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Motivation: Weil height

A. Weil (1928) defined height to measure the “size” of algebraic points.
✎ On Q: h(a/b) = log max{|a|, |b|}, for a,b ∈ Z and gcd(a,b) = 1.
✎ On Pn(Q): h([x0 : · · · : xn]) = log max{|x0|, . . . , |xn|}, for

xi ∈ Z and gcd(x0, . . . , xn) = 1.
✎ Arbitrary number field K : For [x0 : · · · : xn] ∈ Pn(K ),

h([x0 : · · · : xn]) =
1

[K : Q]

∑

v∈MK

log max{‖x0‖v , . . . , ‖xn‖v}.

  (logarithmic) Weil height on Pn(Q).
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Motivation: Weil height

Two important properties →
↓

Positivity

h(x) ≥ 0 for all x ∈ Pn(Q).

Northcott Property (1949)

For all B and d ≥ 1,

{x ∈ Pn(Q) : h(x) ≤ B, [Q(x) : Q] ≤ d}

is finite.
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Motivation: (naive) Height Machine

X projective variety defined over a number field K0.

➢ X can be embedded into PN
  naive height hWeil on X (Q)

➢ Different embeddings  well-defined up to a bounded function.

Two important properties →
↓

Bounded from below
There exists C such that
hWeil(x) ≥ C for all x ∈ X (Q).

Northcott Property

For all B and d ≥ 1,

{x ∈ X (Q) : h(x) ≤ B, [K0(x) : K0] ≤ d}

is finite.
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Motivation: Dominant height function

➢ X quasi-projective variety defined over Q;

➢ h : X (Q)→ R.

Definition
h is called a dominant height if it has a lower bound and satisfies the Northcott
property.

Two famous examples:

Example

Néron–Tate height on abelian variety A, with lower bound 0.   Mordell–Weil
theorem, formulation of Birch and Swinnerton-Dyer Conjecture, etc.

Example (On the moduli space Mg of smooth projective curves of genus g)

hFal : Mg(Q)→ R, sending each curve C to the Faltings height of its Jacobian.
  Mordell Conjecture.
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Motivation: Beilinson–Bloch height and conjecture

Aim (from 1980s):
➢ Extend height from points to

higher cycles which are
homologically trivial
(Beilinson–Bloch height).

➢ Positivity of BB height.
➢ Finiteness of the rank of Chow

group.
➢ Generalization of BSD.

Known results
➢ Conjecturally defined.

Unconditional in some cases
(Gross–Schoen, Künnemann,
S. Zhang).

➢ Some sporadic families.
➢ ???

➢ ???
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Motivation: Gross–Schoen and Ceresa cycles

Example (BB height is known to be unconditionally defined)

➢ C smooth projective curve of genus g ≥ 2;
➢ ξ ∈ Pic1(C) such that (2g − 2)ξ = ωC .

From these data, we obtain homologically trivial 1-cycles:
✎ (Gross–Schoen) ∆GS(C) ∈ Ch1(C3) the modified diagonal;
✎ (Ceresa) Ce(C) := iξ(C)− [−1]∗iξ(C) ∈ Ch1(J), with J = Jac(C).

(ξ, ξ, ξ)

modified diagonal
∆123−∆12−∆23−∆13+∆1 + ∆2 + ∆3.

iξ(C)

[−1]∗ iξ(C)

ξ
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Goal of the project

Propose a systematic way to study the positivity of the Beilinson–Bloch height
〈•, •〉BB.
➢ Starting point: Use 〈•, •〉BB to define a function on a suitable

parametrizing space.
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Setup for our main result

Two functions on Mg :

hGS : Mg(Q)→ R, [C] 7→ 〈∆GS(C),∆GS(C)〉BB

hCe : Mg(Q)→ R, [C] 7→ 〈Ce(C),Ce(C)〉BB

Facts: ➢ Both vanish on the hyperelliptic locus;
➢ hGS = 6hCe

Question (in different grades)

