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Introduction (Frangais)

Le but de cette theése est d’étudier la géométrie diophantienne des variétés
de Shimura mixtes. IL’un des résultats principaux est le théoréme d’Ax-
Lindemann. Nous en déduirons ensuite un théoréme de répartition et nous
utiliserons ces deux résultats pour étudier la conjecture de Zilber-Pink. Dans
cette thése deux aspects de cette conjecture seront étudiés : la conjecture
d’André-Oort et la conjecture d’André-Pink-Zannier.

Toute sous-variété algébrique d’une variété algébrique est supposée fermée
sauf indication contraire.

La famille universelle des variétés abéliennes

Considérons le couple (GSp,,, HY ), ou
e GSp,, est le Q-groupe

GSpy, = {heGL2g| h<£] _019 )ht:y(h)( Iog _6]9 > avec V(h)GGm}.

o Hf ={Z=X+i¥Y € My(C)| Z=2"Y >0}

Un fait élémentaire sur ce couple est que GSp2g(R)+, la composante connexe
de GSpy, (R) dans la topologie archimédienne contenant 1, agit transitivement
sur Hif par
A B 1
( C D > -Z=(AZ+B)(CZ+D) .
De plus, I'inclusion Hf € My(C) ~ €9 induit une structure complexe sur
H;. Dans la théorie classique, ce couple correspond a ’espace de modules des
variétés abéliennes principalement polarisées.
Pour avoir un autre couple correspondant a la famille universelle, il faut
élargir (GSp,,, H}). Définissons maintenant un deuxiéme couple (Pag X;;)a
de la maniére suivante :

® Py est le Q-groupe Vo, x GSpyy, ot Va, est le Q-groupe vectoriel de
dimension 2g et GSp,, agit sur V54 par la représentation naturelle;

+
° X291a

X+

2g,a

est R x Hf comme ensembles, muni de I'action de Py o (R)* sur
définie par

(Uv h) ’ (’Ulv‘r) = (U + hU/, hZE)
pour (v,h) € Pyga(R)™ et (v/,2) € X .. On peut vérifier que cette
action est aussi transitive. De plus, cette action est algébrique.

1La lettre « a » en indice est ’initiale du mot « abélien » pour désigner que ce couple
correspond & la famille universelle des variétés abéliennes. On n’utilise pas (Pay, X;;) parce
que cette notation plus simple est utilisée pour un autre couple correspondant au G,,-torseur
ample canonique sur la famille universelle.



Il est plus délicat de définir la structure complexe sur XQ—;,a : tout d’abord
par la transitivité de l'action de Pago(R)" sur X2Z7a’ on a (pour un point
To € XQ-Z@)

X2—;,a = P297a(R)+ - ZQ-

Par ailleurs on rappelle que le Py, ,(R)'-ensemble X2Z7a se plonge de maniére
équivariante dans un ngya((C)—ensembleE. On a donc

X+

2g,a

= P297a(R)+ Xy — P297a(((:) Xy = ng7a(C)/Stabp2gya(C) (1‘0) = Xv.

Alors XV est par une variété complexe algébrique. L’inclusion ci-dessus réalise
X;(_]a comme un ensemble ouvert (dans la topologie archimédienne) semi-

algébrique de XV, et ainsi induit une structure complexe sur X;; a

Remarque. Une facon plus concréte de voir cette structure complexe sur X;;)a
est (essentiellement) la suivante (prenons le cas g = 1) : sur chaque point
T € HT, la fibre de la projection X;.,_a — HT est

(Xi":a)T = R = C
(a,b) +— a+br

L’analogue de cette identification pour les dimensions supérieures est aussi

correcte. Voir Remark[1.57)

Maintenant prenons un groupe de congruence net I' := Z29 xT'g < Pyy(Z),

on a alors -
us
Ay = F\XQZ — Ay :=T¢\HJ.

La fibre de [r] sur un point [z] € A, est Z29\R?Y munie de la structure com-
plexe de (X;;_’a)z. En dimension 1 (g = 1 et x = 7 € H) elle n’est que R? ~ C,
(a,b) — a+ br comme expliqué ci-dessus.
Théoréme (Kuga, Brylinski, Pink). 2, I, Ay est la famille universelle
des wvariétés abéliennes principalement polarisées (munie d’une structure de
niweau L' ) sur Uespace de modules fin Ay. De plus 2, et Ay sont des variétés
algébriques complexes.

Les variétés de Shimura connexes mixtes arbitraires

La famille universelle 4 est un exemple de variété de Shimura connexe mixte.
D’autres exemples incluent:

1. Le G,,-torseur ample canonique sur 2;

2Pour ceux qui connaissent bien la théorie de Hodge, ce nouvel ensemble est ’ensemble des
Q@-structures de Hodge mixtes de type {(—1,0), (0, —1), (=1, —1)} sur le Q-espace vectoriel
de dimension 2g + 1. Nous n’en parlerons pas beaucoup dans 'introduction. Voir le début
de .3l pour plus de détails.



2. La biextension de Poincaré sur A,.

Les définitions des données de Shimura connexes mixtes et des variétés de
Shimura connexes mixtes seront précisées dans JLT.21]l 11 suffit ici de savoir
qu'une donnée de Shimura connexe mixte est un couple (P, XT) qui partage
des propriétés élémentaires de (Paga, Xg;)a), par exemple P est un Q-groupe
et P(R)TU ((C)E agit transitivement sur X' et cette action est algébrique. Une
variété de Shimura connexe mixte S associée a (P, X) est le quotient '\ X'
de XT par un sous-groupe de congruence I' de P(Q). D’aprés un théoréme
de Pink, S admet une structure canonique de variété algébrique. Ce théoréme
généralise un résultat de Baily-Borel pour les variétés de Shimura pures.

Historique du théoréme d’Ax-Lindemann

Dans cette section, nous rappelons briévement ’historique du théoréme d’Ax-
Lindemann et on voit comment il est une généralisation naturelle de ’analogue
fonctionnel du théoréme classique de Lindemann-Weierstrass. Commengons
par le théoréme classique de Lindemann-Weierstrass.

Théoréme (Lindemann-Weierstrass). Soient aq, ..., ap, € Q. S’ils sont linéaire-
ment indépendants sur Q, alors exp(a), ...,exp(ay) sont algébriquement in-
dépendants sur Q.

L’analogue fonctionnelle de ce théoréme est la suivante :

Théoréme (Analogue fonctionnel, démontré par Ax [5L6]). Soient Z une var-
iété algébrique irréductible sur C et fi,..., fn € C[Z] des fonctions régulieres
sur Z. Si les fonctions fi,..., fn sont Q-linéairement indépendantes a con-
stantes pres, c’est-a-dire qu’il n’existe pas ay, ..., a, € Q (ne pas tous nuls) tels
que a1 f1 + ... + anfn € C, alors les fonctions

exp(f1)7 "'7exp(fn): zZ-C

sont algébriqguement indépendantes sur C.

Cet analogue fonctionnel peut s’écrire de la fagon géométrique de la maniére
suivante (reformulée par Pila-Zannier). C’est cette forme-la que 1'on généralis-
era aux variétés de Shimura connexes mixtes arbitraires.

Théoréme (Ax-Lindemann pour les tores algébriques sur C). Soient unif =
(exp, -+ ,exp): C" — (C*)" et Z une sous-variété algébrique irréductible de

C™. Alors unif(Z)Zar est le translaté d’un sous-tore de (C*)™.

D’aprés 'énoncé de ce théoréme d’Ax-Lindemann, nous sommes dans la
situation bi-algébrique suivante : C™ et (C*)™ sont des variétés algébriques,

31ci U est un sous-groupe distingué de P. Cest un groupe vectoriel qui est uniquement
déterminé par P (voir Definition [LT12). Pour 2 il est trivial.



pourtant le morphisme unif: C* — (C*)" est transcendant. Donc & pri-
ori, il n’existe aucune relation entre les deux structures algébriques de C™
et de (C*)™. Néanmoins nous avons trouvé par Ax-Lindemann une collection

——
des sous-variétés, les unif(Z) " avec Z algébrique dans C™, qui sont toutes
bi-algébriques. Ici on dit qu'un sous-ensemble V' de C" est bi-algébrique
pour C" nif, (C*)™ si V est fermé, algébrique, irréductible et son image
sous unif est aussi algébrique. On dit qu’'un sous-ensemble V' de (C*)™ est
bi-algébrique pour C" i, (C*)™ ¢l est I'image d’un sous-ensemble bi-
algébrique de C". Notons qu’Ax-Lindemann a comme conséquence directe la
déscription des sous-variétés bi-algébriques : les sous-variétés bi-algébriques
de (C*)™ sont précisément les translatés des sous-tores de (C*)™.
Il existe un résultat similaire pour les variétés abéliennes complexes :

Théoréme (Ax-Lindemann pour les variétés abéliennes complexes). Soient A
une variété abélienne complexe, unif : C™ — A et Z une sous-variété algébrique

——
irréductible de C™. Alors unif(Z) ™ est le translaté d’une sous-variété abéli-
enne de A.

Nous sommes alors dans une situation bi-algébrique similaire : C" et A
sont des variétés algébriques, pourtant le morphisme unif: C* — A est tran-
scendant. Donc & priori, il n’existe aucune relation entre les deux structures
algébriques de C" et de A. Néanmoins, nous avons trouvé par Ax-Lindemann

une collection des sous-variétés, les unif(Z)Zar avec Z algébrique dans C",
qui sont toutes bi-algébriques. Ici on dit qu’un sous-ensemble V' de C™ est
bi-algébrique pour C" Wi A sV oest fermé, algébrique, irréductible et
son image sous unif est aussi algébrique. On dit qu’un sous-ensemble V' de
A est bi-algébrique pour C" i, A il est I'image d’un sous-ensemble bi-
algébrique de C". Comme auparavant, Ax-Lindemann a comme conséquence
directe la déscription des sous-variétés bi-algébriques : les sous-variétés bi-
algébriques de A sont précisément les translatés des sous-variétés abéliennes
de A.

Ax-Lindemann pour les tores algébriques sur C et Ax-Lindemann pour les
variétés abéliennes ont été démontrés par Ax [5] [6]. Les démonstrations par la
théorie o-minimale ont été trouvées par Pila-Zannier [51] et Peterzil-Starchenko
[46]. Appelons ces deux cas Ax-Lindemann plat. Apreés ces travaux, des cas
variés d’Ax-Lindemann hyperbolique (c¢’est-a-dire Ax-Lindemann pour les
variétés de Shimura connexes pures ) ont été étudiés et démontrés par Pila [48]
(pour AY), Ullmo-Yafaev [67] (pour les variétés de Shimura pures compactes)
et Pila-Tsimerman [50] (pour Ay). Le résultat de Pila, étant une découverte
capitale pour ce théoréme, a conduit a une démonstration inconditionnelle de la
conjecture d’André-Oort pour AY, qui est la deuxiéme preuve inconditionnelle

4Au lieu de donner ’énoncé précis d’Ax-Lindemann hyperbolique ici, nous allons plutot
expliquer en détailles Ax-Lindemann mixte dans la prochaine section et signaler a quel cas
Ax-Lindemann hyperbolique correspond.



des cas spécifiques de cette conjecture aprés le travail d’André pour A? [2].
La version compléte d’Ax-Lindemann hyperbolique a été démontré récemment
par Klingler-Ullmo-Yafaev [29]. Le théoréme d’Ax-Lindemann hyperbolique
est aussi un énoncé bi-algébrique dans une situation bi-algébrique similaire a
celle d’Ax-Lindemann plat.

Ayant tous ces résultats, on peut se poser les questions suivantes :

Question. o Fst-ce qu’il existe un résultat contenant Az-Lindemann plat
et Az-Lindemann hyperbolique ¢

e De plus, est-ce qu’il existe une version en famille ?

Les réponses a ces deux questions sont positives. Un des résultats princi-
paux de cette thése est la démonstration du théoréme d’Ax-Lindemann mixte
qui est le résultat désiré.

Avant de passer a la prochaine section, faisons la remarque suivante :

Remarque. Dans les deux cas d’Ax-Lindemann plat, les conclusions ne changent
pas si Z est seulement supposée semi-algébrique et complexe analytique
irréductible. Ceci est une conséquence d’un résultat de Pila-Tsimerman []9,
Lemma 4.1].

L’énoncé du théoréme d’Ax-Lindemann mixte

Dans cette partie, S est toujours une variété de Shimura connexe mixte associée
a la donnée de Shimura connexe mixte (P, X1) et unif: X+ — S est son uni-
formisation. Tout d’abord, rappelons qu’Ax-Lindemann est un théoréme de bi-
algébricité. Donc nous expliquerons au début la situation bi-algébrique pour ce
cas. La variété S a une structure algébrique naturelle, ’espace d’uniformisation
XT n’est pourtant que trés rarement une variété algébrique. Cependant on a :

Proposition. Pour toute donnée de Shimura connexe mizte (P, X7T), il existe
une variété complexe algébrique XV définie en termes de (P, X) et une inclu-
sion XT — XV qui réalise Xt comme un ensemble ouvert (dans la topologie
archimédienne) semi-algébrique de XV .

D’aprés la remarque de la derniére section, il suffit de considérer la « situa-
tion bi-algébrique » suivante : considérons les sous-ensembles semi-algébriques
et complexes analytiques irréductibles de X et la structure algébrique na-
turelle de S. Rappelons que unif: X* — S est transcendant. Comme aupar-
avant, on souhaite trouver les objets « bi-algébriques ».

Question. Quels sont les objets bi-algébriques (c¢’est-a-dire les sous-ensembles
semi-algébriques et complexes analytiques irréductibles de X+ dont limage
dans S est algébrique) ?

Pour répondre a cette question, nous utilisons la notion de sous-variété
faiblement spéciale introduite par Pink (voir Definition [[22:2)).



Définition. 1. Un sous-ensemble F C X est dit faiblement spécial s’il
existe une sous-donnée de Shimura connexe mizte (Q, Y1) de (P,X™T),
un sous-groupe distingué N de Q et un point y € YT tels que

F = N(R)"Un(C)7,

ot Uy := NNU (rappelons que U est un sous-groupe distingué de P
qui est un groupe vectoriel déterminé par P). Si (P,XT) = (Pag.a, Xiz,a)
(c’est le cas considéré dans lintroduction), alors U est trivial.

2. Une sous-variété F de S est dite faiblement spéciale si F' = unif (F)
pour un F' C X7T faiblement spécial.

Pour les variétés de Shimura pures, Moonen a démontré que les sous-
variétés faiblement spéciales d’une variété de Shimura pure sont précisément
ses sous-variétés totalement géodésiques [39, 4.3]. Donnons ici un exemple
pour les variétés de Shimura mixtes.

Exemple 1 (Voir Proposition [[2T4). Soit A — B une famille des variétés
abéliennes principalement polarisées de dimension g sur une courbe algébrique
complexe B. Soit C sa partie isotriviale, ¢’est-a-dire le plus grand sous-schéma
abélien isotrivial de A — B. Alors quitte a prendre des revétements finis de B,
on peut supposer que C est une famille constante et qu’il existe un diagramme
cartésien

A—1v 9,

o

iB
B — A,
ol ip est soit constant soit quasi-fini, auquel cas i est aussi quasi-fini. Alors

{i Y (B)| E faiblement spécial dans A,} = {translatés des sous-schémas abéliens de

A — B par une section de torsion et puis par une section constante de C — B}.

Nous démontrons dans cette thése (voir Remark[[L37] le cas pur par Ullmo-

Yafaev [65]):

Théoréme. Un sous-ensemble I' C S est faiblement spécial si et seulement si
F (une composante compleze analytique irréductible de unif ' (F)) est semi-
algébrique dans XT et F est algébrique irréductible dans S.

Nous sommes désormais préts & donner I’énoncé du théoréme d’Ax-Lindemann
mixte dont la démonstration sera faite dans le Chapitre Bl de cette thése (de

BT a 93.4).
Théoréme (Ax-Lindemann mixte). Soit Z un sous-ensemble semi-algébrique

——7Zar
et compleze analytique irréductible de X. Alors unif(Z) est faiblement
spéciale.



Ax-Lindemann hyperbolique est précisément le méme énoncé lorsque la
variété de Shimura mixte ambiante S est pure. Le théoréme d’Ax-Lindemann
mixte implique Ax-Lindemann plat et Ax-Lindemann hyperbolique [29]. De
plus il est vraiment une version en famille. Pour le démontrer, nous utilisons
un résultat de comptage pour Ax-Lindemann hyperbolique [29, Theorem 1.3].

Une esquisse de la démonstration d’Ax-Lindemann mixte sera donnée dans
la prochaine section. Avant de passer a la démonstration, donnons ici un autre
théoréme assez proche d’Ax. Rappelons que nous avons une variété algébrique
XV telle que X+ — XV,

Théoréme (Ax de type loﬂ). Soient Y wune sous-variété algébrique irré-
ductible de S et Y une composante complexe analytique irréductible de unif_l(Y).
Définissons

—Zar
Y  :=la composante complexe analytique irréductible de lintersection de X'

avec Uadhérence de Zariski de Y dans XV qui contient Y.

—Zar
Alors Y est faiblement spéciale.

Ceci est aussi un résultat de cette thése et sa version plus détaillée est le
—Zar

Theorem 231] o l'existence de Y (qui n’est pas claire a priori) est aussi
démontrée. Si S est une variété de Shimura pure, ce théoréme peut se déduire
d’un résultat de Moonen [39] 3.6, 3.7]. Dans un article d’Ullmo-Yafaev a venir,
sa version pure dans le cadre de la bi-algébricité sera expliquée avec plus de
détails.

L’esquisse de la démonstration d’Ax-Lindemann mixte

Dans cette section nous donnons une esquisse de la démonstration du théoréme
d’Ax-Lindemann mixte. Pour simplifier, nous considérons seulement la famille
universelle 2, cest-a-dire (P,XT) = (Pyga, Xy ), S = Ay, (G, XF) =
(GSpQg,H;‘) et S¢ = Ay avec I' net. Supposons maintenant que ZcC XQ—;,a
est un sous-ensemble semi-algébrique et complexe analytique irréductible. Le
diagramme suivant sera utile :

T

(P,XT) (G, X)

unif l unifg l

s=n\x+ T s, =ro\xd

La démonstration sera divisée en 6 étapes.

5Le fait que cet énoncé est assez proche d’Ax m’a été signalé par Bertrand, ainsi que le
nom « Ax de type log ».
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Etape 1 | Définissons Y := unif(Z) . Soit Z un sous-ensemble maximal

parmi tous les sous-ensembles semi-algébriques et complexes analytiques irré-
ductibles de XT, qui a la fois contiennent Z et a la fois sont contenus dans
unif =1 (Y). L’existence d'un tel Z découle d’un argument de dimension. Alors
Z est algébrique irréductible au sens de Definition [[L35] c¢’est-a-dire que Z
est une composante complexe analytique irréductible de I'intersection de son
adhérence de Zariski dans XV et XT. Remplacons S par la plus petite sous-
variété de Shimura connexe mixte de S contenant Y et remplagons (P, XT), T,
(G, Xg ) et I'; respectivement. Remarquons que pour des raisons évidentes ces
remplacements ne changent ni I’hypothése ni la conclusion d’Ax-Lindemann.
Il suffit alors de démontrer que Z est faiblement spéciale par la bi-algébricité
des sous-variétés faiblement spéciales.

Notons N le groupe de monodromie algébrique connexe de Y™, c¢’est-a-dire

Zar
N = (Im(m (Ys™) - m(S) =T) )°.

Alors par les résultats d’André [I Theorem 1] et de Wildeshaus [71, Theo-
rem 2.2], N < P. Voir la démonstration du Théoréme Z3T](1).

Etape 2 | Définissons le Q-stabilisateur de Z

= Zar

HZ = (Stabp(R) (Z)nr )°.

Alors Az de type log implique Hz <t N. Voir Lemma [3.2.3]

Etape 3 | Trouvons un ensemble fondamental F pour Paction de T' sur X'+

tel que unif | £ est définissable dans la théorie o-minimale Rgy, exp-

Pour la théorie o-minimale nous nous référons a [67, Section 3] (pour une
version concise) et [48] Section 2, Section 3] (pour une version détaillée). Ex-
pliquons ici briévement pourquoi et comment la théorie o-minimale est utile
pour la démonstration. D’aprés 'énoncé d’Ax-Lindemann, c¢’est un théoréme
géométrique. Donc on souhaite chercher une démonstration géométrique.
Pourtant il ne suffit pas d’utiliser uniquement la géomeétrie algébrique parce
que le morphisme unif est transcendant. Pour résoudre ce probléme, une fagon
possible est de « raffiner la topologie de Zariski » : a part des (R-)polynomes,
on permet & d’autres fonctions de définir les ensembles constructibles. La
théorie o-minimale Ry, oxp est par définition la collection de tous les sous-
ensembles de R™ (Vm € N) qui sont définis par des équations et des inégalités
des R-polynémes, de la fonction R-exponentielle et des fonctions réellement
analytiques restreintes. Les sous-ensembles ci-dessus sont appelés ensem-
bles définissables dans R, cxp, €t les applications dont les graphes sont
définissables sont appelées applications définissables dans R, cxp. Bien
que Ry, oxp Ne soit pas une topologie, les ensembles définissables jouent un réle
de méme nature que les ensembles constructibles dans la topologie de Zariski.
La théorie o-minimale R, oxp satisfait les propriétés suivantes :



1. Ran,exp est une algébre de Boole;

2. (Théoréme de Chevalley) pour tout ensemble définissable A et toute
application définissable f: A — B, I'image f(A) est aussi définissable;

3. (Décomposition connexe finie) tout ensemble définissable A peut s’écrire
comme une union finie des ensembles définissables connexes.

4. (Décomposition cellulaire, voir [69] 2.11]) La décomposition connexe finie
peut étre renforcée : pour tout ensemble définissable A dans R™, il existe
une décomposition cellulaire D de R™ telle que A est une union finie
d’éléments de D.

Si on peut trouver un ensemble fondamental F pour 'action de I" sur X'+
tel que unif |z est définissable dans Ry exp, alors on peut utiliser les outils
de la théorie o-minimale pour étudier unif: X+ — S. Finalement on souhaite
récupérer des informations algébriques puisque, comme expliqué avant, la con-
clusion d’Ax-Lindemann est de trouver une collection des objets bi-algébriques.
Les théorémes de comptage de Pila-Wilkie serviront a cette fin. L’utilisation
de la théorie o-minimale pour la démonstration sera expliquée dans I’ Etape 4.

L’existence d’un tel F a été démontrée par Peterzil-Starchenko pour 2, [47,
Theorem 1.3] (dans leur preuve chaque fonction théta est écrite en terme de
R-polynoémes, de R-exp et des fonctions réellement analytiques restreintes) et
Klingler-Ullmo-Yafaev pour toutes les variétés de Shimura connexes pures [29]
Theorem 1.2] (la preuve exploite les outils développés pour les compactifica-
tions toroidales des variétés de Shimura pures [4]). Il est bon de remarquer que
I’ensemble fondamental F construit par Peterzil-Starchenko est le plus naturel
possible (voir Remark [[34]). En combinant ces deux théorémes et quelques
résultats supplémentaires, 'existence d’un tel F pour toutes les variétés de
Shimura mixtes sera démontrée dans cette thése §3.311.

Remarque. Dans les trois premiéres étapes, la démonstration d’Az-Lindemann
mizte et celle d’Ax-Lindemann hyperbolique [29] ne sont pas essentiellement

différentes : il suffit d’utiliser et de démontrer les résultats respectifs pour

chaque cas. Mais & partir de UEtape 4, les deux démonstrations différent beau-

coup.

Pour le cas hyperbolique (c¢’est-a-dire pur), on souhaite démontrer
dim(Hz) > 0 dans cette étape. Ceci est fait par Klingler-Ullmo-Yafaev [29] en
calculant les volumes des courbes algébriques dans ’espace d’uniformisation
prés de la frontiére. Notons que c’est presque la_derniére étape pour la dé-
monstration du cas pur parce que I'on en déduira Z = Hz(R)z (pour un point
ez ) par une récurrence assez simple.

Pour le cas mixte, il ne suffit pas de démontrer uniquement dim(Hz) > 0.
Voici un cas qui est évidement impossible d’aprés Ax-Lindemann mixte et que

la condition dim(Hz) > 0 toute seule ne suffit pas a exclure : dim7(Z) > 0
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mais Hz < V4. Dans ce cas, il est clair que Z ne peut pas étre une orbite
sous Hz(R)*, pourtant il est possible que dim(H ) soit strictement positive.
Pour résoudre ce probléme, nous démontrons dans cette étape (Proposi-

tion B:28)

= Zar
7T(H2) = (Stabg(R) (T((Z)) NTe )°.
Il est évident que 7m(H ;) est contenu dans le membre droit de I’équation. Donc
cette égalité révele que m(H ) est le plus grand possible.

C’est au cours de la démonstration de cette égalité que 'on doit utiliser
la théorie o-minimale et le théoréme de comptage de Pila-Wilkie. De plus,
comparé a 'estimation de Klingler-Ullmo-Yafaev, on doit exploiter toutes les
conclusions de la version en famille de Pila-Wilkie. Voir §3.312 pour la dé-
monstration compléte. Ici dans l'introduction, nous expliquons briévement
comment démontrer

dimm(Hz) >0
si dimm(Z) > 0.
Zar

Rappelons que Y = unif (2 ) . Définissons
(%) :={p € P(R)| dim(pZ Nunif"}(Y)N F) = dim Z} C P(R),
alors par le prolongement analytique,

S(Z) ={pe P(R)| pZ c mif *(Y), pZ N F #0}.

Les faits suivants sur (Z) ne sont pas difficiles & démontrer :

1. 2(Z) et m(2(Z)) sont tous les deux définissable dans Ran,exp (par la

premiére écriture de X(Z) parce que unif | » est définissable et la fonction
dim lest aussi);

2. %(Z)-Z c unif " (Y) (par la deuxiéme écriture de %(Z));
3. 7(2(Z)NT) = 7(X(Z)) NT¢ (voir Lemma E32).

Pour démontrer dim 7(H ) > 0, il suffit de prouver |7(Hz)(R)NI'g)| = oo.
Et donc il suffit de trouver deux nombres réels ¢ > 0 et § > 0 tels que pour
tout T > 0,

{ve € n(Hz)(R) NTa| H(ve) < TH = T°.

Donc il suffit de démontrer qu’il existe deux nombres réels ¢’ > 0 et 0 > 0 et,
pour chaque T assez grand, un blod] B(T) C 3(Z) tel que

[{ve € 7(B(T)) NTe| H(ve) < T} > T°.

61ci il faut modifier un peu ’ensemble fondamental F choisi auparavant, mais ceci est
faisable par quelques opérations simples. Voir la fin de §3.311.

7Un bloc est un ensemble définissable connexe tel que sa dimension coincide avec la
dimension de son adhérence dans la topologie de R-Zariski.
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Voir la fin de §3.3 pour plus de détails.

