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Motivation
It is a fundamental question in mathematics to solve equations.

For example:
f (X ,Y )= polynomial in X and Y with coefficients in Q.
What can we say about the Q-solutions to f (X ,Y ) = 0?

 

Diophantine problem. Rational points on algebraic curves.

Some examples:
f (X ,Y ) X 2 + Y 2 − 1 Y 2 − X 3 − X Y 2 − X 3 − 2 Y 2 − X 6 − X 2 − 1

Q-
solutions

(3/5,4/5),
(5/13,12/13),
(8/17,15/17),
etc.

(0,0), (±1,0).
(−1,1), (34/8,71/8),
(2667/9261,13175/9261),
etc.

(0,±1),
(±1/2,±9/8).

infinitely many finitely many infinitely many finitely many
genus of
the as-
sociated
curve

0 1 1 2
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Setup and Genus 0

In what follows,
➢ g ≥ 0 and d ≥ 1 integers;
➢ K = number field of degree d ;
➢ C = irreducible smooth projective curve of genus g defined over K .

As usual, we use C(K ) to denote the set of K -points on C.

✎ If g = 0, then either C(K ) = ∅ or C ∼= P1 over K .
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Genus 1

Assume g = 1.
If C(K ) 6= ∅, then C(K ) has a structure of abelian groups with an identity
element O ∈ C(K ).   Elliptic curve E /K := (C,O).

Theorem (Mordell–Weil)

E(K ) is a finitely generated abelian group. Namely,

E(K ) ∼= Zρ ⊕ E(K )tor

with ρ <∞ and E(K )tor finite.
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Genus 1: finite part

Theorem (Mazur ’77 for K = Q, Merel ’96)

#E(K )tor is uniformly bounded above in terms of [K : Q].

Mazur proved this result by establishing the following theorem:

Theorem (Mazur ’77)

If N = 11 or N ≥ 13, then the only Q-points of the modular curve X1(N) are
the rational cusps.

The genus of X1(N) is ≥ 2 if N = 13 or N ≥ 16.
  results of rational points on curves of genus ≥ 2.
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Genus ≥ 2: Mordell Conjecture

Mordell made the following conjecture about 100 years ago (1922), known as
the Mordell Conjecture. It became a theorem in 1983, proved by Faltings.

Theorem (Faltings ’83; known as Mordell Conjecture)

If g ≥ 2, then the set C(K ) is finite.

Feature of this theorem When applied to Mazur’s result
on X1(N)

➢ weak topological hypothesis,
very strong arithmetic conclusion!

✎ X1(N) has only finitely
many Q-points if N ≥ 16.

➢ not constructive yet.
✎ X1(N)(Q) cannot be

determined by Faltings’s
Theorem.
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Genus ≥ 2: Fermat’s Last Theorem

Fix n ≥ 4 integer.

Fn : X n + Y n − 1 = 0.

Then g(Fn) ≥ 2.

Faltings
��

∃ only finitely many (x , y) ∈ Q2 with xn + yn = 1.

For this example, more is expected.

Theorem (Wiles, Taylor–Wiles, ’95; known as Fermat’s Last Theorem)

If x and y are rational numbers such that xn + yn = 1, then (x , y) = (0,±1) or
(x , y) = (±1,0).

Of course if n is furthermore assumed to be odd, then −1 cannot be attained.
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Genus ≥ 2

From now on, we always assume that g ≥ 2.
The example of Fermat’s Last Theorem suggests that it can be extremely
hard to compute C(Q) for an arbitrary C!
Instead, here is a more achievable but still fundamental question.

Question (Mordell, Weil, Manin, Mumford, Faltings, etc.)

Is there an “easy” upper bound for #C(K )? How does C(K ) “distribute”?

