X → S (so that we identify X ×S S = X). Take a Hermitian line bundle

L = (L, ∥ · ∥) ∈ P̂ic(X ) such that L|X = L.
For each positive integer i, we wish to extend the morphism f i : X → X to integral models,

where f i is the i-fold iterate of f . First, the composite X
f i

−→ X → X gives a rational map
X 99K X . Next after taking normalization we obtain a morphism fi : Xi → X . Denote by
πi : Xi → S the induced map to S. Now we have

· · · f // X
f //� _

��

· · · f // X
f //� _

��

X� _

��
· · · // Xi

//

fi

55· · · // X1
f1 // X

with the arrows in the top row being S-morphisms and the arrows in the bottom row being
S-morphisms.

Set Li := q−if∗i L ∈ P̂ic(Xi)Q.
Now let us take an open subscheme V of S containing S, such that U := XV is projective and

flat over V and that f : X → X extends to a morphism fV : U → U with f∗L ≃ qL extending to
an isomorphism f∗VLV

∼−→ qLV in Pic(U). Now, we have Xi,V = XV = U for all i ≥ 1.
Start with the isomorphism in Pic(U)Q

ℓ : LV → q−1f∗VLV .

Applying q−1f∗V to ℓ successively , we obtain canoncial isomorphisms

LV → q−1f∗VLV → q−2(f∗V)
2LV → · · · → q−i(f∗V)

iLV

in Pic(U)Q. Notice that Li|U = q−i(f∗V)
iLV by definition of Li. Hence we obtain an isomorphism

in Pic(U)Q
ℓi : LV → Li|U

for each i ≥ 1. Thus we obtain

(LV , (Xi,Li, ℓi)i≥1) (5.5.2)

with LV ∈ Pic(U), (Xi,Li) a model adelic line bundle on U for each i ≥ 1, and ℓi : LV ≃ Li|U
for each i ≥ 1.

Let us show now that the sequence (5.5.2) converges in P̂ic(U/Z), i.e. {d̂iv(ℓiℓ−1
1 )}i≥1 is

a Cauchy sequence under the boundary topology. The upshot is that it then gives an object
Lf ∈ P̂ic(X/Z) which is f -invariant.

Up to blowing up S along S \ V, we may and do assume that there is a boundary divisor
(S, D0) of V. Then we get a boundary divisor (X , π∗D0) of U .

View the isomorphism ℓ : LV → q−1f∗VLV as a rational map L → L1. This defines a model

adelic divisor d̂iv(ℓ) in D̂iv(U/Z)mod whose image in Div(U) is 0. Hence there exists r > 0 such
that

−rπ∗D0 ≤ d̂iv(ℓ) ≤ rπ∗D0

in D̂iv(U)mod.
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By construction, the isomorphism ℓi+1ℓ
−1
i : Li|U → Li+1|U is obtained from ℓ : LV → q−1f∗VLV

by applying (q−1f∗V)
i. Accordingly, the rational map ℓi+1ℓ

−1
i : Li 99K Li+1 is obtained from

ℓ : L 99K L1 by applying (q−1f∗)i. Hence we have

− r

qi
π∗D0 ≤ d̂iv(ℓi+1ℓ

−1
i ) ≤ r

qi
π∗D0 (5.5.3)

in D̂iv(U)mod. Thus {d̂iv(ℓiℓ−1
1 )}i≥1 is a Cauchy sequence under the boundary topology. We are

done for the existence.

Now let us give a vigorous proof of (5.5.3) via a precise explanation of the sentence in italic
above. Write X0 = X and L0 = L for convenience. There exists a projective model Y1 of U over
Z and morphisms τ1 : Y1 → X1 and τ ′1 : Y1 → X0, extending the identity map U → U , such that
the rational map ℓ : L0 99K L1 is given by a morphism

ℓ′ : τ ′∗1 L0 → τ∗1L1

over Y1. Moreover for each i ≥ 1, there exists a projective model Yi+1 of U over Z, together
with morphisms

τi+1 : Yi+1 → Xi+1, τ
′
i+1 : Yi+1 → Xi

extending the identity map U → U , and a morphism

gi : Yi+1 → Y1

extending the morphism f iV : U → U . Then the rational map ℓi+1ℓ
−1
i : Li 99K Li+1 is realized

as a morphism (ℓi+1ℓ
−1
i )′ : τ ′∗i+1Li → τ∗i+1Li+1 over Yi+1, by applying q−1g∗i to ℓ′ via gi. As a

consequence, we have the following equality in D̂iv(Yi+1)Q

d̂iv((ℓi+1ℓ
−1
i )′) = q−ig∗i d̂iv(ℓ

′).

