Sparsity of rational points on curves

Ziyang Gao

Leibniz University Hannover, Germany

MIT, Mordell Conference July 8, 2024

Motivation

It is a fundamental question in mathematics to solve equations.

For example:

f(X, Y)= polynomial in X and Y with coefficients in \mathbb{Q} . What can we say about the \mathbb{Q} -solutions to f(X, Y) = 0?

Diophantine problem. Rational points on algebraic curves.

f(X, Y)	$X^2 + Y^2 - 1$	$Y^2 - X^3 - X$	$Y^2 - X^3 - 2$	$Y^2 - X^6 - X^2 - 1$
	(3/5, 4/5), (5/13, 12/13), (8/17, 15/17), etc.	(0,0), (±1,0).	(-1, 1), (34/8, 71/8), (2667/9261, 13175/9261), etc.	$(0, \pm 1),$ $(\pm 1/2, \pm 9/8).$
		1	1	2

Motivation

It is a fundamental question in mathematics to solve equations.

For example:

f(X, Y)= polynomial in X and Y with coefficients in \mathbb{Q} . What can we say about the \mathbb{Q} -solutions to f(X, Y) = 0?

~~>

Diophantine problem. Rational points on algebraic curves.

Some examples:

f(X, Y)	$X^2 + Y^2 - 1$	$Y^2 - X^3 - X$	$Y^2 - X^3 - 2$	$Y^2 - X^6 - X^2 - 1$
Q- solutions	(3/5, 4/5), (5/13, 12/13), (8/17, 15/17), etc. infinitely many	(0,0), (±1,0).	(-1,1), (34/8,71/8), (2667/9261, 13175/9261), etc. infinitely many	$(0, \pm 1),$ $(\pm 1/2, \pm 9/8).$ finitely many
	minitely many	milely many	minitely many	milely marry
genus of the as- sociated curve	0	1	1	2

Setup and Genus 0

In what follows,

- $> g \ge 0$ and $d \ge 1$ integers;
- \succ K= number field of degree d;
- ightharpoonup C = irreducible smooth projective curve of genus g defined over K.

As usual, we use C(K) to denote the set of K-points on C.

 \P If g = 0, then either $C(K) = \emptyset$ or $C \cong \mathbb{P}^1$ over K.

Setup and Genus 0

In what follows,

- $ightharpoonup g \ge 0$ and $d \ge 1$ integers;
- \succ K= number field of degree d;
- ightharpoonup C = irreducible smooth projective curve of genus g defined over K.

As usual, we use C(K) to denote the set of K-points on C.

 \P If g = 0, then either $C(K) = \emptyset$ or $C \cong \mathbb{P}^1$ over K.

Genus 1

Assume g = 1. If $C(K) \neq \emptyset$, then C(K) has a structure of abelian groups with an identity element $O \in C(K)$. \Longrightarrow Elliptic curve E/K := (C, O).

Theorem (Mordell-Weil)

E(K) is a finitely generated abelian group. Namely,

$$E(K) \cong \mathbb{Z}^{\rho} \oplus E(K)_{\text{tor}}$$

with $\rho < \infty$ and $E(K)_{tor}$ finite.

Genus 1: finite part

Theorem (Mazur '77 for $K = \mathbb{Q}$, Merel '96)

 $\#E(K)_{tor}$ is uniformly bounded above in terms of $[K:\mathbb{Q}]$.

Mazur proved this result by establishing the following theorem:

Theorem (Mazur '77)

If N=11 or $N\geq 13$, then the only \mathbb{Q} -points of the modular curve $X_1(N)$ are the rational cusps.

The genus of $X_1(N)$ is ≥ 2 if N = 13 or $N \geq 16$.

 \rightarrow results of rational points on curves of genus ≥ 2 .

Genus ≥ 2: Mordell Conjecture

Mordell made the following conjecture about 100 years ago (1922), known as the Mordell Conjecture. It became a theorem in 1983, proved by Faltings.

Theorem (Faltings '83; known as Mordell Conjecture)

If $g \ge 2$, then the set C(K) is finite.

Feature of this theorem	When applied to Mazur's result on $X_1(N)$		
weak topological hypothesis, very strong arithmetic conclusion!	$^{ }$ $X_1(N)$ has only finitely many \mathbb{Q} -points if $N \ge 16$.		
➤ not constructive yet.	$X_1(N)(\mathbb{Q})$ cannot be determined by Faltings's Theorem.		

