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Introduction (English version)

It is a fundamental question in math to solve equations. For example let f(X,Y") be
a polynomial in X and Y with coefficients in Q. One wishes to find its QQ-solutions,
namely the rational numbers x and y such that f(z,y) = 0.

This question is too hard to answer in general. For example, if f(X,Y) =
X" 4+Y"™ —1 for some n > 3, then the question of finding the Q-solutions to this
polynomial is equivalent to the famous Fermat’s Last Theorem, proved by Wiles and
Taylor-Wiles [Wil95,[TW95| in 1995.

Instead, here is a more achievable but still fundamental question.

Question. Is there an easy upper bound for the number of the Q-solutions? How
do these Q-solutions distribute?

The formulation of the question being simple, it took mathematicians decades
and even centuries to answer. In modern language, the Q-solutions becomes rational
points on algebraic varieties.

The first steps to treat this problem are the following standard operations. First
one embeds C? into the complex projective space P*(C). Then using [X, : X; : X5] to
denote the projective coordinates on P?(C), one defines the homogeneous polynomial
F(Xo, X1,X5) = Xgegff(%,%). Now F(Xy, X, X5) defines a curve in P?(C),
which is the closure of the affine curve {(z,y) € C*: f(z,y) = 0} in P?(C). We
call this new curve a projective curve defined over Q. Note that only finitely many
points are added. Next associated to each projective curve there is an intrinsic
integer g > 0, called the genus. For example if it has only ordinary double singular
points, then g = (degF_l)Q(degF_2) —Fk with k the number of singular points. In general,
it is known that any projective curve can be converted by a Cremona transformation
into a projective curve whose singular points are ordinary double.

With this intrinsic integer in hand, one can already see some properties of C'(Q),
the set of Q-points on the curve C' in question. When g = 0, C(Q) is either empty or
an infinite set, and the structure of C(Q) is rather simple in this case. When g = 1,
C(Q) has a structure of abelian groups. The torsion part of C(Q) is completely
studied by Mazur [Maz77| (over number field by Merel [Mer96|), and its torsion-free
part is related to the Birch and Swinnerton-Dyer conjecture.

When g > 2, the first step towards understanding C(Q) is the Mordell conjecture
(1922): Let C be a geometrically irreducible smooth projective curve of genus g > 2

defined over a number field K, then C(K) is finite; see [Mor22|. The Mordell
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conjecture was proved by Faltings in 1983 [Fal83|, as a consequence of his proofs of
the Tate conjecture and the Shafarevich conjecture for abelian varieties.

Knowing the finiteness of C'(K), the next step is to look for an upper bound on
#C(K). Tt is not hard to see that the cardinality #C(K) must depend on the genus
g and the degree of the definition field [K : Q).

In the 90s, Vojta gave a completely new proof of the Mordell conjecture. This
proof was later on simplified and generalized by Faltings [Fal91a|, and further sim-
plified by Bombieri [Bom90a|. In the proof, one first embeds the curve C' into its
Jacobian J by the Abel-Jacobi embedding via a rational point (if there exists any).
A number associated with J, called the Faltings height and denoted by hga(J),
played a crucial role. Roughly speaking, this number measures the “complexity”
of the coefficients of the equations defining the curve C'. Based on this new approach,
Rémond |[Rém00| proved an explicit upper bound

#C(K) < c(g,d, hpa(J))"*, (0.0.1)

where ¢(g, d, hga(J)) is a constant depending only on g, d := [K : Q] and hg(J).
The integer p > 0, called the Mordell-Weil rank over K, is defined by p = ranky J(K).
The Mordell-Weil theorem says that J(K) is a finitely generated abelian group, and
hence p is finite.

On the other hand, it has been expected that hg.,(J) does not show up in the
bound (0.0.1)). This question was asked by Mazur shortly after Faltings’s proof of
the Mordell conjecture; see [Maz00, pp.223| and [Maz86, top of pp.234].

In a joint project with V. Dimitrov and P. Habegger, we answered this question
of Mazur affirmatively. The key new ingredient is to establish a new Gap Principle
which concerns the distribution of rational and more generally algebraic points on
curves of genus at least 2.

This memoire sees a summary of the following aspects on distribution of points
on algebraic varieties and their interactions.

e Chapter [} Bound of #C(K) as conjectured by Mazur (Theorem [1.1.1)), and
distribution of algebraic points in curves of genus > 2 (Proposition [1.2.1]).
This concerns a series of work |[GH19,DGH19,|Gao20a, DGH20).

e Chapter[2} Small points in abelian varieties. The main result is the Geometric
Bogomolov Conjecture over characteristic 0 (Theorem [2.2.1]). This concerns
[GHI0|[CGHX21).

[These were also used in Faltings’s first proof of the Mordell conjecture.
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e Chapter [3} Special points in mixed Shimura varieties. The main result is to-
wards the André—Oort conjecture for mixed Shimura varieties (Theorem|3.1.2)).
This concerns |Gaol7bl/Gaol6|. In this chapter, one also sees a finiteness re-

sult a la Bogomolov (Theorem from |Gao20b, Thm.1.4]), which is a useful
tool to study unlikely intersection problems in mixed Shimura varieties.

e Chapter [4} Interactions. In this chapter, various aspects used to study the
problems in the previous chapters are presented. They are (i) (Ax type)
functional transcendence results in mixed Shimura varieties in (|Gaol7hb),
Gao20b|); (ii) the degeneracy loci of subvarieties of abelian schemes in
(|Gao20a]); (iii) the Betti map and its generic rank in (|Gao20a]); (iv) the
height inequality to compare the fiberwise Néron—Tate height with the height
on the base for an abelian scheme in (IDGH19, DGH20.|Gao20a]).
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Introduction (version frangaise)

Une question fondamentale en mathématiques est de trouver les solutions des équa-
tions. Par exemple soit f(X,Y’) un polynéme en deux variables a coefficients dans Q.
Il est naturel de penser a chercher les Q-solutions, c¢’est-a-dire les nombres rationnels
x et y tels que f(x,y) =0.

Pourtant, il est en général trop difficile de répondre a cette question, comme
I'exemple suivant permet de se rendre compte : soit f(X,Y) = X"+Y" —1 pour un
entier n > 3, alors la question de trouver toutes les Q-solutions de f est précisément
le grand théoréme de Fermat, qui n’a été démontré qu’en 1995 par Wiles et Taylor—
Wiles [Wil95, TW95].