Denote by π′1 : Y1 → S and π′i+1 : Yi+1 → S the structural morphisms. Notice that g∗i π
′∗
1 D0 =

π′∗i+1D0 is equal to π∗D0 in D̂iv(U)mod. Thus (5.5.3) holds true.

5.5.2 Nefness

We shall only focus on the case where S has an affine quasi-projective model V over Z. In this
case, we can assume that S is an open subscheme of V, and then L is in fact ample on X (not
just relatively ample). Hence we can start by choosing (X ,L) with L nef. Then every Li is nef
on Xi by pullback, and therefore Lf is strongly nef by definition.

5.5.3 Uniqueness

To prove the uniqueness, we start with the case where L = OX is the trivial line bundle.
Use Theorem 5.4.1, and in particular the canonical injective map

P̂ic(X/Z) → P̂ic(Xan)eqv.

The image of Lf , denoted by L
an

f , is then represented by an element (0, g) of D̂iv(Xan) because L = OX .

In particular, the Green’s function g is actually a continuous function on Xan. The condition f∗Lf ≃ qLf

then implies the following equality in D̂iv(Xan):

(0, f∗g − qg) = (div(α),− log |α|), for some α ∈ Q(X)∗.
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Now that div(α) = 0, we have that α ∈ H0(X,O∗
X). Restricted to each fiber of Xan → San, the difference

f∗g − qg = − log |α|

is then constant.
Let v ∈ San with residue field Hv. The fiber Xan

v is the Berkovich space (XHv/Hv)
an. Denote by

gmax and gmin the global maximal value and global minimal value of the continuous function g on the
compact space Xan

v . As f : Xan
v → Xan

v is surjective, the relation f∗g = qg+ cv (for a number cv) implies
gmax = qgmax + cv, whereas gmax = −cv/(q − 1). Similarly gmin = −cv/(q − 1). Hence g is constant on
Xan

v . So f∗g = g on Xan.

Therefore we have (1− q) · (0, g) = (div(α),− log |α|). Hence (1− q)Lf is trivial in P̂ic(X/Z). So Lf

is 0 in P̂ic(X/Z)Q.
Now we turn to an arbitrary L. If Lf and L

′
f are two f -invariant extensions, then Lf − L

′
f is an

f -invariant of OX . Hence the discussion above implies that Lf − L
′
f is 0 in P̂ic(X/Z)Q. So Lf = L

′
f in

P̂ic(X/Z)Q. This establishes the uniqueness.



Chapter 6

Height theory via adelic line bundles

In the whole chapter, we take K to be a number field, and X to be a quasi-projective variety
defined over K. Let n = dimX.

6.1 Height via adelic line bundles

In §2.3.2, we defined height functions on projective varieties via Hermitian line bundles, using
the arithmetic degree of Hermitian line bundles over SpecOK . This degree map was generalized
to the intersection pairing (Definition 2.4.8).

In this section, we explain how the definitions extend when we use adelic line bundles on X.

6.1.1 Adelic line bundles on SpecK and arithmetic degree

Let us start by computing P̂ic(SpecK/Z). It is easier to do the computation with adelic divisors.
Denote by X = SpecOK . For any open subscheme U of X , we have

D̂iv(U/Z)mod = D̂iv(X ,U), P̂rin(U)mod = P̂rin(X )

since X is the only normal projective model of U .
Set E := X \ U endowed with the reduced scheme structure. Then we have

D̂iv(X ,U) = {
∑
v∈|U|

nv[v] +
∑
v′∈|E|

nv′ [v
′] +

∑
σ : K↪→C

nσ[σ] : nv ∈ Z, nv′ ∈ Q, nσ = nσ ∈ R for all σ}

≃ (
⊕
v∈|U|

Z)⊕ (
⊕
v′∈|E|

Q)⊕ (
⊕

σ∈MK,∞

R).