Different grades of the question:
➢ Finiteness of C(K )

➢ Upper bound of #C(K )

➢ Uniformity of bounds of #C(K )

➢ Effective Mordell
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Heights

Use height to measure the “size” of the rational and algebraic points.
✎ On Q: h(a/b) = log max{|a|, |b|}, for a,b ∈ Z and gcd(a,b) = 1.
✎ On Pn(Q): h([x0 : · · · : xn]) = log max{|x0|, . . . , |xn|}, for xi ∈ Z and

gcd(x0, . . . , xn) = 1.
✎ Arbitrary number field K : For [x0 : · · · : xn] ∈ Pn(K ) with each xj ∈ K ,

h([x0 : · · · : xn]) = 1
[K :Q]

∑

v∈ΣK
log max{‖x0‖v , . . . , ‖xn‖v}.

  (logarithmic) Weil height on Pn(Q), and on any subvariety X ⊆ Pn.

Two important properties →
↓

Bounded from below

h(x) ≥ 0 for all x ∈ Pn(Q).

Northcott Property

For all B and d ≥ 1,

{x ∈ Pn(Q) : h(x) ≤ B, [Q(x) : Q] ≤ d}

is finite.
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Genus ≥ 2: Faltings’s proof of the Mordell Conjecture

integral points on moduli space

Extracted from « Séminaire sur les pinceaux arithmétiques,
La conjecture de Mordell » (Astérisque 127), Lucien Szpiro.

• Ag = moduli space of pp abelian varieties

New approach to treat integral points on moduli spaces:
Lawrence–Venkatesh.
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Faltings height

➢ A/Q = pp abelian variety.
Faltings defined an intrinsic number hFal(A) associated with A (cf. Astérisque
127, or Cornell–Silverman).
  hFal : Ag(Q)→ R.

Why is it called a height?

Fix an embedding Ag ⊆ PN over Q.  Weil height h : Ag(Q)→ R.

Theorem (Faltings, improved constants by Bost, David, Pazuki)

| 12hFal(A)− h([A])| ≤ cg log(h([A]) + 2).

Upshots:
➢ hFal(A) bounded from below solely in terms of g.
➢ Northcott property for hFal.
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Genus ≥ 2: a new proof by Vojta

In early 90s, Vojta gave a second proof to Faltings’s Theorem with
Diophantine method.
➢ Closer to A. Weil’s hope.
➢ Does not prove the other big conjectures (Tate, Shafarevich) as in

Faltings’s first proof.
➢ In this proof, one sees some descriptions of distribution of algebraic

points on C. They lead to an upper bound on #C(K ).
➢ The proof was simplified by Bombieri. And generalized by Faltings to

some high dimensional cases.

Starting Point: Take P0 ∈ C(K ), and see C as a curve in J = Jac(C) via the
Abel–Jacobi embedding C → J based at P0. Then C(K ) ⊆ J(K ).
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Vojta’s proof of the Mordell Conjecture: Setup

0 R

small points

large points

Normalized height function ĥ : J(Q)→ R≥0 vanishing
precisely on J(Q)tor.
  ĥ : J(K )⊗Z R→ R≥0 quadratic, positive definite.
  Normed Euclidean space (J(K )⊗Z R, | · | := ĥ1/2),

with J(K ) a lattice.
  Inner product 〈·, ·〉 on J(K )⊗Z R,
and the angle of each two points in J(K )⊗Z R.
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Vojta’s proof of Mordell Conjecture: Mumford’s work

A starting point is the following (consequence of) Mumford’s Formula: For
P,Q ∈ C(Q) with P 6= Q, we have

1

g

�

|P|2 + |Q|2 − 2g〈P,Q〉
�

+ O(|P|+ |Q|+ 1) ≥ 0

As g ≥ 2, the leading term is an indefinite quadratic form, which a priori could
take any value. This gives a strong constraint on the pair (P,Q)!
  Algebraic points are “sparse” in C!
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Vojta’s proof of Mordell Conjecture: Both inequalities

If P1, . . . , Pn are in the cone where P lies, then

|P | � |Pn| � 2|Pn�1| � · · · � 2n|P |.
So in each cone there are  log2  + 1 large points!

7rkJ(K) such cones, according to the angle condition.