Or, voici une question qui est toujours fondamentale mais plus abordable :

Question. FEst-ce qu’il existe une magjoration simple pour les nombres de Q-solutions *
Comment les Q-solutions se répartissent ¢

Cette question étant facilement formulée, y répondre a pris des décennies voire
des sieécles aux mathématiciens. En langage moderne, les Q-solutions deviennent
des points rationnels sur les variétés algébriques.

Les premiéres étapes pour traiter ce probléme sont des opérations standards.
Tout d’abord I'on prolonge C* dans l'espace projectif P*(C). Ensuite, en utilisant
les coordonnées homogénes [Xy : X; : X,] de P?(C), I'on définit un polynome
F(Xo, X1, X5) = X5/ f(51,52). Maintenant F(Xo, X1, X,) définit une courbe
dans P?(C), qui est 'adhérence de la courbe affine {(z,y) € C* : f(z,y) = 0}
dans P?(C). Nous appelons cette nouvelle courbe une courbe projective définie sur
Q. Remarquons que seulement un nombre fini de points sont ajoutés. Aprés quoi,
un entier intrinseque g > 0 peut étre associé a chaque courbe projective, et cet

entier s’appelle le genre. Par exemple si la courbe n’admet que des nceuds (doubles
g= (deg F—1)(deg F'—2)
- 2

ordinaires) comme points singuliers, alors —k avec k nombre des
points singuliers. En général, chaque courbe projective peut étre transformée, par
une transformation de Cremona, en une courbe projective n’ayant que des noeuds
comme points singuliers.

A partir de cet entier intrinséque, 'on peut déja voir plusieurs propriétés de
C(Q), qui est 'ensemble des Q-points sur la courbe C' en question. Lorsque g = 0,
C(Q) est soit vide soit un ensemble infini ; la structure de C(Q) est plutot simple
dans ce cas. Lorsque g = 1, C'(Q) admet une structure de groupes abéliens. La
partie de torsion de C'(Q) a été étudiée par Mazur [Maz77| (sur un corps de nombres
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quelconque par Merel [Mer96|), et 'analyse de la partie sans-torsion est fournie par
la conjecture de Birch et Swinnerton-Dyer.

Lorsque g > 2, la premiére étape pour comprendre C(Q) est la conjecture de
Mordell (1922) : soit C' une courbe projective lisse géométriquement irréductible de
genre g > 2 définie sur un corps de nombres K, alors C'(K) est un ensemble fini ;
voir [Mor22]. La conjecture de Mordell a été démontrée par Faltings en 1983 |Fal83)|
en tant que conséquence de ses démonstrations de la conjecture de Tate et de la
conjecture de Shafarevich pour les variétés abéliennes.

Aprés avoir démontré la finitude de C'(K), la prochaine étape est de chercher
une majoration pour #C(K). L’observation suivante n’est pas difficile : #C(K)
dépend forcément du genre g et du degré du corps de nombres [K : Q]. Le résultat
suivant a été démontré par Caporaso-Harris-Mazur [CHM97| (version améliorée
par Pacelli [Pac97]) : si la conjecture de Lang est vraie, alors il existe un nombre
B = B(g,[K : Q]) > 0 tel que #C(K) < B pour toute C. Ce résultat entraine deux
avis différents : les uns croient par conséquent qu'une majoration par g et [K : Q]
existe effectivement, tandis que les autres pensent que la conjecture de Lang doit
étre modifiée puisque cette majoration ne peut pas étre vraie.

Dans les années 90, Vojta a re-démontré la conjecture de Mordell par une nouvelle
méthode. Sa preuve a été simplifiée et généralisée par Faltings |[Fal9la], suivie par
une simplification approfondie par Bombieri [Bom90a]. Dans cette approche, 'on
prolonge tout d’abord la courbe C' dans sa jacobienne J par 'immersion d’Abel—
Jacobi en un point rationnel (s’il en existe un). Un nombre associé a J, appelé la
hauteur de Faltings et noté hg,(J), joue un role important. 'l Dans un certain sens,
ce nombre mesure la « complexité » des coefficients des équations qui définissent la
courbe C. En se reposant sur cette nouvelle approche, Rémond [Rém00| a démontré
une majoration explicite

#C(K) < c(g,d, hpa(J))"*, (0.0.1)

ou ¢(g,d, hpa(J)) est une constante qui ne dépend que de g, d := [K : Q] et hpa(J).
Le nombre entier p > 0, appelé le rang de Mordell-Weil sur K, est défini comme
p = rankzJ(K). Le théoréme de Mordell-Weil assure que J(K) est un groupe
abélien finiment engendré, donc p est un nombre fini.

D’autre part, I'on a cherché a éliminer hy,(.J) dans la majoration (0.0.1)). Ceci a
été explicitement proposé comme une question par Mazur peu aprés la démonstra-
tion de la conjecture de Mordell par Faltings ; voir [Maz00, page 223| et |[Maz86, haut
de la page 234].

[UCes informations ont aussi été utilisées dans la premiére démonstration de la conjecture de
Mordell par Faltings en 1983.
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Dans le cadre d'un projet en collaboration avec V. Dimitrov et P. Habegger,
nous avons donné une réponse positive a cette question. La clé est d’établir un
nouveau principe d’écart qui concerne la répartition des points rationnels et plus
généralement des points algébriques sur les courbes de genre au moins 2.

Ce mémoire fait une synthése des aspects suivants concernant les répartitions
des points sur les variétés algébriques et leurs interactions.

e Chapitre[l]: la majoration de #C(K) conjecturée par Mazur (Theorem [1.1.1)),
et la répartition des points algébriques sur les courbes de genre > 2 (Propo-
sition [1.2.1). Ceci concerne une série de travaux |[GH19, DGH19,|Gao20a,
DGH20].

e Chapitre2[: les petits points dans les variétés abéliennes. Le résultat principal
est la conjecture de Bogomolov géométrique sur caractéristique nulle (Theo-

rem [2.2.1). Ceci concerne [GH19,CGHX21|.

e Chapitre[3]: les points spéciaux dans les variétés de Shimura mixtes. Le résul-
tat principal porte sur la conjecture d’André—QOort pour les variétés de Shimura
mixtes (Theorem [3.1.2). Ceci concerne [Gaol7h|,/Gaol6]. Dans ce chapitre,
I'on trouve aussi un résultat de finitude @ la Bogomolov (Theorem issu
de |Gao20b, Thm.1.4]), qui est un outil pratique pour étudier les problémes
d’intersections atypiques dans les variétés de Shimura mixtes.