Taking the boundary divisor E := (E , 1) =
∑

v∈|E|∪MK,∞
[v], we can compute the completion and

get

D̂iv(U/Z) = {
∑
v∈|U|

nv[v] +
∑
v′∈|E|

nv′ [v
′] +

∑
σ : K↪→C

nσ[σ] : nv ∈ Z, nv′ ∈ R, nσ = nσ ∈ R for all σ}

(6.1.1)

≃ (
⊕
v∈|U|

Z)⊕ (
⊕

v∈|E|∪MK,∞

R).

Hence we have
D̂iv(SpecK/Z) = lim−→

U
(
⊕
v∈|U|

Z)⊕ (
⊕

v∈|E|∪MK,∞

R), (6.1.2)

85
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and an arithmetic degree map

d̂eg : D̂iv(SpecK/Z) → R (6.1.3)

induced by the group homomorphism D̂iv(U/Z) → R,
∑

v∈|U| nv[v]+
∑

v′∈|E| nv′ [v
′]+
∑

σ : K↪→C nσ[σ] 7→∑
v nv +

∑
v′ nv′ +

∑
σ nσ.

It is clear that (6.1.3) factors through Ĉl(SpecK/Z), and hence we have the arithmetic degree
map via Proposition 5.2.10

d̂eg : P̂ic(SpecK/Z) → R. (6.1.4)

This arithmetic degree is compatible with the arithmetic degree of Hermitian line bundles
on SpecOK (1.1.1) in the following sense. By definition of D̂iv(SpecOK) and (6.1.2), we have a
natural group homomorphism

D̂iv(SpecOK) = (
⊕
v∈|X |

Z)⊕ (
⊕

v∈MK,∞

R) −→ D̂iv(SpecK/Z),

which induces

ι : P̂ic(SpecOK) −→ P̂ic(SpecK/Z).

Then d̂eg ◦ ι is precisely the arithmetic degree map defined by (1.1.1).

We close this subsection by the following formula for d̂eg. Let L ∈ P̂ic(SpecK/Z). Write

(L, ∥ · ∥A) for the image of L under the canonical map P̂ic(SpecK/Z) ≃ P̂ic((SpecK/Z)an)eqv
from (5.4.1). Then ∥ · ∥A is uniquely determined by the collection of Kv-metrics {∥ · ∥v on L⊗K

Kv}v∈MK
by norm-equivariance. Moreover, for any ℓ ∈ L \ {0}, we have ∥ℓ∥v = 1 for all but

finitely many v ∈MK . The following lemma is not hard to check and we leave it as an exercise.

Lemma 6.1.1. Under the notation above, we have

d̂eg(L) = −
∑

v∈MK

log ∥ℓ∥ϵvv for any ℓ ∈ L \ {0},

where ϵv = 2 if v is a complex place and ϵv = 1 otherwise. The RHS is well-defined by the
Product Formula.

In this terminology, ι sends (L, ∥ · ∥) to (LK , ∥ · ∥A), with ∥ℓ∥v := inf{|a| : a ∈ Q, ℓ ∈
aL ⊗OK

OKv}.

6.1.2 Height function defined by adelic line bundles

Let L ∈ P̂ic(X/Z).

Definition 6.1.2. The height function defined by L is

hL : X(Q) → R, x 7→
d̂eg(L|Gal(Q/K)x)

[K(x) : K]
.

Here, L|Gal(Q/K) is the image of L under P̂ic(X/Z)int → P̂ic(Gal(Q/K)x/Z)int.

Example 6.1.3. Assume X is irreducible projective. Assume L ∈ Pic(X) ample such that
f∗L ≃ qL for some f : X → X and q ∈ Z>1. Then by Theorem 5.5.1, there exists Lf ∈
P̂ic(X/Z)nef extending L such that f∗Lf ≃ qLf . Then hLf

is in the class of the height function
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of hX,L and satisfies hLf
(f(x)) = qhLf

(x) for all x ∈ X(Q). Hence hLf
equals the normalized

height function ĥX,f,L from Theorem 0.3.1.
This in particular applies to any abelian variety A and any symmetric ample line bundle L

on A, both defined over Q. So the Néron–Tate height on A is a height function defined by an
adelic line bundle L on A.