Assume g ≥ 3.
✎ (i) Is hGS a dominant height (lower bound + Northcott property) on a

Zariski open dense subset U of Mg defined over Q?   generic positivity
✎ (ii) Can we determine U?
✎ (iii) Is the lower bound ≥ 0?
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Our main result

Theorem (G’–S.Zhang, 2024)

Assume g ≥ 3. Let Mamp
g be the maximal Q-Zariski open subset of Mg on

which hGS is a dominant height.
Then Mamp

g is non-empty and is defined over Q. for (i)
Moreover, Mamp

g can be “constructed”. partially for (ii)

Still, we need to express Mamp
g more explicitly and need to show that the lower

bound is ≥ 0. But already, we have

Corollary (Generic positivity)

For any number field K , there are at most finitely many C/K lying in Mamp
g (Q)

such that hGS([C]) ≤ 0.
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Key steps of our proof

Steps:
➢ hGS defined by an a.l.b. L

➢ volume identity for vol( fL )

Tools:
➢ Adelic line bundle (Yuan–Zhang

2021).
➢ Morse Inequality (Demailly 1991).

Bridged via:
✎ Abel–Jacobi periods (Griffiths 1960s)
✎ archimedean local heights (Hain 1990s)

➢ Algebraicity of Betti strata
➢ Non-vanishing of Betti form

➢ Mixed Ax–Schanuel
(Chiu/Gao–Klingler 2021).

➢ O-minimality for period map
(Bakker, Brunebarbe, Klingler,
Tsimerman 2018–2020...).
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Adelic line bundle

Theorem

There exists an adelic line bundle L on Mg such that hGS = hL .

A construction was given by Yuan. We give a new construction using:
➢ Polarized dynamical system on the universal Jacobian

Jac(Cg /Mg)→Mg .
➢ Deligne pairing to “push-forward” adelic line bundles on Cg ×Mg Cg to Mg .
➢ Explicit computation.
➢ We use our construction to prove the volume identity.

Ziyang Gao (University of California, Los Angeles) Beilinson–Bloch height Fort Collins, Colorado, SRI 2025 11 / 24



Adelic line bundle
✎ What is an adelic line bundle, and what is the motivation/idea behind?

Let (X ,L) projective variety with a line bundle, defined over a number field K .

➢ Naive height hL : X (Q)→ R, well-defined up to a bounded function.

➢ Wish to get genuine functions. Sometimes okay, e.g. Néron–Tate height on
abelian varieties.

➢ In general, integral model (X ,L ), with L a Hermitian line bundle.
But cannot recover Néron–Tate height in this way!!

➢ Solution: Put a Kv -metric of L on X (Kv ) for all v ∈ MK   metrized line bundle

An adelic line bundle L is a metrized line bundle which can be obtained as a
“limit” of integral models.

➢ This construction can be generalized to quasi-projective varieties, “limit” of
integral models of compactifications of X   generic fiber fL of L .

Example (X = SpecK )

An adelic line bundle on SpecK is (L,{‖ · ‖v}v ) with L =vector space of dim 1 and
‖ · ‖v a Kv -metric, satisfying: ∀ℓ ∈ L \ {0}, ‖ℓ‖v = 1 for all but finitely many v.
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Volume identity

Recall our main theorem

Theorem (G’–S.Zhang, 2024)

Assume g ≥ 3. Then hGS is a dominant height on a Zariski open dense subset
Mamp

g of Mg defined over Q. for (i)
Moreover, Mamp

g can be “constructed”. partially for (ii)

➢ Part (i) except “defined over Q”⇔ fL is big, i.e. vol( fL ) > 0.
A key property we prove is the following volume identity.

Theorem (GZ 2024)

vol( fL ) =

∫

Mg(C)

c1(L )∧dimMg .