e Chapitre [] : les interactions entre les résultats abordés dans les chapitres
précédents. Dans ce chapitre, plusieurs aspects pour étudier les problémes
dans les chapitres précédents sont présentés, y compris (i) des résultats de
transcendance sur les corps de fonctions (de type Ax) dans les variétés de
Shimura mixtes, dans la section (|Gaol7bl|Gao20b|); (ii) les lieux de
dégénérescence des sous-variétés d’un schéma abélien, dans la section §4.2]
(|Gao20al); (iii) 'application de Betti et son rang générique, dans la section
(|Gao20a]); (iv) l'inégalité de hauteurs qui compare, pour un schéma
abélien, la hauteur de Néron—Tate définie fibre par fibre et la hauteur sur la
base, dans la (IDGH19,DGH20.|Gao20al ).
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Chapter 1

Rational and Algebraic Points on Curves
of genus > 2

1.1 Main result on the bound of the number of ra-
tional points

In collaboration with V. Dimitrov and P. Habegger, we proved the following rather
uniform bound on the number of rational points on curves of genus at least 2. This
answers affirmatively a question of Mazur [Maz00, pp.223].

Theorem 1.1.1 ( [DGH20, Thm. 1.1] ). Let g > 2 and d > 1 be two integers. There
exists a constant ¢ = c(g,d) > 0 with the following property. For any geometrically
wrreducible smooth projective curve C' of genus g which is defined over a number field

K of degree d, we have
#C(K) < el ) (1.1.1)

where J is the Jacobian of C.

Moreover, ¢ = ¢(g,d) depends polynomially on d.

Compared to the classical result , the height hp, (/) is no longer involved
in the bound.

Here are some results towards this theorem priori to our work. Based on the
method of Vojta, David-Philippon [DP07| proved the theorem if J is contained
in a copy of elliptic curves, Davia—Nakamaye—Philippon [DNP07| proved theorem
for some families of curves, and Alpoge |Alpl8| proved that the average number
of rational points on a curve of genus 2 is bounded. Based on the Chabauty—
Coleman approach Stoll [Sto19] showed that #C(F) is bounded in terms of g and d
if rank J(F') < g—3 and C' is hyperelliptic; Katz—Rabinoff-Zureick-Brown [KRZB16]
later, under the same rank hypothesis, removed the hyperelliptic hypothesis.

Our method is based on Vojta’s proof [Voj91] of the Mordell Conjecture, which
was later simplified by Bombieri [Bom90b| and further developed by Faltings [Fal91b].
Let us briefly recall the method. We will fix an immersion ¢: A, — PV (defined over
Q) where A, is the moduli space of principally polarized abelian varieties. Then the
naive height function on P(Q) induces a height function h = hy,,: Ay(Q) — R.
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It is known, by Faltings, that h ~ hp, (quasi-linear), where hp,(A) is the Faltings
height of the abelian variety A defined over Q.

Let h: Jac(C)(Q) — R denote the Néron-Tate height attached to the canonical
polarization in Jac(C'). Take Py € C(K), and for simplicity we identify C' with its
image under the Abel-Jacobi embedding C' — Jac(C') via Fy. We divide C'(K) into

two parts:

e Small points {P € C(K) :E(P) < B(C)};

e Large points {P € C(K) :ﬁ(P) > B(C)}

where B(C) is allowed to depend on a suitable height of C'. Roughly speaking, we
can take B(C) = comax{1, h(c([Jac(C)]))} for some cq = co(g,t) > 0.

Note that the number of small points is immediately finite as small points are
lattice points contained in a bounded set in a Euclidean space. The constant ¢
is chosen in a way that accommodates both the Mumford inequality and the Vojta
imequality. Combining these two inequalities yields an upper bound on the number
of large points by ¢;(g)' < /(K): see Vojta [Voj91, Thm.6.1].

Thus in order to prove Theorem [I.1.1] it suffices to bound the number of small
points.

1.2 A new Gap Principle

Our main contribution is the following new Gap Principle on the Néron—Tate dis-

tance of points in C'(Q). Roughly speaking, we proved that algebraic points on C'
are in general far from each other in a quantitative way.

Proposition 1.2.1 ([DGH20, Prop.7.1]). There are positive constants cy,c3, and

¢4, depending only on g and v, such that if h(c([Jac(C)])) > ¢1 then any P € C(Q)
satisfies the following property:

{Q € C(Q):h(Q - P) < h(L([J&C(C)]))/Q;} <l

In fact, the original statement of [DGH20|, Prop.7.1] claims a dichotomy with
the following upshot: If A(c([Jac(C)])) > ¢1, then the small points in C(K) either
lie in a set of uniformly bounded cardinality c; = c2(g), or is contained in at most
(1 + coez)™@k/(K) balls in the Néron-Tate metric, with each ball containing at most
¢y points. Then we obtain the current version by replacing c3 by 4c3 and ¢4 by

max{c, 04}

[T thank Pascal Autissier for pointing this out to me.
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Proposition yvields the bound #C(K) < ¢(g) 2k E) 4 h(y([Jac(C)])) >
¢1. Then one can apply Rémond’s estimate [DP02, pp.643| to conclude. Alterna-
tively by the Northcott property (and the Torelli theorem), there are only finitely
many curves Cg which are defined over a number field K of degree d and has height
at most ¢;. One can then either apply Silverman’s result [Sil93] on the Mordell
conjecture for twists of curves to each of these finitely many Cg’s.

1.3 Setup for the proof and “the height inequality”

The key to prove Proposition [I.2.1], and hence Theorem [I.1.1], is the following height
inequality. Let M, be the moduli space of smooth projective curves of genus g,
viewed as a subvariety of A, via the Torelli map. Up to adding level structures we
assume that M, and A, are both fine moduli spaces, and hence admit the universal
curve €, — M, and the universal abelian variety m: A, — A,. We can furthermore
assume that there is a symmetric relatively ample line bundle £, on ,/A,. Let S

be an irreducible variety with a (not necessarily dominant) quasi-finite morphism
S — M, and define

M+1
D C[S ]:Qg Xn, - X, Eg X, S — g Xa, -0 X, Ag X4, S

—~ N

(M+1)-copies M-copies
to be fiberwise defined by (Py, Pi,...,Py) — (PL — Py, ..., Py — Ry).