Maintenant nous utilisons un résultat de comptage dii a Klingler-Ullmo-
Yafaev |29, Theorem 1.3] qui dit : il existe un nombre réel € > 0 tel que pour
tout 7' > 0, B

{ve en(E(Z2))NTel H(ve) < T}H 2 T¢.
Mais d’apres le théoréme de Pila-Wilkie [48, cas = 0 de 3.6] (ou tout sim-
plement [29, Theorem 6.1]), il existe un nombre réel ¢ = ¢(e) > 0 tel que
I’ensemble _
{re en(E(2))NT¢| H(ve) < T}
est contenu dans une union d’au plus ¢I'/2 blocs. Ceci implique qu'il existe
deux nombres réels ¢’ > 0, § > 0 tels que pour tout T assez grand, il existe un

bloc Bo(T) C m(X(Z)) avec
{re € Ba(T)NTq| H(ve) < T} = T°.

Remarquons que cette inégalité est exactement ce que nous souhaitons pour
conclure cette étape de la démonstration d’Ax-Lindemann hyperbolique (c¢’est-
a-dire pur). Mais pour démontrer Ax-Lindemann mixte, nous sommes obligés
d’utiliser le fait que ces blocs Bg(T') (pour tout 7" assez grand) viennent d’un
nombre fini de familles de blocs ! Plus concrétement, au dela du fait que
Iensemble {vg € n(X(Z))NT'¢| H(ya) < T} est contenu dans une union d’au
plus ¢T%/2 blocs, [48, cas p = 0 de 3.6] nous assure qu’il existe un entier J > 0
et J familles de blocs BY € $(Z) x R! (j = 1,....J) tels que chacun de ces (au
plus) ¢T'/? blocs, en particulier les Bg(T) pour tout T assez grand, est Bj
pour certains j et y € R’ _

Pour chaque T assez grand, regardons 7w~ !(Bg(T)) N X(Z). Parce que
Bg(T) = BJ pour certains j et y € R', 7~ (Bg(T)) NX(Z) est la fibre de (7 x
1x)"HB)N((Z) x RY) sur y € RE. L'ensemble (7 x 1)~ (B)N(2(Z) x RY)
étant une famille définissable sur un sous-ensemble de R!, la décomposition
cellulaire de Ry, oxp implique qu’il existe un entier ng > 0 tel que chaque fibre
de (7 x 1g)"1(BI) N (S(Z) x RY), en particulier chaque 7~ (Bg(T)) N 2(Z)
pour T assez grand, a au plus ng composantes connexes (voir [69, 3.6]). Par

conséquent, 7~ H(Bg(T)) N X(Z) a au plus np composantes connexes. Par
ailleurs,

m(r~'(Ba(T))NX(Z)NT)

=Bs(T)N=(2(Z)NT)

= Ba(T)N W(E(Z)) NTg par le 3éme fait sur Z cité précédemment
= Be(T)NT¢ puisque Be(T) C 7(2(Z)).

Donc il existe une composante connexe B(T') de 7~ (Bg(T)) N 3(Z) telle que

/

{16 € 7(B(T)) NTe| H(ve) < T} > ;_OTa,
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Mais par définition ng ne dépend pas de T. Donc cet ensemble B(T) est ce
que nous cherchons.

Remarque. Par la démonstration, l'indépendance de ng vis-a-vis de T est
cruciale. Mais le Ba(T) que l'on obtient de Pila-Wilkie dépend de la hauteur
choisie T et par conséquent, ng aussi dépend de T & priori. C’est pour sur-
monter cette difficulté que nous sommes obligés d’utiliser le fait que tous les
Bg(T) viennent d’un nombre fini de familles de blocs pour le cas mixte.

Démontrons que Z = Hz(R)*Z pour un z € Z.

Pour le cas hyperbolique (c¢’est-a-dire pur), ceci découle d’un argument de
récurrence plutot simple.

Pour le cas mixte, il faut étudier plus soigneusement la géométrie. Il faut
utiliser le théoréme d’Ax-Lindemann pour la fibre (qui est une variété abélienne
pour 2, — A,) et faire des calculs supplémentaires. Ceci sera fait dans Theo-

rem [3:22.8(1). Remarquons que la structure complexe des fibres de X2—Z,a 5 HF
est utilisée a cette étape.

Remarque. Pour une variété de Shimura mixte connexe arbitraire S associée
a la donnée de Shimura mizte conneze (P,XT), la fibre de S — S¢g, ou Sg
est la partie pure de S, n’a pas nécessairement une structure de groupe com-
patible a la loi de groupe de P (voir Lemmal[2Z11)). En particulier le théoréme
d’Ax-Lindemann pour la fibre n’était pas connu jusqu’a présent en général. Sa
démonstration, qui sera donnée dans est aussi technique : nous devons
répéter les arguments de I’Etape 4 a UEtape 6 (Step I a Step IV dans {3.7),
avec une « Etape 6 » assez différente (qui est Step IV dans 33).

Etape 6 | Démontrons Hz <P

Pour le cas hyperbolique (c’est-a-dire pur), ceci est une conséquence de la
structure des groupes réductifs. Les faits que H; <N <P et que P est réductif
impliquent directement Hz <1 P.

Pour le cas mixte, cet argument n’est plus valable. En général, il est
faux qu’un sous-groupe distingué d’un sous-groupe distingué soit encore un
sous-groupe distingué du groupe de départ. Donc & part des arguments de la
théorie de groupes (les résultats de JL.T.4] seront utilisés), il faut aussi étudier
soigneusement la géométrie. Voir Theorem B.2.§(2).

Ici expliquons seulement pourquoi Vi, := Ru(Hz) = Hz N Vay est dis-
tingué dans P. Pour cela, nous utilisons la structure complexe des fibres de
T XQ—;,a — H;‘ : soit 2 € Z un point tel que 7(2) est Hodge-generique dans
X&L . Un tel z existe puisque 'on a supposé que S est la plus petite variété

——Zar
de Shimura connexe mixte qui contient Y = unif(Z) . Donc le groupe de
Mumford-Tate MT(7(Z)) est égal & G. Mais Z = Hz(R)"Z par I'Etape 5,
donc la fibre de Z sur 7(2) est

Zo(z) = Vir, (R)Z.
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Comme Z est par définition un sous-ensemble complexe analytique de X'*
(et donc de Xg;)a), Vi, (R) est un sous-espace complexe de (Xg;)a)ﬂ(g) =
Vag(R). Mais la structure complexe de (X;;)a),r(g) est donnée par la structure
de Hodge de type {(—1,0),(0,—1)} sur V5, dont le groupe de Mumford-Tate
est MT(7(2)) = G. Donc Vp est un G-module. Donc Vp_ <1 P puisque R, (P)
est commutatif.

Conclusion | Maintenant par les 6 étapes ci-dessus (surtout les conclusions

de I'Etape 5 et de I'Etape 6), unif(Z) est une sous-variété faiblement spéciale
Zar

de 4. Comme Y = unif (Z)  par définition et unif(Z), étant faiblement
spéciale, est une sous-variété algébrique de 2,, Y = unif(Z). Mais ¥ =

————Zar ———Zar
unif(Z)  par définition, donc unif(Z)  est faiblement spéciale.

D’Ax-Lindemann a André-Oort

Une des motivations principales pour étudier le théoréme d’Ax-Lindemann est
ses applications & la conjecture de Zilber-Pink. La conjecture d’André-Oort
est le cas le plus connu de cette conjecture.

Conjecture (André-Oort). Soient S une variété de Shimura connexe mizte
et X 'ensemble de ses points spéciaux. Soit Y une sous-variété irréductible de

—Z:
S. Siyns = Y, alors Y est une sous-variété de Shimura connexe mixte
de S (ou, de maniére équivalente, Y est faiblement spécz'alcﬁ).

Exemple. Les points spéciaux de U4 sont précisément les points correspon-
dants auzx points de torsion sur les variétés abéliennes CM. Donc la conjecture
d’André-Oort recouvre partiellement la conjecture de Manin-Mumford.

Cette conjecture a été démontrée, sous I’hypothése de Riemann généralisée,
pour toutes les variétés de Shimura pures par Klingler-Ullmo-Yafaev [66] B0].
Inspirés par la récente démonstration inconditionnelle d’André-Oort pour le
cas AV (faite par Pila [48]), des progrés ont été faits pour obtenir des preuves
ne reposant pas sur GRH. Le cadre de la démonstration de Pila est la stratégie
proposée par Pila-Zannier :

1. Démontrer le théoréme d’Ax-Lindemann;

2. Déduire d’Ax-Lindemann la répartitiorﬁ des sous-variétés (faiblement)
spéciales de dimension strictement positive contenues dans une sous-
variété;

3. Définir un paramétre (que l'on appelle la complexité) pour les points
dans ¥ et choisir un « bon » ensemble fondamental pour 'action de I’
sur Xt tel que unif | £ est définissable dans Ry, exp;

81 équivalence des deux conclusions découle de |54, Proposition 4.2, Proposition 4.15].
9Au sens du Théoréme E13)
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4. Démontrer une borne supérieure pour la hauteur d’'un point arbitraire
dans unif_l(E) N JF par rapport & la complexité de son image dans 3;

5. Démontrer une borne inférieure pour la taille des orbites sous Galois des
points dans ¥ par rapport & leurs complexités;

6. Conclure par le théoréme d’Ax-Lindemann, le théoréme de répartition
dans (2), la borne supérieure dans (4) et la borne inférieure dans (5).
Cette étape est une conséquence directe des étapes précédentes.

Le théoréme d’Ax-Lindemann est démontré dans cette thése sous la forme
la plus générale. Le théoréme de répartition dans (2) sera aussi démontré
(Theorem ET3)). Remarquons que ce théoréme pour les variétés de Shimura
pures a été obtenu par Ullmo [64] Théoréme 4.1] et aussi séparément par
Pila-Tsimerman [50, Section 7] sans « faiblement ». Le choix de ’ensemble
fondamental F et la définissabilité de unif | dans (3) sont faits dans §3.311
et la complexité des points dans 3 est définie au cours de la démonstration
du Théoréme 3Tl La borne supérieure dans (4) a été démontrée par Pila-
Tsimerman [49, Theorem 3.1] pour A, et leur résultat peut étre facilement
généralisé aux variétés de Shimura mixtes de type abélien. Pour la borne
inférieure dans (5), on rameénera le cas des variétés de Shimura mixtes au
cas des variétés de Shimura pures dans §4.21 Le meilleur résultat pour les
variétés de Shimura pures est donné par Tsimerman [62, Theorem 1.1] qui 'a
démontré inconditionnellement pour tous les points spéciaux de ALY et sous
GRH pour tous les points spéciaux de AE. En combinant tous ces résultats,

on a (Theorem A.3.1])

Théoréme. La conjecture d’André-Qort est valable inconditionellement pour
toute variété de Shimura mizte S dont la partie pure est une sous-variété de
AY (par exemple AL ). Elle est valable sous GRH pour toutes les variétés de
Shimura mixtes de type abélien.

Pour démontrer la conjecture d’André-Oort pour les variétés de Shimura
mixtes qui ne sont pas de type abélien, il nous manque une bonne définition
de la complexité pour les points dans > qui nous permet d’avoir la borne
supérieure dans (4). Remarquons que par les arguments du Théoréme [L.3.1]
il suffit de I’avoir pour toutes les variétés de Shimura pures. Daw-Orr sont en
train d’étudier ce probléme.

D’André-Oort & André-Pink-Zannier

L’obstacle qui nous empéche de démontrer la conjecture d’André-Oort pour
A, (9 = 7) est la borne inférieure pour la taille des orbites sous Galois des

1072 borne inférieure est conjecturée par Edixhoven [19]. L’étude de cette borne est initiée
aussi par Edixhoven qui ’a démontré inconditionnellement pour les surfaces de Hilbert
[18]. Des résultats similaires a celui de Tsimerman pour les points spéciaux de Aé\r ont
été obtenus inconditionnellement par Ullmo-Yafaev séparément et ils ont aussi démontré la
borne inférieure pour toutes les variétés de Shimura pures sous GRH [68].
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points spéciaux. On peut considérer une version plus faible d’André-Oort :
remplacons ¥ par I'ensemble des points de torsion sur les variétés abéliennes
CM qui sont isogénes a une variété abélienne CM fixée. Dans ce
cas, 'obstacle ci-dessus a été surmonté par une série de travaux de Habegger-
Pila [24] Section 6] et d’Orr [43]. Le point clé pour ce faire est un théoréme
de Masser-Wiistholz [35] et sa version effective donnée par Gaudron-Rémond

21].
Ce cas particulier d’André-Oort est contenu dans une autre conjecture que
I’on appelle la conjecture d’André-Pink-Zannier.

Conjecture (André-Pink-Zannier). Soient S une variété de Shimura connexe

mixte, s un point de S et Y une sous-variété irréductible de S. Soit ¥ [’orbite
Zar

de Hecke généralisée de s. St Y NY =Y, alors Y est faiblement spéciale.

Plusieurs cas de cette conjecture avaient déja été étudiés par André avant
que sa forme finale ait été donnée par Pink [54) Conjecture 1.6]. Elle est aussi
liée & un probléme proposé par Zannier. Voir §5. 1.1 pour plus de détails. Pink
a aussi démontré [54, Theorem 5.4| que cette conjecture implique la conjecture
de Mordell-Lang.

La conjecture d’André-Pink-Zannier a été intensement étudiée par Orr [43]
42]. Dans cette thése on considérera seulement la famille universelle 21, pour
la conjecture d’André-Pink-Zannier. Dans ce cas on peut calculer I'orbite de
Hecke généralisée de s de maniére explicite. On a (1.1

>, = points de division de l'orbite sous les isogénies polarisées de s
= {t € Ay| In € N et une isogénie polarisée
[ (g n(s)s An(s)) = Rgn(t), Ar()) tels que nt = f(s)}.

Finalement nous démontrons (Theorem .32 Theorem [T 4let Theorem [(.1.5)

Théoréme. La conjecture d’André-Pink-Zannier est valable pour A, et Y
dans chacune des trois situations suivantes :

1. s est un point de torsion de Uy r(5) el g r(5) est une variélé abélienne
CM (ce qui est un cas spécifique de la version faible de la conjecture
d’André-Oort mentionnée auparavant);

2. s est un point de torsion de Uy (s et dimm(Y) < 1;

3. s €Ay(Q) et dim(Y) = 1.

La premiére partie de ce théoréme est une généralisation des anciens ré-
sultats de Edixhoven-Yafaev [72 20] (pour les courbes dans les variétés de
Shimura pures) et Klingler-Ullmo-Yafaev [66l [30] (pour les variétés de Shimura
pures) et sa version p-adique a été démontrée par Scanlon [58].

Nous consacrerons la derniére section de cette thése 5.0 & expliquer que
le méme énoncé d’André-Pink-Zannier en remplagant s par un sous-groupe
finiment engendré d’une fibre de A, — A, (qui est une variété abélienne) et
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en remplagant ’orbite sous les isogénies polarisées par I'orbite sous les isogénies
(pas nécessairement polarisées) se déduit en fait de la conjecture d’André-Pink-
Zannier.

Zilber-Pink
Finalement abordons la conjecture de Zilber-Pink [54] [73, [57].

Conjecture (Zilber-Pink). Soit S une variété de Shimura connexe mizte. Soit
Y une sous-variété Hodge-générique de S. Alors

U s'ny
S’ spéciale,
codim(S”")>dim(Y")
n’est pas Zariski dense dans'Y .

Cette conjecture est une généralisation commune de la conjecture d’André-
Oort et la conjecture d’ André-Pink-Zannier (voir [52] Theorem 3.3]). Habegger-
Pila ont démontré récemment plusieurs résultats pour la conjecture de Zilber-
Pink pour AY [23] (dans le méme article ils ont aussi démontré la conjecture
de Zilber-Pink pour toutes les courbes sur Q dans les variétés abéliennes),
notamment un résultat inconditionel pour une grande classe de courbes [24].
Nous ne parlerons pas du cas des groupes algébriques (voir I’éxposé Bourbaki
de Chambert-Loir [I4] pour un résumé avant les travaux de Habegger-Pila).

Pour les variétés de Shimura mixtes, il n’y a pas beaucoup de résultats
pour cette conjecture. A part des résultats de cette thése, Bertrand, Bertrand-
Edixhoven, Bertrand-Pillay et Bertrand-Masser-Pillay-Zannier ont étudié récem-
ment les biextentions de Poincaré [7, 1T, 8, [, [I0]. Ils ont obtenu plusieurs
résultats dont certains fournissent des exemples reliés a cette these.

Structure de la thése

Le Chapitre [ introduit les préliminaires de cette thése. La section §I.T] fait
un résumé de la théorie des variétés de Shimura mixtes, se concentrant sur
les aspects traités dans la thése. En particulier, la section §L.I1.T] fait un ré-
sumé de la théorie des structures de Hodge mixtes qui conduit naturellement
a la définition des variétés de Shimura mixtes dans §I.1.2) D’autres propriétés
élémentaires seront aussi données dans §L.T.2 La section §L.T.3] introduit les
variétés de Shimura mixtes de type Siegel (en particulier la famille universelle
des variétés abéliennes) et se termine en un « reduction lemma ». Toutes ces
sous-sections sont des faits connus et la référence principale est [53, Chapitre 1-
Chapitre 3]. Dans .14 nous démontrons une proposition de la théorie des
groupes algébriques qui sera utilisée dans la thése par la suite. La section
gT.2] fait un résumé des propriétés élémentaires des sous-variétés faiblement
spéciales et donne la description géométrique des sous-variétés faiblement spé-
ciales des variétés de Shimura mixtes de type Kuga. La section §I.3] concerne
la situation bi-algébrique pour les variétés de Shimura mixtes.
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Le Chapitre [2 démontre le théoréme d’Ax de type log. La section §2.1]
concerne des résultats sur la partie unipotente, c’est-a-dire la fibre de la pro-
jection d’une variété de Shimura connexe mixte vers sa partie pure. La section
§2.2] comporte plusieurs résultats connus pour les groupes de monodromie des
variations admissibles des structures de Hodge. Aprés ces préliminaires, le
théoréme d’Ax de type log sera démontré dans §2.31

Le Chapitre Bl démontre le théoréme d’Ax-Lindemann mixte. La section
§3.1] donne quatre énoncés équivalents pour ce théoréme. La section §3.2 es-
quisse la démonstration et prouve en détails 1'Etape 1, I’Etape 2, I’Etape 5 et
I'Etape 6. La section §3.3] traite 1’estimation en utilisant la théorie o-minimale.
Ceci correspond a 'Etape 3 et a I’Etape 4. La section §3.4] traite la partie
unipotente et répond a une question restante pour 1’ Etape 5. Dans 'appendice
de ce chapitre nous discutons de deux aspects: §3.5.1] présente plus de détails
sur un fait simple que nous admettons a propos de la définissabilité dans §3.311
et §3.5.2] esquisse une démonstration simplifiée du théoréme d’Ax-Lindemann
plat.

Le Chapitre @ concerne plusieurs aspects pour passer d’Ax-Lindemann a
André-Oort. La section §4.1] démontre le théoréme de répartition comme une
conséquence du théoréme d’Ax-Lindemann mixte. La section §4.2] rameéne la
borne inférieure pour les orbites sous Galois des points spéciaux des variétés
de Shimura mixtes a la borne inférieure pour les variétés de Shimura pures. En
combinant ces deux résultats, Ax-Lindemann et la borne supérieure étudiée
par Pila-Tsimerman, nous démontrons le résultat principal pour la conjecture
d’André-Oort dans §4.31 La démonstration de la version faible d’André-Oort
sera aussi donnée dans §4.31 L’appendice de ce chapitre résume les estimées des
orbites sous Galois des points spéciaux des variétés de Shimura pures obtenue
par Ullmo-Yafaev [66, Section 2].

Le Chapitre[Blconcerne la conjecture d’André-Pink-Zannier. La section §5.1]
donne le contexte et énonce les résultats principaux. La section §5.2] calcule
les orbites de Hecke généralisées dans 2,. La section §5.3] démontre le cas de
torsion et 5.4l démontre le cas de non-torsion. Chaque démonstration contient
la définition des complexités des point dans l'orbite de Hecke généralisée, la
borne supérieure pour les hauteurs et la borne inférieure pour les orbites sous
Galois. Les estimations pour les deux cas sont légérement différentes. La
section §5.5] discute des variantes de la conjecture d’André-Pink-Zannier.
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Introduction (English)

The goal of this dissertation is to study the Diophantine geometry of mixed
Shimura varieties. A main result is the mixed Ax-Lindemann theorem. Then
we shall deduce a distribution theorem from it and use both results to study
the Zilber-Pink conjecture. We will focus on two aspects of this conjecture:
the André-Oort conjecture and the André-Pink-Zannier conjecture.

Subvarieties of algebraic varieties are always assumed to be closed unless
stated otherwise.

Universal family of abelian varieties

Consider the pair (GSp,,, H), where

e GSp,, is the Q-group
GSpy, 1= {h € GlLay | h < IO ‘(fg ) ht = u(h) ( 10 _(fg ) with v(h) € Gm}.
g g

o Hf ={Z=X+iY € My(C)| Z=2"Y >0}

A basic fact about this pair is that GSpQg(R)+, the connected component of
GSpQg(R) containing 1 in the archimedean topology, acts transitively on H;
by

( é‘, ’ >-Z:(AZ+B)(CZ+D)‘1.

Moreover, the inclusion H} C M,(C) ~ C9" induces a complex structure on
H. In classical theory, this pair corresponds to the moduli space of principally
polarized abelian varieties.

In order to get another pair corresponding the universal family, we shall
enlarge (GSpy,, H ). Define now a pair (Pay a, Xiz,a)El as follows:

® Py, is the Q-group Va4 x GSp,,, where Vo, is the Q-vector group of
dimension 2g and GSp,, acts on Va4 by the natural representation;

o X; . is R? x H as sets, with the action of Pag.(R)™ on X . defined
by

(v,h) - (v, x) = (v+ hv', hx)

for (v, h) € Pago(R)" and (v/,x) € X;;’a. One can check that this action
is also transitive. Besides, this action is algebraic.

IThe subscript “a”, being the initial of “abelian”, is written here in order to indicate that
this pair corresponds to the universal family of abelian varieties. We do not use (Pyg, X;g)
because the latter notation is used for another pair corresponding to the canonical ample
Gm-torsor over the universal family.
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Defining the complex structure on XQZ@ is more tricky: first of all by the
transitivity of the action of Py o (R)" on XQ‘Z)a, we have (for a point zg € XL@)

x5t

2g,a PQQ H(R)+ *Zo-

Next recall that the Pag o (R) -set X;;a embeds equivariantly into a Py ,(C)-
sef. Hence we have

Xt = = Py (R)+ - Xy — Pnga((C) - xo = Pnga((C)/Stabngya((c) ($0) =XV,

Then XV is a complex algebraic variety. The inclusion above realizes X2Z7a as
a semi-algebraic open subset (w.r.t. the archimedean topology) of XV, and

hence induces a complex structure on XQJ; a

Remark. A more concrete way to see this complex structure on XZ . 08 (es-
sentially) as follows (take the case g = 1): over each point T € HT, the fiber
of the projection X27a — HT s

()= R = C
(a,b) — a+br
Higher dimensional analogue for this identification still holds. See Remark[I.57)

Now take a neat congruence group I' := Z?9 x I' < P2,(Z), we have then

A, = T\, T A, = TG\HY

The fiber of [r] over a point [z] € A, is Z29\R?9 with the complex structure
of (X2Z7a)w- In dimension 1 (g = 1 and # = 7 € H) this is just R? ~ C,
(a,b) — a+ br by the discussion above.

Theorem (Kuga, Brylinski, Pink). 2, I, Ay is the universal family of
principally polarized abelian varieties with the level structure I'g over the fine
moduli space Ay. Both 1, and Ay are algebraic varieties.

Arbitrary connected mixed Shimura variety

The universal family 2, is an example of connected mixed Shimura varieties.
Other examples include:

1. The canonical ample G,,-torsor over 2;

2. The Poincaré bi-extension over A,.

2For readers who are more familiar with Hodge theory, this new set will be the set of
all mixed Q-Hodge structure of type {(—1,0), (0,—1),(—1,—1)} on the Q-vector space of
dimension 2g + 1. We shall not go into detail for this in the Introduction. See the beginning
of §I.3.1] for more details.
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The precise definitions of connected mixed Shimura data and connected
mixed Shimura varieties will be given in §JL.T.2.7l Here we just say that
a connected mixed Shimura datum is a pair (P, XT) which “behaves” like
(Pagar Xoy o), €. P is a Q-group and P(R)TU(CH acts transitively on X'+
and this action is algebraic. A connected mixed Shimura variety S associated
with (P, X*) is then defined to be T\X* for a congruence subgroup of P(Q).
The fact that S has a canonical structure of algebraic variety is a theorem of

Pink, generalizing the result of Baily-Borel for pure Shimura varieties.

History of the Ax-Lindemann theorem

In this subsection, we briefly review the history of the Ax-Lindemann the-
orem and see how it is a natural generalization of the functional analogue
of the classical Lindemann-Weierstrass theorem. We start with the classical
Lindemann-Weierstrass theorem

Theorem (Lindemann-Weierstrass). Let aq,...,a, € Q. If they are linearly
independent over Q, then exp(ai),...,exp(ay) are algebraically independent
over Q.

The analogue of this theorem for the functional case says the follows:

Theorem (Analogue for functional case, proved by Ax [5, [6]). Let Z be an
irreducible algebraic variety over C and let f1, ..., fn € C[Z] be regular functions
on Z. If the functions fi,..., fn are Q-linearly independent modulo constants,
i.e. there do not exist ay,...,a, € Q (not all zero) such that a1 f1+ ...+ anfn €
C, then the functions

exp(f1),...,exp(fn): Z2 —C

are algebraically independent over C.

This functional analogue can be rewritten in the following geometric form
(reformulated by Pila-Zannier). This is the form which is easier to generalize
to any connected mixed Shimura variety.

Theorem (Ax-Lindemann for algebraic tori over C). Let unif = (exp, ..., exp):
C™ — (C*)™ and let Z be an irreducible algebraic subvariety of C™. Then

unif(Z)Zar is the translate of a subtorus of (C*)™.

By the statement of this Ax-Lindemann theorem, we are in the following
bi-algebraic situation: Both C™ and (C*)" are algebraic varieties, however
the morphism unif: C* — (C*)" is transcendental. Hence a priori, there is
no obvious relation between the two algebraic structures on C" and on (C*)™.
Nevertheless, we have found by Ax-Lindemann a class of subvarieties, i.e.

3Here U is a normal subgroup of P which is a vector group. It is uniquely determined
by P (see Definition [[TI2). For 2 it is trivial.
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unif(Z)  with Z algebraic in C™, which are all bi-algebraic. Here a subset V'
of C" is said to be bi-algebraic for C" it (C*)™ if V is closed irreducible
algebraic and its image under unif is also closed irreducible algebraic. A subset
V' of (C*)™ is said to be bi-algebraic for C" i, (C*)™ if it is the image of a
bi-algebraic subset of C". Remark that Ax-Lindemann has the following direct
corollary: the bi-algebraic subvarieties of (C*)™ are precisely the translates of
the subtori of (C*)".