0R

small points P

large points

 

Theorem

There exist R = R(C) and κ = κ(g)
satisfying the following property. If two
distinct points P,Q ∈ C(Q) satisfy
|Q| ≥ |P| ≥ R and

〈P,Q〉 ≥ (3/4)|P||Q|,

then
➢ (Mumford, ’65) |Q| ≥ 2|P|;
➢ (Vojta, ’91) |Q| ≤ κ|P|.

This finishes the proof of the
Mordell Conjecture, with #large
points≤ (log2 κ+ 1)7rkJ(K ).
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Genus ≥ 2: Classical bound

0 R

small points

large points

Theorem (Bombieri ’91, de Diego ’97, Alpoge 2018)

➢ One can take R2 = c0(g)hFal(J).

➢ #large points ≤ c(g)1.872rkZJ(K ).  A nice
bound for #large points!

For a bound of #C(K ), we have:

Theorem (David–Philippon, Rémond 2000)

#C(K ) ≤ c(g, [K : Q],hFal(J))1+rkZJ(K ).
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Genus ≥ 2

Different grades of the question:
➢ Finiteness of C(K )

➢ Upper bound of #C(K )

➢ Uniformity of bounds of #C(K )

➢ Effective Mordell

Sparsity of algebraic points:
“sparsity” of large points

➢ Mumford’s Inequality ’65
➢ Vojta’s Inequality ’91
➢ ?✎
➢ ???

And about the distribution / sparsity of points:
✎ Are there other descriptions of the “sparsity” of algebraic points on C? Or

at least can we say something about “small” points?
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Genus ≥ 2: Towards uniform bounds on #C(K )

The cardinality #C(K ) must depend on g.

Example

The hyperelliptic curve defined by

y2 = x(x − 1) · · · (x − 2024)

has genus 1012 and has at least 2026 different rational points.

The cardinality #C(K ) must depend on [K : Q].

Example

The hyperelliptic curve
y2 = x6 − 1

has points (1,0), (2,±
p

63), (3,±
p

728), etc.
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Genus ≥ 2: Towards uniform bounds on #C(K )

Here is a very ambitious bound.

Question

Is it possible to find a number B(g, [K : Q]) > 0 such that

#C(K ) ≤ B?

This question has an affirmative answer if one assumes a widely open
conjecture of Bombieri–Lang on rational points on varieties of general type
(Caporaso–Harris–Mazur, Pacelli, ’97).
✎ Two divergent opinions towards this conditional result: either this ambitious bound

is true, or one could use this to disprove this conjecture of Bombieri–Lang.
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Genus ≥ 2: Mazur’s Conjecture B

Theorem (Dimitrov-G’-Habegger, 2021; Mazur’s Conjecture B (’86, 2000))

If g ≥ 2, then
#C(K ) ≤ c(g, [K : Q])1+rkZJ(K )

where J is the Jacobian of C. Moreover, c(g, [K : Q]) grows at most polynomially in
[K : Q].

➢ Compared to the classical result, the height of C is no longer involved.

➢ We showed that c does not depend on [K : Q] assuming the relative Bogomolov
conjecture. Kühne (2021) removed this dependence on [K : Q] unconditionally.

➢ Previous results:

➢ When J ⊆ En and some particular family of curves (David, Philippon,
Nakamaye 2007). Average number of #C(Q) when g = 2 (Alpoge 2018).

➢ When rkJ(K ) ≤ g − 3 (hyperelliptic by Stoll 2015, then
Katz–Rabinoff–Zureick-Brown 2016).
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Example of a 1-parameter family

Example (DGH 2019)

Let s ≥ 5 be an integer and let Cs be the genus 2 hyperelliptic curve defined by

Cs : y2 = x(x − 1)(x − 2)(x − 3)(x − 4)(x − s).

Then

rk(Js)(Q) ≤ 2g#{p : p = 2 or Cs has bad reduction at p}

≤ 2g#{p : p|2 · 3 · 5 · s(s − 1)(s − 2)(s − 3)(s − 4)}

�g
log s

log log s
.