Genus ≥ 2: Fermat's Last Theorem

Fix $n \ge 4$ integer.

$$F_n: X^n + Y^n - 1 = 0.$$

Then $g(F_n) \ge 2$.

 \exists only finitely many $(x, y) \in \mathbb{Q}^2$ with $x^n + y^n = 1$.

For this example, more is expected.

Theorem (Wiles, Taylor–Wiles, '95; known as Fermat's Last Theorem)

If x and y are rational numbers such that $x^n + y^n = 1$, then $(x, y) = (0, \pm 1)$ or $(x, y) = (\pm 1, 0)$.

Of course if n is furthermore assumed to be odd, then -1 cannot be attained.

Genus ≥ 2

From now on, we always assume that $g \ge 2$.

The example of Fermat's Last Theorem suggests that it can be extremely hard to compute $C(\mathbb{Q})$ for an arbitrary C!

Instead, here is a more achievable but still fundamental question.

Question (Mordell, Weil, Manin, Mumford, Faltings, etc.)

Is there an "easy" upper bound for #C(K)? How does C(K) "distribute"?

Different grades of the question:

- \triangleright Finiteness of C(K)
- ▶ Upper bound of #C(K)
- ➤ Uniformity of bounds of #C(K)
- Effective Mordell

Heights

Use height to measure the "size" of the rational and algebraic points.

- \bigcirc On \mathbb{Q} : $h(a/b) = \log \max\{|a|, |b|\}$, for $a, b \in \mathbb{Z}$ and $\gcd(a, b) = 1$.
- On $\mathbb{P}^n(\mathbb{Q})$: $h([x_0:\dots:x_n]) = \log \max\{|x_0|,\dots,|x_n|\}$, for $x_i \in \mathbb{Z}$ and $\gcd(x_0,\dots,x_n) = 1$.
- Arbitrary number field K: For $[x_0 : \cdots : x_n] \in \mathbb{P}^n(K)$ with each $x_j \in K$, $h([x_0 : \cdots : x_n]) = \frac{1}{[K:\mathbb{Q}]} \sum_{v \in \Sigma_K} \log \max\{\|x_0\|_v, \dots, \|x_n\|_v\}.$
- \longrightarrow (logarithmic) Weil height on $\mathbb{P}^n(\overline{\mathbb{Q}})$, and on any subvariety $X \subseteq \mathbb{P}^n$.

Two important properties
$$\rightarrow$$

Bounded from below

$$h(\mathbf{x}) \geq 0$$
 for all $\mathbf{x} \in \mathbb{P}^n(\overline{\mathbb{Q}})$.

Northcott Property

For all B and $d \ge 1$, $\{\mathbf{x} \in \mathbb{P}^n(\overline{\mathbb{Q}}) : h(\mathbf{x}) \le B, [\mathbb{Q}(\mathbf{x}) : \mathbb{Q}] \le d\}$ is finite.

Heights

Use height to measure the "size" of the rational and algebraic points.

- \mathbb{Q} On \mathbb{Q} : $h(a/b) = \log \max\{|a|, |b|\}$, for $a, b \in \mathbb{Z}$ and $\gcd(a, b) = 1$.
- On $\mathbb{P}^n(\mathbb{Q})$: $h([x_0 : \cdots : x_n]) = \log \max\{|x_0|, \ldots, |x_n|\}$, for $x_i \in \mathbb{Z}$ and $\gcd(x_0, \ldots, x_n) = 1$.
- Arbitrary number field K: For $[x_0 : \cdots : x_n] \in \mathbb{P}^n(K)$ with each $x_j \in K$, $h([x_0 : \cdots : x_n]) = \frac{1}{[K : \mathbb{Q}]} \sum_{v \in \Sigma_K} \log \max\{\|x_0\|_v, \dots, \|x_n\|_v\}.$
- \longrightarrow (logarithmic) Weil height on $\mathbb{P}^n(\overline{\mathbb{Q}})$, and on any subvariety $X \subseteq \mathbb{P}^n$.

Two important properties →

Bounded from below

 $h(\mathbf{x}) \geq 0$ for all $\mathbf{x} \in \mathbb{P}^n(\overline{\mathbb{Q}})$.