Theorem 1.3.1 (|[DGH20, Thm.1.6]+ |Gao20a, Thm.1.2’|). Assume g > 2 and
M > 3g — 2. Then there exist constants ¢ > 0 and ¢ > 0 and a Zariski open dense
subset U of @M(Cg\ﬁru) with

~ J—

he,(x) > chy, (m(z)) = forall z € U(Q). (1.3.1)

Notice that on fibers over s € S(Q) with chy,,(s) < ¢, the height inequality
(1.3.1)) does not give new information because the left hand side is always non-
negative. This leads to the constant ¢; = ¢1(g,¢) > 0 in Proposition [1.2.1] B
But as soon as hy,,(s) > c1, (|1.3.1)) becomes very strong. Each point 2 € U(Q)

equals (P, — P,..., Pyy — P) for some s € S(Q) and (P, Py,..., Py) € eMT1(Q).
The left hand side of (I.3.1) is then S, h(P, — P). Thus (L.3.1) ‘has the fol-

lowing upshot: Given any s € S(Q) of large height and any P € €,(Q), then for

Py, ..., Py € €(Q) in general position we cannot have h(P; — P) < (¢/M)ha,(s)
for each ¢ € {1,...,M}. This ultimately leads to Proposition up to some
technical argument.
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The height inequality is proved by applying [DGH20, Thm.1.6] to [Gao20a,
Thm.1.2’]. The proof of |Gao20a, Thm.1.2’| uses the Ax—Schanuel theorem for
2, |Gao20b, Thm.1.1] and a finiteness result a la Bogomolov |Gao20b, Thm.1.4] .

More discussion and a more general form of this height inequality will be given
in §4.4 Tt is expected to have more applications in Diophantine geometry.

1.4 Towards uniform Mordell-Lang

To close this part, I would like to point out that our method can be applied to
situations beyond rational points. This is reasonable because the new Gap Principle
we proved, Proposition[I.2.1] is not confined to rational points; it applies to algebraic
points on curves. We proved the following result towards a more general question
posed by Mazur [Maz86| top of pp.234|, sometimes known as the uniform Mordell-
Lang conjecture for curves.

Theorem 1.4.1 (|[DGH20, Thm.1.2|). There exist two constants 6 = §(g,t) > 0
and ¢ = c(g,t) > 0 with the following property. Let C' be a geometrically irreducible
smooth projective curve of genus g defined over Q, let Py € C(Q), and let T be a

finite rank subgroup of Jac(C)(Q). If C satisfies ha,,([Jac(C)]) > 4§, then we have
#(C(Q) — Py) NT < Hirankl (1.4.1)

where C' — Py is the image of the Abel-Jacobi embedding C — Jac(C') via P,.



Chapter 2

Small points on abelian varieties: the
Geometric Bogomolov Conjecture

2.1 Background and setup

In 1998, Ullmo |Ul98] and S. Zhang [Zha98] proved the Bogomolov conjecture over
number fields. However its analogue over function fields, which came to be known
as the Geometric Bogomolov Conjecture, remained open in full generality both over
characteristic 0 and p > 0.

In a joint work with S. Cantat, P. Habegger and J. Xie [CGHX21|, we proved the
Geometric Bogomolov Conjecture over characteristic 0. The statement is as follows.

Let k be an algebraically closed field. For the moment we do not make assump-
tions on its characteristic. Let B be an irreducible normal projective variety over k
of dimension d > 1. Let K = k(B) be the function field of B. Let A be an abelian
variety of dimension g defined over K. Fix a symmetric ample line bundle L on A.
Fix an ample line bundle M on B if d > 2.

We can define a height function on hy, A(K) — Rsg as follows. Take x €
A(K). Let p': B' — B be the normalization of B in K (). Let (A, £) be a model of
(A, L), i.e. m: A — B such that the generic fiber is A and £ an ample line bundle
on A such that the generic fiber is L. It is possible to choose an A normal. Set
A=A xpg B and let p: A — A be the projection to the first factor. Then set
hL7M<x) = m (AI . Cl(p*ﬁ) . p*w*(cl(/\/l))d_1>
where A, is the Zariski closure of z in A’. Now ELﬁM is the normalized height
function with respect to hy s via the Tate-Limit process, ¢.e.

h([N]x)
N2

EL,M (.Z‘) = liIIlN_>OO

2.2 Statement of the main result

Theorem 2.2.1 (|[CGHX21|; [GH19| if d = 1). Let X be an irreducible subvariety
of Az. Assume X is NOT of the form tr(Y ®; K) + T, where (AX/* tr) is the

13
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K [k-trace of Az, Y is a subvariety of AKIR and T is a torsion coset of Ag. If
chark = 0, then there exists € > 0 such that

X(e;L) ={z € X(K) : hyy(z) < e}
1s NOT Zariski dense in X.

Our proof uses heavily the Betti map (see , and the method is completely
different from earlier work on the conjecture. Priori to our result, the Geometric
Bogomolov Conjecture was proved by Gubler [Gub07a] when A is totally degenerate
at some place of K. He has no restriction on the characteristic of k. When X is a
curve embedded in its Jacobian A and when trdegK/k = 1, Yamaki dealt with non-
hyperelliptic curves of genus 3 in [Yam02| and with hyperelliptic curves of any genus
in [Yam08|. If moreover char(k) = 0, Faber [Fab09] proved the conjecture for X of
small genus and Cinkir |[Cinl1] covered the case of arbitrary genus. Priori to these
work, Moriwaki also gave some partial results in [Mor98|. Yamaki [Yam18| reduced
the Geometric Bogomolov Conjecture to the case where A has good reduction every-
where and has trivial K /k-trace. He also proved the cases (co)dimX = 1 [Yam17b]
and dim(A®x K /(A%/* @, K)) <5 |[Yam17a]. As in Gubler’s setup, Yamaki works
in arbitrary characteristic. These results involve techniques ranging from analytic
tropical geometry |Gub07b| to Arakelov theory; the latter method overlaps with
Ullmo and S. Zhang’s original approach for number fields.



Chapter 3

Special points in moduli spaces

3.1 The André—Oort Conjecture

Every connected Shimura variety, being the quotient of a Hermitian symmetric
domain by an arithmetic group, can be realized as a moduli space for pure Hodge
structures plus tensors. Better than the Hermitian symmetric domains themselves,
connected Shimura varieties are algebraic varieties. This was proved by Baily-Borel
[BB66]. The prototype for all Shimura varieties is the Siegel moduli space A, of
principally polarized abelian varieties of dimension g with a level structure. The
points in this moduli space corresponding to CM abelian varieties, which are called
special points, play a particularly important role in the theory of Shimura varieties.
A major reason is that the Galois action on special points are fairly completely
determined by Shimura-Taniyama theorem |Del71, Thm.4.19] and its generalization
by Milne-Shih [DMOS82| to Galois conjugates of CM abelian varieties. The concept
of special points and the results concerning the Galois action on them have been
generalized to arbitrary Shimura varieties. Every Shimura variety has a Zariski
dense subset of special points [Del71, Prop.5.2], and hence the results above have
lead to the concept of the canonical model of a Shimura variety over a number field:
see Deligne [Del79] and Milne [Mil88].