This yields, for any ε > 0,
#Cs(Q)�ε sε.
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Genus ≥ 2: New Gap Principle
Our new contribution is a New Gap Principle.

R2 = c0(g)hFal(C)

r2 = c1(g)hFal(C)

# small balls to cover all small points ≤ (R/r)rkJ(K)

# of points in each ball ≤ c2

0 R

r
PTheorem (New Gap Principle,

Dimitrov–G’–Habegger + Kühne, 2021)

Assume g ≥ 2. Each P ∈ C(Q) satisfies

#{Q ∈ C(Q) : ĥL(Q−P) ≤ c1hFal(J)} ≤ c2

for some positive constants c1 and c2
depending only on g.

➢ The Bogomolov Conjecture, proved by Ullmo and S.Zhang (’98), gives this result
with c1 and c2 depending on C (but don’t know how).

➢ The New Gap Principle is another phenomenon of the “sparsity” of algebraic
points in C of genus ≥ 2. It says that algebraic points in C(Q) are in general far
from each other in a quantitative way.

➢ It implies that #small rational points ≤ c′(g)1+rkJ(K ) by a simple packing
argument.

➢ Second proof by Yuan; uses Yuan–Zhang’s adelic line bundle over quasi-proj var.
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Genus ≥ 2
Different grades of the question:
➢ Finiteness of C(K )

➢ Upper bound of #C(K )

➢ Uniformity of bounds of #C(K )
“subject” to the Mordell–Weil

rank
➢ Effective Mordell

Sparsity of algebraic points:

➢ Mumford’s Inequality -’65
➢ Vojta’s Inequality -’91
➢ New Gap Principle -2021

(Dimitrov–G’–Habegger +
Kühne)

➢ ???✎

And:
✎ Mumford’s and Vojta’s Inequalities to describe that large algebraic points

are “sparse” in C.
✎ New Gap Principle gives another description on how all algebraic points

are “sparse” in C.
✎ Effective Mordell is a conjectural statement which describes where to find

the rational points (“no large rational points”).
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Genus ≥ 2: Effective Mordell

Conjecture (Effective Mordell, made by Szpiro)

There exists an effectively computable c = c(g, [K : Q], disc(K /Q)) > 0 such
that ĥ(P) ≤ chFal(J) for all C/K and P ∈ C(K ).

➢ Effective Mordell tells us where to find all the rational points on C (“no large
rational points”)!

➢ Little is known about Effective Mordell.

➢ Checcoli, Veneziano, and Viada proved results in this direction when C ⊆ En for
some elliptic curve E with rkE(K ) < n (modification if E has CM) and C is
transverse, following the method of Manin–Demjanenko.
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Genus ≥ 2: Chabauty–Coleman–Kim method

✎ Another approach to compute C(K ) is the Chabauty–Coleman–Kim
method, by obtaining sharp bounds on #C(K ) when rkJ(K ) is small.
Currently:

➢ Chabauty–Coleman:
K = Q, rkJ(Q) < g.

C(Q)
� � //
� _

��

J(Q)� _

��
C(Qp)

� � // J(Qp)

dim J(Q) ≤ rkJ(Q) < g ⇒ C(Q) ⊆ C(Qp) ∩ J(Q) finite.

➢ Quadratic Chabauty: rkJ(Q) = g, in various publications of Jennifer
Balakrishnan in collaboration with Besser, Müller, Dogra et al.
A geometric point of view by Edixhoven–Lido:

(1, f )∗Px //

��

Px

��
C //

;;

J
(1,f ) // J × J∨

the lifting exists⇔ deg(1, f )∗Px = 0.

⇒ C ,→ T with T → J a Gρ−1
m

-torsor, with ρ = rkNS(J).

Hence need rkJ(Q) < g + ρ − 1.
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Proof of DGH: a tale of two heights

Theorem (New Gap Principle,
Dimitrov–G’–Habegger + Kühne, 2021)

Assume g ≥ 2. Each P ∈ C(Q) satisfies

#{Q ∈ C(Q) : ĥL(Q−P) ≤ c1hFal(J)} ≤ c2

for some positive constants c1 and c2
depending only on g.