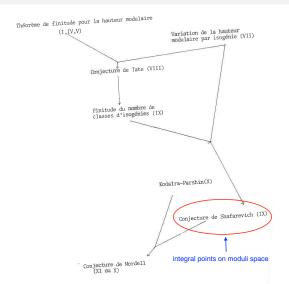
Northcott Property

For all B and $d \ge 1$,

 $\{\mathbf{x} \in \mathbb{P}^n(\overline{\mathbb{Q}}) : h(\mathbf{x}) \le B, [\mathbb{Q}(\mathbf{x}) : \mathbb{Q}] \le d\}$

is finite.

Genus ≥ 2: Faltings's proof of the Mordell Conjecture



Extracted from « Séminaire sur les pinceaux arithmétiques, La conjecture de Mordell » (Astérisque 127), Lucien Szpiro.

Ag = moduli space of pp abelian varieties

New approach to treat integral points on moduli spaces: Lawrence–Venkatesh.

Faltings height

 $ightharpoonup \mathcal{A}/\overline{\mathbb{Q}}=$ pp abelian variety.

Faltings defined an intrinsic number $h_{\text{Fal}}(A)$ associated with A (cf. Astérisque 127, or Cornell–Silverman).

$$\leadsto h_{\text{Fal}} : \mathbb{A}_g(\overline{\mathbb{Q}}) \to \mathbb{R}.$$

Why is it called a height?

Fix an embedding $\mathbb{A}_g \subseteq \mathbb{P}^N$ over $\overline{\mathbb{Q}}$. \longrightarrow Weil height $h: \mathbb{A}_g(\overline{\mathbb{Q}}) \to \mathbb{R}$.

Theorem (Faltings, improved constants by Bost, David, Pazuki)

$$\left|\frac{1}{2}h_{\text{Fal}}(A) - h([A])\right| \le c_g \log(h([A]) + 2).$$

Upshots:

- \rightarrow $h_{\text{Fal}}(A)$ bounded from below solely in terms of g.
- ➤ Northcott property for *h*_{Fal}.

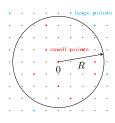
Genus ≥ 2: a new proof by Vojta

In early 90s, Vojta gave a second proof to Faltings's Theorem with Diophantine method.

- Closer to A. Weil's hope.
- Does not prove the other big conjectures (Tate, Shafarevich) as in Faltings's first proof.
- In this proof, one sees some descriptions of distribution of algebraic points on C. They lead to an upper bound on #C(K).
- ➤ The proof was simplified by Bombieri. And generalized by Faltings to some high dimensional cases.

Starting Point: Take $P_0 \in C(K)$, and see C as a curve in J = Jac(C) via the Abel–Jacobi embedding $C \to J$ based at P_0 . Then $C(K) \subseteq J(K)$.

Vojta's proof of the Mordell Conjecture: Setup



Normalized height function $\hat{h}: J(\overline{\mathbb{Q}}) \to \mathbb{R}_{\geq 0}$ vanishing precisely on $J(\overline{\mathbb{Q}})_{tor}$.

- $\leadsto \hat{h}: J(K) \otimes_{\mathbb{Z}} \mathbb{R} \to \mathbb{R}_{\geq 0}$ quadratic, positive definite.
- Normed Euclidean space $(J(K) \otimes_{\mathbb{Z}} \mathbb{R}, |\cdot| := \hat{h}^{1/2})$, with J(K) a lattice.
- → Inner product $\langle \cdot, \cdot \rangle$ on $J(K) \otimes_{\mathbb{Z}} \mathbb{R}$, and the angle of each two points in $J(K) \otimes_{\mathbb{Z}} \mathbb{R}$.

Vojta's proof of Mordell Conjecture: Mumford's work

A starting point is the following (consequence of) Mumford's Formula: For $P, Q \in C(\overline{\mathbb{Q}})$ with $P \neq Q$, we have

$$\frac{1}{g}(|P|^2 + |Q|^2 - 2g\langle P, Q \rangle) + O(|P| + |Q| + 1) \ge 0$$

As $g \ge 2$, the leading term is an indefinite quadratic form, which a priori could take any value. This gives a strong constraint on the pair (P, Q)! \longrightarrow Algebraic points are "sparse" in C!