Better, if we have an abelian scheme A → S with S an irreducible quasi-projective variety,
and L a relatively ample symmetric line bundle on A; all defined over Q. Then Theorem 5.5.1
gives an L ∈ P̂ic(A/Z)nef such that hL is precisely the fiberwise Néron–Tate height defined by
L.

As an application of Lemma 6.1.1, we have the following:

Lemma 6.1.4. Denote by (L, ∥ · ∥) ∈ P̂ic(Xan)eqv the image of L under the canonical map

P̂ic(X/Z) ∼−→ P̂ic(Xan)eqv from (5.4.1). Then for any x ∈ X(Q), we have

hL(x) = − 1

[K(x) : K]

∑
v∈MK

∑
z∈Gal(Q/K)x×KKv

log ∥s(z)∥degKv
z

v (6.1.5)

for any non-zero rational section s of L on X with x ̸∈ |div(s)|.

6.1.3 Top intersection number of adelic line bundles

For any projective arithmetic variety X of dimension n+1, Definition 2.4.8 defines an intersection
pairing

P̂ic(X )n+1
int → R. (6.1.6)

Here, the index int refers to the integrability condition on the Hermitian metrics we consider;
see below Definition 2.3.2.

Let us extend this intersection pairing to adelic line bundles over quasi-projective arithmetic
varieties.

Proposition 6.1.5. Let U be a quasi-projective arithmetic variety of dimension n + 1. Then
there exists a canonical multi-linear homomorphism, which is symmetric in the n+ 1 variables,

P̂ic(U/Z)n+1
int → R (6.1.7)

extending the intersection pairing (6.1.6) above. Moreover, if L1, . . . ,Ln+1 are nef adelic line
bundles on U , then the intersection number L1 · L2 · . . . · Ln+1 ≥ 0.

Before moving on to the proof, let us explain how (6.1.7) induces an intersection pairing on

P̂ic(X/Z)int. Indeed, P̂ic(X/Z)int = lim−→U P̂ic(U/Z)int, and hence (6.1.7) gives rise to a canonical
multi-linear homomorphism (still called the intersection pairing)

P̂ic(X/Z)n+1
int → R (6.1.8)

such that L1 · . . . · Ln+1 ≥ 0 if all Li’s are nef. When n = 0, this map is exactly d̂eg.
Similarly we have a canonical multi-linear homomorphism

P̂ic(X/Q)nint → R, (6.1.9)

such that L̃1 · . . . · L̃n ≥ 0 if all L̃i’s are nef.
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Proof of Proposition 6.1.5. By linearity, it suffices to define (6.1.7) for strongly nef adelic line bundles.

The proof is easier to write down in terms of adelic divisors. So we take D1, . . . , Dn+1 ∈ D̂iv(U/Z) with
each O(Dj) being a strongly nef adelic line bundle. We will define D1 · . . . ·Dn+1.

Fix a boundary divisor (X0, D0) of U , which define the boundary topology of D̂iv(U/Z)mod. We may
furthermore assume O(D0) to be a nef Hermitian line bundle.

For j ∈ {1, . . . , n + 1}, the adelic divisor Dj is represented by a Cauchy sequence {(Xi, Dj,i)}i≥1,
where each O(Dj,i) is a nef Hermitian line bundle on the projective model Xi dominating X0. Here,
we assume that the model Xi is independent of j which is always possible. There exists a sequence
{ϵi ∈ Q>0}i≥1 with ϵi → 0 such that

−ϵiD0 ≤ Dj,i′ −Dj,i ≤ ϵiD0, ∀i′ > i

for any j ∈ {1, . . . , n+ 1}.
For any subset J ⊆ {1, . . . , n+ 1}, consider the intersection number

αJ,i := D
d−|J|
0

∏
j∈J

Dj,i.

We shall prove, by induction on |J |, that {αJ,i}i≥1 is a Cauchy sequence, and hence converges in R. Then
the limit of the Cauchy sequence gives our desired definition of D1 · . . . ·Dn+1 when J = {1, . . . , n+ 1}.