For various reasons, it is natural and necessary to generalize the notion of
Shimura varieties to new objects which parametrize mized Hodge structures plus
tensors. This will lead to the notion of connected mixzed Shimura varieties. In order
to distinguish, we will use the term “pure Shimura variety” to denote the Shimura
varieties mentioned in the previous paragraph.

Here are two reasons for this generalization. First, mixed Shimura varieties
exist as natural objects in geometry. Here are several important examples of mixed
Shimura varieties which are not pure:

e the universal family of abelian varieties 2(, of dimension g with a level struc-
ture;

e the G,,-torsor over 2, which corresponds to the tautological relatively ample
line bundle on /A, — Ay;

e the universal Poincaré bi-extension.

15
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Second, mixed Shimura varieties also arise in the natural problem of looking for
suitable compactifications of pure Shimura varieties. Indeed, the first compactifi-
cation is the Baily-Borel (or minimal) compactification [BB66|, which is canonical.
However this compactification has very bad singularities along the boundary. Next
we have the toroidal compactifications [AMRT10|, which are no longer canonical but
provide smooth compactifications of Shimura varieties. To construct these compact-
ifications one needs to study the boundary of a Shimura variety. As one approaches
the boundary of a Hermitian symmetric domain, pure Hodge sturctures degenerate
into mixed Hodge structures, and as one approaches the boundary of a Shimura va-
riety, abelian varieties degenerate into 1-motives. This will lead to mixed Shimura
varieties.

In Diophantine problems, there are analogous objects for mixed Shimura varieties
and for abelian varieties. The following table lists some of them.

abelian varieties connected mixed Shimura variety | universal abelian variety 2,
torsion / small points special points torsion points in CM fibers
torsion cosets mixed Shimura subvarieties subgroup schemes over
pure Shimura subvarieties

The objects in the third row will be called special subvarieties.

As we saw above, it is a classical result that each special subvariety contains
a Zariski dense subset consisting of special points. The André-Oort conjecture
predicts the converse statement, and thus the distribution of special points on mixed
Shimura varieties. It is the analogue of the Manin—-Mumford conjecture or the
Bogomolov conjecture in the Shimura setting.

Conjecture 3.1.1 (André-Oort). Let X is an irreducible subvariety of a connected
mixzed Shimura variety S. If X contains a Zariski dense subset of special points,
then X s a special subvariety of S.

I proved the following result on the André—Oort conjecture for mixed Shimura
varieties, generalizing known results on this conjecture for pure Shimura varieties.

Theorem 3.1.2 (|Gaol7h,|Gaol6|). The André-Qort conjecture holds true for any
mized Shimura variety which satisfies a lower bound on the Galois orbit on special
points. Thus by [Tsil8, Thm.1.2] it holds true for any mized Shimura variety of
abelian type (so in particular the universal abelian variety A, ).

For pure Shimura varieties, André [And98] proved the conjecture for Y (1)2.
It has since then been open, until Pila’s pioneer work [Pilll| proving the conjec-
ture for Y (1)V; the proof follows the Pila—Zannier strategy settled up in |[PZ08§|
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to prove the Manin—-Mumford Conjecture. Using results on functional transcen-
dence (see comments below Theorem and the averaged Colmez’s conjec-
ture [YZ18, AGHMP18| and Masser—Wiistholz’s isogeny theorem [MW93|, Tsimer-
man [Isil8] proved the conjecture for A,,.

On the other hand, the André—Oort conjecture was proved under the General-
ized Riemann Hypothesis by Klingler, Ullmo and Yafaev [UY14a|, [KY14]. This
generalizes Edixhoven’s approach for Y (1)? |[Edi98|.

3.2 A finiteness result a la Bogomolov

An important step in the Pila-Zannier method to handle special points or more
general unlikely intersection problems is a finiteness result a la Bogomolov. It dates
back to Bogomolov in the 70s.

Theorem 3.2.1 (|Bog81, Thm.1]). Let A be a complex abelian variety, and let X
be an irreducible subvariety. Then there are only finitely many abelian subvarieties
B of A with dim B > 0 satisfying the following two properties:

(i) a+ B C X for some a € A(C);
(ii) B is maximal for the property described in (i).

The translates a + B in (i) are called weakly special subvarieties of A. Notice
that the special subvarieties of A are precisely the weakly special subvarieties with
a being a torsion point.

The notion of weakly special subvarieties also exists for mixed Shimura varieties.
It generalizes the notion for abelian varieties.

Definition 3.2.2 (|Pin05| Defn.4.1]). Let S be a connected mized Shimura variety.
A subvariety Y of S is called a weakly special subvariety if there exist mized Shimura
subvariety T C S, a quotient Shimura morphism [p|: T — T" and a point t' € T"
such that' Y = [p] 7 (t).

This definition is indeed equivalent to [Pin05, Defn.4.1] by |Gaol7b, Defn.5.2,
Rmk.5.3, Prop.5.7].

Hence one can make the analogous statement of Theorem for mixed Shimura
varieties. This analogue of Bogomolov’s result for pure Shimura varieties was proved
by Ullmo |Ull14] to study the André—Oort conjecture. I extended Ullmo’s result to
all mixed Shimura varieties |Gaol7bl §12].
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On the other hand, weakly optimal subvarieties, as a generalization of weakly
special subvarieties, were introduced by Habegger—Pila [HP16| to study the Zilber—
Pink conjecture. They also proved the corresponding finiteness result for abelian
varieties and Y (1), before Daw—Ren |DR18, Prop.3.3| proved the statement for all
pure Shimura varieties. Such finiteness results are important in the study of unlikely
intersection problems: it is often used to proved that certain “unlikely locus”, which
a priort is a complicated union, is Zariski closed.

Definition 3.2.3. Let S be a connected mixed Shimura variety. Let X be a fixed
irreducible subvariety of S.