Vojta's proof of Mordell Conjecture: Both inequalities

Theorem

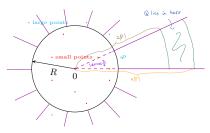
There exist R = R(C) and $\kappa = \kappa(g)$ satisfying the following property. If two distinct points $P, Q \in C(\overline{\mathbb{Q}})$ satisfy $|Q| \ge |P| \ge R$ and

$$\langle P, Q \rangle \ge (3/4)|P||Q|,$$

then

- \rightarrow (Mumford, '65) $|Q| \ge 2|P|$;
- $> (Vojta, '91) |Q| \le \kappa |P|.$

This finishes the proof of the Mordell Conjecture, with #large points $\leq (\log_2 \kappa + 1)7^{\text{rk}J(K)}$.

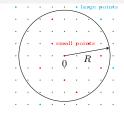


If P_1,\ldots,P_n are in the cone where P lies, then $\kappa|P|\geq |P_n|\geq 2|P_{n-1}|\geq \cdots \geq 2^n|P|.$ So in each cone there are $\leq \log_2 \kappa + 1$ large points! $7^{\operatorname{rk} J(K)}$ such cones, according to the angle condition.

Genus ≥ 2: Classical bound

Theorem (Bombieri '91, de Diego '97, Alpoge 2018)

- ightharpoonup One can take $R^2 = c_0(g)h_{\mathrm{Fal}}(J)$.
- > #large points ≤ $c(g)1.872^{\operatorname{rk}_{\mathbb{Z}}J(K)}$. \rightsquigarrow A nice bound for #large points!



For a bound of #C(K), we have:

Theorem (David–Philippon, Rémond 2000)

$$\#C(K) \leq c(g, [K:\mathbb{Q}], h_{\operatorname{Fal}}(J))^{1+\operatorname{rk}_{\mathbb{Z}}J(K)}.$$

Genus ≥ 2

Different grades of the question:

- \triangleright Finiteness of C(K)
- ➤ Upper bound of #C(K) ✓
- ightharpoonup Uniformity of bounds of #C(K)
- Effective Mordell

Sparsity of algebraic points:

"sparsity" of large points

- Mumford's Inequality '65
- Vojta's Inequality '91
- > ?◎
- > ???

And about the distribution / sparsity of points:

Are there other descriptions of the "sparsity" of algebraic points on C? Or at least can we say something about "small" points?

Genus \geq 2: Towards uniform bounds on #C(K)

The cardinality #C(K) must depend on g.

Example

The hyperelliptic curve defined by

$$y^2 = x(x-1)\cdots(x-2024)$$

has genus 1012 and has at least 2026 different rational points.

The cardinality #C(K) must depend on $[K : \mathbb{Q}]$.

Example

The hyperelliptic curve

$$y^2 = x^6 - 1$$

has points (1,0), $(2, \pm \sqrt{63})$, $(3, \pm \sqrt{728})$, etc.

Genus \geq 2: Towards uniform bounds on #C(K)

Here is a very ambitious bound.

Question

Is it possible to find a number $B(g, [K : \mathbb{Q}]) > 0$ such that

$$\#C(K) \leq B$$
?

This question has an affirmative answer if one assumes a widely open conjecture of Bombieri–Lang on rational points on varieties of general type (Caporaso–Harris–Mazur, Pacelli, '97).

Two divergent opinions towards this conditional result: either this ambitious bound is true, or one could use this to disprove this conjecture of Bombieri–Lang.

Genus ≥ 2: Mazur's Conjecture B

Theorem (Dimitrov-G'-Habegger, 2021; Mazur's Conjecture B ('86, 2000))

If $g \ge 2$, then

$$\#C(K) \leq c(g, [K:\mathbb{Q}])^{1+\mathrm{rk}_{\mathbb{Z}}J(K)}$$

where J is the Jacobian of C. Moreover, $c(g, [K : \mathbb{Q}])$ grows at most polynomially in $[K : \mathbb{Q}]$.

- Compared to the classical result, the height of C is no longer involved.
- We showed that c does not depend on $[K : \mathbb{Q}]$ assuming the relative Bogomolov conjecture. Kühne (2021) removed this dependence on $[K : \mathbb{Q}]$ unconditionally.
- Previous results:
 - When $J \subseteq E^n$ and some particular family of curves (David, Philippon, Nakamaye 2007). Average number of $\#C(\mathbb{Q})$ when g = 2 (Alpoge 2018).
 - ➤ When $\operatorname{rk} J(K) \le g 3$ (hyperelliptic by Stoll 2015, then Katz–Rabinoff–Zureick-Brown 2016).