The base step |J | = 0 is trivial since there is nothing to prove in this case. Assume the claim holds
true for any |J | < r for some r > 0. We need to prove the result for |J | = r. Without loss of generality
assume that J = {1, 2, . . . , r}. Then

αJ,i′ − αJ,i = D
d−r

0 D1,i′ · · ·Dr,i′ −D
d−r

0 D1,i · · ·Dr,i

≤ D
d−r

0 (D1,i + ϵiD0) · · · (Dr,i + ϵiD0)−D
d−r

0 D1,i · · ·Dr,i

=
∑
J′⊊J

ϵ
r−|J′|
i αJ′,i

and similarly

αJ,i − αJ,i′ ≤
∑
J′⊊J

ϵ
r−|J′|
i αJ′,i′ .

So
|αJ,i′ − αJ,i| ≤

∑
J′⊊J

ϵ
r−|J′|
i |αJ′,i′ − αJ′,i|.

This shows that {αJ,i}i is a Cauchy sequence by induction hypothesis. Hence we are done for the definition
of (6.1.7).

The intersection pairing (6.1.7) is symmetric in the n + 1 variables because (6.1.6) is. Moreover,

P̂ic(U/Z)n+1
snef is mapped to R≥0 since (6.1.6) maps P̂ic(X )n+1

nef to R≥0. Now if L1, . . . ,Ln+1 are nef adelic
line bundles on U , then there exist strongly nef adelic line bundle Mj (j ∈ {1, . . . , n + 1}) such that
aLj +Mj is strongly nef for all a ∈ Z>0 for all j. Hence

(aL1 +M1) · · · (aLn+1 +Mn+1) ≥ 0

for all a ∈ Z>0. And hence the leading coefficient L1 · · · Ln+1 is non-negative.

We also have the following projection formula, by taking limits of Proposition 2.4.10.

Proposition 6.1.6. Let f : X ′ → X be a morphism of varieties defined over K. Assume
dimX ′ = dimX = n. Then for any L1, . . . , Ln+1 ∈ P̂ic(X/Z), we have

f∗L1 · . . . · f∗Ln+1 = deg(f)L1 · . . . · Ln+1

with deg(f) = [K(X ′) : K(X)] if f is dominant and deg(f) = 0 otherwise.
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We close this section by defining the height of an arbitrary dimensional closed subvariety of
X.

Definition 6.1.7. Assume L is integrable. Let Z be a closed subvariety of X defined over Q.
Define the height of Z for L to be

hL(Z) :=
(L|Z′)dimZ+1

(dimZ + 1)(L̃|Z′)dimZ
. (6.1.10)

Here Z ′ = Gal(Q/K)Z, and L 7→ L|Z′ 7→ L̃Z′ is the image of L under P̂ic(X/Z)int →
P̂ic(Z ′/Z)int → P̂ic(Z ′/Q)int.

On the RHS of (6.1.10), the numerator is the arithmetic intersection pairing (6.1.8), and
the second term of the denominator is the geometric intersection pairing (6.1.9). Of course this
height is well-defined only if (L̃|Z′)dimZ ̸= 0.

6.2 Volume and bigness of adelic line bundles

We explained in §5.1.4 the volume and bigness of geometric adelic line bundles on X. As for
the geometric-arithmetic analogue in the classical situation, we can generalize the discussion to
adelic line bundles on X.

6.2.1 Effective/small sections

Let L ∈ P̂ic(X/Z). Denote by

P̂ic(X/Z) → P̂ic(X/Q) → Pic(X), L 7→ L̃ 7→ L.

Define

H0(X,L) := {s ∈ H0(X,L) : d̂iv(s) ≥ 0}, h0(X,L) := log#H0(X,L), (6.2.1)

and recall

H0(X, L̃) = {s ∈ H0(X,L) : d̂iv(s) ≥ 0}, h0(X, L̃) = dimH0(X, L̃).

In the definition of H0(X,L), d̂iv(s) means the (arithmetic) adelic divisor (5.2.5), while in the
definition of H0(X, L̃) it means the geometric adelic divisor (5.1.5).

We state the following lemma without giving the proof. The proof is not too complicated:
one first proves the finiteness result for the model case and then passes to Cauchy sequences.

Lemma 6.2.1. Both h0(X,L) and h0(X, L̃) are finite numbers.