A similar result holds for complex abelian varieties:

Theorem (Ax-Lindemann for complex abelian varieties, proved by Ax [5l [6]).

Let A be a complex abelian variety, let unif: C™ — A and let Z be an irreducible
subvariety of C™. Then unif(Z)Zar is the translate of an abelian subvariety of

A.

For this case, we are in a similar bi-algebraic situation: Both C"™ and A
are algebraic, however the morphism unif: C* — A is transcendental. Hence
a priori, there is no obvious relation between the two algebraic structures
on C" and on A. Nevertheless, we have found by Ax-Lindemann a class of
subvarieties, i.e. unif (Z)Zar with Z algebraic in C", which are all bi-algebraic.
Here a subset V of C” is said to be bi-algebraic for C” i AV s
closed irreducible algebraic and its image under unif is also closed irreducible
algebraic. A subset V' of A is said to be bi-algebraic for C" 0, A ifit is the
image of a bi-algebraic subset of C™. In the case Ax-Lindemann also implies
the description of the bi-algebraic subvarieties: the bi-algebraic subvarieties of
A are precisely the translates of the abelian subvarieties of A.

Both Ax-Lindemann for algebraic tori over C and Ax-Lindemann for com-
plex abelian varieties are proved by Ax [5l [6]. Proofs via o-minimal theory
have been found by Pila-Zannier [51] and Peterzil-Starchenko [46]. We call
these two cases the flat Ax-Lindemann theorems. Later, different cases of
the hyperbolic Ax-Lindemann theorem (i.e. Ax-Lindemann for connected
pure Shimura Varieties)ﬁ have been studied and proved by Pila [48] (for AY),
Ullmo-Yafaev [67] (for compact pure Shimura varieties), Pila-Tsimerman [50]
(for Ag). The result of Pila, being a breakthrough for this theorem, led to an
unconditional proof of the André-Oort conjecture for AY, which is the sec-
ond unconditional proof for special cases of this conjecture after the work of
André himself for A? [2]. The full version of the hyperbolic Ax-Lindemann
has recently been proved by Klingler-Ullmo-Yafaev [29]. The hyperbolic Ax-
Lindemann is also a bi-algebraic statement in a bi-algebraic situation similar
to the flat Ax-Lindemann.

Having all these results, one may ask the following questions:

4Instead of giving the precise statement of the hyperbolic Ax-Lindemann theorem, we
will explain in detail the mixed Ax-Lindemann theorem in the next section and point out
to which case hyperbolic Ax-Lindemann corresponds.
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Question. e Is there a result which contains both the flat and the hyper-
bolic Ax-Lindemann theorems?

e Furthermore, is there a family version?

The answers to these questions are yes. One of the main results of this
dissertation is to prove the mixed Ax-Lindemann theorem, which is the desired
result.

Before proceeding to the next subsection, let us do the following remark:

Remark. In both cases of the flat Az-Lindemann theorem, the conclusion does
not change if we only assume Z to be semi-algebraic and complex analytic
irreducible. This follows from a result of Pila-Tsimerman [{9, Lemma 4.1].

The statement of the mixed Ax-Lindemann theorem

In this part, let S be a connected mixed Shimura variety associated with the
connected mixed Shimura datum (P, X*) and let unif: X+ — S be its uni-
formization. First of all, recall that the Ax-Lindemann theorem is a theorem of
bi-algebraicity. Hence we should first explain the bi-algebraic situation for this
case. The variety S has a natural algebraic structure, however the uniformizing
space X is almost never an algebraic variety. Nevertheless we have:

Proposition. For any connected mized Shimura datum (P, X7T), there exists
a complex algebraic variety XV defined in terms of (P,X™) and an inclusion
XT — XV which realizes XT as a semi-algebraic open subset of XV (w.r.t.
the archimedean topology).

By the remark of the last subsection, it suffices to consider the following
“bi-algebraic situation” consider the semi-algebraic and complex analytic ir-
reducible subsets of X and the natural algebraic structure of S. Recall that
unif: X* — S is transcendental. As before we want to find “bi-algebraic”
objects.

Question. What are the bi-algebraic objects (i.e. semi-algebraic and complex
analytic irreducible subsets of X+ whose images are algebraic in S)?

To answer this question, we use the notion of weakly special subvarieties
introduced by Pink (see Definition [22).

Definition. 1. A subset F C Xt is called weakly special if there exist
a connected mized Shimura subdatum (Q,Y1) of (P,X™T), a connected
normal subgroup N of Q and a point y € Y+ such that

F = N(R)"Un(C)7,

where Uy := NNU (recall that U is a normal vector subgroup of P which
is determined by P). If (P,XT) = (ng,a,)@;a) (which is the case we
will focus on in the Introduction), then U is trivial.
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2. A subvariety F of S is called weakly special if F = unif(F) for some

F C XT weakly special.

For pure Shimura varieties, Moonen proved that weakly special subvarieties
of a pure Shimura variety are precisely its totally geodesic subvarieties [39, 4.3].
For mixed Shimura varieties, let us give an example:

Example 0.0.1 (See Proposition[[LZT4). Let 20 — B be a family of principally
polarized abelian varieties of dimension g over an algebraic curve B. Let C be
its isotrivial part, i.e. the largest isotrivial abelian subscheme of A — B. Then
up to taking finite covers of B, we may assume that C is a constant family and
that there exists a cartesian diagram

A—1s 9,

o

iB
B~ 4,

where ip is either constant or quasi-finite, in which case i is also quasi-finite.

Then

{i Y(B)| E weakly special in A,} = {translates of abelian subschemes of

A — B by a torsion section and then by a constant section of C — B}

We will prove in this dissertation (see Remark [[37, pure case by Ullmo-

Yafaev [65]):

Theorem. A subset ' C S is weakly special iff F (a complex analytic irre-
ducible component of unif ' (F)) is semi-algebraic in XT and F is irreducible
algebraic in S.

Now we are ready to give the statement of the mixed Ax-Lindemann the-
orem, which will be proved in Chapter [ of this dissertation (from §3.1] to

43.4).

Theorem (mixed Ax-Lindemann). Let Z be a semi-algebraic and complex

——Zar
analytic irreducible subset of X+. Then unif(Z)  is weakly special.

The hyperbolic Ax-Lindemann is precisely the same statement when the
ambient mixed Shimura variety S is pure. The mixed Ax-Lindemann theorem
contains both the flat and the hyperbolic Ax-Lindemann theorem [29] and is
indeed a family version. A counting result for hyperbolic Ax-Lindemann [29]
Theorem 1.3] is used for its proof.

The sketch of the proof for mixed Ax-Lindemann will be given in the next
section. Before proceeding to the proof, I would like to state another theorem
which is of Ax’s type. Recall that there exists an algebraic variety XV such
that X+ — xV.
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Theorem (Ax of log typeﬁ). Let'Y be an irreducible algebraic subvariety of S
and let'Y be a complex analytic irreducible component of unif_l(Y). Define

—Zar
Y  :=the complex analytic irreducible component of the intersection of X+

and the Zariski closure of}N/ in XV which contains Y.

—Zar
Then'Y  is weakly special.
This is also a result of this dissertation and a more refined version is The-

orem [Z31] where the existence of Y (which is not obvious) is also proved.
When S is a pure Shimura variety, this theorem follows from a result of Moo-
nen [39, 3.6, 3.7]. In a forthcoming article of Ullmo-Yafaev, its pure version in
the framework of the bi-algebraicity will be explained with more details.

Sketch of the proof for mixed Ax-Lindemann

In this section we give a sketch of the proof for the mixed Ax-Lindemann
theorem. For simpliﬁcation we will focus on the universal family 2,4, i.e.
(P,XT) = (Pagas Xy ), S = Ay, (G,XF) = (GSpyy, HY) and Sa = A,
with T neat. Assume that Z C Xt 4.2 1S & semi-algebraic and complex analytic
irreducible subset. The following diagram will be useful:

(P,XT) (G, Xg)

unifl unifg l

s=n\x* 1 g, =re\xt

The proof will be divided into 6 steps.

—— Zar ~
Let Y := unif(Z) . Let Z be a semi-algebraic and complex ana-
lytic irreducible subset of X+ which contains Z and is contained in unif ! (Y"),
maximal for these properties. The existence of such a Z follows from a dimen-
sion argument. Then Z is irreducible algebraic in the sense of Definition [[.3.5]
i.e. Z is a complex analytic irreducible component of the intersection of its
Zariski closure in XV and XT. Replace S by the smallest connected mixed
Shimura subvariety of S containing Y and replace (P, X*), T, (G, XZ) and
I'¢ accordingly. Remark that for obvious reasons this does not change the
assumption or the conclusion of Ax-Lindemann. It then suffices to prove that
Z is weakly special by the bi-algebraicity of weakly special subvarieties.
Let N be the connected algebraic monodromy group of Y™ i.e.

N = (Im(m (Y*™) - m(S)=T) )°.

5The fact that this is a statement of Ax’s type, as well as the name “Ax of log type”, is
pointed out to me by Bertrand.
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Then by results of André [I, Theorem 1] and Wildeshaus |71, Theorem 2.2],
N < P. See the proof of Theorem 23.T(1).

Step 2 | Define the Q-stabilizer of Z

_  7a
HZ = (Stabp(R) (Z)nT )O.

Then Az of log type implies Hz << N. See Lemma [3.2.3
Find a fundamental set F for the action of I on Xt such that unif | £
is definable in the o-minimal theory Ry exp-

For basic knowledge of the o-minimal theory we refer to [67, Section 3]
(for a concise version) and [48 Section 2, Section 3] (for a more detailed
version). Here we briefly explain why and how o-minimal theory is useful for
the proof. By the statement of Ax-Lindemann, it is a geometric theorem.
Therefore we wish to find a geometric proof. However it is not enough to
use merely algebraic geometry because the morphism unif is transcendental.
To solve this problem, one possible way is to ‘“refine the Zariski topology”
apart from the (R-)polynomials, we also allow other functions to define the
constructible sets. The o-minimal theory Rgy, exp is defined to be the collection
of all subsets of R™ (Vm € N) which are defined by equalities and inequalities
of R-polynomials, the R-exponential function and all restricted real analytic
functions. The subsets of R™ above are called definable sets in R, oxp, and
the morphisms whose graphs are definable sets are called definable maps in
Ran,exp- Although Ry, exp is not a topology, definable sets play a similar role
of constructible sets for the Zariski topology. The o-minimal theory R exp
behaves well for the following reasons:

1. Ran,exp is a boolean algebra;

2. (Chevalley’s theorem) for any definable set A and any definable map
f:+ A — B, the image f(A) is also definable;

3. (finite connected decomposition) any definable set A can be written as
a finite union of connected definable sets.

4. (Cell decomposition, see [69, 2.11]) The finite connected decomposition
can be strengthened: for any definable set A in R™, there exists a cell
decomposition D of R™ such that A is a finite union of elements of D.

Now if we can find a fundamental set F for the action of I" on X" such that
unif | 7 is definable in Ry, exp, then we can use tools from the o-minimal theory
to study unif: X+ — S. Finally, we want to retrieve the algebraic information
because, as discussed before, the conclusion of Ax-Lindemann is to find a class
of bi-algebraic objects. The counting theorems of Pila-Wilkie will serve for
this. The use of the o-minimal theory for the proof will be explained in Step 4.

The existence of such an F has been proved by different people in different
cases: for 2, by Peterzil-Starchenko [47] (in writting explicitely every theta
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function in terms of R-polynomials, R-exp and restricted real analytic func-
tions), for any connected pure Shimura variety by Klingler-Ullmo-Yafaev [29]
Theorem 1.2] (the proof exploited tools developped for the toroidal compact-
ification of pure Shimura varieties [4]). It is good to remark that the funda-
mental set F constructed by Peterzil-Starchenko is the most natural possible
(see Remark [[34]). Combining these two theorems with some extra work,
the existence of such an F for any mixed Shimura variety is proved in this
dissertation §3.311.

Remark. In the first three steps, the proofs for mized Ax-Lindemann and
for hyperbolic Az-Lindemann [29] are not essentially different: we just use
and prove corresponding results for each case. However from Step 4, the two
proofs will differ very much.

Step 4 |For the hyperbolic (i.e. pure) case, we want to prove dim(Hz) > 0 in

this step. This is done by Klingler-Ullmo-Yafaev [29] by calculating volumes
of algebraic curves in the uniformizing space near the boundary. Note that
this is almost the final step for the proof of the pure case, because an easy
induction will then imply Z = Hz(R)zZ for some z € Z.

For the mixed case, it is not at all enough to prove merely dim(Hz) > 0.
A naive counterexample is as follows: dimw(Z) > 0 but H 7 < Vag. In this

example, Z cannot be an H 7(R)-orbit, nevertheless dim(Hz) can be positive.
In order to tackle this problem, we prove in this step (Proposition B2.6])

#(H;) = (Stabow (7(2)) NTa - )°.

The group 7(H3) is contained in the right hand side. Hence the meaning of
this equality is that m(H ) is as large as possible.

It is in the proof of this equality that we use the o-minimal theory and the
Pila-Wilkie counting theorem. Besides, compared to the estimate of Klingler-
Ullmo-Yafaev, we have to exploit all the conclusions of the family version of
Pila-Wilkie. See §3.312 for the whole proof. Here in the Introduction, we just
briefly explain how to prove

dimm(Hz) >0

if dim 7(Z) > 0.
—7Zar
Recall that Y = unif(Z) . Define

(%) :={p € P(R)| dim(pZ Nunif"}(Y) N F) = dim Z} C P(R),
then by analytic continuation
S(Z) ={pe P(R)| pZ c mif 1Y), pZ N F #0}.

There are some basic facts about % (Z):
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1. Both ¥(Z) and 7(X(Z)) are definable in Ron,exp (by the first form of

Y(Z) because unif | is definable and the function dim is also definable);
2. %(Z) - Z c unif *(Y) (by the second form of %(Z));
3. W(E(Z) Nr) = W(E(Z)) NT¢ (see Lemma E3.20).

In order to prove dim 7(H ) > 0, it suffices to prove |7(Hz)(R)NI'¢| = oo.
Therefore it suffices to find two constants ¢’ > 0 and § > 0 such that for any
T large enough,

{ve¢ € m(Hz)(R)NT¢| H(ye) < T} > IT°.

So it is enough to prove that there exist two constants ¢ > 0 and § > 0 and,

for any T large enough, a blocK B(T) C ¥(Z) such that
{76 € n(B(T)) NTa| H(ya) < T} > <T°.

See the end of §3.3] for more details.
Now we use a counting result of Klingler-Ullmo-Yafaev [29, Theorem 1.3],
which says the following: there exists a constant € > 0 such that VI > 0,

|{’7G € W(E(Z)) ﬂrg| H(’YG) < T}| > Te.

Then by the Pila-Wilkie theorem [48] 3.6, case p = 0] (or a simply [29, Theo-
rem 6.1]), there exists a constant ¢ = ¢(¢) > 0 such that the set

{reen(E(Z))NTg| H(yve) < T}

is contained in a union of at most ¢7'*/2 blocks. This implies that there exist
two constants ¢’ > 0, § > Osuch that for any 7' large enough, there exists a
block Bg(T') C m(X(Z)) with

{1e € Ba(T)NTq| H(ye) < T} > ¢T°.

Remark that this inequality is exactly what we expect from this step for the
proof of the hyperbolic (i.e. pure) Ax-Lindemann. However to prove the
mixed Ax-Lindemann, we are obliged to use the fact that the blocks B (T)
(for T > 0) come from finitely many block families! More concretely, apart
from the fact that {y¢ € 7(2(Z))NTq| H(yg) < T} is contained in a union of
at most ¢T'*/? blocks, [48, 3.6] also concludes that there exist an integer J > 0
and J block families B/ € %(Z) x R! (j = 1,...,J) such that each of the (at
most) ¢T°%/? blocks, in particular all Bg(T) for T large enough, is Bg for some

j and y € R

6Here we should modify a bit the fundamental set F chosen before, but this can be done
by some easy operation. See the end of §3.311.

7A block is a connected definable set whose dimension equals the dimension of its closure
in the R-Zariski topology.
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For any T >> 0, let us look at 71 (Bg(T)) N X(Z). Because Bg(T) = Bg
for some j and y € R, 71 (Ba(T)) N %(Z) is the fiber of (7 x 1g:)~1(B7) N
(2(Z) x RY) over y € RL But (7 x 1g:)"1(B7) N (S(Z) x RY) being a definable
family over a subset of R!, the cell decomposition implies that there exists
an integer ng > 0 such that each fiber of (r x 1p)~1(B7) N (2(Z) x RY), in

particular 7= (Bg(T)) N X(Z), has at most ng connected component (see [69}
3.6]). On the other hand,

7(r (Be(T)) NE(Z)NT) = Be(T) N7 (S(Z)NT)
= Ba(T)N W(E(Z)) N I'¢ (by the 3rd fact about Z listed above)
= Ba(T)NT¢  (since Ba(T) C 7(2(2))).

Hence there exists a connected component B(T') of m=*(Bg(T)) N X(Z) such
that

C/

Hyec e m(B(T)NT)| H(yg) < T} > n_OTé'

But ng does not depend on T as explained above. So this B is what we desire.

Remark. For the proof, the independence of ng on T is crucial. But the
Ba(T) we get from Pila-Wilkie depends on the choice of T and hence ng also
depends on T a priori. This explains why the fact that all the Ba(T) come
from finitely many block families is crucial for the proof of the mixed case.

Prove that Z = Hz(R)Z for some z € Z.

For the hyperbolic (i.e. pure) case, this follows from an easy induction
argument.

For the mixed case, we should study more carefully the geometry. Here
we should use the Ax-Lindemann theorem for the fiber (which for A, — A,
is an abelian variety) and some extra computation. This is done in Theo-
rem B:2.8(1). Remark that the complex structure of fibers of XQZ@ = HY is
used in this step.

Remark. For an arbitrary connected mixed Shimura variety S associated with
the connected mized Shimura datum (P, X7), the fiber of S — Sq, where Sg
18 its pure part, does not necessarily have a group structure compatible with the
group law of P (see Lemma[Z11). In particular the Az-Lindemann theorem
for the fiber was not known before except some special cases. The proof of
it, which will be given in §3.7), is again quite technical: one should repeat the
argument from Step 4 to Step 6 (Step I to Step IV in §37)), with a very different
“Step 67 (which is Step IV in §37)).

Step 6 | Prove that H; < P.

For the hyperbolic (i.e. pure) case, this follows from the structure of re-
ductive groups. The facts H; << N < P and that P is reductive imply directly
Hz «aP.

Z
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For the mixed case, it is obvious that this argument is no longer sufficient.
In general, a normal subgroup of a normal subgroup of a given group is no
longer normal. So apart from some group-theoretical argument (results of
§L.T4 will be used), we should also study carefully the geometry. See Theo-
rem [3:2°§(2).

Here we just explain why Vy_ =R, (Hz) = Hz N Vg is normal in P. In

order to do this, we should use the complex structure of the fibers of 7: XQ';@ —

H;: let 7 € Z be any point such that 7(Z) is Hodge generic in X}. Such

a 2 exists since we have assumed that SZ is the smallest connected mixed
ar

Shimura variety containing ¥ = unif(Z) . Therefore the Mumford-Tate
group MT(7(2)) = G. But Z = H3(R)z by Step 5, so the fiber of Z over 7(2)
is

Zn(z) = Vi, (R)Z.

Since Z is defined to be a complex analytic subset of X (and hence of X;;ﬁa),
Vi, (R) is a complex subspace of (X2Z7a),,(g) = V4(R). But the complex struc-
ture on (X;;@),,(g) is given by the Hodge structure of type {(—1,0), (0,—1)} on
Va4 whose Mumford-Tate group is MT(7(2)) = G. Hence Vy is a G-module.
Therefore Vi <1 P since R, (P) is commutative.

Now by the 6 steps above (especially the conclusions of Step &

——Zar

and Step 6), unif(Z) is a weakly special subvariety of 2,. Since Y = unif(2)

by definition and unif (2 ), being weakly special, is an algebraic subvariety of
Ay, ¥ = unif(Z). But Y = unif(Z) by definition, hence unif(Z) is

weakly special.

From Ax-Lindemann to André-Oort

A main motivation to study the Ax-Lindemann theorem is its application to
the Zilber-Pink conjecture, and the André-Oort conjecture is the best-known
subconjecture of Zilber-Pink. The conjecture says the follows:

Conjecture (André-Oort). Let S be a connected mized Shimura variety and
let 3 be the set of its special points. Let Y be an irreducible subvariety of S.

IfYyn 5 = Y, then Y is a connected mized Shimura subvariety of S (or
equivalently, Y is weakly specz'a ).

Example. The special points of 2, are precisely the points corresponding to
torsion points of CM abelian varieties. Hence the André-Oort conjecture stated
above contains part of the Manin-Mumford conjecture.

This conjecture has been proved, under the generalized Riemann hypoth-
esis, for all pure Shimura varieties by Klingler-Ullmo-Yafaev [66] [B0]. Recent

8The equivalence follows from [54] Proposition 4.2, Proposition 4.15].
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developments for this conjecture have been made in order to obtain proofs not
relying on GRH since Pila’s inspiring unconditional proof for AN [48]. The
framework of Pila’s proof is the strategy proposed by Pila-Zannier:

1. Prove the Ax-Lindemann theorem;

2. Deduce from Ax-Lindemann the distributior] of positive-dimensional
(weakly) special subvarieties of a given subvariety;

3. Define a good parameter (which we call the complexity) for points in X
and choose a “good” fundamental set for the action of I" on X+ such that
unif 7 is definable in Ry exp;

4. Prove an upper bound for the height of any point in unif ~*(2)NF w.r.t.
the complexity of its image in 3;

5. Prove a lower bound for the size of the Galois orbits of points in ¥ w.r.t.
theirs complexities;

6. Conclude by the Ax-Lindemann theorem, the distribution theorem in (2),
the upper bound in (4) and the lower bound in (5). This step follows
immediately once we have proved all the previous steps.

The Ax-Lindemann theorem is proved in this dissertation in its most general
form. The distribution theorem in (2) will also be proved as Theorem
Remark that this theorem for pure Shimura varieties has been obtained by
Ullmo [64, Théoréme 4.1] and, without “weakly”, also by Pila-Tsimerman [50]
Section 7| separately. The choice of F and the proof of the definability of
unif |£ in (3) are done in §831. The upper bound in (4) has been proved
by Pila-Tsimerman [49, Theorem 3.1| for A, and their result can be easily
generalized to mixed Shimura varieties of abelian type. For the lower bound
in (5), we will reduce the case of mixed Shimura varieties to the case of pure
Shimura varieties in §4.21 Then for pure Shimura varieties, the best result is
given by Tsimerman [62, Theorem 1.1] who proved it unconditionally for all
special points of A and under GRH for all special points of AE. Combining
all these results, we have (Theorem [3T])

Theorem. The André-Oort conjecture holds unconditionally for any connected
mized Shimura variety S whose pure part is a subvariety of AY (e.g. AY ). It
holds under GRH for any connected mized Shimura variety of abelian type.

In order to prove the André-Oort conjecture for mixed Shimura varieties
which are not of abelian type, we still need a good definition of the complexity

91n the sense of Theorem
10The lower bound is conjected by Edixhoven [19], who also initiated the study of this
lower bound and proved it unconditionaly for Hilbert modular surfaces [I8]. Similar results
to Tsimerman’s for special points of Aév have been obtained unconditionally by Ullmo-
Yafaev separately and they also proved the lower bound for all pure Shimura varieties under

GRH [68].
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for points in ¥ which allows us to get the upper bound in (4). Remark that
by the proof of Theorem 31] it is enough to define this complexity for all
pure Shimura varieties. Daw-Orr are studying this problem.

From André-Oort to André-Pink-Zannier

The obstacle left to claim the André-Oort conjecture for A, (¢ > 7) is the
lower bound of the size of Galois orbits of special points. we can consider a
weaker version of André-Oort: replace ¥ by the set of torsion points of CM
abelian varieties which are isogenious to a given CM abelian variety.
In this case, the obstacle is removed by a series of work of Habegger-Pila [24]
Section 6] and Orr [43]. The key point to do this is a theorem of Masser-
Wiistholz [35] and its effective version by Gaudron-Rémond [21].

This special case of André-Oort is contained in another conjecture, which
we shall call the André-Pink-Zannier conjecture.

Conjecture (André-Pink-Zannier). Let S be a connected mized Shimura va-
riety, let s be a point of S and let' Y be an irreducible subvariety of S. Let ¥

be the generalized Hecke orbit of s. If Y N 5 = Y, then Y is weakly special.

Several cases of this conjecture have already been studied by André before
its final form was given by Pink [54, Conjecture 1.6]. It is also closely related to
a problem proposed by Zannier. See §5.1.1] for more details. Pink also proved
[64, Theorem 5.4] that this conjecture implies the Mordell-Lang conjecture.

The André-Pink-Zannier conjecture has been intensely studied by Orr [43]
M2]. In this dissertation, we shall focus on 2, for the André-Pink-Zannier
conjecture. In this case the generalized Hecke orbit of s can be computed

explicitly. We have (G1)

Y, = division points of the polarized isogeny orbit of s
= {t € ;| In € N and a polarized isogeny

f: (9[9771'(8)7 )\T((S)) - (mgm(t)a /\W(t)) such that nt = f(S)}
Finally we prove (Theorem F3:2] Theorem 514l and Theorem [E.T.H)

Theorem. The André-Pink-Zannier conjecture holds for A4 and Y in each of
the three following cases:

1. s is a torsion point of Ay (s and Uy sy is a CM abelian variety (this
is a special case of the weak André-Oort conjecture we discussed before);

2. s is a torsion point on A y and dim7(Y') < 1;

g,7(s

3. s € Ay(Q) and dim(Y) = 1.

The first part of this theorem generalizes the previous work of Edixhoven-
Yafaev [72, 20] (for curves in pure Shimura varieties) and Klingler-Ullmo-
Yafaev [66], B0] (for pure Shimura varieties) and its p-adic version has been
proved by Scanlon [58§].
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In the last part of this dissertation §5.5] we explain that the same statement
as André-Pink-Zannier by replacing s by a finitely generated subgroup of a
fiber of A, — A, (which is an abelian variety) and replacing the polarized
isogeny orbit by the isogeny orbit can be in fact deduced from the André-
Pink-Zannier conjecture.

Zilber-Pink

Finally let us talk a bit about the more general Zilber-Pink Conjecture [54]

73, 57].

Conjecture (Zilber-Pink). Let S be a connected mized Shimura variety. Let
Y be a Hodge-generic irreducible subvariety of S. Then

U s'ny

S’ special,
codim(S’)>dim(Y)

is not Zariski dense in'Y .