(i) For each irreducible subvariety Z of S, define dyws(Z) = dim Z%* —dim Z, where
Z% is the smallest weakly special subvariety of S containing Z .

(i) A closed irreducible subvariety Y of X is said to be weakly optimal if the
following condition holds: Z C Z' C Y = §ws(Z") > 0ws(Z), where Z' is
assumed to be 1rreducible.

Extending and simplifying Daw—Ren’s proof, I proved the following theorem,
which is precisely the desired finiteness result a la Bogomolov to study the Zilber—
Pink conjecture for 2f,. It is used in the proof of [Gao20a, Thm.1.2’], and hence
Theorem [LLT.1]

Theorem 3.2.4 (|Gao20b, Thm.1.4 and Thm.8.2]). Let X be a fized irreducible
subvariety of a connected mized Shimura variety of Kuga type S.

There exist finitely many connected mized Shimura subvarieties Ty, ..., Ty, of
S, and finitely many quotient Shimura morphisms [p;;]: Ti — T}, for each i €
{1,...,m} with the following property. If Z is a weakly optimal subvariety of X,
then Z%° = [; ]~ (t') for some i,j and t € Ty ;.



Chapter 4

Interactions

4.1 Functional transcendence

Let S be a connected mixed Shimura variety associated with the connected mixed
Shimura datum (P, X') and let u: X — S = ['\X be the uniformization. An example
for S to keep in mind is the universal abelian variety 2, (with some level structures).
For any (P, X), there exists a complex algebraic variety X such that X can be
realized as a semi-algebraic subset of X' which is open in the usual topology. Thus
we can make the following definition: A subset Y of X to be algebraic if it is a
complex analytic irreducible component of the intersection of X and an algebraic
subvariety of XV. This make the system u: X — S a bi-algebraic system.

In |Gaol7b, Cor.8.3| (pure case by Ullmo-Yafaev |[UY11]), I proved that the
bi-algebraic objects are precisely the weakly special subvarieties as defined in Defi-
nition . More preciesly given a subvariety F' C S, then F' (a complex analytic
irreducible component of u~!(F)) is algebraic in X if and only if F is a weakly
special subvariety of S.

Using this language of bi-algebraic system, one can state the Ax—Schanuel con-
jecture.

Conjecture 4.1.1 (Ax—Schanuel). Let A C X xS be the graph of u, and let pg: X %
S — S be the natural projection to S. Let Z be a complex analytic irreducible subset
of A. Then

dim 2% — dim 2 > dim pgs(2)™".

Here ps(Z)™ means the smallest weakly special subvariety of S which contains
ps(Z).

My results towards this conjecture are:
Theorem 4.1.2. The Az—Schanuel conjecture holds true in the following cases:
(i) [Gaol7b, Thm.8.1] If ps(Z) is algebraic;

(i) [GaolTb, Thm.1.2] If px(Z) is algebraic, where px: X xS — X is the natural
projection;

19
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(iii) [Gao20b] If S = A, (universal abelian variety) or more general if S is of Kuga
type.

Part (ii) is called the Az—Lindemann theorem; it plays a crucial role in the
unconditional proof of the André—Oort conjecture. The Ax-Lindemann theorem
was proved for Y (1) by Pila [Pilll], for projective Shimura varieties by Ullmo—
Yafaev |[UY14b|, A, by Pila-Tsimerman |[PT14a] and pure Shimura varieties by
Klingler—Ullmo—Yafaev [KUY16|. The Ax—Schanuel conjecture was proved by Pila—
Tsimerman for the j-function [PT14b|, by Mok—Pila—Tsimerman for any pure Shimura
variety [MPT19|. My results are extensions of these results and are based on them.
It is not a simple reduction. Rather, I went into the details of their proofs to adapt
each part to variation of mixed (not pure) Hodge structures. Several new ideas were
required.

4.2 Unlikely Intersection on abelian schemes: de-
generacy loci

Let S be an irreducible variety over C, and let 7: A — S be an abelian scheme of
relative dimension g, namely a proper smooth group scheme whose fibers are abelian
varieties.

Let X be an irreducible subvariety of A.

Definition 4.2.1. Let (X) denote the smallest subvariety of A which satisfies the
following properties:

(i) 7({X)) = n(X), which we denote by B;

(ii) there exist a finite covering B' — B such that for the natural projection
p: A=A xg B — A, we have

X C(X)=pB+oc+0") (4.2.1)

where B is an abelian subscheme of A" — B', p is a torsion section of A" — B’
and p' is a constant section of A" — B'.

Constants sections of A" — B’ are defined to be, for the largest constant abelian
subscheme C' x B’ of A" — B’ sections ¢’: B" — A’ such that ¢/(B’') = {¢} x B' C
CxB CA.

It should be understand that (X) is the “smallest abelian scheme” contained in
A which contains X. In [Gao20a], it is denoted by (X)s,.

Having this notion, we can define the t-th degeneracy locus of X for each t € Z.
But the most interesting cases are t < 0 and ¢ = 1.
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Definition 4.2.2. The t-th degeneracy locus of X is defined to be the following
union
X8 () = U Y. (4.2.2)

Y CX irreducible, dimY >0
dim(Y)—dim7(Y)<dim Y+¢

We also denote for simplicity by X% = X9°(0).

Notice that when t < 0, the requirement dim Y > 0 is redundant in the definition.

The t-th degeneracy locus turns out to be very useful to study Diophantine
problems related to families of abelian varieties. For example, X98(¢) is closely
related to the generic rank of the Betti rank (see when ¢ < 0, and X98(1) is
closely related to the relative Manin—-Mumford conjecture and eventually the relative
Bogomolov conjecture (see |Gao20a;, §11]).

The union in (4.2.2)) is a priori an infinite union, and thus it is a priori not clear
that X4°8(¢) is closed in X even in the usual topology. I proved the following result,
which is the first step to understand X498 (¢).

Theorem 4.2.3 (|Gao20a, Thm.1.8]). X98(t) is a Zariski closed subset of X for
each t € Z. In particular, X8 is Zariski closed in X .

Let us briefly explain how Theorem [4.2.3]is proved. First we reduce the theorem
to the case where A — S is the universal abelian variety A, — A,. Next using
the geometric description of weakly special subvarieties of 2, from |Gaol7al, we
can replace dim(Y) — dim7(Y) by dim Y™ — dim 7 (Y)" in (4.2.2)). But then it is
not hard to prove that each maximal Y in the union in is a weakly optimal
subvariety of X (Definition , and thus we can invoke the finiteness theorem a
la Bogomolov in this case, Theorem to prove that the union in can be
written as a finite union. Therefore X9°(t) is Zariski closed.