Next, recall the diagram (5.4.1). Let (L, ∥ · ∥) ∈ P̂ic(Xan)eqv be the metrized line bundle as

the image of P̂ic(X/Z). Then for any s ∈ H0(X,L) and any v ∈ (SpecZ)an, define

∥s∥sup := sup
x∈Xan

∥s(x)∥, ∥s∥v,sup := sup
x∈Xan

v

∥s(x)∥. (6.2.2)

Then we have by construction of (5.4.1) and Lemma 5.4.5, we have

H0(X,L) = {s ∈ H0(X,L) : ∥s∥sup ≤ 1}, H0(X, L̃) = {s ∈ H0(X,L) : ∥s∥v0,sup ≤ 1}. (6.2.3)

By Lemma 6.1.4, hL is non-negative outside |div(s)| if we can find a non-zero small section
s ∈ H0(X,L).
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6.2.2 Volume and bigness

Definition-Theorem 6.2.2. The following limit exists and is defined to be the volume of L:

vol(X,L) := lim
m→∞

(n+ 1)!

mn+1
h0(X,mL). (6.2.4)

Moreover, assume that L is represented by (L, {Xi,Li, ℓi}i≥1) on U for a quasi-projective model
U of X, then

vol(X,L) = lim
i→∞

vol(Xi,Li).

Definition 6.2.3. An adelic line bundle L ∈ P̂ic(X/Z) is said to be big if vol(X,L) > 0.

Theorem 6.2.4 (Arithmetic Hilbert–Samuel). Assume L is nef. Then vol(X,L) = L
n+1

.

Theorem 6.2.5 (Arithmetic Siu). If L and M are nef adelic line bundles on X, then

vol(X,L−M) ≥ L
n+1 − (n+ 1)L

n
M.

All the definitions and results extend to L ∈ P̂ic(X/Z)Q, i.e. Q-adelic line bundles on X.

Theorem 6.2.6 (continuity). Let L,M1, . . . ,M r ∈ P̂ic(X/Z). Then

lim
t1,...,tr→0

vol(L+ t1M1 + · · ·+ trM r) = vol(L),

with t1, . . . , tr rational numbers.

The following lemma states that the bigness of the generic fiber L̃ of L is not far from the
bigness of L. In view of height theory, this is reasonable: having a non-zero small section yields
the non-negativity of hL, whereas having a non-zero section yields a lower bound of hL (both
outside the support of the divisor of the section).

Write f : X → SpecK for the structural morphism.

Lemma 6.2.7. Let N ∈ P̂ic(K/Z) be an adelic line bundle with d̂eg(N) > 0. Let L ∈ P̂ic(X/Z).
Assume that the generic fiber L̃ of L is big (see Definition 5.1.13). Then the adelic line

bundle L+ cf∗N ∈ P̂ic(X/Z) is big for all rational numbers c≫ 1.

6.2.3 The height inequality

In this subsection, we prove the following height inequality which plays a significant role in the
solution of many problems recently.

Theorem 6.2.8. Let π : X → S be a morphism of quasi-projective varieties defined over a
number field K. Let L ∈ P̂ic(X/Z) and M ∈ P̂ic(S/Z). Denote by L̃ ∈ P̂ic(X/Q) the generic
fiber of L.

(i) If L is big, then there exists ϵ > 0 and a non-empty Zariski open subset U of X such that

hL(x) ≥ ϵhM (π(x)), ∀x ∈ U(Q).

(ii) If L̃ is big, then there exist c > 0 and ϵ > 0 and a non-empty Zariski open subset U of X
such that

hL(x) ≥ ϵhM (π(x))− c, ∀x ∈ U(Q).
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Proof. Let us prove (i). Assume L is big. Then vol(X,L) > 0.

We claim that there exists ϵ ∈ Q>0 such that vol(X,L−ϵπ∗M) > 0. If L andM are nef, this
follows from Arithmetic Siu (Theorem 6.2.5) and Arithmetic Hilbert–Samuel (Theorem 6.2.4).
In general, we use the continuity (Theorem 6.2.6) to get that

lim
ϵ→0

vol(X,L− ϵπ∗M) = vol(X,L) > 0.

Hence such an ϵ exists.

Therefore there exists m ∈ Z>0 and a non-zero s ∈ H0(X,m(L− ϵπ∗M)). Hence by (6.2.3),
we have

hL−ϵπ∗M (x) ≥ 0, ∀x ∈ (X \ |div(s)|)(Q).

Hence (i) holds true because hL−ϵπ∗M (x) = hL(x)− ϵhM (π(x)).