This conjecture contains the André-Oort conjecture and the André-Pink-
Zannier conjecture (see |52, Theorem 3.3]). Habegger-Pila have proved re-
cently many results about the Zilber-Pink conjecture for AY [23] (in the same
paper they also proved the Zilber-Pink conjecture for curves over Q in abelian
varieties), in particular an unconditional result for a large class of curves [24].
We will not talk more about the case of algebraic groups (see the Bourbaki
talk of Chambert-Loir [I4] for a summary before the work of Habegger-Pila).

For mixed Shimura varieties, there are not many results for this general
conjecture. Apart from the results of this dissertation, Bertrand, Bertrand-
Edixhoven, Bertrand-Pillay and Bertrand-Masser-Pillay-Zannier have recently
been working on Poincaré biextensions [7, 11} [8, [9} [T0]. They have got several
interesting results, some of which provide good examples for this dissertation.

Structure of the dissertation

Chapter [l introduces the preliminaries for this dissertation. Section §I.T] sum-
marizes the theory of mixed Shimura varieties as they are used in this disser-
tation. In particular, JL.T.T] summarizes the theory of mixed Hodge structures
and naturally leads to the definition of mixed Shimura varieties in JL.T.2
Other basic properties will also be given in §L.T.2 Section L.T.3 introduces
mixed Shimura varieties of Siegel type (in particular the universal family of
abelian varieties) and ends up with the reduction lemma. All these subsections
are well-known facts and the main reference is [53, Chapter 1-Chapter 3]. In
JT.1.4l we prove a group theoretical proposition which will be used later in the
dissertation. Section §I.2] summarizes basic properties of weakly special sub-
varieties and gives the geometric description of weakly special subvarieties of
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mixed Shimura varieties of Kuga type. Section §L.3] concerns the bi-algebraic
setting for the mixed Shimura varieties.

Chapter 2] proves Ax’s theorem of log type. Section §2.7] concerns results
for the unipotent part, i.e. the fiber of the projection of a connected mixed
Shimura variety to its pure part. §2.2] collects some existing results for mon-
odromy groups of admissible variations of Hodge structures. After these pre-
liminaries, Ax’s theorem of log type will be proved in §2.3

Chapter ] proves the mixed Ax-Lindemann theorem. Section §3.1] gives
four equivalent statements for this theorem. Section §3.2] outlines the proof
and gives Step 1, Step 2, Step 5 and Step 6. Section §3.3ldeals with the estimate
using the o-minimal theory. This corresponds to Step 8 and Step 4. Section
§3.4] handles the unipotent part, which answers a question left for Step 5. In
the Appendix of this chapter we will do two things: §3.5.1] gives more details
on an easy fact we admit about the definability in §3.311 and §3.5.2] sketches
a simplified proof for the flat Ax-Lindemann theorem.

Chapter (] concerns several different aspects to pass from Ax-Lindemann
to André-Oort. Section §4.1] proves the distribution theorem as a consequence
of the mixed Ax-Lindemann theorem. Section §4.2] reduces the lower bound
for Galois orbits of special points of mixed Shimura varieties to lower bound
for pure Shimura varieties. Combining these two results together with Ax-
Lindemann and the upper bound studied by Pila-Tsimerman, we prove our
main result for the André-Oort conjecture in §43 The proof for the weak
version of André-Oort will also be given in §4.31 The Appendix of this chapter
summarizes the comparison of Galois orbits of special points of pure Shimura
varieties obtained by Ullmo-Yafaev [66] Section 2].

Chapter [ concerns the André-Pink-Zannier conjecture. Section §5.1] dis-
cusses the background and states the main results. Section §5.2 computes the
generalized Hecke orbits in 2. Section §5.3] proves the torsion case and §5.41
proves the non-torsion case. Each proof contains the definition of the complex-
ity of points in the generalized Hecke orbit, the upper bound for heights and
the lower bound for Galois orbits. The estimates for both cases are slightly
different. Section §5.5] discusses some variants of the André-Pink-Zannier con-
jecture.



Chapter 1

Preliminaries

1.1 Mixed Shimura varieties

1.1.1 Mixed Hodge structure

In this section we recall some background knowledge about rational mixed
Hodge structures. Most of this section is taken from [53] Chapter 1].

1.1.1.1 Definitions about mixed Hodge structures

We start by collecting some basic notions about Hodge structures. This sub-
section is taken from [53] 1.1 and 1.2]. In this subsection, R = Z or Q.

Let M be a free R-module of finite rank. A pure Hodge structure of
weight n € Z on M is a decomposition M¢c = ®pyg=nMP? into C-vector
spaces such that for all p,q € Z with p + ¢ = n one has M%P = MP4, The
associated (descending) Hodge filtration on Mc¢ is defined by FPMc =
DprspMP 9. Tt determines the Hodge structure uniquely, because MP4 =
FPMc N F4Mc.

A mixed R-Hodge structure on M is a triple (M, {W,,M } ez, {FPMc}pez)
consisting of an ascending exhausting separated filtration {W, M },,cz of M by
R-modules of finite rank with each M /W, M free, called weight filtration,
together with a descending exhausting separated filtration {F? Mc }pez of M,
called Hodge filtration, such that for all n € Z the Hodge filtration induces a
pure Hodge structure of weight n on GrZVM =W, M/W,_1M. A pure Hodge
structure of weight n is considered a special case of a mixed Hodge structure
by defining the weight filtration as W,,, M = M for n’ > n and W,,, M = 0 for
n' < n.

The Hodge numbers are defined as hP? := dimC(GrZ[iqM)p’q. They
satisfy h?P = hP4 almost all h?? are zero, and their sum is equal to the
dimension of M. If A C Z & Z is an arbitrary subset, then we say that the
Hodge structure (M, {W,, M },ez, {FP*Mc}pez) is of type A, if h?7 = ( for
all (p,q) ¢ A. The weights that occur in a mixed Hodge structure are the
numbers p + ¢ for all pairs (p, ¢), for which h?>? # 0. The notions of weight
< n and of weight > n are defined in the obvious way.

A morphism of mixed R-Hodge structures is a homomorphism f: M —
M’ such that f(W,, M) C W,,M’ and f(F?Mc) C FPM{ for all n,p € Z. The
rational mixed Hodge structures form an abelian category with these mor-
phisms. Given mixed R-Hodge structures on M; and Ms, there are canon-
ical rational mixed Hodge structures on M; & Ms, on the dual M)’ and on
HOIII(Ml, Mg)

35
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A mixed Hodge structure on M splits over R, if there exists a decompo-
sition Mc = @, M9 such that W, Mc = @1 qcn MP9, FP Mg = @5, MP 1
and M%P = MP9. This decomposition is then uniquely determined by these
properties. Every pure Hodge structure splits over R, but not every mixed
Hodge structure does. If one weakens the requirements, however, one can still
associate to every mixed Hodge structure a canonical decomposition M¢ =
@p,gMP 4, as in the following proposition.

Proposition 1.1.1 (Deligne). Fiz a mized R-Hodge structure on M.

1. There exists a decomposition Mc = @y o MP 9 such that W,, Mc = ©prqcnMP?
and FPMc = EBp/>pMp,’q.

2. The Hodge structure is uniquely determined by any such decomposition.

3. There exists a unique decomposition as in (1) which also satisfies
Mq7p = MP;Q mod ®p’<p,q’<q Mp’,q/'
Proof. 53, 1.2]. O

1.1.1.2 Equivariant families of mixed Hodge structures

The reference for this subsection is [53, 1.3-1.7]. In this section, R = Z or Q.

Let S := Resc/rGm,c. The torus S is called the Deligne-torus. Over
C it is canonically isomorphic to G, c x Gy, ¢, but the action of complex
conjugation is twisted by the automorphism c¢ that interchanges the two fac-
tors. In particular S(R) = C* corresponds to the points of the form (z,%)
with z € C*. While the character group of G,, ¢ is Z in the standard way,
we identify the character group of S with Z @ Z such that the character (p, q)
maps z € S(R) = C* to 2Pz~ 9 € C*. Under this identification the complex
conjugation operates on Z @ Z by interchanging the two factors. The following
homomorphisms are important in the theory:

o the weight w: G,, r — S induced by R* C C*;
o : Gy c — S¢ sending z € C* +— (2,1) € C* x C* = S(C);

e the norm N:S — Gy, r sending z € S(R) = C* — 2z € R*. The
kernel S' of N is anisotropic over R, and we have a short exact sequence
1—>Sl—>S—>Gm7R—>1.

Let M be a free R-module of finite rank. The choice of a representa-
tion k: S¢ — GL(Mc¢) is equivalent to the choice of a decomposition M¢ =
®p,MP 1, where MP9 is the eigenspace in Mc to the character (p,q). As in
the last subsection we call W, Mc = @pyq<nMP? and FPMc = @p/}pMqu
the associated weight filtration, respectively Hodge filtration, and define the
notions “of type A”, pure, etc. in the same way. These notions coincide with
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those of the last subsection, if the filtrations are those of a mixed R-Hodge
structure on M. The following two propositions will tell us under which con-
dition on k this is the case for R = Q.

Proposition 1.1.2. Let P be a connected Q-linear algebraic group. Let W :=
Ru(P) beits unipotent radical, let G := P/W andlet m: P — G be the quotient
map. Let h: Sc — Pc be a homomorphism such that the following conditions
holds:

e woh:Sc — Gg¢ is defined over R;

e mohow: G,, g — Gr is a cocharacter of the center of G, which is defined
over Q;

e Under the weight filtration on (Lie P)c defined by Adp o h we have
W_1(Lie P) = Lie W.

Then

1. For every (Q-)representation p: P — GL(M), the homomorphism p o h:
Sc — GL(Mc) induces a rational mized Hodge structure on M.

2. The weight filtration on M is stable under P.

3. Foranyp € P(R)W(C), the assertions (1) and (2) also hold forint(p) o h
in place of h. The weight filtration and the Hodge numbers in any rep-
resentation are the same for int(p) o h and for h.

Proof. |53, 1.4]. O

Proposition 1.1.3. Let M be a finite dimensional Q-vector space. A rep-
resentation k: S¢ — GL(Mcg) defines a rational mized Hodge structure on
M iff there exist a connected Q-linear algebraic group P, a representation
p: P — GL(M) and a homomorphism h: S¢ — Pc such that k = poh and the
conditions in Proposition [LT.2 are satisfied. Moreover, every rational mized
Hodge structure on M is obtained by a unique representation k: S¢ — GL(Mc)
with the property above.

Proof. This is [53}, 1.5] except the “Moreover” part, where the existence of k has
been explained in the paragraph before Proposition [[L1.21 and the uniqueness
of k follows from Proposition [[LTI[(3). O

Now we are ready to discuss equivariant families of Hodge structures,
or more precisely homogeneous spaces parametrizing certain rational mixed
Hodge structures.

Proposition 1.1.4. Let P be a Q-linear algebraic group and let W := R, (P)
be its unipotent radical. Let Xy be a P(R)W (C)-conjugacy class in Hom(S¢, Pr).
Assume that for one (and hence for all by Proposition [L1T.A(3)) h € Xw, the
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conditions in Proposition [L.1.2 holds. Let M be any faithful representation of
P and let ¢ be the obvious map

Xw — {rational mized Hodge structures on M}.
Then:

1. There exists a unique structure on o(Xw) as a complex manifold such
that the Hodge filtration on Mc depends analytically on o(h) € p(Xw).
This structure is P(R)W (C)-invariant and W (C) acts analytically on
o (Xw ).

2. For any other representation M’ of P the analogous map
¢': Xw — {rational mized Hodge structures on M'}

factors through o(Xw). The Hodge filtration on M’ varies analytically
with o(h) € p(Xw ).

3. If in addition M’ is faithful, then o(Xw) and ¢’ (Xw) are canonically
isomorphic and the isomorphism is compatible with the complex struc-
ture.

Proof. |53, 1.7]. O

1.1.1.3 Mumford-Tate group and polarizations

In this subsection, R = Z or Q. Also M will be a free R-module of finite rank
equipped with a mixed R-Hodge structure (M, {W, M } ez, {FPMc}pez). By
Proposition [[LT.3] the corresponding rational mixed Hodge structure on Mg
gives rises to a representation k: S¢ — GL(M¢).

Definition 1.1.5. The Mumford-Tate group of this mized R-Hodge struc-
ture is defined to be the smallest Q-subgroup P of GL(Mg) such that k(Sc) C
Pc.

Before defining the polarizations of pure Hodge structures, we introduce the
Tate Hodge structure, which is defined to be the free R-module of rank 1
R(1) := 27v/—1R with the pure R-Hodge structure of type (—1, —1). For every
n € Z, we get a pure R-Hodge structure of type (—n, —n) on R(n) := R(1)®".

Definition 1.1.6. Suppose that the R-Hodge structure on M is pure of weight
n. A polarization of this Hodge structure is a homomorphism of Hodge struc-
tures

Q: M®M — R(—n)

which is (—1)"-symmetric and such that the real-valued symmetric bilinear
form

Q' (u,v) = 27V —1)"Q(Cu,v)
is positive-definite on My, where C' acts on MP? by C|ppa = (v/—1)P79.
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1.1.1.4 Variation of mixed Hodge structures

The reference for this subsection is [53] 1.9-1.13|. In this subsection, R = Z or
Q.

Definition 1.1.7. ([, Definition 14.44]) Let S be a complex manifold. A
variation of mired R-Hodge structures over S is a triple (V,W. F")
with

1. a local system V of free R-modules of finite rank on S;

2. a finite increasing filtration {W,,} of the local system V by local sub-
systems with torsion free GrZVV for each n (this is called the weight
filtration);

3. a finite decreasing filtration {FP} of the holomorphic vector bundle V :=
V ®prs Og, where Rg is the constant sheaf over S, by holomorphic sub-
bundles (this is called the Hodge filtration).

such that

1. for each s € S, the filtrations {FP(s)} and {Wy,} of V(s) ~ Vs @r C
define a mized Hodge structure on the R-module of finite rank V;

2. the connection V : V — V Qo4 O whose sheaf of horizontal sections is
Ve satisfies the Griffiths’ transversality condition

V(FP) c FP~ @ Q4.

Definition 1.1.8. A wvariation of mized Hodge structures over S is said to be
graded-polarizable if the induced variations of pure Hodge structure GrZVV
are all polarizable, i.e. for each n, there exists a flat morphism of variations

Qn: GrV Ve GV — R(—n)s

which induces on each fibre a polarization of the corresponding Hodge structure
of weight n.

Proposition 1.1.9. Let P, Xy, M and ¢ be as in Proposition [I.14 Then
we have a variation of rational mized Hodge structures on M over o(Xw) iff
for one (and hence for all) h € Xy the Hodge structure on Lie P is of type

{(_17 1)5 (07 O)v (17 _1)7 (_17 O)v (07 _1)7 (_17 _1)}'
Proof. |53}, 1.10]. O

Proposition 1.1.10. Let P, Xy, M and ¢ be as in Proposition [I.1.4] As-
sume
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e for one (and hence all) h € Xy, the conjugation by h o w(v/—1) induces
a Cartan involution on G where G := P/W and G possesses no
Q-factor H such that H(R) is compact;

e P/Pd" = Z(G) is an almost direct product of a Q-split torus with a
torus of compact type defined over Q;

e M is an irreducible representation of P and the Hodge structure on M
induced by one (and hence all) h € Xy is pure of weight n.

Then there exist a one dimensional representation of P on Q(—n) and a P-
equivariant bilinear form V: M x M — Q(—n) such that for all h € Xy either
U or —V is a polarization of the corresponding Hodge structure on M.

Proof. |53, 1.12 and 1.13]. O

1.1.1.5 Replace A} by a smaller orbit

The reference for this subsection is [63, 1.15 and 1.16].

Let P, Xy, M and ¢ be as in Proposition[[LT.4l The aim of this subsection
is to find a subgroup U of W such that the image of an orbit under P(R)U(C)
under ¢ is the same as (X ).

Let U < W be the unique connected subgroup such that Lie U = W_q(Lie W).
By Proposition [[LT.2)(3), it does not depend on h € Xy . Let 7’ be the quotient
P — P/U.

Proposition 1.1.11. Under the notation as above. Let
X :={heXy| " oh:Sc — (P/U)c is defined over R}.
Then
1. X is a non-empty P(R)U(C)-orbit in Hom(Sc¢, Pc);
2. o(X) = o(Xw);
3. If FO(LieU)c = 0, then p(X) ~ X.
Proof. |53, 1.16]. O

1.1.2 Mixed Shimura data and mixed Shimura varieties
1.1.2.1 Definitions and basic properties
Definition 1.1.12. A mized Shimura datum (P, X) is a pair where

e P is a connected linear algebraic group over Q with unipotent radical W
and with another algebraic subgroup U C W which is normal in P and
uniquely determined by X using condition [B) below;
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o X is a left homogeneous space under the subgroup P(R)U(C) C P(C),

and X L Hom(Sc, Pc) is a P(R)U(C)-equivariant map such that every
fibre of h consists of at most finitely many points,

such that for some (equivalently for all) x € X,

1. the composite homomorphism Sc Dey pe— (P/U)¢ is defined over R,

2. the adjoint representation induces on Lie P a rational mized Hodge struc-
ture of type

{(_17 1)a (07 O)a (17 _1)} U {(_13 0)7 (Oa _1)} U {(_17 _1)}7
8. the weight filtration on Lie P is given by

0 ifn < -2
LieU ifn=—2
LieW ifn=-1’
LieP ifn>0

W, (Lie P) =

4. the conjugation by h,(v/—1) induces a Cartan involution on G%d where
G := P/W, and G*! possesses no Q-factor H such that H(R) is compact,

5. P/PYr = Z(G) is an almost direct product of a Q-split torus with a
torus of compact type defined over Q.

If in addition P is reductive (resp. U is trivial), then (P, X)) is called a pure
Shimura datum (resp. a mized Shimura datum of Kuga type).

Remark 1.1.13. 1. Let w: Gpr — S bet € R* — t € C*. Conditions
(2) and (3) together imply that the composite homomorphism G, c <,

Sc¢ 2 Pe — (P/U)c 1is a co-character of the center of P/W defined over
R. This map is called the weight. Furthermore, condition (5) implies that
the weight is defined over Q.

2. Condition (5) also implies that every sufficiently small congruence sub-
group T of P(Q) is contained in P (Q) (cf [53, the proof of 3.3(a)]).
Fiz a Levi decomposition P =W x G ([55, Theorem 2.5]), then P* =
W x G, and hence for any congruence subgroup T' < P7(Q), T is
Zariski dense in PY°" by condition (4) ([55, Theorem 4.10]).

3. Condition (5) in the definition is not too strict because we are only in-
terested in a connected component of X ([53, 1.29]).

Theorem 1.1.14. Let (P, X) be a mized Shimura datum. Then X possesses
a canonical P(R)U(C)-invariant complex structure and every connected com-
ponent of X is isomorphic to a holomorphic vector bundle on a hermitian
symmetric domain.
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Proof. The existence of the complex structure follows from Proposition [[.1.4]
and Proposition[.T.TIl We will give the construction of this complex structure

at the beginning of §L.3.T1
The second claim is [53, 2.19]. O

Definition 1.1.15. Let (P, X) be a mized Shimura datum and let K be an
open compact subgroup of P(Ay) where Ay is the ring of finite adéle of Q. The
corresponding mired Shimura variety is defined as

Mg (P, &) := P(Q\X x P(Ay)/K,

where P(Q) acts diagonally on both factors on the left and K acts on P(Ay)
on the right. The mized Shimura variety My (P, X) is said to be pure (resp.
of Kuga type) if (P, X) is pure (resp. of Kuga type).

In this article, we only consider connected mixed Shimura data and con-
nected mixed Shimura varieties except in 4.2

Definition 1.1.16. 1. A connected mixzed Shimura datum is a pair
(P, X%), where P is as in Definition[[1.13, X" hy Hom(S¢, Pr) is an
orbit under the subgroup P(R)*U(C) C P(C) such that for one (and
hence for all) x € Xt the conditions (1)-(5) in Definition [LT.12 are
satisfied.

2. A connected mized Shimura variety S associated with (P, X7T) is of
the form T\X™T for some congruence subgroup I' C P(Q)4+ := P(Q) N
P(R)4, where P(R)4 is the stabilizer in P(R) of X C Home(Sc, Pc).

Mixed Shimura varieties and connected mixed Shimura varieties are closely
related. Their relationship is summarized in the following proposition.

Proposition 1.1.17. Let (P, X) be a mized Shimura datum and let K be an
open compact subgroup of P(Ay). Let X be a connected component of X.

1. The pair (P, X7") is a connected mized Shimura datum.

2. The set P(Q)+\P(Ay)/K is a finite set.

3. Foranyps € P(Ay), T'(py) = P((@)_,_ﬂprp;l s a congruence subgroup
of P(Q)+ depending only on [pf] € P(Q)+\P(A;)/K and K.

Mg (P, X) = 1T T(pp)\X™.
Ips1€P(Q)+\P(4))/ K

Proof. |53, 3.2] and [55, Theorem 8.1]. O

This proposition allows us to consider only connected mixed Shimura data
and connected mixed Shimura varieties in this dissertation. One advantage of
doing this is because of the notion which we introduce now: recall the following
definition, which Pink calls “irreducible” in [53] 2.13].
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Definition 1.1.18. A connected mized Shimura datum (P,X7") is said to
have generic Mumford-Tate group if P possesses no proper normal sub-
group P’ such that for one (equivalently all) v € X7, hy factors through
Pl C Pc. We shall denote this case by P = MT(XT). (This terminology
will be explained in Remark[22.0]).

Proposition 1.1.19. Let (P,X™T) be a connected mized Shimura datum, then

1. there exists a connected mized Shimura datum (P', X'") — (P, X™") such
that P' = MT(X'T) and X'T = X;

2. if (P,X™%) has generic Mumford-Tate group, then P acts on U wvia a
character. In particular, any subgroup of U is mormal in P.

Proof. |53, 2.13, 2.14]. O

Definition 1.1.20. A (Shimura) morphism of connected mixzed Shimura
data (Q, Y1) — (P,XT) is a homomorphism ¢: Q — P of algebraic groups
over Q which induces a map Y+ — X7, y— poy. A Shimura morphism
of connected mixed Shimura varieties is a morphism of varieties induced
by a Shimura morphism of connected mized Shimura data.

A very important result of the theory of Shimura varieties is that the
category of connected mixed Shimura varieties is a subcategory of the category
of algebraic varieties. More precisely,

Theorem 1.1.21. 1. Let S be a connected mized Shimura variety associ-
ated with (P, X%) and let unif: X+ — S = T\X™T be the uniformiza-
tion. Then there is a canonical structure of a normal complex quasi-
projective algebraic variety on S (the complex structure comes from the
P(R)*U(C)-invariant complex structure of X+ given in Theorem|[I.1.17).
Moreover if I' is neat, then S is smooth.

2. BEvery Shimura morphism between connected mixed Shimura varieties is
algebraic.

Proof. |53}, 3.3 and 9.24]. O

1.1.2.2 Construction of new mixed Shimura data from a given one

Given a (connected) mixed Shimura datum (P, X’), we define in this section
its quotient mixed Shimura data and its unipotent extensions.

Proposition 1.1.22 (Quotient mixed Shimura datum). Let (P, X) be a mized
Shimura datum and let Py be a normal subgroup of P. Then there exist a quo-
tient mized Shimura datum (P,X)/Py and a morphism (P,X) — (P,X)/Py,
unique up to isomorphism, such that every Shimura morphism (P, X) — (P’,X"),
where the homomorphism P — P’ factors through P/Py, factors in a unique
way through (P, X)/Py. In fact the underlying group for (P,X)/Py is P/FPy.
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Proof. This is [53] 2.9] except the “In fact” part, which is clear by the proof. O

Proposition 1.1.23 (Unipotent extension of a mixed Shimura datum). Let
(P, X) be a mized Shimura datum and let 1 — Wy — P — P — 1 be an
extension of P by a unipotent group Wy. Let G := P/R,(P). Assume that
the Lie algebra of every irreducible subquotient of Lie Wy is of Hodge type
{(=1,0),(0,=1),(=1,—=1)} as representation of G, and that the center of G
acts on it through a torus that is an almost direct product of a Q-split torus
with a torus of compact type defined over Q. Then:

1. There exist a mized Shimura datum (P, X1) and a morphism (Py, X1) —
(P, X) that extends the given homomorphism Py — P, with the property
(Py, X1)/ Wy ~ (P, X). They are uniquely determined up to isomorphism.

2. For every morphism (P',X') — (P,X) and every factorization P’ —
P, — P, there exists exactly one extension (P',X') — (P,X1) —
(P, X).

Proof. This is |53, 2.17). O

Example 1.1.24. Let us see a particular example of the unipotent extensions
of a given connected mized Shimura datum. This is [54), Construction 2.9].
Let (P,X*) be a connected mized Shimura datum and let V' be a finite
dimensional representation of P. Then we can define the Q-linear algebraic
group V' x P. Assume that for one (and hence for all) x € X7, the induced
rational mized Hodge structure on V' has type {(—1,0),(0,—1)}. Let

V/(]R) x X C HOIn(Sc, (V/ X P)(C)

denote the conjugacy class under V'(R) x (P(R)TU(C)) = (V' x P)(R)TU(C)
generated by XT C Hom(Sc, Pc). There is a natural bijection

V(R) x Xt S V/(R) x XY, (v, x) — int(v') o z.

Under this bejection the action of (v,p) € V'(R) x (P(R)TU(C)) corresponds
to the twisted action (v,p) - (v',x) = (pv' + v,px). The complex structure of
the fiber over x € Xt of the projection

V/(R) x X+ — x+

is given by V'(R) ~ V'(C)/FOV'(C).
The pair (V' x P,V'(R) x XT) is the extension of (P, X1) by V'.

Notation 1.1.25. For convenience, we fix some notation here. Given a con-
nected mized Shimura datum (P, X7), we always denote by W = R, (P) the
unipotent radical of P, G := P/W the reductive part, U < P the weight —2
part, V := W/U the weight —1 part and (P/U, X;/U) = (P,XT)/U (resp.
(G, XZ) == (P,X%)/W) the corresponding connected mized Shimura datum
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whose weight —2 part is trivial (resp. pure Shimura datum). If we have several
connected mized Shimura data, say (P,X) and (Q, YY), then we distinguish
the different parts associated with them by adding subscript Wp, Wq, Gp, Gq,
etc. For a connected mived Shimura variety S, we denote by Sp;y (resp. Sc)
its image under the Shimura morphism induced by (P,X*) — (P/U, X;/U)
(resp. (P,X") — (G,X%)). The pure Shimura datum (G,X[) will be called
the pure part of (P,X%) and Sg will be called the pure part of S.

1.1.2.3 Examples of Shimura morphisms

In this subsection, we discuss some Shimura morphisms. The first corresponds
to families of abelian varieties. Then we define Shimura immersions, Shimura,
submersions and Shimura coverings.