Example of a 1-parameter family

Example (DGH 2019)

Let $s \ge 5$ be an integer and let C_s be the genus 2 hyperelliptic curve defined by

$$C_s: y^2 = x(x-1)(x-2)(x-3)(x-4)(x-s).$$

Then

$$\operatorname{rk}(J_{s})(\mathbb{Q}) \leq 2g \# \{p: p = 2 \text{ or } C_{s} \text{ has bad reduction at } p\}$$

$$\leq 2g \# \{p: p | 2 \cdot 3 \cdot 5 \cdot s(s-1)(s-2)(s-3)(s-4)\}$$

$$\ll_{g} \frac{\log s}{\log \log s}.$$

This yields, for any $\epsilon > 0$,

$$\#C_s(\mathbb{Q}) \ll_{\epsilon} s^{\epsilon}$$
.

Genus ≥ 2: New Gap Principle

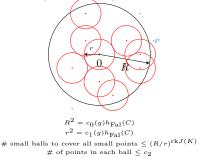
Our new contribution is a New Gap Principle.

Theorem (New Gap Principle, Dimitrov–G'–Habegger + Kühne, 2021)

Assume $g \ge 2$. Each $P \in C(\overline{\mathbb{Q}})$ satisfies

$$\#\{Q \in C(\overline{\mathbb{Q}}) : \hat{h}_L(Q-P) \le c_1 h_{\mathrm{Fal}}(J)\} \le c_2$$

for some positive constants c_1 and c_2 depending only on g.



- ➤ The Bogomolov Conjecture, proved by Ullmo and S.Zhang ('98), gives this result with c_1 and c_2 depending on C (but don't know how).
- The New Gap Principle is another phenomenon of the "sparsity" of algebraic points in C of genus ≥ 2 . It says that algebraic points in $C(\overline{\mathbb{Q}})$ are in general far from each other in a quantitative way.
- It implies that #small rational points $\leq c'(g)^{1+\operatorname{rk} J(K)}$ by a simple packing argument.
- > Second proof by Yuan; uses Yuan-Zhang's adelic line bundle over quasi-proj var

Genus ≥ 2

Different grades of the question:

- ightharpoonup Finiteness of C(K)
- ➤ Upper bound of #C(K) ✓
- Uniformity of bounds of #C(K) "subject" to the Mordell–Weil rank
- Effective Mordell

Sparsity of algebraic points:

- > Mumford's Inequality -'65
- ➤ Vojta's Inequality -'91
- New Gap Principle -2021 (Dimitrov–G'–Habegger + Kühne)
- > ???⁰

And:

- Mumford's and Vojta's Inequalities to describe that large algebraic points are "sparse" in C.
- New Gap Principle gives another description on how all algebraic points are "sparse" in *C*.
- Effective Mordell is a conjectural statement which describes where to find the rational points ("no large rational points").

Genus ≥ 2

Different grades of the question:

- ightharpoonup Finiteness of C(K)
- ➤ Upper bound of #C(K) ✓
- Uniformity of bounds of #C(K) "subject" to the Mordell–Weil rank
- Effective Mordell

Sparsity of algebraic points:

- > Mumford's Inequality -'65
- ➤ Vojta's Inequality -'91
- New Gap Principle -2021 (Dimitrov–G'–Habegger + Kühne)
- > ???⁰

And:

- Mumford's and Vojta's Inequalities to describe that large algebraic points are "sparse" in *C*.
- New Gap Principle gives another description on how all algebraic points are "sparse" in C.
- Effective Mordell is a conjectural statement which describes where to find the rational points ("no large rational points").

Genus ≥ 2: Effective Mordell

Conjecture (Effective Mordell, made by Szpiro)

There exists an effectively computable $c = c(g, [K : \mathbb{Q}], \operatorname{disc}(K/\mathbb{Q})) > 0$ such that $\hat{h}(P) \le ch_{\operatorname{Fal}}(J)$ for all C/K and $P \in C(K)$.