Now we prove (ii). Take N ∈ P̂ic(SpecK/Z) with d̂eg(N) = 1. For the structural morphism

f : X → SpecK, denote by L
′
= L+ cf∗N for a rational number c > 0. By Lemma 6.2.7, L

′
is

big for c≫ 1. Hence we can apply part (i) to (L
′
,M) and conclude.

6.2.4 A formula to compute the self-intersection of geometric adelic line bun-
dles

Let L ∈ P̂ic(X/Z), and write (L, ∥·∥) for its image under the injective homomorphism P̂ic(X/Z) →
P̂ic(Xan)eqv. Each place v of K can be seen as a point in (SpecK/Z)an, which is over the point
vp ∈ (SpecQ/Z)an with p ≤ ∞. Now ∥ · ∥v is a metric of L|Xan

v
, and hence defines a curvature

current c1(L)v; at archimedean places this is −
√
−1
2π ∂∂ log ∥ · ∥v, and we omit the discussion at

non-archimedean places.

Lemma 6.2.9. Let L1, . . . , Ln ∈ P̂ic(X/Z)int, and let L̃1, . . . , L̃n ∈ P̂ic(X/Q)int be their generic
fibers. Then for any place v of K, we have

L̃1 · . . . · L̃n =

∫
Xan

v

c1(L1)v · · · c1(Ln)v.

In practice, take L ∈ P̂ic(X/Z)int with generic fiber L̃, and let σ : K ↪→ C. Then L̃n =∫
Xσ(C) c1(Lσ)

n by Lemma 6.2.9. If L̃ is known to be nef, then we can use Hilbert–Samuel to get

vol(X, L̃) =

∫
Xσ(C)

c1(Lσ)
n.

6.3 A brief discussion on equidistribution

6.3.1 Essential minimum and fundamental inequality

Definition 6.3.1. Let L ∈ P̂ic(X/Z). Define the essential minimum to be

e1(X,L) := sup
U⊆X

inf
x∈U(Q)

hL(x),

where U runs over all Zariski open subsets of X.

The fundamental inequality is:
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Theorem 6.3.2. Let L ∈ P̂ic(X/Z) be nef such that its generic fiber L̃ ∈ P̂ic(X/Q) is big. Then

e1(X,L) ≥ hL(X) ≥ 1

n+ 1
e1(X,L).

The second inequality is a weak version of Zhang’s successive minima theorem. The first
inequality is a consequence of the arithmetic Hilbert–Samuel formula with the following lemma,
which is an application of the Geometry of Numbers in §1.3.1 and the formula for hL from
Lemma 6.1.4.

Lemma 6.3.3. For any positive integer m > 0 such that h0(X,mL) > 0, we have

e1(X,L) ≥
h0(X,mL)

mh0(X,mL̃)
− 2

m
[K : Q]

if the RHS is > 0.

6.3.2 Equidistribution

Let L ∈ P̂ic(X/Z)nef . Assume that deg
L̃
(X) = L̃n > 0. Then the height

hL(X) =
L
n+1

(n+ 1) deg
L̃
(X)

from (6.1.10) is well-defined. Define the equibrilium measure

dµL,v :=
1

deg
L̃
(X)

c1(L)
n
v . (6.3.1)

A sequence {xm}m≥1 in X(Q) is said to be generic if any proper closed subvariety of X
contains only finitely many terms in the sequence. The sequence is said to be small if hL(xm) →
hL(X) when m→ ∞.

Let x ∈ X(Q). Define O(x) := Gal(Q/K)x ⊆ X(Q), and set

µx,v :=
1

#O(x)
δO(x)×KKv

(6.3.2)

where the RHS is the dirac measure.

Theorem 6.3.4. Let {xm}m≥1 be a generic small sequence. Then the Galois orbit of {xm}m≥1

is equidistributed in Xan
v for dµL,v for any place v of K. This means: the weak convergence

µxm,v → dµL,v holds on Xan
v , i.e. for any compactly supported continuous function f on Xan

v ,
we have

1

#O(xm)

∑
y∈O(xm)×KKv

f(y) −→
∫
Xan

v

fdµL,v. (6.3.3)

Proof. The key approach is the variational principle of Szpiro–Ullmo–Zhang. The conditions
and the result do not change if we replace L by L + f∗N for some N ∈ P̂ic(SpecK/Z)int
with d̂eg(N) > 0, where f : X → SpecK is the structural morphism. So we may assume that