Proposition 1.1.26. Let S = T\X™ be a connected mized Shimura variety
of Kuga type associated with (P, XT) and let Sg be its pure part. Assume that
I' =Ty x g and that T is neat. Then S — Sq is an abelian scheme.

Proof. |53}, 3.12(a) and 3.22(a)]. O

Proposition 1.1.27. Let p: (P,XT) — (P',X'") be a Shimura morphism
and letT’ C P(Q)+ and I C P'(Q)+ be congruence subgroups such that o(I') C
I'Y. Then the map

[e]: T\XT = TA\X™F, 2] [poa]
is well-defined and algebraic. Moreover, [p] is

o]

1. a finite morphism if Ker(p)
Shimura immersion.

is a torus. In this case [p] is called a

2. surjective if Im(p) contains P'4". In this case [p] is called a Shimura
submersion.

3. a (possibly ramified) covering if the conditions in (1) and (2) both hold.
In this case [p] is called o Shimura covering.

Proof. |53}, 3.4 and 9.24]. O

At the end of this subsection, we state the following property for Shimura
morphisms.
Proposition 1.1.28. Let (Q,)) EN (P,X) be a Shimura morphism, then
f(Wgo) C Wp (resp. f(Ug) C f(Up)), and hence f induces

7 : (GQ7yGQ) - (GP?XGP) (resp. ?/ : (Q/QUayQ/ch) - (P/UPaXP/Up))'

Furthermore, if the underlying homomorphism of algebraic groups f is injec-
tive, then so are f and ?I.
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Proof. Since
LieWp = W_4(Lie P) and Lie Wg = W_1(Lie Q),

by the following commutative diagram

LieWg — LieWp

1§ lexp lexp

Wy —L P

(here exp is algebraic and is an isomorphism as a morphism between algebraic
varieties because Wy is unipotent), f(Wg) C Wp.
Hence f induces a map Gg — Gp. Now the existence of f follows from
the universal property of the quotient Shimura datum (Proposition [LT.22]).
Furthermore, suppose now that f is injective. By Levi decomposition, the
exact sequence
1-Wo—Q e, Gg—1

splits. Choose a splitting sg: Gg — @, then we have the following diagram
whose solid arrows commute:

5Q
e
TQ .
Wi
»
1 Wp P Gp 1
TP

where A := fosg. Then A is injective since f, s are. And mpo = mpofosg =
fomgosg = f, so we have

Ker(f) =GoNnWp

where the intersection is taken in P. (Gg N Wp)° is smooth (since we are
in the characteristic 0), connected unipotent (since it is in Wp) and normal
in Gg (since Wp is normal in P), so it is trivial since G is reductive. So
Gg N Wp is finite, hence trivial because Wp is unipotent over Q. To sum it
up, f is injective.

The proof for the statements with U’s is similar. O

1.1.2.4 Generalized Hecke orbits

The reference for this subsection is [64, Section 3]. Let S = T'\X™T be a
connected mixed Shimura variety associated with (P, X*) and let unif: X+ —
S be the uniformization.

Definition 1.1.29. 1. Forany ¢ € Aut ((P, X"')), the diagram of Shimura
coverings

s=r\xt L rneim)\at Lt =g
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is called a generalized Hecke correspondence on S and is denoted
by T,,. For any subset Z C S, the subset

To(Z) = l¢] ([d] 7' (2))

is called the translate of Z under T,. We also abbreviate Ty (s) :=
T,({s})-

2. The generalized Hecke correspondence associated with an inner automor-

phism int(p): p’ +— pp'p~t for an element p € P(Q), is called a (usual)

Hecke correspondence on S and is denoted by T),.
Definition 1.1.30. Fiz a point s € S.

1. The union of Ty(s) for all ¢ € Aut (P, X)) is called the generalized
Hecke orbit of s.

2. The union of T,(s) for allp € P(Q)4 is called the (usual) Hecke orbit
of s.

The following proposition, whose proof we omit, is very easy to check by
definition.

Proposition 1.1.31. Let s be a point of S. Let s € XT be such that unif (3) =
s. Then the generalized Hecke orbit of s equals

unif (Aut (P,XT)) 5)

The generalized Hecke orbits in a particular connected mixed Shimura va-
riety (the universal family of principally polarized abelian varieties) will be
computed in the last chapter of this dissertation (Z.ITJ).

1.1.2.5 Structure of the underlying group

The reference for this subsection is [63, 2.15].
For a given connected mixed Shimura datum (P, XT), we can associate to
P a 4-tuple (G, V,U, ¥) which is defined as follows:

e G := P/R,(P) is the reductive part of P;

e U is the normal subgroup of P as in Definition [T T2and V := R, (P)/U.
Both of them are vector groups with an action of G induced by conju-
gation in P (which factors through G for reason of weight);

e The commutator on W := R, (P) induces a G-equivariant alternating
form U: V x V — U by reason of weight as explained by Pink in [53]
2.15]. Moreover, ¥ is given by a polynomial with coefficients in Q.

On the other hand, P is uniquely determined up to isomorphism by this
4-tuple in the following sense:
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e let W be the central extension of V' by U defined by W. More concretely,
W = U xV as a Q-variety and the group law on W is (this can be proved
using the Baker-Campbell-Hausdorff formula)

1
(u,0)(w',0") = (u + o'+ (v, 0"), 0 4 0');

e define the action of G on W by ¢g((u,v)) := (gu, gv);
e define P:=W x G.

1.1.3 Mixed Shimura varieties of Siegel type and the re-
duction lemma

The reference for this subsection is [53, 2.7, 2.25, 10.1-10.14].
Let g € N5o. Let Vo, be a Q-vector space of dimension 2g and let

U Vog x Vog — Usy := Gu
be a non-degenerate alternating form. Define
GSpy, := {h € GL(Vay)| ¥ (hv, hv') = v(h)¥(v,v") with v(h) € G},
and H, the set of all homomorphisms
S — GSpyy

which induce a pure Hodge structure of type {(—1,0), (0, —1)} on Vs, and for
which either ¥ or —W defines a polarization. Let ]HI;‘ be the set of all such
homomorphisms such that ¥ defines a polarization.

GSpy, acts on Uag by the scalar v, which induces a pure Hodge structure of
type (—1,—1) on Usy,. Let Wy, be the central extension of Vog by Us, defined
by W, then the action of GSpy, on Wa, induces a Hodge structure of type
{(-=1,0),(0,-1),(—1,—1)} on Lie Wa,.

By Proposition[[LT.23] there are connected mixed Shimura data (Pag,a, X;;a)
and (Pag, XQ';), where Pag o 1= Vay X GSpy, and Pag := Wa, X GSpy,.

Definition 1.1.32. The connected mized Shimura data (GSpag, HY), (Pag.a; Xiz,a)
and (Pag, X2—;) are called of Siegel type (of genus g).

Next we introduce connected mixed Shimura varieties of Siegel type. They
have very good modular interpretation ([53, 10.8-10.14]).
For M > 4 and even, define

Lasp(M) := {h € GSpy,(Z)|h = 1 mod M} (1.1.1)

and
Dy (M) := (M - Uzg(Z)) x (M - V24(Z))
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under the identification W ~ U x V in §I.T.2.8 Ty (M) is indeed a subgroup
of W(Z) by the group operation (defined by ¥). Let I'v (M) := M - Vay(Z),
and write

Ag(M) := Tasp(M)\HF (1.1.2)

Ay (M) = (Pv (M) % Dasp(M)\ Xy, (1.1.3)

L4(M) := (P (M) x Dasp(M))\ Xy, (1.1.4)

Definition 1.1.33. The connected mized Shimura varieties Ag(M), Ag(M)

and L£4(M) are called of Siegel type of level M (and of genus g).

Connected mixed Shimura varieties of Siegel type have very good moduli
interpretation:

Theorem 1.1.34. 1. A (M) is the universal family of principally polarized
abelian varieties of dimension g with a level-M -structure over the fine
moduli space Ag(M).

2. L4(M) — Uy(M) is a Gy, -torsor which is totally symmetric. Its inverse
G -torsor, i.e. replace the G,,-action by its inverse, is relatively am-
ple w.r.t. Ag(M) — Ag(M). From now on, we replace the G,,-torsor
Lq(M) — Ay(M) by its inverse, but hence as a variety the “new” £4(M)
is still equal to the “old” one.

3. Any point a € Ay(M) represents the principally polarized abelian variety
(Ag (M), £4(M)qa) with some level-M -structure.

4. The varieties £,(M), 2,(M) and Ay(M) are all canonically defined over
Q.

5. Ag(M) — Ay(M) can be compactified over Q to smooth varieties Ay(M) —
Ag (M) such that any multiplication [n]: Ug(M) — Ay(M) extends to the
compactification.

6. £,(M) extends to an ample Gy, -torsor £,(M) — A (M) over Q.

Proof. See [53] 10.5, 10.9, 10.10, 11.16] for the first four assertions. For (5) see
53, 6.25, 9.24, 12.4]. For (6) see [53, 8.6, 8.13, 9.13, 9.16, 12.4]. O

Denote by GSp, := G, and Fy := G, x G,, with the standard action of
Gy, on G,. Pink proved the following lemma (|53, 2.26])

Lemma 1.1.35 (Reduction Lemma). Let (P, X1) be a connected mized Shimura
datum with generic Mumford-Tate group.

1. IfV is trivial, then there exist a connected pure Shimura datum (Gg, D7)
and an embedding

(P, X)) — (Gy,DT) x ﬁ(PO,XO’L)

=1
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where r = dim(U) (see [53, 2.8, 2.14] for definition of (Po, X;));

2. If V is not trivial, then there exist a connected pure Shimura datum
(Go, D) and Shimura morphisms

(P, X"") = (P,XT)

and (P, X'%) & (Go, DY) x [[(Pag, As)

=1

such that Ker(P' — P) is of dimension 1 and of weight -2. Moreover
AMv: V> Vog — @7_ Vo is the diagonal map, Ny : U ~ @I_Usy and

A
e, Go x [T, GSpy, — GSpy,, is non-trivial for each projection.

Proof. The statement except the last claim of the “Moreover” part is [53] 2.26
statement & pp 45]. For the last part, call p;: G — GSp,, the composite with
the i-th projection. If p; is trivial, then p;(P’, X’T) is trivial since a connected
mixed Shimura datum is trivial if its pure part is trivial. This contradicts the
dimension of V. O

1.1.4 A group theoretical proposition

Proposition 1.1.36. Let 1 — N — Q 5 Q' — 1 be an ezxact sequence
of algebraic groups over Q. Then the following diagram with solid arrows is
commutative and all the lines and columns are exact:

1 1 1
1— Wy = RU(N) — N‘—'GN = N/WN — 1
TN
2
L —— Wg =Ru(Q) —= Q *—"Gg:=Q/Wg — L.
[ »
T gl
1 e WQ/ = RU(Q/) — Q/" —>GQ/ = Q//WQ/ — 1
TI'Q/
1 1 1

Moreover, if we fix a morphism sq which splits the middle line (such an sqg
exists by Levi decomposition), then we can deduce sy and sgr which split the
other two lines. Note that in this case, the action of Gn on W induced by
5q s trivial.
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Proof. The two bottom lines are already exact. By group theory, we know
©(Wo(Q)) = W (Q) (JI3, Corollary 14.11]), and since the set of closed points
of Wg (resp. Wg) is dense on Wq (resp. W), we have o(Wg) = Wy . In
consequence, we have the map @, which is surjective since ¢ is. Now we get the
solid diagram with exact lines and columns but with Wy replaced by N N W
and Gy replaced by N/(N NWg). But N/(N N Wg), being normal in Gg, is
reductive (JI3, 14.2 Corollary(b)]). Hence N N Wg = R, (N) = Wy and we
get the desired solid diagram.

If we have an sq, then to get a desired sg/ (and sy) is equivalent to prove
that ¢ 0 so(Gy) is trivial, i.e. the intersection of this image with W (in Q')
is trivial and the projection of this image to G (under mg/) is trivial. The
projection is trivial by a simple diagram-chasing. The neutral component of
the intersection is trivial since it is reductive and unipotent, and hence the
intersection is trivial since W is unipotent over Q. Now the triviality of the
action of G on Wy induced by sq is automatic. O

Corollary 1.1.37. Let (P, X™) be a connected mized Shimura datum. Suppose
N < P. Then there are decompositions

V=Vya V¥ (resp. U=Uyn ®Ux)

as G-modules, where Vy :=V NN (resp. Uy := U NN ), such that the action
of Gy :=N/Vn on V]é (resp. UJ#) is trivial.

Proof. To prove the decomposition of V', apply Proposition[[.1.36 to the exact
sequence

1—>VN><1GN—>V><1G—>(V/VN)>4(G/GN)—>1,

then since G is reductive, the vertical line on the left (in the diagram of the
proposition) splits. The conjugation by P on V factors through G by reason
of weights, and hence equals to the action of G on V induced by any Levi
decomposition sp. So the action of Gy on Vi is trivial by the last assertion
of Proposition

To prove the decomposition of U, it suffices to apply Proposition [[L.T.36 to
the exact sequence

1—>UN><1GN—>U><1G—>(U/UN)N(G/GN)—>1.
O

In fact we have a better result if (P, X") is with generic Mumford-Tate
group.

Proposition 1.1.38. Let (P,X™) be a connected mized Shimura datum such
that P = MT(X ™). Suppose N <P such that N possesses no non-trivial torus
quotient. Then G acts trivially on U.
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Proof. By Reduction Lemma (Lemmal[[.T.3%), we may assume that (P, X 1) <
(Go, D) x H;Zl(ng,XQZ) (g = 0). Since N possesses no non-trivial torus
quotient, Gy is semi-simple (the last line of the proof of Proposition [L24]).
So

T T
Gy =GN < G < (Go x [ [ GSpyy)™™ = G5 x [ [ Spay
i=1 i=1
where Sp, := 1. Hence Gy acts trivially on U since Gg¢* x []}_, Spy, acts
trivially on ®]_,Us,. O

1.2 Weakly special subvarieties

1.2.1 Definition and basic properties

Definition 1.2.1. (Pink, [5]], Definition 4.1(b)]) Let S be a connected mized

Shimura variety. Consider any Shimura morphisms T' el T H, S and any

point t' € T'. Then any irreducible component of [i]([¢]~1(t')) is called a
weakly special subvariety of S. We will prove later in Remark [L.2.1 that
weakly special subvarieties of S are indeed closed subvarieties.

Since any Shimura morphism is related to a Shimura morphism between
Shimura data, we will try to rephrase this definition in the context of Shimura
data:

Definition 1.2.2. Given a connected mizved Shimura datum (P, X™), a weakly
special subset of X is a connected component of i(p~1(y')) C X for a point
y' € V', where i, @, Y'T are in the following diagram of Shimura morphisms

/ i

(@Q,Y) (P,XT)

Remark 1.2.3. 1. In the definition above, let N := Ker(Q — Q') and let
Un :=UgNN, theni(o~'(y")) is a connected component of N(R)Uy (C)y
where p(y) =1vy'. Soi(p~1(y")) is smooth as an analytic variety. In par-
ticular, its connected components and complex analytic irreducible com-
ponents coincide. As a result, we can replace “a connected component”
by “a complex analytic irreducible component” in Definition [[.2.2.

2. If furthermore N is connected, then i(o~1(y")) itself is connected (hence
also complex analytic irreducible). The proof is as follows: Consider
the image of =~ (y') under the projection (Q,Y+) 5 (GQ,J/&LQ) =
(Q,YT)/Wq. By the decomposition ([39, 5.6])

(G%dﬂng) = (G%i’yl-‘r) X (GQay;)
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where G := N/WNN, we have m(¢~ 1 (y')) = Vi x{y2}. Son(p~(y)) =
Gy(R)tw(y). But Wy (R)Un(C) (Wy := W N N) is connected, hence
¢ Hy') = N(R)TUn(C)y, which is connected. In consequence, i(¢~1(y'))
also is connected.

Proposition 1.2.4. For any weakly special subvariety of S (resp. weakly
special subset of X ), the Shimura morphisms in Definition [L21] (resp. Def-
inition [L.Z2) can be chosen such that

e the underlying homomorphism of algebraic groups i is injective, and
hence i is an embedding in the sense of [53, 2.3];

e the underlying homomorphism of algebraic groups ¢ is surjective, and
its kernel N 1is connected. Moreover, N possesses no non-trivial torus
quotient (or equivalently, Gn := N/(W N N) is semi-simple);

e o is a quotient Shimura morphism.

Proof. If P = MT(X™T), then the first two points except the statement in the
bracket are proved by |54, Proposition 4.4]. The general cases follow directly
from Proposition [LT.T9(1). The third assertion can be proved by the universal
property of quotient Shimura data given in Proposition Now we are
left to prove the statement in the bracket.

Gy <G since Gy = N/(WNN) — G = P/W and N < P, and hence Gy
is reductive ([I3} 14.2, Corollary(b)]). By [13, 14.2 Proposition(2)]|, Gy is the
almost-product of G&* and Z(Gy)°, and Z(Gn)° equals the radical of Gy
which is a torus. So IV possesses no non-trivial torus quotient iff Gy possesses
no non-trivial torus quotient iff G is semi-simple. O

Remark 1.2.5. We can now prove that weakly special subvarieties of S are
closed. By the proposition above, we can choose i to be injective. Then [i] is
finite by Proposition [LT.Z7A(1). Hence [i]([¢]~1(t")) is closed.

Lemma 1.2.6. Suppose that the Shimura morphisms T’ el T H, S are
associated with the morphisms of mized Shimura data

(Q.Y) = (@Y%) = (P.XT)
so that we have the following commutative diagram

y/+ . ¥ y+ g - Xt

unify,/ l unify, unif , 4 l s

=AY Ayt st

then for any point y' € Y'*, any irreducible component of unif x+ (i(p~1(y')))
is also an irreducible component of [i]([¢] ! (unifyr+ (y))).



54 1.2. WEAKLY SPECIAL SUBVARIETIES

Proof. Let N := Ker(y) and let Ug be the weight —2 part of (), then we have

unif e+ (i(0 ™" () € [1)([] ™ (umifyrs (),

and both of them are of constant dimension d, where d is the dimension of any
orbit of N(R)*(Ug N N)(C). This allows us to conclude. O

The following Proposition tells us that the two definitions of weak special-
ness are compatible.

Proposition 1.2.7. Let S be a connected mized Shimura variety associated
with the connected mized Shimura datum (P, X%1) and let unif: X* — S =
D\X™ be the uniformization. Then a subvariety Z of S is weakly special if and
only if Z is the image of some weakly special subset of X™T.

Proof. The “if” part is immediate by Lemma We prove the “only if”
part. We assume that i, ¢ are as in Proposition [[24l For any weakly special
subvariety Z C S, suppose that we have a diagram as in Lemma and
that Z is an irreducible component of [i]([¢]~1(¢')). Since

[N |J wifar (o™ () = unitas (i~ (unify,} (1)),

y’eunif;l+ ()

there exists a y’ € Y'T lying over ¢ such that Z is an irreducible compo-
nent of unifx+ (i(¢~*(y’))) by Lemma [LZ6 By Remark [LZ312, i(p~1(y')) is
complex analytic irreducible, so unif y+ (i(¢ 1 (y’))) is also complex analytic ir-
reducible when S is regarded as an analytic variety. Hence unif x+ (i(¢ =1 (y)))
is irreducible as an algebraic variety. So Z = unif x+ (i(p =1 (v/))). O

Next we come to special subvarieties of connected mixed Shimura varieties.

Definition 1.2.8. Let S be a connected mized Shimura variety associated with
the connected mized Shimura datum (P, XT).

1. A special subvariety of S is the image of any Shimura morphism T —
S of connected mixed Shimura varieties;

2. A point x € XT and its image in S are called special if the homomor-
phism x : S¢ — Pc factors through Tc for a torus T C P.

Remark 1.2.9. By definition, x € X is special if and only if it is the image
of a Shimura morphism (T,YT) — (P,XT). Hence a special point is just a
special subvariety of dimension 0.

The following result is easy to prove. It tells us that special subvarieties of
S are precisely connected mixed Shimura subvarieties of S.

Lemma 1.2.10. Let S be a connected mized Shimura variety associated with
the connected mized Shimura datum (P,X7T) and let unif: XT — S be the
uniformizing map, then a subvariety of S is special if and only if it is of the
form unif (YT) for some (Q, Y1) — (P, X7).
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Proposition 1.2.11. Every special subvariety of S contains a Zariski dense
subset of special points.

Proof. |54, Proposition 4.14]. O

The relation between special and weakly special subvarieties is:

Proposition 1.2.12. A subvariety of S is special if and only if it is weakly
special and contains a special point.

Proof. |54], Proposition 4.2, Proposition 4.15]. O

We close this section by proving that this definition of weakly special sub-
varieties is compatible with the one (which is already known) for pure Shimura
varieties.

Proposition 1.2.13. A weakly special subvariety of a pure Shimura variety
S is a subvariety of the same form as in [63, Definition 2.1].

Proof. This is pointed out in [54, Remark 4.5]. We give a (relatively) de-
tailed proof here. We prove the result for weakly special subsets. Assume
that S is associated with the connected pure Shimura datum (P, X*). For a
subset of the same form as in [65, Definition 2.1], take (Q,YT) = (H, X})
and (Q',Y'*") = (Hy, X{) (same notation as [65, Definition 2.1]). Then by
definition such a subset is weakly special (as in Definition [[L2.2]).

On the other hand, suppose that we have a weakly special subset F de-
fined by a diagram as in Definition satisfying Proposition [L24l Let
N := Ker(p), then the homogeneous spaces of the connected pure Shimura
data (Q',Y'") = (Q,¥7)/N and (Q,Y*)/Z(Q)N = (Q*,Y*I)/N* are
canonically isomorphic to each other (|38, Proposition 5.7]). Hence we may
replace (Q',)'") by (Q*4,y2d+)/Nad. But by [39, 3.6, 3.7], (Q*4,y2d+) =
(N2, Vi) % (Qa,Y5). So F is of the same form as in [65, Definition 2.1]. O

1.2.2 Weakly special subvarieties in Kuga varieties

In this section, we consider only connected mixed Shimura varieties of Kuga
type. Through the whole section, S = T'\XT will be a connected mixed
Shimura variety of Kuga type which is associated with the connected mixed
Shimura datum (P, X") with I' = I'y x ' neat. Then W_5(P) is trivial by
definition. Denote by V = R, (P) and

(P,x%) 5 (G X%) = (P,XT)V

unif unif
l e l

S [ﬂ-] SG
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By Example [[T.24] there is a natural bijection V(R) x X& ~ XT. By
Proposition [[T226, S H, Sg is a family of abelian varieties. Let [g]: Sg — S
be the zero-section of [r]. Then [¢] corresponds to e: (G, XF) < (P, XT). The
Shimura morphism ¢ is a section of 7 and determines a Levi-decomposition
of P =V x®G. A particular example is 2, — Ay, where ¢ is the natural
inclusion GSp,, = {0} x GSp,, < Vay % GSpyy = Paga-

The goal of this section is to prove the following proposition:

Proposition 1.2.14. Let B be an irreducible subvariety of Sg and X =
[7]7Y(B). DefineC to be the isotrivial part of X — B, i.e. the largest isotrivial
abelian subscheme of X over B. Then

{translates of abelian subscheme of X — B by a torsion section and then
by a constant section of C — B} = {X N E| E weakly special in S}.

Let us define constant sections of C — B. By definition of isotriviality,
there exists a finite cover B’ — B such that C xp B’ ~ Cp, x B’ for any
bo € B. A constant section of C — B is then defined to be the image of
the graph of a constant morphism B’ — Cp, in C x g B’ under the projection
C XB B — C.

Proposition [[L2.14] has the following corollary, which describes weakly spe-
cial subvarieties of connected mixed Shimura varieties of Kuga type in geo-
metric terms.

Corollary 1.2.15. An irreducible subvariety Y of S is weakly special iff the
followings hold:

1. [7]Y s a totally geodesic subvariety of S ;

2. Y is the translate of an abelian subscheme of 7]~ ([x]Y) (over [7]Y ) by
a torsion section and then by a constant section of the isotrivial part of
(7] x]Y — [n]Y.

Proof. This follows directly from [39, 4.3] and Proposition [[2Z14 O

We start from the following proposition which is not hard to prove using
Levi decomposition [55, Theorem 2.3]. Another proof can be found in [33]
Section 5.1].

Proposition 1.2.16. To give a Shimura subdatum (Q,YT) of (P,X™) is
equivalent to give:

e a pure Shimura subdatum (Gg, ng) of (G, X%);
o a Gg-submodule Vg of V' (V is a G-module, and therefore a Gg-module);
e an element Ty € (V/Vp)(Q).

Proof. We only give the constructions here.
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1. Given (Q,YT) C (P, XT), we have Vg := Ry (Q) < Ry(P) = V. There-
fore the inclusion (Q,Y ™) C (P, X") induces

(G Vd,) = (Q,Y7)/Vq € (G, &) = (P.XT)/V.

The fact that Vg is a Gg-submodule of V' is clear. Now it suffices to find
7o € (V/VQ)(Q)-

Consider the group Q" := (V/Vg) x Gg, where the action is induced by
the natural one of Gg on V. By definition, Q% = 7~1(Gg)/Vy. Now the
inclusion (Q, Y ") C (P, X") induces another inclusion (which we call ")

GQ = Q/VQ C ﬂ_l(GQ)/VQ = Qh_

We have the following diagram, whose solide arrows commute:

where s¢ is the homomorphism Gg = {0} x Gg < (V/Vg) x Gg = Q"
Now i’ and s are two Levi-decompositions for Q. By [55, Theorem 2.3,
sq equals the conjugation of i’ by an element 7y € (V/V)(Q). Moreover,
the choice of vy is unique.

2. Conversely, given the three data as in the Proposition, the underly-
ing group @ is the conjugate of Vo X G < V x G (compatible Levi-
decompositions) by (vg, 1) in P. The space

V¥ = (vo+Vo(R)) x V5, CV(R) x Xf ~ X+

where v is any lift of 7y to V(Q).

Proposition 1.2.17. A subvariety Y of S is weakly special iff there exist
e a pure Shimura subdatum (GQ,J/&LQ) of (G, X%);
e a point vo € V(Q);

e a normal semi-simple connected subgroup Gn of Gg and a point ya €
Vo
o a Gg-submodule Vi of V;

e a Gg-submodule Vi of V on which Gy acts trivially, and a point v €
Vi (R)
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such that
Y = unif ((vo + v+ Vn(R)) x GN(R)+§G)~

Here (vo + v+ Vn(R)) X Gy (R)Tge C V(R) x Xt ~ X+,

Proof. 1. Given a weakly special subvariety Y of S, let (Q,YT), N and ¥
be as in Definition and Proposition [[2.4l By Proposition [[2.10]
(Q,YT) corresponds to a Shimura subdatum (GQ,ygq) of (G,X%), a
Go-submodule Vg of V and a point Ty € (V/V)(Q). Let vy be any lift
of Ty to V(Q). Let Gy := N/(Vg N N), then G is a connected nomral
subgroup of Gg, and hence is reductive. Since /N possesses no non-trivial
torus quotient, Gy is semi-simple. Let yg := 7(y).