- Effective Mordell tells us where to find all the rational points on C ("no large rational points")!
- Little is known about Effective Mordell.
- ➤ Checcoli, Veneziano, and Viada proved results in this direction when C⊆ Eⁿ for some elliptic curve E with rkE(K) < n (modification if E has CM) and C is transverse, following the method of Manin–Demjanenko.</p>

Genus ≥ 2: Chabauty–Coleman–Kim method

♦ Another approach to compute C(K) is the Chabauty–Coleman–Kim method, by obtaining sharp bounds on #C(K) when $\mathrm{rk}J(K)$ is small. Currently:

Chabauty-Coleman:

$$K = \mathbb{Q}$$
, $\operatorname{rk} J(\mathbb{Q}) < g$.

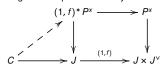
$$C(\mathbb{Q})^{\longleftarrow} \to J(\mathbb{Q})$$

$$\downarrow \qquad \qquad \downarrow$$

$$C(\mathbb{Q}_p)^{\longleftarrow} \to J(\mathbb{Q}_p)$$

$$\dim \overline{J(\mathbb{Q})} \leq \mathrm{rk} J(\mathbb{Q}) < g \Rightarrow C(\mathbb{Q}) \subseteq C(\mathbb{Q}_p) \cap \overline{J(\mathbb{Q})} \text{ finite}.$$

Palakrishnan in collaboration with Besser, Müller, Dogra *et al.*A geometric point of view by Edixhoven–Lido:



$$\Rightarrow$$
 $C \hookrightarrow T$ with $T \to J$ a $\mathbb{G}_{\mathrm{m}}^{\rho-1}$ -torsor, with $\rho = \mathrm{rkNS}(J)$. Hence need $\mathrm{rk}J(\mathbb{Q}) < g + \rho - 1$.

the lifting exists \Leftrightarrow deg $(1, f)^* P^x = 0$.

Proof of DGH: a tale of two heights

Theorem (New Gap Principle, Dimitrov–G'–Habegger + Kühne, 2021)

Assume $g \ge 2$. Each $P \in C(\overline{\mathbb{Q}})$ satisfies

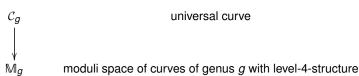
$$\#\{Q \in C(\overline{\mathbb{Q}}) : \hat{h}_L(Q-P) \le c_1 h_{\mathrm{Fal}}(J)\} \le c_2$$

for some positive constants c_1 and c_2 depending only on g.

$$\triangleright Q-P\in C-C\subseteq J$$

- We are comparing:
 - $\hat{h}_L|_{C-C}$ height on J, and
 - $h_{\text{Fal}}(J)$ height of J

Put all curves "together":



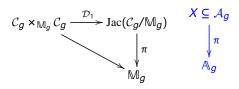
Proof of DGH: a tale of two heights

Theorem (New Gap Principle, Dimitrov–G'–Habegger + Kühne, 2021)

Assume $g \ge 2$. Each $P \in C(\overline{\mathbb{Q}})$ satisfies

$$\#\{Q\in C(\overline{\mathbb{Q}}): \hat{h}_L(Q-P)\leq c_1h_{\mathrm{Fal}}(J)\}\leq c_2$$

for some positive constants c_1 and c_2 depending only on a.



- $> Q P \in C C \subseteq J$
- We are comparing:
 - $\hat{h}_L|_{C-C}$ height on J, and
 - $h_{\text{Fal}}(J)$ height of J

- $\rightarrow \hat{h}$ fiberwise, and
- $\rightarrow h_{\text{Fal}}(J)$ height on the base \mathbb{M}_g .
- > Want to find the correct condition for X such that $\hat{h} \ge ch_{\text{Fal}}$ when restricted on X for some constant c.

Proof of DGH: a tale of two heights

Theorem (GH 2019, DGH 2021)

The followings are equivalent:

(i) There exists a Zariski open dense subset U of X, and a constant c = c(X) > 0 such that for all $x \in U(\overline{\mathbb{Q}})$,

$$\hat{h}(x) \ge ch_{\text{Fal}}(A_x) - c.$$

(ii) X satisfies a linear algebra property, called non-degenerate.

Non-degeneracy: Habegger 2013, GH 2019, DGH 2021. The definition uses Betti map (Masser–Zannier, Bertrand).