➢ Q − P ∈ C − C ⊆ J

➢ We are comparing:

✎ ĥL|C−C height on J, and
✎ hFal(J) height of J

Put all curves “together”:

Cg

��

universal curve

Mg moduli space of curves of genus g with level-4-structure
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✎ ĥL|C−C height on J, and
✎ hFal(J) height of J

Cg ×Mg Cg
D1 //

&&

Jac(Cg /Mg)

π

��
Mg

X ⊆ Ag

π

��
Ag

➢ ĥ fiberwise, and

➢ hFal(J) height on the base Mg .

➢ Want to find the correct condition
for X such that ĥ ≥ chFal when
restricted on X for some constant
c.
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Proof of DGH: a tale of two heights

Theorem (GH 2019, DGH 2021)

The followings are equivalent:

(i) There exists a Zariski open dense subset U of X, and a constant c = c(X ) > 0
such that for all x ∈ U(Q),

ĥ(x) ≥ chFal(Ax )− c.

(ii) X satisfies a linear algebra property, called non-degenerate.

Non-degeneracy: Habegger 2013, GH 2019, DGH 2021. The definition uses Betti map
(Masser–Zannier, Bertrand).
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Proof of DGH: Non-degeneracy

➢ π : A→ S an abelian scheme


ytaking Betti realization / forgetting complex structures of the fibers

➢ T → S a local system of real torus (Ts = H1(As,R)/H1(As,Z))


yBetti foliation F on A
➢ TxA = TxF

⊕

TxAπ(x) for each x ∈ A(C).

Definition

X ⊆ A is called non-degenerate if Tx X ⊆ TxA→ TxAπ(x) has dimension dimX at
some point x ∈ X (C).

In the terminology of Yuan–Zhang 2021, non-degeneracy is equivalent to: the
tautological adelic line bundle eLg is big when restricted to X (DGH + YZ).

An immediate observation by definition: If dimX > g, then X is degenerate!   naive
degenerate.
For example, Cg − Cg = D1(Cg ×Mg Cg) is degenerate!
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Proof of DGH: a tool (degeneracy loci) and bigness

✎ (G’ 2020) For each t ∈ Z, one can define the t-th degeneracy locus
X deg(t) of X .  Important tool to study these uniformity results.

As an application of mixed Ax–Schanuel (G’) and X deg(0), one proves:

Theorem (G’ 2020, Betti rank)

TFAE:

➢ X is degenerate, i.e. eLg |X is NOT big.

➢ ∃ abelian subscheme B of A→ S such that “a
generic fiber of ι ◦ p|X is naive degenerate”, i.e.
dim X − dim(ι ◦ p)(X) > dimB − dim S.

A
p //

��

A/B
ι //

��

Ag′

��
S

= // S // Ag′ .

✎ Applications of this theorem and beyond:

➢ X := DM(C[M+1]
g ) is non-degenerate if M ≥ 3g − 2 (for DGH and K).

➢ the full Uniform Mordell–Lang Conjecture (G’–Ge–Kühne 2021).
➢ X deg(1) for the Relative Manin–Mumford Conjecture (G’–Habegger 2023).
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Genus ≥ 2: Some further questions related to the
rather uniform bound of DGH+K

R2 = c0(g)hFal(C)

r2 = c1(g)hFal(C)

# small balls to cover all small points ≤ (R/r)rkJ(K)

# of points in each ball ≤ c2

0 R

r
P

#C(K ) ≤ c2(g)c(g)rkJ(K )

✎ How does c2(g) grow as g →∞
(Manin–Mumford constant)?
➢ c2(g)→∞

(y2 = x(x − 1) · · · (x − 2024)).
➢ Over function fields: ∼ g2 by

Looper–Silverman–Wilms 2022.
➢ Over number fields: no explicit

formula.