Let Vi := Vg NN, then Vi is a Gg-submodule of Vg since IV is normal
in Q. By Corollary [LT.37, there exists a Gg-submodule Vi of Vg such
that Vg = Vv ® Vi and Gy acts trivially on V. Write ¥ = (yv, yg) €
(vo + Vo(R)) x ng = Y+ C X" (here we use the second part of the
proof of Proposition [L2.10)).

To simplify the computation below, we introduce a new Shimura subda-
tum (Q', V') of (P, X1): (Q',)’) is defined to be the conjugate of (Q, Y1)
by (—vp,1). By the second part of the proof of Proposition [LZT0]
(@Q,Y") = (Vg x Gg, Vo(R) x ng) C (V % GSpy,, XT). Let N’ :=
VN X Gy <V % GSpy,, then N’ is the conjugate of N by (—wvg,1). Let
¥ = (Yv —vo,¥c) € V.

Let v be the Vi (R)-factor of gy — v under Vg = Viy @ V. Then since
Gy acts trivially on Vg, we have

N'R)*YY = (v+VNR)) x Gn(R) g C V'

Hence N(R)™y = (vo + v+ VN (R)) x Gy (R)* . Now the conclusion
follows.

2. Conversely given all these data, let the Shimura subdatum (Q, Y1) be
the one obtained from (Gg, ng ), Vv @V and vy by Proposition 216
Let N be the subgroup of (Q which is defined to be Vy x G conjugated
by (vo,1) in P. Then since Gy acts trivially on Vi, we have N < Q.
Let § := (vo + v,Yq). Now we have

(UO + v+ Vy (R)) X GN(R)+27G = N(R)-’_!ﬂ.

The group N is by definition connected and it possesses no non-trivial
torus quotient since Gy is semi-simple. Hence Y is weakly special by
definition.

O

Now we can prove Proposition [[L2.14
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Proof of Proposition [1.2.14) 1. Prove “2”. For this it suffices to prove:

For any weakly special subvariety Y of S, Y is the translate of an
abelian subscheme of [r]~([x]Y) (over [x]Y') by a torsion section and
then by a constant section of the isotrivial part of [x] 7 [x]Y — [n]Y.

Let Y be a weakly special subvariety of S. Then associated to Y there
are data as in Proposition [L2.17 and

Y = unif ((vo + v+ Vi (R)) x GN(R)+§G).

Let B’ := [7]Y and X' := [x]"}(B’).

Now X’ — B’ is an abelian scheme. Since Vi is a Gg-submodule of
V, unif (Vy(R) x Gn(R)Tyg) is an abelian subscheme of X' over B'.
Therefore,

unif ((vo + Vn(R)) x GN(R)JrﬂG)

is the translate of B’ by a torsion section of X’ — B’. But v € Vi (R)
and Gy acts trivially on Vi, so unif (Vi (R) x G (R) "¢ ) is an isotriv-
ial abelian scheme over B’. Therefore Y is the translate of an abelian
subscheme of X’ — B’ by a torsion section and then by a constant
section of the isotrivial part of X’ — B’.

2. Prove “C”. Let Y be a subvariety of X such that Y is the translate of an
abelian subscheme of X — B translated by a torsion section and then
by a section of C — B, where C — B is the isotrivial part of X — B.
Let us find a weakly special subvariety E of S associated with the data
in Proposition [[L2.T7 such that Y = EN X.

Let B’ be the smallest weakly special subvariety of S containing B.
Then by definition there exist a Shimura subdatum (Gg, ng), a con-

nected semi-simple normal subgroup Gy of G and a point yg € yg@

such that B’ = unif¢ (Gn(R)"y¢). Moreover by [39, 3.6, 3.7], Gy can
be taken to be the connected algebraic monodromy group of (B’)*™, i.e.
the neutral component of the Zariski closure of I'gsm :=the image of
Wl((B/)Sm) — 7T1(Sg) = FG.

Let X’ := [r]~}(B’). Then the isotrivial part C' of X’ — B’ is
unif (V/(R) x Gy (R)Tyq),

where V’ is the largest Gg-submodule of V' on which Gy acts trivially.
This V' is the Vi we want in Proposition [LZT1

A key step is to prove that as subvarieties of .S, we have
c=CnNnX (1.2.1)

It is clear that C'N X C C. For the other inclusion, suppose that C is
defined by the Gg-submodule V" of V' (i.e. C = unif(V”(R) x B) for
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B :=unif5'(B)), then I'gem acts trivially on V”. However the action of
—7

G on V is algebraic, therefore I' grsm * acts trivially on V. So G acts
trivially on V”. By the maximality of V', V" ¢ V'. So C C C'. Now
(C21) follows.

Now since Y is the translate of an abelian subscheme by a torsion section
and then by a constant section of C — B, there exists, by (L21), a G-
submodule Vi of V' such that

Y = unif ((vo + v+ Viv(R)) x B)

where vg € V(Q) corresponds to the torsion section and v € V'(R)
corresponds to the constant section of C — B. In other words,

Y = ENX, where = unif ((vo + v+ Vi (R)) x Gy (R)"fc)

and F is the weakly special subvariety of S we desire.

1.3 The bi-algebraic setting

1.3.1 Realization of the uniformizing space

Let (P,X7T) be a connected mixed Shimura datum. We first define the dual
XY of X7 (see |53, 1.7(a)] or [37, Chapter VI, Proposition 1.3]):

Let M be a faithful representation of P and take any zp € X*. The
weight filtration on M is constant, so the Hodge filtration = — Fil (Mc) gives
an injective map X+ < Grass(M)(C) to a certain flag variety. In fact, this
injective map factors through

Xt =PR)TU(C)/C(zy) — P(C)/Fy, P(C) — Grass(M)(C)

where C(z) is the stabilizer of zo in P(R)TU(C). The first injection is an
open immersion ([53, 1.7(a)] or [37, Chapter VI, (1.2.1)]). We define the dual
XY of X7 to be
— 0
XY :=P(C)/F, P(C).
XV is a connected smooth complex algebraic variety.

Proposition 1.3.1. Under the open immersion X — XV, X is realized as
a semi-algebraic set which is also a complex manifold.

Proof. X is smooth since it is a homogeneous space, and the open immer-
sion endows it with a complex structure. For semi-algebraicity, consider the

cartesian diagram
Xt — XV

1.

X Xy
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As 7V is algebraic, the conclusion follows from [64, Lemme 2.1]. O

Remark 1.3.2. It is not hard to see that X is a projective variety if and
only if (P,X7T) is pure. The argument is as follows: XV is a holomorphic
vector bundle over X where the fibre is homeomorphism to W(R)U(C). X%
is projective, so XV is projective if and only if it is a trivial vector bundle over
XY, i.e. if and only if W is trivial.

Let us take a closer look at the semi-algebraic structrue of X+. By |71l pp
6], there exists a Shimura morphism i: (G, X&) — (P, X") such that moi = id.
The morphism ¢ defines a Levi decomposition of P = W x G. By definition
XT C Hom(Sc, Pc). Define a bijective map

W(R)U(C) x X Xt

(w, x) — int(w) o z(x)

Identify P with the 4-tuple (G,V,U, ¥) as in JLT2H Since W ~U x V
as (Q-varieties, we can define a bijection induced by the one above

p:UC) x V(R) x X = &7 (1.3.1)

P(R)TU(C) acts on X* by definition. There is also a natural action of
P(R)*U(C) on U(C) x V(R) x X3 which is defined as follows. Under the
notation of §LT.2F0 for any (u,v,g9) € P(R)TU(C) and (v/,v',z) € U(C) x
V(R) x X,

1
(u,v,9) - (v, 0", 2) = (u+gu’ + 5\11(1), V'), v+ gv’, gx). (1.3.2)

This action is algebraic since ¥ is a polynomial over Q (see §2.2). The map p
is P(R)TU(C)-equivariant by an easy calculation.

Proposition 1.3.3. The map p is semi-algebraic.

Proof. Tt is enough to prove that the graph of p is semi-algebraic. This is true

since p is P(R)*U(C)-equivariant and the actions of P(R)TU(C) on both sides

are algebraic and transitive. Explicitly, fix a point 29 € U(C) x V(R) x X,

the graph of p

Gr(p) = {(gzo, p(gz0)) € (U(C) x V(R) x X&) x X*| g € P(R)TU(C)} (transitivity)
= {(gxo, gp(x0)) € (U(C) x V(R) x X3) x X*| g € P(R)TU(C)} (equivariance)
= P(R)"U(C) - (o, p(xo))

is semi-algebraic since the action of P(R)TU(C) on (U(C) x V(R) x X&) x X
is algebraic. [l
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Remark 1.3.4. If U is trivial, then X+ = V(R) x X7 under the notation of
Example[I.1-Z]) In this case, the complex structure of X given via XV is the
same as the one given in Exvample[T.1.2]] since for the projection X+ = Xz,
the complex structure of any fibre X;’G (xq € Xg) given by XV is the same
as the one obtained from X} ~ V(C)/F) V(C) (see [53, 8.13, 8.14]). In
particular this holds for Xz—z,a (see §I.1.3 for notation). Therefore for any
Ay (M), the fundamental set [0, N)*9 x Fg C Vau(R) x Hf ~ Xi;a
considered in [{77)].

s the one

1.3.2 Algebraicity in the uniformizing space

Definition 1.3.5. Let Y be an analytic subset of X, then

1. Y s called an irreducible algebraic subset of XT if it is a complex
analytic irreducible component of the intersection of its Zariski closure
in XY and X ;

2. Y is called algebraic if it is a finite union of irreducible algebraic subsets
of X+.

In view of Definition [[L35] we are in the following bi-algebraic situation:
both XT are S are algebraic, but unif: X* — S is transcendental. Hence a
priori there is no relation between the algebraic structures on X and on S.
Therefore a natural question arises: what are the bi-algebraic objects? This
question will be answered in the following sections. We state the result here:

Theorem 1.3.6. A subset Y C S is weakly special zﬁ}N/ (a complex analytic
irreducible component of unif ~*(Y) ) is algebraic in X and Y is an irreducible
subvariety of S.

Remark 1.3.7. Recall the following result of Pila-Tsimerman [{9, Lemma 4.1]:
mazimal connected irreducible semi-algebraic subsets of X+ which are con-
tained in a complex analytic subset of XT are all algebraic (see the paragraph
before Theorem [3 12 for the definition of “connected irreducible semi-algebraic
subsets”). Hence an equivalent way to restate Theorem [LF0l is to replace “Y
is algebraic in X7 by “Y is a semi-algebraic subset of X+7.

A more refined version as well as the proof of this theorem will be given in
Corollary 2.3.3] Here we only prove the easy part of the theorem, which is:

Lemma 1.3.8. Any weakly special subset of X7 is irreducible algebraic.

Proof. Suppose that Zis a weakly special subset of XT. Use the notation
of Definition [[L.2.2] and assume that i and ¢ satisfy the properties in Propo-
sition [L24 Let N := Ker(Q — Q') and let y be a point of the weakly

special subset, then Z =N (R)TUxn(C)y is complex analytic irreducible by
Remark [[2:312. But N(R)TUn(C)y = N(C)y N X+ and N(C)y is algebraic,

so Z is irreducible algebraic by definition. [l
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We finish this section by the functoriality of algebraicity:

Lemma 1.3.9 (functoriality of algebraicity). Let f: (Q,Y1) — (P,X™") be a
Shimura morphism. Then there exists a unique morphism fY: YV — XV of
algebraic varieties such that the diagram commutes:

y+;>y\/

|l

X+L>Xv

Furthermore, for any irreducible algebraic subset Z of YT, the closure in the
archimedean topology of f(Z) is irreducible algebraic in X+ and f(Z) contains
a dense open subset of this closure.

In particular, if f is an embedding, then an irreducible algebraic subset of
YT is an irreducible component of the intersection of an irreducible algebraic
subset of Xt with Y.

Proof. Fix a point zg € YT, then we have
Y*=Q[R)"Uq(C)/C(x0) — ¥ = Q(C)/F,,Q(C)

| ol

X* = P(R)*Up(C)/C(f(x0)) > X" = P(C)/FY, P(C)

where C(zg) (resp. C(f(zp))) denotes the stabilizer of xy (resp. f(xo)) in
Q(R)Uq(C) (resp. P(R)Up(C)). The map f is unique since Q(R)Uq(C)/C(zo)
is dense in YV.

—Zar
To prove the second statement, it is enough to prove the result for f¥(Z ) C
—Zar

XV where Z is the Zariski closure of Z in VY. This is then an algebro-
geometric result, which follows easily from Chevalley’s Theorem (|22} Chapitre
IV, 1.8.4]) and [41} 1.10, Theorem 1]. O
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Chapter 2

Ax’s theorem of log type

2.1 Results for the unipotent part

Given a connected mixed Shimura variety S, let Sg be its pure part. We have a

projection S I, S¢. For any point b € S¢, denote by FE the fiber Sj,. Suppose
that S is associated with the mixed Shimura datum (P, X+), which can be fur-
ther assumed to satisfy P = MT(X™) by Proposition [LTI9 Let unif: XY+ —
S =T\XT be the uniformization. Now E = S, ~ I'yy\W(R)U(C) with the
complex structure determined by b € S¢ (E = S, = Ty \W(C)/FYW(C)),
where I'y := TN W (Q). Write T := I'y\U(C) and A := T'4\V(C)/FYV(C)
where I'y :=TNU(Q) and 'y := 'y /Ty, then A is a complex abelian variety
and F is an algebraic torus over A whose fibers are isomorphic to 7.

Lemma 2.1.1. If E admits a structure of algebraic group whose group law is
compatible with the group law of W, then W (hence E) is commutative. In
this case E is a semi-abelian variety.

Proof. If E is an algebraic group, then 7' is a normal subgroup of E. Hence E
acts on T' by conjugation, and this action factors via A, and then it is trivial
by [I3] 8.10 Proposition|. Therefore T is in the center of E. Now consider the

commutator pairing F'x E — E. This factors through a morphism A x A ENG
But as a morphism from an abelian variety to an algebraic torus over C, f is
then constant. So the commutator pairing £ x F — FE is trivial, and hence F
is commutative.

The commutator pairing W x W — W induces an alternating form ¥: V' x
V — U (see §L.1.2.0) which induces the morphism f above. We have proved
in the last paragraph that U(V(R),V(R)) C T'y with I'y := I' N U(Q).
But ¥(V(R),v) is continuous for any v € V(R) and ¥(0,V(R)) = 0, so
U(V(R),V(R)) = 0. Hence the commutator pairing W x W — W is triv-
ial, and therefore W is commutative. O

2.1.1 Weakly special subvarieties of a complex semi-abelian
variety

Proposition 2.1.2. Use the notation as at the beginning of the section. Weakly
special subvarieties of E are precisely the subsets of E of the form

unif(Wo (R) UQ ((C)E)

65
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where Wy is a MT(b)-subgroup of W (i.e. a subgroup of W normalized by
MT(b)), Uy = WynNU, unif(Eg) = b and zy € (NW(WQ)/U)(R) (E =
(Zu,2v,2¢) under (L3T)).

In particular, if E can be given the structure of an algebraic group whose
group law is compatible with that of W (i.e. W is commutative), then the
weakly special subvarieties of E are precisely the translates of subgroups of E.

Proof. Let Z be a weakly special variety of E and let Z be a complex an-
alytic irreducible component of unif_l(Z), then there exists a diagram as
in Definition such that 2: Sc — F¢ factors through Qc, N <@ and
Z = N(R)"Un(C)Z for some Z € Z. As is explained in [54, paragraph 2,
pp 265], Gy = 1. We prove that N = Wy satisfies the conditions which
we require. Let Uy := Wy N U, then Uy is a MT(b)-module by Proposi-
tion LTIX2). Denote by Vi := Wy /Un, mpyu: (P,X1) — (P/U, X;/U) and
[mpyu]: S — Spyy. Then [rp,y](Z) is a subvariety of A since Z is a subvariety
of E. So WP/U(Z) = VN(R) + mp/y () is the translate of a complex subspace
of V(R) = V(C)/FV(C), and therefore Vyy is a MT(b)-module. So Wy is sta-
ble under the action of MT(b). Now Zy € (Nw (N)/U)(R) since z: S¢ — Pc
factors through Np(N)c.

Conversely let Z = Wy(R)Up(C)Z with Wy, Z as stated. Fix a Levi de-
composition P = W x G. Let G' := MT(b), let W' := Ny (W) and let
Q = W' x G. Then Wy < @ and hence z: S¢ — Pc factors through Qc.
Therefore (Q,Y"), where YT := Q(R)™(U N Q)(C)z, is a connected mixed
Shimura subdatum of (P,X") such that b € unif(¥Y"). Now consider the
morphisms of connected mixed Shimura data

(QY5)/Wo <= (Q,¥7) = (P, XY).
In the fibres above the point b € Sg these maps are simply
SQJ,/Z “«— SQ)b — F = Sb.

Hence Z is a weakly special subvariety by definition. [l

Corollary 2.1.3. 1. Weakly special subvarieties of a complex abelian vari-
ety are precisely the translates of its abelian subvarieties;

2. Weakly special subvarieties of an algebraic torus over C are precisely the
translates of its subtori.

Proof. This is a direct consequence of Proposition 2.1.2 [l
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2.1.2 Smallest weakly special subvariety containing a given
subvariety of an abelian variety or an algebraic
torus over C

Proposition 2.1.4. 1. Let X be a complex abelian variety and let Z be an
irreducible subvariety of X. Denote by

X=m(X,2)®9zR=H(X,R) ~C" % X

the universal cover of X (z € Z"), then the smallest weakly special
subvariety of X containing Z is a translate of u(m(Z%™, z) @ R).

2. Let X be an algebraic torus over C and let Z be an irreducible subvariety
of X. Denote by

X =m(X,2)®;C=Hy(X,C)~C" % X

the universal cover of X (z € Z®®), then the smallest weakly special
subvariety of X containing Z is a translate of u(m (Z°™, z) @ C).

Proof. 1. If X is a complex abelian variety, then the result is due to Ullmo-
Yafaev. Their proof of [65, Proposition 5.1] has in fact revealed this
property. Here we restate the proof with more details.

Let Z9¢ % Z be a desingularization of Z9° such that there exists a Zariski

open subset Z3¢ of Z4¢ such that Z§¢ = Z*™. By the commutative
S

diagram

m (ch, 2) Som (Z°™ 2)

| LN

ﬂ-l(chvz) - 7T1(Z, Z) - ﬂ-l(sz)
where z € Z5™ (the surjectivity on the left is due to [31] 2.10.1]), we know
that the image of m;(Z9¢, z) and the image of 71 (Z*™, z) in 71 (X, 2) are
the same.
Let Alb(Z9) be the Albanese variety of Z9¢ normalized by z, then

the map 7: Z9¢ — Z — X factors uniquely through the Albanese
morphism([70, Theorem 12.15]):

zde 7 < X

alb Lo T
Alb(Z9°)

Let A := I'(Alb(Z9)), then it is the smallest weakly special subvariety
(i.e. the translate of an abelian subvariety) of X containing Z since
alb(Z9°¢) generates Alb(Z4¢) (|70, Lemma 12.11]).
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It suffices to prove that the image of 71 (Z9€, 2) in m (X, 2) ~ H,(X,7Z)
is of finite index in H;(A,Z). This is true since the image of 7 (29, 2)
in Hy(X,7Z) contains

(T o alb), H, (2%, 7) ~ T, H, (Alb(Z9¢),Z) ~ I',m; (Alb(Z9°))
(the first isomorphism is given by the definition of Albanese varieties via

Hodge theory, see e.g. the proof of [70, Lemma 12.11]), which is of finite
index in m (4, 2) ~ H1(A,Z) by [31], 2.10.2].

. If X is an algebraic torus over C, then we can first of all translate Z by a

point such that the translate contains the origin of X. Now we are done
if we can prove that the smallest subtorus containing this translate of Z
is u(m (Z5™, 2) @z C).

Suppose T ~ (C*)™ is the smallest sub-torus of X containing Z with
j: Z% — T the inclusion. We are done if we can prove [m1(T,z2) :
J«m1(Z°™, z)] < oo. If not, then

G (2%, 2) C Ker(Z™ > 7) (2.1.1)

for some map p. Since the covariant functor T +— X, (T') (X.(T) is the co-
character group of T') is an equivalence between the category {algebraic
tori over C and their morphisms as algebraic groups} and the category
{free Z-modules of finite rank}, the map p corresponds to a surjective
map (with connected kernel) of tori p: T'— T’. The composition of the

maps £ Lk = Gy,c should be dominant by the choice of T'.
But then we have

[m (T, p(2)) = (poj)sm (27, 2)] < 00
(]31, 2.10.2]), which contradicts (ZI1)) by the following lemma.

Lemma 2.1.5. For any C-split torus T ~ (C*)™, we have a canonical
isomorphism

X (T) 25 7y (T, 1).

Here “canonical” means that for any morphism (between algebraic groups)
f:T — T between two such C-split tori, the following diagram com-

mutes:

X (T) 5 (T, 1)

X*(f)l f*l

XA(T') 25 7 (T', 1)
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Proof. Denote by Uy :={z¢€ C | |z| =1} and i: U; — C* the inclusion.
Then the map ¥ is defined by

X (T) Y% m(T,1)

v o~ [voi

This is a group homomorphism. It is surjective since a representative
of the generators of 71(T,1) is given by the n coordinate embeddings
Uy — C* — T = (C*)™. 47 is injective since X, (T) ~ m(T,1) ~ Z" is
torsion-free. The rest of the lemma is immediate by the construction of
Yr. O

O

2.2 Monodromy groups of admissible variations
of mixed Hodge structures

2.2.1 Arbitrary variation of mixed Z-Hodge structures

Let (V,W.,F") be a variation of mixed Z-Hodge structures over a complex
manifold S (see §LIILA for definition). Let 7: S — S be a universal covering
and choose a trivialization 7V ~ § x V. For s € S, MT, C GL(V) denote
the Mumford-Tate group of its fibre. The choice of a point 3 € S with 7(3) = s
gives an identification Vs ~ V', whence an injective homomorphism iz: MT; —
GL(V). By [1 §4, Lemma 4], on S° := S\ ¥ where X is a meager subset of S,
M :=Im(iz) € GL(V) does not depend on s, nor on the choice of 5. We call
S° the Hodge-generic locus and the group M the generic Mumford-Tate
group of (V,W., F").
_ On the other hand, if we choose a base-point s € S and a point s €
S with 7(s) = s, then then local system V corresponds to a representation
p: m(S,s) — GL(V), called the monodromy representation. The algebraic
monodromy group is defined as the smallest algebraic subgroup of GL(V') over
@ which contains the image of p. We write H.*°" for its connected component
of the identity, called the connected algebraic monodromy group. Given
the trivialization of 7*V, the group H™™ C GL(V) is independent of the
choice of s and s.

Suppose now that (V,W., F") is graded-polarizable, then H™" < M for
any s € S° by [I §4, Lemma 4].

2.2.2 Admissible variations of Z-mixed Hodge structures

We now recall the concept of “admissible” variations of mixed Hodge structures
which was introduced by Steenbrick-Zucker and studied by Kashiwara and
Hain-Zucker. We give the definition here, but instead of the exact definition,



70 2.2. MONODROMY GROUPS OF ADMISSIBLE VARIATIONS OF MHS

we shall only use the notion of “admissibility” and the fact that it can be
defined using “curve test”. We will use A (resp. A*) to denote the unit disc
(resp. punctured unit disc).

Definition 2.2.1. (see [{3], Definition 14.49])

1. A wariation of mized Hodge structures (V,W.,F’) over the punctured
unit disc A* is called admissible if

e it is graded-polarizable;

e the monodromy T is unipotent and the weight filtration M (N, W.)
of N :=logT relative to W. exists;

e the filtration F~ extends to a filtration F of V which induced *F
on G}V for each k.

2. Let S be a smooth connected complex algebraic variety and let S be a
compactification of S such that S\ S is a normal crossing divisor. A
graded-polarizable variation of mized Hodge structures (V,W.,F") on S
is called admissible if for every holomorphic map i: A — S which
maps A* to S and such that i*V has unipotent monodromy, the varia-
tion i*(V,W., F") is admissible. (This definition is sometimes called the

“curve test” version).

Remark 2.2.2. This definition is equivalent to the one in [25, 1.5]. See [61),
Properties 3.18 and Appendiz], [28, §1 and Theorem 4.5.2] and [25, 1.5] for
details.

The following lemma is an easy property of admissibility and is surely
known by many people, but I cannot find any reference, so I give a proof here.

Lemma 2.2.3. Let S be a smooth connected complex algebraic variety and
let (V,W.,F") be an admissible variation of mized Hodge structures on S.
Then for any smooth connected (not necessarily closed) subvariety j: Y — S,
J*(V,W., F) is also admissible on Y .

Proof. Take smooth compactifications Y of Y and S of S such that Y \ YV’
and S\ S are normal crossing divisors and such that j: Y < S extends to a
morphism j: Y — S. This can be done by first choosing any compactifications
of YP of Y and S°P of S with normal crossing divisors and then taking a
suitable resolution of singularities of the closure of the graph of j in Y°P x S°P,
Now the conclusion follows from our “curve test” version of the definition. [

2.2.3 Consequences of admissibility

Y.André proved:
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Theorem 2.2.4. Let (V,W.,F") be an admissible variation of mized Hodge
structures over a smooth connected complex algebraic variety S, then for any
s € S, the connected monodromy group HXM°™ is a normal subgroup of the
generic Mumford-Tate group M and also its derived group M9,

Proof. [1, §5, Theorem 1] states that H™°" <1 M9¢" and in the proof he first
proved that H*°" < M. g

Now we state a theorem which roughly says that all the variations of mixed
Hodge structure obtained from representations of the underlying group of a
connected mixed Shimura datum are admissible. Explicitly, let S be a con-
nected mixed Shimura variety associated with the connected mixed Shimura
datum (P, X") and let unif: XYt — S = I'\X*" be the uniformization. Sup-
pose that T is neat. Consider any Q-representation {: P — GL(V). By |55l
Proposition 4.2], there exists a I-invariant lattice V7 of V. Now £ and V7 to-
gether give rise to a VMHS on S whose underlying local system is T\ (Xt x V).
This variation is (graded-)polarizable by [53] 1.18(d)]. Wildeshaus proved:

Theorem 2.2.5. Let S, (P,X7"), &: P — GL(V) and Vz be as in the para-
graph above, then the variation of mized Hodge structures obtained as above is
admissible.

Proof. |71, Theorem 2.2| says that the corresponding Q-variation is admissible,
and I' gives a Z-structure as in the discussion above. O

Remark 2.2.6. In this language, we can rephrase Definition [L1.18 as: P
is the generic Mumford-Tate group (of the variation in Theorem [Z227). For
any Hodge generic point x € X7T, the only Q-subgroup N of P* such that
N(R)TUN(C), where Uy := U N N, stabilizes x is the trivial group.