Proof of DGH: Non-degeneracy

- $\rightarrow \pi: A \rightarrow S$ an abelian scheme
 - taking Betti realization / forgetting complex structures of the fibers
- $ightarrow \mathcal{T}
 ightarrow S$ a local system of real torus $(\mathcal{T}_S = H_1(\mathcal{A}_S, \mathbb{R})/H_1(\mathcal{A}_S, \mathbb{Z}))$ | Betti foliation \mathcal{F} on \mathcal{A}
- $ightharpoonup T_x \mathcal{A} = T_x \mathcal{F} \bigoplus T_x \mathcal{A}_{\pi(x)}$ for each $x \in \mathcal{A}(\mathbb{C})$.

Definition

 $X \subseteq A$ is called non-degenerate if $T_X X \subseteq T_X A \to T_X A_{\pi(X)}$ has dimension dim X at some point $X \in X(\mathbb{C})$.

In the terminology of Yuan–Zhang 2021, non-degeneracy is equivalent to: the tautological adelic line bundle $\widetilde{\mathcal{L}}_g$ is big when restricted to X (DGH + YZ).

An immediate observation by definition: If $\dim X > g$, then X is degenerate! \leadsto naive degenerate.

For example, $C_g - C_g = \mathcal{D}_1(C_g \times_{\mathbb{M}_g} C_g)$ is degenerate!

Proof of DGH: a tool (degeneracy loci) and bigness

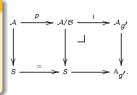
 $^{\infty}$ (G' 2020) For each $t \in \mathbb{Z}$, one can define the t-th degeneracy locus $X^{\deg}(t)$ of X. \longrightarrow Important tool to study these uniformity results.

As an application of mixed Ax–Schanuel (G') and $X^{\text{deg}}(0)$, one proves:

Theorem (G' 2020, Betti rank)

TFAE:

- \succ X is degenerate, i.e. $\widetilde{\mathcal{L}}_g|_X$ is NOT big.
- ➤ \exists abelian subscheme \mathcal{B} of $\mathcal{A} \to S$ such that "a generic fiber of $\iota \circ p|_X$ is naive degenerate", i.e. $\dim X \dim(\iota \circ p)(X) > \dim \mathcal{B} \dim S$.

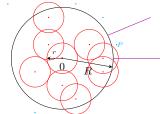


- Applications of this theorem and beyond:
 - $\succ X := \mathcal{D}_M(\mathcal{C}_g^{[M+1]})$ is non-degenerate if $M \ge 3g-2$ (for DGH and K).
 - > the full Uniform Mordell-Lang Conjecture (G'-Ge-Kühne 2021).
 - \rightarrow $X^{\text{deg}}(1)$ for the Relative Manin–Mumford Conjecture (G'–Habegger 2023).

Genus ≥ 2: Some further questions related to the rather uniform bound of DGH+K

$$\#C(K) \le c_2(g)c(g)^{\operatorname{rk}J(K)}$$

- Now does $c_2(g)$ grow as $g \to \infty$ (Manin–Mumford constant)?
 - > $c_2(g) \to \infty$ $(y^2 = x(x-1)\cdots(x-2024)).$
 - ➤ Over function fields: $\sim g^2$ by Looper–Silverman–Wilms 2022.
 - Over number fields: no explicit formula.
- What if we confine ourselves to rational torsion points $TP(C, P) := (C P)(K) \cap J_{tor}$?



$$R^2 = c_0(g)h_{\mathrm{Fal}}(C)$$

$$r^2 = c_1(g)h_{\mathrm{Fal}}(C)$$
 # small balls to cover all small points $\leq (R/r)^{\mathrm{rk}J(K)}$ # of points in each ball $\leq c_2$

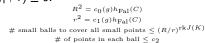
- Arr Baker–Poonen 2001: #TP(C, P) ≤ 2 for all but B = B(C) points $P \in C(K)$.
- Is it possible to make B(C) uniform in g up to replacing 2 by 6?