Stronger:
needed for
“over Q”

Theorem (GZ 2024)

For each subvariety S of Mg,C,
we have

vol( fLC|S) =

∫

S(C)
c1(L )∧dimS .
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Volume identity

Theorem (GZ 2024)

For each subvariety S of Mg,C, we have

vol( fLC|S) =

∫

S(C)
c1(L )∧dimS .

➢ LHS defined using some kind of h0, so invariant under Aut(C).
  Used for “over Q” in the main theorem.

➢ In the flavor of (arithmetic) Hilbert–Samuel.
➢ Problem: fL is not known to be nef!!!
➢ Solution: Compute vol( fLC|S) directly, by our explicit construction of

L = {(Mi ,L i )}i≥1 and the fact vol(Li ,Q|S) −→ vol( fLC|S). Use
Demailly’s Morse Inequality to bound h0(mLi ,C|S) and hence handle
vol(Li ,C|S). Need our explicit construction to get fast enough
convergence.
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A dévissage

Theorem (G’–S.Zhang, 2024)

Assume g ≥ 3. Then hGS is a dominant height on a Zariski
open dense subset Mamp

g of Mg defined over Q. for (i)

~

w

w

︷ ︸︸ ︷

Volume Identity

For each subvariety S of Mg,C,

vol( fLC|S) =

∫

S(C)
c1(L )∧dimS .

+

Theorem (GZ 2024)

➢ c1(L ) ≥ 0,

➢ c1(L )∧dimMg 6≡ 0 if g ≥ 3,

➢ “
¦

x ∈ S(C) : (c1(L )|∧dimS
S )x = 0
©

”
is Zariski closed.

↑
It remains to prove this.
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Some key ingredients of our proof

Key steps:
hGS defined by an a.l.b. L

volume identity for vol( fL )

Some tools:
➢ Adelic line bundle.
➢ Morse Inequality.

Bridged via:
✎ Abel–Jacobi periods (Griffiths 1960s)
✎ archimedean local heights (Hain 1990s)

➢ Algebraicity of Betti strata
➢ Non-vanishing of Betti form

➢ Mixed Ax–Schanuel
(Chiu/Gao–Klingler 2021).

➢ O-minimality for period map
(Bakker, Brunebarbe, Klingler,
Tsimerman 2018–2020...).
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Some key ingredients of our proof
Key steps:

Main theorem reduced to prove:

➢ c1(L ) ≥ 0,

➢ c1(L )∧dimMg 6≡ 0 if g ≥ 3,

➢ “
¦

x ∈ S(C) : (c1(L )|∧dimS
S )x = 0
©

”
is Zariski closed, ∀ subvariety S.

Some tools:
➢ Adelic line bundle.
➢ Morse Inequality.

Bridged by: (R. de Jong, GZ) c1(L ) equals the Betti form.

➢ Algebraicity of Betti strata
➢ checkable criterion for

non-vanishing of Betti form

➢ Mixed Ax–Schanuel
(Chiu/Gao–Klingler 2021).

➢ O-minimality for period map
(Bakker, Brunebarbe, Klingler,
Tsimerman 2018–2020...).

↘ works for any family of homologically trivial cycles.
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General setup for studying Betti strata/form/foliation

➢ f : X → S projective morphism over quasi-projective variety, over C,
➢ Z is a family of homologically trivial cycles, of codimension n.

Example (Gross–Schoen and Ceresa)

(GS) f : Cg ×Mg Cg ×Mg Cg →Mg , Z is the family of Gross–Schoen cycles.
n = 2.

(Ce) f : Jac(Cg /Mg)→Mg , Z is the family of Ceresa cycles. n = g − 1.

➢ VZ := Rf 2n−1
∗ ZX . Each fiber VZ,s = H2n−1(Xs,Z).

➢ de Rham–Betti comparison⇒ VZ is a VHS (variation of Hodge
structures) of weight 2n − 1.