2.3 The smallest weakly special subvariety con-
taining a given subvariety

In this section, our goal is to prove a theorem (Theorem [2Z3.]) which (in
some sense) generalizes [39, 3.6, 3.7]. In particular, we get a criterion of weak
specialness as a corollary (Corollary[Z3.3]) which generalizes [65, Theorem 4.1].

2.3.1 Connected algebraic monodromy group associated
with a subvariety of a mixed Shimura variety

Before the proof, let us do some technical preparation at first.

Let S be a connected mixed Shimura variety associated with the connected
mixed Shimura datum (P, X*) and let unif: X — S = I'\X™" be the uni-
formization. We may assume P = MT(X™T) by Proposition There
exists a IV < T of finite index such that I” is neat. Let S := I"\X'* and let
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unif’: XT — S’ be its uniformization. Choose any faithful Q-representation
&: P — GL(M) of P, then Theorem[ZZ] claims that & (together with a choice
of a I-invariant lattice of M) gives rise to an admissible variation of mixed
Hodge structure on S’. The generic Mumford-Tate group of this variation is
P.

Suppose that Y is an irreducible subvariety of S. Let Y’ be an irreducible
component of p~}(Y) under p: 8" = I"\x*+ — § = I'\X™*, then Y’ is an
irreducible subvariety of S’ which maps surjectively to Y under p. The vari-
ation we constructed above can be restricted to Y™, and this restriction is
still admissible by Lemma The connected algebraic monodromy
group associated with Y*®™ is defined to be the connected algebraic mon-
odromy group of the restriction of the VMHS defined in the last paragraph
to Y je. the neutral component of the Zariski closure of the image of
™ (Ylsm,yl) —m (S’,y’) - P

Let us briefly prove that the connected algebraic monodromy group as-
sociated with Y*™ is well-defined. Suppose that we have another covering

5" 2, 8" with S” smooth. Let Y” be an irreducible component of p/~*(Y”).
Let Yy"sm := Y/sm M p/=1(Y’*™)  then by the commutative diagram

m (Yo/lsm’ y//) m (Y//sm’ y//) — (S”, y//) P

| i

Trl(Y/Sm,y/) 7_‘_1(‘51/7y/) ., P

where the equality in the top-left cornor is given by [31], 2.10.1] and the mor-
phism on the left is of finite index by [31] 2.10.2], the neutral components of the
Zariski closures of the images of m (Y™, y”) and 7 (Y™™, ') in P coincide.

2.3.2 Ax’s theorem of log type

Theorem 2.3.1 (Ax of log type). Let S be a connected mixed Shimura va-
riety associated with the connected mized Shimura datum (P,XT) and let
unif: X — S =T\XT be the uniformization. Let' Y be an irreducible subva-
riety of S and

o letY bea complex analytic irreducible component of unif_l(Y);

o take Jo €Y ;

e let N be the connected algebraic monodromy group associated with Y ™.
Then

1. The set F := N(R)*"Un(C)jo, where Uy := U NN, is a weakly special
subset of X1 (or equivalently, F := unif(Fv) is a weakly special subvariety
of S). Moreover N is the largest subgroup of Q such that N(R)TUx(C)
stabilizes F, where (Q,Y7T) is the smallest connected mized Shimura sub-
datum with F C yt;
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2. The Zariski closure offf in X1 (which means the complex analytic irre-

ducible component of the intersection of the Zariski closure of}N/ in XV
and Xt which contains Y ) is F;

3. The smallest weakly special subset containing Y is F and F is the small-
est weakly special subvariety of S containing Y .

Proof. 1. Let Sy be the smallest special subvariety containing Y. Such
an Sy exists since the irreducible components of intersections of special
subvarieties are special (which can easily be shown by means of generic
Mumford-Tate group). By definition of special subvarieties, there exists a
connected mixed Shimura subdatum (@, Y ™) such that Sy is the image
of To\Y*t in S where I'g := I' N Q(Q). We may furthermore assume
(Q,YT) to have generic Mumford-Tate group by Proposition

Let N be the connected algebraic monodromy group associated with
Y™ then N <1Q (and also N <1Q9¢") by the discussion at the beginning
of this section (which claims that the variation we use to define N is
admissible), Remark [Z22.6] (which claims that the generic Mumford-Tate
group of this variation is @) and Theorem 2:2.4]

Then F is a weakly special subset of YT since it is the inverse image
of the point ¢(yo) under the Shimura morphism (@, y+t) L (Q,Y)/N.
Then F is also a weakly special subset of X by definition. By the choice
of (Q, Y1), F is Hodge generic in Y+, and hence ¢(F) is a Hodge generic
point in Y'*. Now Stabgaer (g (F F)° = N(Q) by Remark Z2Z.0

2. We prove that F is the Zariski closure of Y in X*. We first show
that the Zariski closure of ¥ in X+ defined as in the statement of the
theorem exists. To see this, denote by YV the Zariski closure of Y in
XV. Recall that X7 is realized as a semi-algebraic open subset (w.r.t.
the archimedean topology) of XV as in §I:3.1l Hence Y N X" has only
finitely many complex analytic irreducible componentsEI which we call
I,...,I.. If Y is contained in both I; and I; where I; and I; are distinct,
then

YCcLNLc(YVnxtymecyvymenxytcyvna®t

IThis is true for any irreducible subvariety Z of X'V by induction on dim Z: since the
collection of all semi-algebraic sets forms an o-minimal theory, (ZNAX*)$™ decomposes into
finitely many connected components, each of which semi-algebraic (To better understand
this, recall the theorem of Klingler-Ullmo-Yafaev [29, Appendix| which says that for (P, XT)
pure, a subset of X1 is irreducible algebraic iff it is semi-algebraic and complex analytic
irreducible. Their argument can be generalized to the mixed case without much difficulty.).
Remark that these connected components are also precisely the complex analytic irreducible
components since the ambient subset of X+ is smooth. Now (ZNX1)sing = zsinen X+ also
has only finitely many complex analytic irreducible components by induction hypothesis. So
we can conclude.
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But (YY) is an algebraic subvariety of X¥. So this contradicts the
fact that YV is the Zariski closure of Y in V. Hencey is contained in
a unique complex analytic irreducible component of YVNXT. So the
Zariski closure of Y in Xt defined as in the statement of the theorem
exists.

Next we prove that it suffices to prove Y C F. Assume this. Let Y be the
Zariski closure of Y in X'+ , then Y C Fsince Y C F and F is algebraic
(Lemma[[3.8). On the other hand, Tysm := Im(71 (V™) — 11 (S) — P)
stabilizes Y so [ysmyy C Y. The group ['ysm is Zariski dense in N, and
hence Zariski dense in Nc. But F' is a complex analytic irreducible
component of N(C)go N X", so T'y=myy is Zariski dense in F'. Hence we

have F C Y. As a result, F=Y.
Now we prove that Y C F (or equivalently, Y C F)).

The fact that Y C F has nothing to do with the level structure. Hence
we may assume I' = Iy x g with Ty € W(Z), Ty :=TwnNU C U(Z),
I'v := T'w/T'y C V(Z) and T'¢ C G(Z) small enough such that they
are all neat and such that I' C P"(Q) (Remark [LT.I3(2)). We write
FP/U = F/FU

We may replace (P,XT) by (Q,Y") and S by Sy (same notation as in
(1)) since Y, F C YT and Y, F C Sy. In other words, we may assume
that Y is Hodge generic in S and (P, X™) is irreducible.

Consider the following diagram:

+ TP/U _ + TG _ +
X XP/U XG
unif unifp /¢y l unifg l

[m ™
S=T\x" —— o —— Spju =Cpw\X5,; el g =Te\xg

Denote by 7 and |7 ] the comp051tes of the maps in the two lines respec-
tively. Denote by Yy := 7T(Y) Yo = [#](Y) and Yp/U = WP/U(Y)
YP/U = [WP/U](Y); FG = W(FZ, FG = [W](F)Nand FP,/‘,U = WP/E(F),
Fpy = [mp/u](F). Denote by 4o p/v := mp/u(yo) and yo,q := 7 (o).

Now to make the proof more clear, we divide it into several steps.

Step I. Prove that }7@ C Fvg.

We begin the proof with the following lemmas:

Lemma 2.3.2. In the context above, the connected algebraic monodromy

group associated with Yo (resp. Yp/Usm) is Gy (resp. N/Un where
Uy:=UNN).
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Proof. We only prove the statement for Yo . The proof for Yp/Usm is
similar. Take Y§™ := Y™ N7~ 1(Yg™), then we have the commutative
diagram below:

(Vg™ y) — m(YE ve) = m(Ya . Ca)

: S~

7-‘—I(YVSInay) - 7T1(S,y) - ﬂ-l(SGayG) .

| |

P G

Here, the morphism on the left and the right morphism on the top are
surjectlve since codimysm (Y5 —Y5™) > 1 and codimyp—sm (Yo " —ygm) >

1 (|31 2.10.1]). Now [31I], 2.10.2] shows that the image of w1 (Yg™,y) is
of finite index in 71 (Y™, ya), so the neutral components of the Zariski
closures of m (Y™, y) and m (Yo ,ye) in G coincide. Hence we are

done. O

Let Z be the closure (w.r.t. archimedean topology) of ?G in XCJ{ , then

Zisa complex analytic irreducible component of unifal(Y_@. For the
pure connected Shimura datum (G4, X1), we have a decomposition ([39,
3.6])

(G, X)) = (GXL XG 1) x (G2, X o).

By [39, 3.6, 3.7] and Lemma B33 Z C XJ G X ezl ie Z c
Gn(R)*T 2 for some T € X+ But yo,¢ € Yo C Z,s0 Fg = GN( ) 0.6 C
Gn(R)*@. This implies that Fo=Gn(R)tZg. Asaresult, Yo C Z C
Fg.

Step II. Consider the Shimura morphism

(P, X*) & (P, X% := (P,XT)/N.

Then F = p_l(p(ﬁ)) by definition of p. So in order to prove Y C F, it
is enough to show that p(Y) C p(F'). Hence we may replace (P, X") by
(P’, X*"). In other words, we may assume N = 1.

In this case F is just a point & € X+. Call Tpy = mpw(T), Tg = ()
and x := wnif(Z), zp/y = wifp,y(Tp/v), vc = unifg(Zg). Then
since Yo C Fg, we have Y C E where F is the fibre of S ﬂ Sa over

rg. Denote by A the fibre of Sp,ir Irle, Sa over g and T the fibre of

g el [7p/u] —— Spyu over zpy, then by [53 3.13, 3.14] A is an abelian variety

and 7T is an algebraic torus.
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Step II1. Prove that ?P/U C ﬁ‘P/Ua i.e. ?P/U = {%P/U}
By Step I, Yp,iy C A. We have the following morphisms

1 ( ;I/HU) — mi(A) = m(Spw) =Tpw — P/U=V xG.

The neutral component of the Zariski closure of m; (Y}i‘/nU) (resp. m1(A))

in P/U=V xGis1 (resp. V), so the image of

m(YE)y) — m(A)

is a finite group.

Now Yp,y is irreducible since Y is irreducible. So by Proposition 2.T.4,
Yp/y C A is a point. Equivalently, ?p/U is a point. So ?p/U C ﬁp/U
since Yp,iy N Fp/y # 0 (both of them contain 7o p/1).

Step IV. Prove that Y C F, ie. Y = {z}.

By Step I, Y C E. By Step Ill, Yp;y = {zpju}. SoY C T. We have
the following morphisms

m(Y") - m((T) - m(S)=F—=P=W xG.

The neutral component of the Zariski closure of w1 (Y™™") (resp. w1 (7))
in P=W xGis1 (resp. U), so the image of

T (Y) — m (T)

is a finite group.

Now since Y is irreducible, by Proposition 21.4, Y C T is a point.
Equivalently, Y is a point. So Y C F since Y N F # () (both of them
contain gp).

. Since every weakly special subset of X" is algebraic by Lemma [3.8 F

is also the smallest weakly special subset which contains Y. Therefore
F is the smallest weakly special subvariety of S which contains Y.
O

Corollary 2.3.3. Let S be a connected mized Shimura variety associated with
the connected mized Shimura datum (P, X7T) and let unif: X+ — § = T\XT
be the uniformization map. Let'Y be an irreducible subvariety of S, then Y
is weakly special if and only if one (equivalently any) irreducible component of

unif

If Y is weakly special, then Y = unif (N (R)YUy(C)y) where N is the con-

YY) is algebraic.

nected algebraic monodromy group associated with Y™, Uy :=U NN and y
is any point of unif (V).
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Proof. The “only if” part is immediate by Lemma[[.L3.8l Now we prove the “if”
part.

We first of all quickly show that if one irreducible component of unif ~* (Y)
is algebraic, so are the others. The proof is the same as [65] first paragraph
of the proof of Theorem 4.1]|. Suppose that Y is an irreducible component of
unif ~*(Y') which is algebraic, i.e. Y is an irreducible component of XN Z for
some algebraic subvariety Z of XV. Then for any v € I' ¢ P(R)U(C),

7Y =y XTNZ)CcXTNyZ =y 1 (X" NAZ) C 1Y,

Hence it follows that 7}7 =Xt N~Z is algebraic.

Next under the notation of Theorem 2.3.1] Y =Y = Fsince Y is algebraic.
Hence Y is weakly special, and so is Y. _

Finally if YV is weakly special, then for any y € unif_l(Y) and Y the irre-
ducible component of unif ~*(Y)) which contains 7, Y = F = N(R)*Ux(C)y
by Theorem 2:31] and hence Y = unif (N (R)* Uy (C)7). O
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Chapter 3

The mixed Ax-Lindemann theorem

Convention: In this chapter we always consider a connected mixed Shimura
variety S and its uniformization X' it S, Unless stated otherwise, all
closures taken in S are assumed to be Zariski closures and all closures taken in
X are assumed to be closures in the archimedean topology. It happens that
they often coincide by Chevalley’s theorem in the situations we will consider.

But for simplicity I will not discuss this.

3.1 Statement of the theorem

3.1.1 Four equivalent statements for Ax-Lindemann

There are several equivalent forms for the Ax-Lindemann theorem. In this
section we will give four different statements and explain their equivalence.
The proof for this theorem, being the core of this chapter, will be executed in
the following sections.

We start from the most usual form of the Ax-Lindemann theorem. It is
also this statement that we will prove afterwards.

Theorem 3.1.1. Let S be a connected mized Shimura variety associated with
the connected mized Shimura datum (P,X") and let unif: X* — S be the
uniformization. Let Y be an irreducible algebraic subvariety of S and let Z
be an irreducible algebraic subset of XT contained in unif_l(Y), mazximal for
these properties. Then Z is weakly special.

The next statement we give shall be called the semi-algebraic form of Az-
Lindemann. In fact this and its direct variant Theorem B.I.4] are the forms
which will be adopted in all the applications in this dissertation. Recall that
a connected semi-algebraic subset of X7 is called irreducible if its R-Zariski
closure in X'V is an irreducible real algebraic variety. Note that any connected
semi-algebraic subset of X has only finitely many irreducible components.

Theorem 3.1.2. Let S be a connected mized Shimura variety associated with
the connected mized Shimura datum (P,X7T) and let unif: X* — S be the
uniformization. Let'Y be an irreducible algebraic subvariety of S and let Z be
a connected irreducible semi-algebraic subset of X+ contained in unif ' (Y),
mazimal for these properties. Then Z is complex analytic and each complex
analytic irreducible component of Z is weakly special.

79
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The equivalence of Theorem B.I.1] and Theorem follows easily from
[49, Lemma 4.1], which claims that maximal connected irreducible semi-
algebraic subsets of Xt which are contained in unif~*(Y) are all al-
gebraic in the sense of Definition (there is a typo in the proof of
[49, Lemma 4.1]: C?" should be C").

The next two forms of Ax-Lindemann have more “equidistributional” taste.

Their equivalence with the two statements above is not hard to check (Theo-
rem B3 with Theorem B.I1] Theorem B.1.4 with Theorem B12).

Theorem 3.1.3. Let S be a connected mized Shimura variety associated with
the connected mized Shimura datum (P,X") and let unif: X* — S be the

uniformization. Let Z be any irreducible algebraic subset of XT. Then unif(Z)
is weakly special.

Theorem 3.1.4. Let S be a connected mized Shimura variety associated with
the connected mized Shimura datum (P, X7T) and let unif: X+t — S be the uni-

formization. Let Z be any semi-algebraic subset of X*. Then every irreducible

component of unif (2 ) is weakly special.

Let us explain now why Theorem B.II] implies Theorem B.1.3l Let S,

(P,X%) and Z be as in Theorem Let Y := unif(Z) and let W be

an irreducible algebraic subset of XT which contains Z and is contained in
unif ! (Y), maximal for these properties. Such a W exists by, for example,

dimension reason. Then Y = unif(W) and W is a maximal irreducible al-
gebraic subset of Xt which is contained in unif~'(Y"). Theorem B then

implies that W is weakly special. Hence unif (W) is an irreducible subvariety

of S by Corollary 2233l So Y = unif (W) = unif(W) is weakly special since
W is weakly special in XT. Theorem implies Theorem B.I.4] by a simi-
lar argument because any semi-algebraic subset of X has only finitely many
connected irreducible components.

Let us explain now why Theorem implies Theorem B.I.Il Let S,
(P,X1), Y and Z be as in Theorem BTl Then Theorem B.I.3) tells us that

unif (Z ) is a weakly special subvariety of S, which we shall call Y. By as-

sumption of Y and Z , Yo is a subvariety of Y. Let % be the complex analytic
irreducible component of unif ' (Y;) containing Z. Then Yj is irreducible al-
gebraic by Corollary 2.3.30 But then the maximality assumption on Z tells us
that Z =Y. Hence Z is weakly special. Theorem B.1.4] implies Theorem 3.1.2]
by a similar argument.

3.1.2 Ax-Lindemann for the unipotent part

In this subsection we state Ax-Lindemann for the unipotent part. There is
nothing new in the statement, but it is better to state it here because we will
prove it separately in §3.41
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Given a connected mixed Shimura variety S, let Sg be its pure part.

We have a projection S 1, Sg. For any point b € Sg, denote by E
the fiber S,. Suppose that S is associated with the mixed Shimura datum
(P, X1), which can be further assumed to satisfy P = MT(X™) by Propo-
sition Let unif: X* — S = T\XT be the uniformization. Now
E =S, 2 Tw\W(R)U(C) with the complex structure determined by b € S
(E =8, =Tw\W(C)/FPW(C)), where I'yy :=T N W(Q).

By abuse of notation we denote by unif: W (R)U(C) = W(C)/FW (C) —
E for the uniformization of E. It is then the restriction of unif: X+ — S.

Theorem 3.1.5. Let Y be an irreducible subvariety of E and let Z be a mazx-
imal irreducible algebraic subvariety which is contained in unif~*(Y'). Then Z
is weakly special.

Proof. If E is an algebraic torus over C, this is a consequence of the Ax-
Schanuel theorem [42] Corollary 3.6]. If E is an abelian variety, this is Pila-
Zannier [51l pp9, Remark 1]. A proof using volume calculation and points
counting method for these two cases can be found in the Appendix of this
chapter. The general case will be proved in 3.4 O

3.2 Ax-Lindemann Part 1: Outline of the proof

In these three sections, we are going to prove Theorem [B.I.Il The organization
of the proof is as follows: the outline of the proof is given in this section.
After some preparation, the key proposition (Proposition B22.6]) leading to the
theorem will be stated and exploited (together with Theorem B.IH) to finish
the proof in Theorem B.2.8 We prove this key proposition in the next section
using Pila-Wilkie’s counting theorem and Theorem B.T.5 will be proved in §3.41

Now let us fix some notation which will be used through the whole proof:

Notation 3.2.1. Consider the following diagram:

T

X+

X
unif unifgl
s=n\x+ T 5o .=re\xt

Now we begin the proof of Theorem B.I.Il Let us first of all do some
reduction:

e Since every point of X is weakly special, we may assume dim(Z) > 0.

e Let (Q, V1) be the smallest mixed Shimura subdatum of (P, XT) s.t Z C
YT and let Sg be the corresponding special subvariety of S. Then Q =
MT(Y*) by Proposition [LTIA1). If we replace (P, XT) by (Q,YT),
S by Sg, unif: Xt — S by unifg: Y* — Sg and Y by an irreducible
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component Yy of Y'NSg, then 7 is again a maximal irreducible algebraic
subset of unifél(Yo). By definition, 7 is weakly special in X7 iff it is
weakly special in Y*. So we may assume P = MT(X*) and that Z is
Hodge generic.

e Furthermore, 1et Yo by the minimal irreducible subvariety of S such
that Z C unif 7'(Yp), then Z is still maximal irreducible algebraic in
unif ~*(Yy). Hence we may assume that Y = Yp. In fact it is not hard to

see that after this reduction, ¥ = unif(Z) and Z is weakly special iff ¥
is weakly special.

e By the previous reductlon there is a unique complex analytic irreducible
component of unif ™ Y(Y)) which contains Z. Denote it by Y. Denote
by Yo = 7T(Y) Yo = [7](Y) and Zg := w(Z). Remark that by
Lemma [[33, Z¢ is an algebraic subset of X

e Replacing I' by a subgroup of finite index does not matter for this
problem, so we may assume that I' is neat and T' C P47 (Q) (Re-

mark [LTT3(2)).

Let F be the smallest weakly specml subset containing Y. By Theo-
rem 230 F = N(R)"Un(C)Z some Z € Z C Y, where N is the connected
algebraic monodromy group associated with Y*" and Uy := U N N. The
set F is Hodge generic in (P, X*) since Z is, so N <« P and N < P by
Theorem 2.2.4]

Define

Iz={yell-Z=2}  (resp. T, 5= {1¢ € Lche - Zc = Zc})

and
Zar

— o ——Zar, o
Hz .= T3 ) (resp. HZ =T, =

czo )
Define Un, =UNHz and Wy, := WNH. Both of them are normal in H7.
Then Hj (resp. H7) is the largest connected subgroup of P9" (resp. G4°¥)
G JR—
such that H;(R)*Up, (C) (resp. H7(R)+) stabilizes Z (resp. Zg).
G
Define VHZ = WHZ/UHZ and GHZ = Z/WHZ ‘—>P/W=G

The following two lemmas were proved for the pure case in [50] and [29].

Lemma 3.2.2. The set Y is stable under Hz(R)* Uy, (C).

Proof. Every fiber of Xt — X /U can be canonically identified with U(C).
So it is enough to prove that Y is stable under H ZR)T: U, (R)y C Y for

J €Y, then Un,(C)y C Y because Y is complex analytic and Un ,(C)y is the
smallest complex analytic subset of X containing U Hy (R)y.



CHAPTER 3. THE MIXED AX-LINDEMANN THEOREM 83

If not, then since Hz(Q) is dense (w.r.t. the archimedean topology) in
Hz(R)*, there exists h € Hz(Q) such that hY #Y. The set Z is contained
in Y NhY by definition of H, and hence contained in a complex analytic

irreducible component Y’ of it.
Consider the Hecke operator Tj,. Then T}, (Y) = unif (h-unif ~*(Y")). Hence

Y NT,(Y) = unif (unif (V) N (k- unif 1 (Y))).

On the other hand, T3 (Y) is equidimensional of the same dimension as Y by
deﬁmtlon hence by reason of dimension, hY is an irreducible component of
unif ™~ (Th(Y)) ALY, So unif(hY) is an irreducible component of T}, (Y').

Since Y’ is a complex analytic irreducible component of YN hY it is also
a complex analytic irreducible component of unif “}(Y) N (hY) = TY NhY . So
Y’ := unif(Y”) is a complex analytic irreducible component of ¥ N unif(hY).
So Y is a complex analytic irreducible component of Y N T, (Y'), and hence is
algebraic since Y N7 (Y) is

Since hY # Y and Y is irreducible, dim(Y”’) < dim(Y). But Z C Y NhY C
unif " (Y”). This contradicts the minimality of Y. O

Lemma 3.2.3. HZ < N.

Proof. We have Z C F = N(R)*Uy(C)Z for some Z € Z, so the image of Z
under the morphism
(P,XT) — (P,XT)/N

is a point. But Hz/(Hz N N) stabilizes this point which is Hodge generic
(since Fis Hodge generic in XT), and therefore is trivial by Remark 22261 So
HZ < N.

Let H' be the algebraic group generated by ”y‘lHZ'y for all v € I'ysm,
where T'ysm is the monodromy group of Y. Since H' is invariant under
conjugation by I'ysm, it is invariant under mZar, therefore invariant under
conjugation by V. B

By Lemma B.Z2 Y is invariant under Hz(R)*Up, ((C) On the other
hand, Y is also invariant under T'yem by definition. So Y is invariant under
the action of H'(R)"Ug/(C) where Uy := U N H'. Since H'(R )+UH/((C)Z
is semi-algebraic, there exists an irreducible algebraic subset of X', say E
which contains H'(R)*Up ((C)Z and is contained in Y by [49, Lemma 4.1].
Now Z C E CY,s0 Z=E = H(R)TUy (C)Z by maximality of Z, and
therefore H' = H by definition of Hz. So Hj is invariant under conjugation
by N. Since Hz < N, Hj is normal in N. O

Corollary 3.2.4.

der
GHZ’ HzﬁG and GHZ QHZ.
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Proof. We have G, <Gy < G and so Gu,< G since all the three groups
are reductive. _ _

Working with ((G, X2), Yg, Z¢) instead of ((P,X*), Y, Z), we can prove
(similar to Lemma B23]) that HZ < Gy. Hence HZ <1 G by the same
reason for G Hy-

By definition GHZ < H=. So G. <« H= since Gp. < Ger. [l

Za Z Za Z

So far the proof looks similar to the pure case. From now on it will be quite
different. For the readers’ convenience, we list here some differences between
the proof of Ax-Lindemann for mixed Shimura varieties and for the pure case:

e We shall prove that Z is an H 7(R)TUp, (C)-orbit. To prove this, it suf-
fices to prove dim H; > 0 when S is a pure Shimura variety. However
this is far from enough for the mixed case, since this does not exclude
the naive counterexample when dim Zg > 0 but Hz is unipotent. To
overcome it, we should at least prove dimGp, > 0. In fact we shall
directly prove Gy, = HZ (Proposition [B:22.6). This equality is not ob-
vious because, as appears in the proof of Lemma [B.2.5] there is no reason
a priori why Zg, which is obviously algebraic in unif_l(Yg), should be
maximal for this property. If one could prove direcly this is the case,
then Klingler-Ullmo-Yafaev [29, Theorem 1.3] would give directly the
result.

e As mentioned in the Introduction, we shall make essential use of the
“family” version of Pila-Wilkie’s theorem (Remark B.3:4);

o If P =G is reductive, then H; << N < P implies directly Hz <1 P. This
is obviously false when P is not reductive.

e For a general mixed Shimura variety S, the fiber of S I, Sa is not
necessarily an algebraic group (Lemma [ZTT]), hence not a semi-abelian
variety. We do not have Ax-Lindemann for the fiber for this case. Thus
we should execute a proof of Ax-Lindemann for the fiber. As the readers
will see in §3.4] the proof of this case calls for much more careful study
of Z. First of all, when doing the estimate and using the family version
of Pila-Wilkie for the fiber (Step I), we should introduce a seemingly
strange subgroup which serves as Gy in the section. The reason for
this will be explained in Remark 5.2l Secondly, to prove that Wy
is normal in W is not trivial, and the key to the solution (Step IV) is
a well-known fact: any holomorphic morphism from a complex abelian
variety to an algebraic torus over C is trivial.