✎ What if we confine ourselves to
rational torsion points
TP(C,P) := (C − P)(K ) ∩ Jtor?

➢ Baker–Poonen 2001: #TP(C,P) ≤ 2 for all but B = B(C) points
P ∈ C(K ).

➢ Is it possible to make B(C) uniform in g up to replacing 2 by 6?
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Genus ≥ 2: Some further questions related to the
rather uniform bound of DGH+K

R2 = c0(g)hFal(C)

r2 = c1(g)hFal(C)

# small balls to cover all small points ≤ (R/r)rkJ(K)

# of points in each ball ≤ c2

0 R

r
P

#C(K ) ≤ c2(g)c(g)rkJ(K )

✎ Is it true that c(g)→ 1 when
g →∞, or at least give an
absolute upper bound of c(g)
(Vojta constant)?
➢ In view of Mumford’s Formula

1

g

�

|P|2 + |Q|2 − 2g〈P,Q〉
�

+O(|P|+|Q|+1) ≥ 0.

➢ The angle condition in both
inequalities can be improved.

➢ A more precise version of
Mumford’s formula.

✎ Arithmetic Statistics: Average number of rational points.
➢ Alpoge (’18): K = Q and g = 2, before the result of DGH.
➢ Bhargava–Gross (’13): K = Q, the average of 2rkJ(Q) is a finite

number for hyperelliptic curves having a rational Weierstrass point.
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Beilinsin–Bloch height for Gross–Schoen / Ceresa
cycles
➢ C smooth projective curve of genus g ≥ 3;
➢ J = Jac(C);
➢ ξ ∈ Pic1(C) such that (2g − 2)ξ = ωC .

From these data, we obtain homologically trivial 1-cycles:
✎ (Gross–Schoen) ∆GS(C) ∈ Ch1(C3) the modified diagonal;
✎ (Ceresa) Ce(C) := iξ(C)− [−1]∗iξ(C) ∈ Ch1(J).

Theorem (G’–S.Zhang, ’24)

There exist positive constants ε, c and a Zariski open dense subset Mamp
g of

Mg defined over Q such that

〈∆GS(C),∆GS(C)〉BB ≥ εhFal(C)− c
〈Ce(C),Ce(C)〉BB ≥ εhFal(C)− c

for all [C] ∈Mamp
g (Q).
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Beilinsin–Bloch height for Gross–Schoen / Ceresa
cycles

Corollary (Northcott property, G’–S.Zhang ’24)

There exists a Zariski open dense subset Mamp
g of Mg defined over Q such

that for all H,D ∈ R, we have

#{[C] ∈Mamp
g (Q) : deg(Q([C]) : Q) < D, 〈∆GS(C),∆GS(C)〉BB < H} <∞.

The definitions of the two cycles extends to any e ∈ Pic1(C).

Corollary (Lower bound, G’–S.Zhang ’24)

There exist a number cg and a Zariski open dense subset Mamp
g of Mg,1

defined over Q such that

〈∆GS(C),∆GS(C)〉BB ≥ cg

for all [C] ∈Mamp
g (Q).
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Lang–Silverman and UBC

Conjecture (Lang–Silverman)

Let g ≥ 1 be an integer. For all number field K , there exist constants c1 = c1(g,K ),
c2 = c2(g,K ), c3 = c3(g,K ) with the following property. For each abelian variety A of
dimension g defined over K and each P ∈ A(K ), we have

(i) Either P is contained in a proper abelian subvariety B of A with degB ≤ c2 degA
and ord(P) is ≤ c3 modulo B;

(ii) Or End(A) · P is Zariski dense in A and

ĥ(P) ≥ c1 max{hFal(A),1}.

An immediate corollary of the Lang–Silverman Conjecture is the following widely open
Uniform Boundedness Conjecture.

Conjecture (Uniform Boundedness Conjecture)

For each abelian variety A of dimension g ≥ 1 defined over Q, we have

#A(Q)tor ≤ B(g).
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Thanks!
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