➢ Polarization (by Lefschetz)

Q : V⊗ V→ QS(−n)

with V := VZ ⊗ZS QS .
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Intermediate Jacobian and normal function

Definition
The n-th relative intermediate Jacobian is

Jn(X /S) := F nV \V /VZ,

with V := VZ ⊗ZS OS the holomorphic vector bundle.

The fibers are

(*) Jn(Xs) = F n\H2n−1(Xs,C)/H2n−1(Xs,Z)
∼= H2n−1(Xs,R)/H2n−1(Xs,Z)

compact complex torus
real torus

➢ (Griffiths 1969) AJ : Chn(Xs)hom → Jn(Xs).

Definition (Normal function)

ν = νZ : S→ Jn(X /S), s 7→ AJ(Zs).
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Betti form, Betti foliation, Betti strata

Family version of (*) becomes

Jn(X /S)
∼−→ VR/VZ.

νBetti,s : TsS
dν−→Tν(s)Jn(X /S)

∼= Tν(s)VR/VZ
= TsS ⊕ VR,s → VR,s

Definition (Betti form)

βν(u, v) := 2Qs(νBetti,s(u), νBetti,s(v))
for all s ∈ S(C) and u, v ∈ TsS.

➢ βν semi-positive (1,1)-form (Hain
1990s, using Griffiths’ transversality)

VR/VZ → S local system of real tori


y

Betti foliation FBetti on Jn(X /S)

Definition (Betti strata)

For any t ≥ 1, SBetti(t) := {s ∈ S(C) :
dims(ν(S) ∩FBetti) ≥ t}.

➢ β∧dimS
ν

≡ 0“⇔ ”SBetti(1) = S
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Our result on Betti rank and Betti strata

Theorem (GZ 2024)

➢ SBetti(t) is Zariski closed in S.
➢ We have a checkable criterion for SBetti(t) = S (equivalently a formula to

compute the generic rank of νBetti,s). In particular, a checkable criterion
for β∧dimS

ν
≡ 0.

➢ O-minimality for period map to use definable Chow.
➢ Mixed Ax–Schanuel used twice, second time is through Geometric

Zilber–Pink (itself is an application of Ax–Schanuel; Ullmo, Daw–Ren,
Gao, Baldi–Klingler–Ullmo, Baldi–Urbanik).
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Back to Gross–Schoen and Ceresa

Main theorem reduced to prove:

For our adelic line bundle L on Mg with hL = hGS:

➢ c1(L ) ≥ 0,

➢ c1(L )∧dimMg 6≡ 0 if g ≥ 3,

➢ “
¦

x ∈ S(C) : (c1(L )|∧dimS
S )x = 0
©

” is Zariski closed, ∀ subvariety
S ⊆ Mg,C.

⇑ (R. de Jong, GZ) c1(L ) equals the Betti form βGS.

Corollary (particular case of GZ 2024 on Betti rank and Betti strata)

➢ βGS ≥ 0 (Hain 1990s),

➢ β
∧dimMg
GS 6≡ 0 if g ≥ 3 (in this case independently by Hain 2024),

➢ S(1) is Zariski closed, ∀ subvariety S ⊆ Mg,C.
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Our main result

Theorem (G’–S.Zhang, 2024)

Assume g ≥ 3. Let Mamp
g be the maximal Q-Zariski open subset of Mg on

which hGS is a dominant height.
Then Mamp

g is non-empty and is defined over Q. for (i)
Moreover, Mamp

g can be “constructed”. partially for (ii)

Corollary (Generic positivity)

For any number field K , there are at most finitely many C/K lying in Mamp
g (Q)

such that hGS([C]) ≤ 0.

➢ Extra result on torsion: For every non-Q point [C] in Mamp
g , the cycles

∆GS(C) and Ce(C) are not torsion in the Chow groups.
This is also independently proved by Hain (2024) for a non-empty
real-analytic open subset and Kerr–Tayou (2024) for a C-Zariski open
dense subset.
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Thanks!
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