Genus ≥ 2: Some further questions related to the rather uniform bound of DGH+K

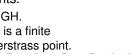
$$\#C(K) \leq c_2(g)c(g)^{\operatorname{rk}J(K)}$$

- ls it true that c(g) → 1 when g → ∞, or at least give an absolute upper bound of c(g) (Vojta constant)?
 - In view of Mumford's Formula

$$\frac{1}{g}(|P|^2+|Q|^2-2g\langle P,Q\rangle)+O(|P|+|Q|+1)\geq 0.$$



- The angle condition in both inequalities can be improved.
- A more precise version of Mumford's formula.
- Arithmetic Statistics: Average number of rational points.
 - ➤ Alpoge ('18): $K = \mathbb{Q}$ and g = 2, before the result of DGH.
 - ➤ Bhargava–Gross ('13): $K = \mathbb{Q}$, the average of $2^{\operatorname{rk}J(\mathbb{Q})}$ is a finite number for hyperelliptic curves having a rational Weierstrass point.



Beilinsin–Bloch height for Gross–Schoen / Ceresa cycles

- \succ *C* smooth projective curve of genus *g* ≥ 3;
- $\rightarrow J = \operatorname{Jac}(C);$
- $\triangleright \xi \in \operatorname{Pic}^1(C)$ such that $(2g-2)\xi = \omega_C$.

From these data, we obtain homologically trivial 1-cycles:

- (Gross–Schoen) Δ_{GS}(C) ∈ Ch₁(C³) the modified diagonal;
- \bigcirc (Ceresa) $\operatorname{Ce}(C) := i_{\xi}(C) [-1]^* i_{\xi}(C) \in \operatorname{Ch}_1(J)$.

Theorem (G'-S.Zhang, '24)

There exist positive constants ϵ , c and a Zariski open dense subset \mathbb{M}_g^{amp} of \mathbb{M}_g defined over \mathbb{Q} such that

$$\langle \Delta_{GS}(C), \Delta_{GS}(C) \rangle_{BB} \ge \epsilon h_{Fal}(C) - c$$

 $\langle Ce(C), Ce(C) \rangle_{BB} \ge \epsilon h_{Fal}(C) - c$

for all $[C] \in \mathbb{M}_q^{amp}(\overline{\mathbb{Q}})$.

Beilinsin-Bloch height for Gross-Schoen / Ceresa cycles

Corollary (Northcott property, G'-S.Zhang '24)

There exists a Zariski open dense subset $\mathbb{M}_g^{\mathrm{amp}}$ of \mathbb{M}_g defined over \mathbb{Q} such that for all $H,D\in\mathbb{R}$, we have

$$\#\{[C] \in \mathbb{M}_g^{\mathrm{amp}}(\overline{\mathbb{Q}}): \quad \deg(\mathbb{Q}([C]):\mathbb{Q}) < D, \quad \langle \Delta_{\mathrm{GS}}(C), \Delta_{\mathrm{GS}}(C) \rangle_{\mathrm{BB}} < H\} < \infty.$$

The definitions of the two cycles extends to any $e \in Pic^1(C)$.

Corollary (Lower bound, G'-S.Zhang '24)

There exist a number c_g and a Zariski open dense subset $\mathbb{M}_g^{\mathrm{amp}}$ of $\mathbb{M}_{g,1}$ defined over \mathbb{Q} such that

$$\langle \Delta_{GS}(C), \Delta_{GS}(C) \rangle_{BB} \geq c_g$$

for all $[C] \in \mathbb{M}_a^{amp}(\overline{\mathbb{Q}})$.

Lang-Silverman and UBC

Conjecture (Lang-Silverman)

Let $g \ge 1$ be an integer. For all number field K, there exist constants $c_1 = c_1(g, K)$, $c_2 = c_2(g, K)$, $c_3 = c_3(g, K)$ with the following property. For each abelian variety A of dimension g defined over K and each $P \in A(K)$, we have

- (i) Either P is contained in a proper abelian subvariety B of A with deg $B \le c_2 \deg A$ and ord(P) is $\le c_3$ modulo B;
- (ii) Or End(A) · P is Zariski dense in A and

$$\hat{h}(P) \ge c_1 \max\{h_{\text{Fal}}(A), 1\}.$$

An immediate corollary of the Lang–Silverman Conjecture is the following widely open Uniform Boundedness Conjecture.

Conjecture (Uniform Boundedness Conjecture)

For each abelian variety A of dimension $g \ge 1$ defined over \mathbb{Q} , we have

$$\#A(\mathbb{Q})_{\text{tor}} \leq B(g)$$
.

Thanks!