Proposition 4.2.4. If X and 7: A — S are defined over an algebraically closed
field K of characteristic 0, then X98(t) is defined over K for each t € 7,

Proof. This follows from the proof of |Gao20a, Thm.1.8]. Let us explain more details.

|Gao20a, Lem.9.1| reduces this proposition to the case where A — S is the
universal abelian variety A, — A,. Hence we are in the situation of |Gao20a,
Thm.7.1].

The key point to prove |[Gao20a, Thm.7.1] to apply the finiteness result & la
Bogomolov (Theorem . More precisely, applying Theorem to X, we
obtain finitely many connected mixed Shimura subvarieties T1,...,T;, of %,, and
finitely many quotient Shimura morphisms [¢; ;]: T; — Tj; for each i € {1,...,m}.
It is proved in |Gao20a, §7.3| that X9(¢) is the (finite) union of the following sets:

Eg -t = {z € X(C) : dim,([i ]| xnr) " ([¢i,]()) > gi; — t},
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where g; ; is an integer associated with [¢;;]: T; — T} ;.
But every [p;;]: T; — T}, is defined over Q because it is a Shimura morphism

between mixed Shimura varieties. As K D Q, each E,, ,—+ above is defined over K.
So Xd&(t) is defined over K. O

Example 4.2.5. Let us see the example where dimS = 1 and t = 0. In this
case, the condition dim(Y) — dim7(Y) < dimY s equivalent to dimn(Y) = 1
and (Y) = Y. So in this case, the argument of [GH1Y, §3] shows that X% is
generically special as defined by [GH19, Defn.1.2] and is precisely X \ X* for X*
defined below [GH19, Defn.1.2].

4.3 Betti map and its generic rank

The Betti map is a useful tool in Diophantine Geometry. It was already used in early
works of Corvaja, Masser and Zannier on the Relative Manin—-Mumford Conjecture.
The name “Betti map” was proposed by Bertrand.

Let S be an irreducible variety over C, and let 7: A — S be an abelian scheme of
relative dimension g, namely a proper smooth group scheme whose fibers are abelian
varieties.

For any s € S(C), there exists an open neighborhood A C S*" of s with a
real-analytic map, called the Betti map,

ba: Ax =71 (A) = T,

where T? is the real torus of dimension 2g, defined as follows. Up to shrink-
ing A we may assume that it is simply-connected. Then one can define a basis
wi(s),...,we(s) of the period lattice of each fiber s € A as holomorphic func-
tions of s. Now each fiber A, = 7 !(s) can be identified with the complex torus
C9/)Zuw(s) ® - - - B Zwsyy(s), and each point x € A,(C) can be expressed as the class
of 3% bi(x)wi(s) for real numbers by (z), ..., by,(). Then ba(z) is defined to be
the class of the 2g-tuple (b1(z), ..., by, (z)) € R* modulo Z9.

The Betti map turns out to be a powerful tool in Diophantine geometry.

Let X be an irreducible subvariety of A. Studying the following generic rank of
balxrda

rankg (dbalx) := weXsrlrnl(z%mAA(rankR(dbA|XQAA)$),

has seen many applications. This question was explicitly posed for the first time
in [ACZ20).
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First of all, rankg(dba|x) has a trivial upper bound by
rankg (dbalx) < 2min{dim ¢(X), g}, (4.3.1)

where ¢t: A — 2, is the modular map. This is because the Betti map factors
through the universal abelian variety A, — A/ (hence the bound < 2dim ¢(X)) and
has target T?9 (hence the upper bound < 2g).

Here are some applications of studying the generic rank of the Betti map, or
more precisely to determine whether rankg(dba|x) = 21 for some particular [ and
X. The geometric Bogomolov conjecture over char 0 by Gao-Habegger |[GH19| and
Cantat-Gao-Habegger—Xie [CGHX21| (Theorem [2.2.1)) with [ = dim X —dim S; the
denseness of torsion points on sections by André-Corvaja—Zannier |[ACZ20| with
I = g (and they proved the denseness when dimS > g and End(A/S) = Z);
application of André—Corvaja—Zannier’s result to Lagrangian fibrations to study
the Chow ring of hyper-Kéahler fourfolds by Voisin [Voil8| with [ = g > 4.

In this memoire, we focus on the case where rankg(dba|x) = 2dim X. More
general cases are treated in |[Gao20a].
It is sometimes convenient to make the following mild assumption:

(Hyp) : ZX = Uneg{[N]z: 2 € X(C)} is Zariski dense in A.

This assumption is mild because otherwise we may replace A by A xg7(X) (which
is again an abelian scheme), and then by a smaller abelian scheme which is an
irreducible component of a subgroup scheme of A — S (up to taking a finite covering
of 5).

First of all we make the following observation. If rankg(dba|x) = 2dim X holds
true, then by (4.3.1), we must have (i) ¢|x is generically finite for the modular map
v A— Ay (i) dim X < g.

But these conditions are not sufficient. In fact, here is the criterion for rankg (dba|x) =
2 dim X proved in |[Gao20a]. The proof makes essential use of the mixed Ax—Schanuel

theorem for 2, (Theorem [£.1.2](iii)) and a refinement of Theorem [4.2.3]
Theorem 4.3.1. The following statements are equivalent.
(i) rankg(dba|x) = 2dim X ;

(ii) X # X9 with X% from ([4.2.2) (with t = 0) which is Zariski closed by
Theorem |4.2.5,

[UAt this stage, it is good to make the remark that each Y appearing in the union in (%.2.2))
has generic Betti rank smaller than 2dim Y by the naive dimension reason (ii). This suggests that
Xdeg(0) is closely related to this quesiton.
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Moreover if (Hyp) holds, then (i) and (ii) are furthermore equivalent to the following
condition. For each abelian subscheme B of A — S (whose relative dimension is
denoted by gp), we have dim(c/p o pp)(X) > dim X — gg, where pg: A — A/B is
the quotient abelian scheme and v/p is the modular map.

A-LE 4B, (4.3.2)
.
S idg S L/B,S Ag_%

Proof. 1f t| x is generically finite, then (i) and (ii) are equivalent by |[Gao20a, Thm.1.7
and Thm.1.8] applied to | = dim ¢(X) = dim X.