L
n+1

> 0. Then L is big, and hence L̃ is big.
Take M ∈ Ker(P̂ic(X/Z)int → P̂ic(X/Q)). Let ϵ ∈ Q∗. By the first part of Theorem 6.3.2,

we have

e1(X,L+ ϵM) ≥ (L+ ϵM)n+1

(n+ 1) deg
L̃
(X)
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if L+ ϵM is nef. We have

(L+ ϵM)n+1 = L
n+1

+ ϵ(n+ 1)L
n
M +O(ϵ2).

Hence the RHS is > 0 if |ϵ| ≪ 1 because L
n+1

> 0. So

e1(X,L+ ϵM) ≥ L
n+1

+ ϵ(n+ 1)L
n
M

(n+ 1) deg
L̃
(X)

+O(ϵ2).

By definitions of e1 and of generic sequence, we have

lim inf
m→∞

hL+ϵM (xm) ≥ L
n+1

+ ϵ(n+ 1)L
n
M

(n+ 1) deg
L̃
(X)

+O(ϵ2).

Since {xm}m≥1 is small, we have

lim
m→∞

hL(xm) = hL(X) =
L
n+1

(n+ 1) deg
L̃
(X)

.

Therefore

lim inf
m→∞

ϵhM (xm) ≥ ϵ
L
n
M

deg
L̃
(X)

+O(ϵ2). (6.3.4)

Now letting ϵ→ 0+ and ϵ→ 0−, we obtain

lim
m→∞

hM (xm) =
L
n
M

deg
L̃
(X)

. (6.3.5)

Now we wish to translate (6.3.5) into (6.3.3). For this purpose, we would choose an M
associated with the function f . Roughly speaking, we would take M to be the trivial line
bundle OX endowed with the metric ∥ · ∥w (for each place w of K), as a line bundle on Xan,
such that ∥1∥v = e−f and ∥1∥w = 1 for any w ̸= v. Then the LHS of (6.3.5) would be the LHS
of (6.3.3) and the RHS of (6.3.5) would be the RHS of (6.3.3).

While this idea can be performed directly if X is projective, we need to be more cautious
for our quasi-projective X. Now let us explain the execution in more details.

Assume L is represented by a Cauchy sequence (L, (Xi,Li, ℓi)i≥1) in P̂ic(U)mod for a quasi-
projective model U of X. Assume that ψ : Xi → X1 extends the identity morphism on U , and
denote by Xi to be the generic fiber of Xi which contains X as an open subvariety.

Let X ′
1 be another projective model of X1. Let M ∈ P̂ic(X ′

1)Q with a fixed isomorphism
MK → OX1 . Then it induces a metric ∥ · ∥w of OX1 on Xan

1,w for any place w of K. Assume that
the metric ∥1∥w = 1 for any w ̸= v. Denote by g = − log ∥1∥v; it is continuous on Xan

1,v. Then
by definition, we have

hM(xm) =
1

#O(xm)

∑
y∈O(xm)×KKv

g(y), L
n
M = lim

i→∞
Ln
i M = lim

i→∞

∫
Xan

v

gc1(Li)
n
v .

So we get, by (6.3.5),

lim
m→∞

1

#O(xm)

∑
y∈O(xm)×KKv

g(y) =
1

deg
L̃
(X)

lim
i→∞

∫
Xan

v

gc1(Li)
n
v , (6.3.6)
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with g viewed as a function on Xan
i,v by the pullback via ψi,K : Xi → X1.

Now vary g = − log ∥1∥v, which is a model function on Xan
1,v associated with (X ′

1,M).
Gubler’s density theorem implies that the space of all such model functions is dense in C(Xan

1,v)
under the topology of uniform convergence. So (6.3.6) holds true for any function in C(Xan

1,v).
Finally, assume f ∈ Cc(X

an
v ), viewed as an element of C(Xan

i,v) by the open immersion
X → Xi. Then

lim
i→∞

∫
Xan

v

fc1(Li)
n
v = lim

i→∞

∫
Xan

v

fc1(Li)
n
v |Xan

v
=

∫
Xan

v

fc1(L)
n
v .

And we can conclude by (6.3.6) applied to f .
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