If ¢|x is not generically finite, then rankg(dba|x) < 2dim¢(X) < 2dim X, so (i)
cannot hold. But in this case, we have X = X9(0) by |Gao20a, Lem.9.1| applied
tot =0 and r > 0. So (ii) cannot hold, either.

Thus (i) and (ii) are equivalent by the previous two paragraphs.

If (Hyp) holds, then (i) and the condition above (4.3.2) are equivalent by |[Gao20al,
Thm.1.1.(i)] applied to [ = dim X. O

4.4 The height inequality

We have explained that in the proof of Theorem [.1.1] a key new ingredient is the
height inequality Theorem In this section, we give this height inequality in
its most general form.

Let S be an irreducible variety, and let 7: A — S be an abelian scheme of
relative dimension g, namely a proper smooth group scheme whose fibers are abelian
varieties. Let £ be a relatively ample line bundle on A/S, and let M be an ample
line bundle on some compactification S of S. All objects are assumed to be defined
over Q.

We have then two height functions. The fiberwise defined Néron—Tate height
function hyr: AQ) — Rsg, 7 = Pty Loy (x); and the height function on the
base hg \4: S(Q) — R given by the Height Machine.

Let X be an irreducible subvariety of A. Recall the degeneracy locus X 4°8 defined
as in (4.2.2)) with ¢ = 0; it is Zariski closed in X by Theorem m

The following definition of non-degenerate subvarieties is equivalent to the one

used in [DGH20| ([DGH20, Defn.1.5 and Defn.B.4|) by Theorem [4.3.1]

[21This geometric criterion, which is checkable by hand, can be simplified in some cases; see
|Gao20a;, (1.4)].
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Definition 4.4.1. An irreducible subvariety X of A is said to be non-degenerate if
X # X98(0).

Theorem 4.4.2. Let X be an irreducible subvariety of A. Set X* := X \ X9, By
the discussion above, X* is Zariski open in X and is non-empty if and only if X is
non-degenerate.

There exist constants ¢ > 0 and ¢, depending on X and the data (A/S, L, M),
such that

/]’;A7£(x) > chg p(m(w)) — ¢ for all v € X™(Q). (4.4.1)

Remark 4.4.3. When dim S = 1, this theorem is precisely (GH19, Thm.1.4] by
FExample . For more general S, this is a refinement of (DGH20, Thm.1.6 (and

Thm.B.1)] (by plugging in Theorem and Theorem [4.2.5).

Proof. We prove the theorem by induction on dim X. If dim X = 0, then result is
trivial. So let us assume dim X > 1.

If X = X8 then X* = () and there is nothing to prove. Otherwise, X is non-
degenerate and hence we can invoke [DGH20, Thm.B.1]. So there exist constants
c¢>0and ¢ > 0 and a Zariski open dense subset U of X defined over Q such that

hac(z) > chg p(m(x)) — ¢ (4.4.2)

for all x € U(Q). Let X \U = Z; U --- U Z, be the decomposition into irreducible
components. Since dim Z; < dim X — 1, we may do induction on the dimension.
By induction hypothesis, the inequality holds true for all points in | J,(Z; \
Z)(Q) up to modifying the constants ¢ and ¢

Therefore, in order to prove , it remains to prove

X\ x*cvul Jz:\ z"®),

or equivalently

XD (X\U)N(Z"* = (LU0 Z)N ()28 = 2=

7

But Z; C X, and hence Z'® C X% by definition of the degeneracy locus (£.2.2).
So we are done. O

In practice, to apply Theorem one needs to show that X # X9  The
criterion is given by the “Moreover” part of Theorem [£.3.1]] When dimS = 1 or
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A — S has simple algebraic monodromy group, the criterion can be simplified;
see |Gao20a, (1.4)] (also [GH19, Thm.1.4] for dim S = 1).

The following theorem, as an application of Theorem turns out to be very
useful in applications.

As the convention of [Gao20a] (§2 of loc.cit.) is somewhat different from standard
notation, we state the theorem in terms of the geometric generic fiber.

Theorem 4.4.4 (|Gao20a, Thm.10.1]). Let X be an irreducible subvariety of A such

that m|x is dominant to S. Assume that Xz (the geometric generic fiber of X — S)
is irreduciblel]

Assume furthermore
(a) dim X > dim S.
(b) X generates A for each s € S(C).

(c) On the geometric generic fiber Ay of A — S, the neutral component of Stab 4,_(Xz)

(the stabilizer of X7) is contained in the C(7)/C-trace of As.
Then as subvarieties of AM | we have that
(i) XM is non-degenerate if M > dim S and M|y is generically finite.

(i) D55 (XWMHU) is non-degenerate if M > dim X and /M |94 (xm+uy 15 generically
finite, where

.@mi :4XSAXS~“X54—>(4XS'”X54

vV Vv .
(m+1)-copies m-copies

is fiberwise defined by (Py, Py, ..., Py)— (P — Po,..., Py — ).
Here XMl = X xg--- x4 X (M-copies) for each integer M > 1.

Notice that hypothesis (b) implies hypothesis (a). But we still include hypothesis
(a) to emphasize that the construction does not work if X is a multi-section.

[BIThis assumption is harmless because it can always be achieved in the following way. There
exists a quasi-finite étale morphism S’ — S such that some component X’ of X xg S’ satisfies
that X7 is irreducible. But X' dominates X under the natural projection X xg 5" — X. In
applications, we apply this theorem to X’ C A xg 5" — §".
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Proof. The hypotheses (a)—(c) above are clearly equivalent to the hypotheses (a)—(c)
of [Gao20a, Thm.10.1]. Thus by |[Gao20a, Thm.10.1.(i)|] applied to ¢t = 0, we have

rankR(den”X[m]) > 2dim /(X)) for all m > dim S.

If furthermore o[ | v is generically finite, then the right hand side equals 2 dim X .
Hence part (i) of the current theorem is established.
Similarly, by |Gao20a, Thm.10.1.(ii)| applied to ¢t = 0, we have

rankR(den”@mX[mm)) > 2dim ™ ZA(X M) for all m > dim X.

If furthermore L[m]] 9A(xm+1)y 18 generically finite, then the right hand side equals
2dim Z2(Xm+1). Hence part (ii) of the current theorem is established. O

In practice, to verify the extra generic finiteness required in (i) and (ii), one can
sometimes use the following observations. For (i), «™l| v\ is generically finite if ¢| y
is generically finite. For (ii), /M| 94 (xm+1) is generically finite if ¢ (and not ¢[x) is
quasi-finite. This leads to |[Gao20a, Thm.1.3].
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