Before proceeding, we prove the following lemma:

Lemma 3.2.5. 1. ?_G is weakly special. Hence ?_G = GN(R)Tzg for any
point zZg € Za;
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2. unifg(Zg) = Y_G

Proof. 1. Let Z' be an irreducible algebraic subset of Xg which contains

Z¢ and is contained in unif ~* (Y ), maximal for these properties. By [29,
Theorem 1.3], Z’ := unif¢(Z’) is weakly special, and therefore Zariski
closed by definition. Now Z C 7~1(Z') Nunif ~*(Y). However,

unif (=1 (Z") Nunif 7 (Y)) = wif(x~1(Z")) NY = [7]"1(Z) NY.

Then we must have Y C [r]71(Z’) since Y is the minimal irreducible
closed subvariety of S such that Z C unif~*(Y). Therefore Yo C 2.
But Z' C Yg by definition of Z’, so Z' = Y5. This means that Yy is
weakly special.

9. Let Y’ := unifc(Z¢), then Zg C unifg'(Y"). Then Z € 7~ (unifg! (Y"))
unif ! ([7]~1(Y”)), and so

Z c unif ! ([#] 1Y) nunif ~H(Y) = wnif " ([7]"H(Y) N Y).

Hence there exists an irreducible component Y of [7]71(Y’) N'Y such
that Z C unif~*(Y"). But

[MY") C [7(7 (Y NY) =Y NYe,

so dim([7](Y")) < dim(Y' NYg). If Y/ # Yg, then dim(Y' NYg) <
dim(Yg) and therefore dim(Y") < dim(Y’), which contradicts the mini-
mality of Y. So Y’ = Yg.

O

Proposition 3.2.6 (key proposition). The set Z_G is weakly special and Gy, =
H7. In other words,
G

for any point zg € Za.

Now let us show how this proposition together with Theorem B.T.5 implies
Theorem B.IIl Before proceeding to the final argument, we shall prove the
following group theoretical lemma:

Lemma 3.2.7. Fizing a Levi decomposition Hy = Wy, x Gu,, there exists
a compatible Levi decomposition P =W x G.

Proof. Suppose that the fixed Levi decomposition of H is given by s1: Gy, —
Hj. Define P, := 7~ (Gp,), then Hz < P,. Now choose any Levi decompo-
sition P =W % G defined by s2: G — P. Then G, being a subgroup of G,
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is realized as a subgroup of P via so. Hence s5 induces a Levi-decomposition
P, =W x%2 GHZ' We have thus a diagram

| L-f |

where the morphism s; in the second line is induced by the one in the first
line. Now si, so define two Levi decompositions of P,. They differ by the
conjugation by an element wy of W(Q) by [55, Theorem 2.3]. So replacing
so by its conjugation by wg we can find a Levi decomposition of P which is
compatible with the fixed Hz = WHZ X G Hy- O

Theorem 3.2.8. 1. Z = HzR)* Uy (C)Z for any z € Z;

2. HZ < P.
Hence Z is weakly special by definition.

Proof. 1. Consider a fibre of Z over a Hodge-generic point zg € Z¢ such
that |3 is flat at Zg (such a point exists by [I, §4, Lemma 1.4] and

generic flatness). Suppose that W is an irreducible algebraic component
of Zz, such that dim(Zz,) = dim(W), then since | is flat at Zg,

dim(Z) = dim(Zg) 4 dim(Zz,) = dim(Z¢) + dim(W).

Consider the set E := Hz(R)*Un, ((C)ﬁ; It is semi-algebraic (since
W is  algebraic and the action of PR)TU(C) on X7 is algebraic). The
fact W C Z implies that E C Z. By [49, Lemma 4.1], there exists an
irreducible algebraic subset of X, say Ealg, which contains F and is
contained in Z. Now we have by Proposition [3

m(E) = G, (R)*2g = H=—(R)"2¢ = Zg
Za
and that the R-dimension of every fiber of 7| is at least dimR(ﬁ//). So
dim(Eay) > dim(r(E)) + dim(W) = dim(Zg) + dim(W) = dim(Z).

So E = Z since Z is irreducible.
Next let W’ be an irreducible algebraic subset which contains Z and

is contained in unif (Y’ )z, maximal for these propertleb Then W’

is weakly special by Theorem [3 We have W' C Y since Y is_an
irreducible component of 7~ (Y). Consider E := HzR)"Upn, )W'.

Then E' C Y by Lemma But E’ is semi-algebraic, so by [49,
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Lemma 4.1], there exists an irreducible algebraic subset of X'T, say E;lg
which contains E’ and is contained in Y. So Z = E C E;lg C }N/, and
hence Z = E;lg = FE’ by the maximality of Z. So ch =W'is weakly
special.

Write Zz, = W/(R)U'(C)Z with W/ < W, U/ = W/ NU and % €
Zz;. Then Wy < W'. The complex structure of 7' (Z¢) comes from
W(R)U(C) :AW(C)/FZLJGW(C), where F2 W (C) = exp(F2, Lie Wc). So
the fact that Zz, is a complex subspace of 771(Z¢) implies that W' /U’
is a MT(Z¢) = G-module. Hence W' is a G-group.

Define P’ := W'Hz, then P’ is a subgroup of P since W' > Wy _ and
Gu, W' = W'. Now we have

Z=HzR)"Un_(C)Zz, = Hz(R) Un _(C)W'(R)U'(C)Z = P'(R)"U'(C)Z.

So Hz = P’ because Hy is the largest subgroup of P such that
H(R)*Up,, (C) stabilizes Z. So we have Z = H(R)*Uy ,(C)Z.

2. First of all, Uy, < P by Proposition [LT.TH2).

Next consider the complex structure of =1 (Z¢). It comes from W (R)U(C)
~ W(C)/F2,W(C). So the fact that Zs, is a complex subspace of
7~ (2g) implies that Vi, is a MT(Zg) = G-module. Hence Wy is a
G-group. Besides, G, <G by Proposition B.2.6l In particular, G, is
reductive.

Then let us prove Wy, < P. It suffices to prove Wy, < W. For any
Z € Z, we have proved in (1) that Zz, = Wi, (R)Un, (C)Z is weakly
special. Hence by Proposition[[L2Z.4] there is a connected mixed Shimura
subdatum (@, V%) < (P, X") such that Z € Y* and Wy, < Q. Define
W* to be the G-subgroup (of W) generated by Wy = R,(Q), then
Wh, <W* since Wy, is a G-group.

Fix a Levi decomposition H; = Wy, x Gg, and choose a compatible
Levi decomposition P = W x G (as is shown in Lemma B21). Let P*
be the group generated by GQ, then R, (P*) = W* and P*/W* = G.
The group P* defines a connected mixed Shimura datum (P*, X**) with
X*t = P*(R)*U*(C)z. Now Z = H 7(R)TUn,(C)z C X*F. But Z is
Hodge generic in X by assumption, hence P =P and W =W*. So
WHZ < W and hence WHZ < P.

Use the notation in JL.T.2.5l We are done if we can prove:
VueU, Yo eV, and Vg € Gu,, (u,v,1)(0,0,9)(~u,—v,1) € Hj.
By Corollary [LT.37 there exist decompositions

U=Uyo®Ux V=VNxaVy
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as G-modules such that Gy acts trivially on Uy and V. Now

( v, )(0 ng)(_uv_vvl)
= (u ,9)(—u, —v,1)

=(u— g u,v—g-v,g)
= ((un +uy) —g- (UN+Uﬁ) (v +vy) — g (o8 + ), 9)
(un —g-un,vN —g- UJ\UQ)
= (un,vn,1)(0,0,9)(—un, —vn,1) € Hz,

where the last inclusion follows from Lemma [3.2.3]

3.3 Ax-Lindemann Part 2: Estimate

This section is devoted to prove Proposition [3.2.61 The proof uses essentially
the “block family” version of Pila-Wilkie’s counting theorem [48, Theorem 3.6].

Keep notation and assumptions as in the last section and denote by 7: (P, X)
— (G, X2). The group G = Z(G)°H;...H, is an almost direct product, where
H,’s are non-trivial simple groups and are normal in G. We have a decompo-
sition .

(@ x) = [, x5 )
i=1

by |39, 3.6]. Let St := I'a\ X} Shrinking I'% if necessary, we may assume
de ~ Hl 1 SH.i, Where SH, is a connected pure Shimura variety associated
w1th (H x5k ).

Without loss of generality we may assume Gy = Hi...H;. It suffices to
prove H; < Gp, for each i = 1,...,]. The case [ = 0 is trivial, so we assume

that [ > 1. Define Q; := 7~ *(H,).

3.3.1 Fundamental set and definability

The goal of this subsection is to prove that there exists 7 C X" a fundamental
set for the action of I" on X* such that unif | # is definable.

First of all, by the Reduction Lemma (Lemma [[T35)), it suffices to prove
the existence of such a fundamental set for (P,X*) pure and (P,X") =
(PQQ,XQ-;) (see §3.5.0] for more details). The case where (P, X) is pure is
guaranteed by Klingler-Ullmo-Yafaev [29, Theorem 4.1]. Now we prove the
case (P, XT) = (Pag, Xy)).

We draw the following diagram to make the notation more clear:

+ _TP/U +
X2g > X2g7a
unif unifp/Ul
[7p/ul
S ! > SP/U
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In this case, [1p/y]: S — Spjy is an algebraic G,,-torsor. By Peterzil-
Starchenko [47, Theorem 1.3], there exists a fundamental set Fp,; for the
action of I'/T'y on XQ—Z,a such that unifp,y |7,,, is definable (recall that if
g = 0, then XQJ; = C, S = C*, unif = exp and Sp/y is a point). Let us now
construct a fundamental set for the action of I' on X;; such that unif |£ is
definable and 7p/y (F) = Fp/u-

Since any variety over a field is quasi-compact in the Zariski topology, there
exists a finite Zariski open covering {Vo }aea of Sp/y such that S|y, ~ C*xV,
and these isomorphisms are algebraic. Define Uy := S|y, = [rp/y] ' (Va) for
every a € A. Then we have

unif |ynie-1(0,) unif ! (U,) = U,y (C) x unif;/lU(Va) — (C*) x V, = U,,
)

where ¢ is semi-algebraic (Proposition[[L3.3), the last isomorphism is algebraic
and the middle morphism is (exp, unif p;s |unif;/1U (Va)). Let Fy = {s € C|
—1 < Re(s) < 1} and let Fy, := o~ (Fu X Fpju,o). Then unif | £, is definable.
Now F := UF, (remember that this is a finite union) satisfies the conditions
we want.

Now we return to arbitrary (P, X*). We have proved the existence of an
F as stated at the beginning of this subsection. Let us choose such an F more
carefully. First of all replace F by ~.F if necessary to make sure F N Z # ().
Next define F¢ := 7(F) C Xg ~TI_, X;l Denote by ¢; the i-th projection
and Fp; := qi(Fg). There exist some v; = 1,...,7s € I'¢ < T such that
[1;— Fu.i C Uj_yv;Fc. Consider

Fri=(J A na ([T Fua),
j=1 i=1

then F is a fundamental set for the action of ' on X' and unif | is definable.
Furthermore, m(F') = [[;_; Fu,i and Fp; = ¢;w(F'). We still have F'NZ # 0
since F C F’'. Now replace F by F'.

3.3.2 Counting points and conclusion

We shall work from now on with an F satisfying the conditions in the last
paragraph of the previous subsection. By LemmaB20, Yo = Hi:l H;(R)*Zg.
Fix a point z € F N Z. Define the following Shimura morphisms for each
1=1,..,1

(G7 Xg) ﬂ' (le‘)(g,z) = (Gad,Xg)/HH?d
" l " J#i
G G,1¢

S [pi] S
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Fixi € {1,...,1}. Define Yo, := pi(Yo) = HM(R)*mi(3), Zo.i = pi(Zg) and
Yo := [p 1(Ye), then unlfG Z(ZG ;) is Zariski dense in Y ; by Lemma 25
If d1m(ZG ;) = 0, then Zg ; is a finite set of points since it is algebraic. But

then unlfG7i(ZG7i), and hence YGJ- = unlfg)i(ZG,i) is also a finite set of points.
So dim(YG ;) = 0, which contradicts Yg; = H*(R)"7;(3¢). To sum it up,
dlm(ZG ;) > 0. For further convenience, we will denote by m; := p; o 7.

Take an algebraic curve Cg,i C ZG ; passing through m(2). Now m;(Z N

(CG7Z)) = ZG,l N Cq,; = Cq,i, and hence there exists an algebraic curve
C C ZN w7 Y(Cq.;) passing through Z such that dim(m;(C)) = 1.

Let Fg,i := pi(Fq), then it is a fundamental set of unif ; and unifg ; |7 ,
is definable. We define for any irreducible semi-algebraic subvariety A (resp.
Ag.;) of unif ' (Y) (resp. unifa}i (Yg.:)) the following sets: define

Y@ (A4) = {g € Qi(R)|dim(gA Nunif ~}(Y) N F) = dim(A)}
(resp. £ (Ag.i) = {g € HM(R)|dim(gAc,: Nunif g (Ye.) N Fe.i) = dim(Ac.i)})
and _
S(A) = {g € QiR)|gT'FNA#0}
(resp. ¢ (Ac) = {g € HXM(R)|g™ Fa.i N Aci # 0}).

Then %) (A) and Eg) (Ag.i) are by definition definable. Let I'%!; := p;(TH").

Lemma 3.3.1. ¥'®)(A)NC = SO (A)NT (resp. T (Ag,)NTE, = 28 (Ag.)N
rad ).

Proof. The proof, which we include for completeness, is the same as [67,
Lemma 5.2]. First of all 2()(A)NT ¢ ¥/ (A) NT by definition. Conversely
for any v € ¥V (A)NT, v~ 1F N A contains an open subspace of A since F is
by choice open in X*. Hence yANunif ' (V)N F = yANF contains an open
subspace of yA which must be of dimension dim(A). Hence v € X (A)NT.
The proof for Ag ; is the same. O

This lemma implies N N
2N =) N cy(Z)nT=x9(Z)nT
(resp. B9 (Cai) NI, = 2099 (Ca,) NT2, € S8 (Za) NT, = 20 (Zg,) NT2,)
(3.3.1)

Lemma 3.3.2. (I'NE@(C)) =T, NS (Cay).

Proof. By LemmaB.3.] it suffices to prove m; (TN (C)) = F%d’iﬁE/C(f) (Ca.i)-
The inclusion C is clear by definition. For the other inclusion, Vyga,; € I%d)i N
E/C(f) (Cg.i), e, € Ca,i such that vq,i - ca,i € Fa i
Take a point ¢ € C such that m;(c) = cg,; and define cg == 7(c) € XZ.
Suppose that under the decomposition
(G, xg) ~ [[E, x5 )

=1
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of |39, 3.6, c¢ = (cG.1,---»cc,r). Then by choice of F¢, there exists v € T'%!
whose i-th coordinate is precisely the ¢ ,; in the last paragraph such that
’Y/G -cq € Fa.

Let v¢ € ' be such that its image under I'¢ — I'& is 47, then 7 - ¢ €
7Y (Fg). Therefore there exist vy, € I'y,, vy € Iy such that (v, vv,va)c €
F. Denote by v = (v, W, 7c), then v € T N X'@(C) and 7;(7) = v6.:- O

For T > 0, define
0L (C.i, T) = {16 € T, N2 (Co) | H(va) < T

Proposition 3.3.3. There exists a constant 6 > 0 st. for all T > 0,
08 (Co.i, T)| > T°.

Proof. This follows directly from [29, Theorem 1.3] applied to ((Gs, X7 ,), Sc.s, Zc.i).
|

Let us prove how these facts imply H; < Gy, .
Take a faithful representation G — GL,, which sends I'* to GL,(Z).

Consider the definable set E (CG ;). By the theorem of Pila-Wilkie ([48]
Theorem 3.6]), there exist J = J(J) definable block families

B cS9(Cei) xR, j=1,..,J

and ¢ = ¢(d) > 0 such that for all 7' > 0, 68)(Cg,i,T1/2”) is contained in
the union of at most ¢7%/4" definable blocks of the form BJ (y € R). By
Proposition B33] there exist a j € {1,...,J} and a block Bg,; := Bgo of
E(Gl)(C’Gﬂ-) containing at least 7°/*" elements of 68)(6@“ TV,

Let () := 20 (C) N2 (Z), which is by definition a definable set. Con-
sider X7 := (m; x 1)~ (B7) N (2 x RY), which is a definable family since 7;
is algebraic. ‘

By [69, Ch. 3, 3.6, there exists a number ng > 0 such that each fibre X}

has at most ny connected components. So the definable set ;" 1(BC;7Z-) nx@
has at most ng connected components. Now

mi(n; H(Be,i)NEVNT) = Be,:Nmi (2 (C)NT) = Be,,NSY (Ca, )N, = Be,NTE,
by 33d) and Lemma B33 So there exists a connected component B of
7, '(Bg.;) N 2@ such that m;(B NT) contains at least T%/%"/ny elements of
0 (Cai, T/

We have BZ C unif (V) since £ (Z)Z C unif "' (V") by analytic contin-

uation, and . Z C o 1BZ for any o € BNI'. But B is connected, and therefore
_1BZ Z by maximality of Z and [49, Lemma 4.1]. So Vo € BNT,

B C UStale(R)(Z)
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Fix a 7 € BNT such that m;(y) € Gg)(CG,i,Tl/Q”). We have already
shown that m;(BNT) contains at least T%/4" /ng elements of Gg)(CG,i, T/?m),
For any 7, € m(BNT)N @g)(C’Gﬂ-, T'/?7) let 4/ be one of its pre-images in
BNT. Then v := 7'~!yp is an element of I'N StabQi(R)(Z) =TI5NQ;(R) such
that H(m;(v)) < T/2. Therefore for T > 0, m;(I';)NH(R) contains at least
T%/4" Ing elements ¢ ; such that H(ye,;) < T. Hence dim(m;(Hz)NH) > 0
since m;(Hz) N H? contains infinitely many rational points. But m;(Hy;) =
pim(Hz) = pi(Gp ) by definition. So H3 < p;(Gp,) since H?! is simple and
pi(Gr,) N H < H by Corollary BZ4

As a normal subgroup of Gy, Gp, is the almost direct product of some
Hjs (j=1,..,1). So H* < p;(Gy,) implies H; < Gp,. Now we are done.

Remark 3.3.4. In the proof of the pure case by Klingler-Ullmo- Yafaev [29], it
suffices to use a non-family version of Pila-Wilkie ([29, Theorem 6.1]). How-
ever this is not enough for our proof, since otherwise the ng would depend on
T. Hence it is important to use a family version of Pila-Wilkie ([48, Theo-
rem 3.6]).

3.4 Ax-Lindemann Part 3: The unipotent part

We prove in this section Theorem B.1.5
We use the same notation as the first paragraph of §2.T1 as well as the first
paragraph of §3.1.21 Assume dim¢ 7T = m and dim¢ A = n.

Proof of Theorem[3.1.5 First of all we may assume that Z is of positive di-
mension since every point is a weakly special subvariety of dimension 0. For
any fundamental set F of the action of I'yyy on W(R)U(C), define

2(Z) := {g € W(R)|dim(¢gZ Nunif (V) N F) = dim(Z)}

and
S(Z):={g e WR)|g"' FNZ#0},

then by Lemma 331

S(Z)NTw =Y/(Z)NTy (3.4.1)

Let I'y :=1'N U(@) and let I'y, := Fw/FU

Case i: E=A. |This is [61, Theorem 2.1 and pp9 Remark 1]. A proof can
be found in Appendix. In this case, W = V and I'y = ®?",Ze; C Lie(A) =
C" = R?" is a lattice. Denote by unif: Lie(4) — A. Let Fy := X2 (—1,1)e;,
then Fy is a fundamental set for the action of Iy, on Lie(A) such that unif | £,
is definable.

| Case ii: E=T.|This is a consequence of Ax’s theorem [5] [42] Corollary
3.6]. A proof of this can be found in Appendix. In this case, W = U. Let
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Fu = {s € C|—1 < Re(s) < 1}, then Fy is a fundamental set for the action
of Ty on U(C) such that unif |z, is definable.

‘ Case iii : general E. ‘ Unlike the rest of the paper, the symbol 7 in this

section denotes the map

™

WER)U(C) — V(R)
lunif lunifv . (342)
p—10. 4

Take Fyy C V(R) any fundamental set for the action of I'y on V(R) such
that unify |, is definable.We claim that:

There exists a fundamental set F for the action of I'yy on W(R)U(C)
such that unif | is definable and 7 (F) = Fy.
(3.4.3)
By Reduction Lemma (Lemma [[LT.33]), it suffices to prove this for E = E; x 4
... X4 Ep, where E;’s are G,,,-torsors over A. But then it suffices to prove for
the case m = 1. For this case, the proof is similar to §3.311.

Let Yy be the minimal closed irreducible subvariety of E such that Z C
unif ! (Yp), then Z is maximal irreducible algebraic in unif ™' (Y;). Hence we
may assume that Y =Y. Let N be the connected algebraic monodromy group
of Y™ and let Viy := (NNW)/(NNU). Let Y be the complex analytic ir-
reducible component of unif ~*(Y") which contains Z. For further convenience,
we will denote by Zy :=7(Z), Yy := n(Y) and Yy, := [7](Y).

Repeating the proof of Lemma (but using the conclusion of Case i

instead of [29, Theorem 1.1]), we get that Yy = Viy (R)+2y for some 2y € Zy is
weakly special, and unifV(Zv) = Yy. Remark that by GAGA, these closures
could be taken in the complex analytic topology (i.e. the topology whose
closed sets are complex analytic sets) or the Zariski topology. If Viy is trivial,
then we are actually in the situation of Case ii, and therefore Z is weakly
special. From now on, suppose that dim(Vy) > 0. Replace S by its smallest
special subvariety containing Yy, then N <1 P by Theorem 225 Hence Vi is
a G = MT(b)-submodule of V.
—7Zar

Define Wy = (FW n Stabw(R)U(C)(Z) )o’ Up = WonNU and Vy =
m(Wo) = Wy/Uy. The proof is somehow technical, so we will divide it into
several steps.

Step I. Let VT be the smallest subgroup of Vy such that Zy cvi (R)+2zy.
In Step I, we will prove V1 < 1.

Step I(i). We know that A = I'y\V(R) and V(Q) ~ I'y ®z Q. Consider
any Q-quotient group V' of V' of dimension 1

V=V
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such that dim(p’ (V")) = 1. By abuse of notation, we shall denote its induced
map V(R) — V/(R) also by p’. Now let I'y/ := p/(T'y), then I'ys ~ Z since p’ is
defined over Q. Write I'y» = Ze’, and let Fy := (—1,1)e’. Then Fy- is a fun-
damental set for the action of I'y» on V/(R). Define A’ = T'y/\V'(R) ~ Z\R,
unify : V/(R) — A’ the uniformization and [p]: A — A’ the map induced by
p'. Then unify. |z, is definable (even in R,y). Define Yy := [p](Yy) and
YV/ = pl(Yv).
Let V" := Ker(p'). The exact sequence of free Z-modules

1— FV// = FV M VN(@) ~ ZQn_l — FV ~ ZQn — FV/ ~7 —1

splits, and hence I'y ~ 'y & I'ys. This induces V ~ V" @ V', Write I'y =
ZfZQ Ze;’ and take -7:V” = 2?22(—1, 1)62/. Define .7:\/ = -7:V” D ]:V’- Then
Fv is a fundamental set for the action of I'y on V(R) such that unify |z, is
definable (even in Rg,,). Define F as in (B.43).

Since p(V1) = V' by choice of V', dimg p’(Zv) > 0 by minimality of V7.
Hence p/(Zy) = V/'(R) since p/(Zy) is connected.
Remark 3.4.1. If we only request (V' p’) to satisfy p' (Vi) = 1, then we do
not know whether dimg(p’(Zv)) > 0. This is because we are considering the

real analytic topology (i.e. the topology whose closed sets are real analytic sets)
on A" and the complex analytic topology (i.e. the topology whose closed sets

are complex analytic sets) on A, and hence unifV(Zv) =Yy does NOT imply

unifv/(ZV/) = Yy.. To overcome this problem, we introduce the seemingly
strange subgroup V1 of Viy. We will prove (Step II) that Vy is a MT(b)-module
with the help of V. Then we prove the comparable result of Theorem [T Z.3(1)
for the unipotent part in Step III.

Let C be an R-algebraic subvariety of Z of R-dimension 1 such that p/7(C) =
V/(R). Define furthermore

3(C) == {g € W(R)| dimg(¢C Nunif (V) N F) = 1}

and
Y(C):={ge WR)g'FnC # 0.

The set 3(C) is by definition definable. By Lemma B3]
Y(C)NTw =X(C)NTw (3.4.4)
For M > 0, define
Ov/(V/(R), M) = {y € Tv/[H () < M}.

Then
|©Ov/ (V'(R), M)| > M. (3.4.5)
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Step I(ii) is quite similar to the end of 831 Consider the definable set
V/(R). By the theorem of Pila-Wilkie ([48, Theorem 3.6]), there exist J de-
finable block families

BI c V'(R) x R, j=1,...,J

and ¢ > 0 such that for all M > 0, Oy (V'(R), M/4) is contained in the
union of at most cM®/® definable blocks of the form Bl (y e RY). By B435),
there exist a j € {1,..., J} and a block By~ := Bj of V'(R) containing at least
M?/% elements of Oy (V'(R), M'/4).

Let ¥ := %(C) N X(Z), which is by definition a definable set. Consider
X7 = ((p'm) x 1p)~H(BY) N (X x RY), which is a definable family since p/r is
R-algebraic.

By [69, Ch. 3, 3.6], there exists a number ng > 0 such that each fibre X7
has at most ng connected components. So the definable set 7=1(By/) NY has
at most ng connected components. Now

p'm((p'7) " (By )NENTw) = By Mp'n(2(C)NTw) = By n(V (R)NTy) = By/Nlys

by B41), BZ4) and the choice of F (remember that I'y = I'y» @ I'ys and

Fv = Fyn@Fyr). So there exists a connected component B of (p'm) "1 (By/)N

% such that p'm(BNTy) contains at least M?/8 /ng elements of Oy (V' (R), M/4).
We have BZ C unif ~*(Y) since B C %(Z) by (complex) analytic contin-

uation, and ZC o‘jleZ for any oy € BN T'y. But B is connected, and

therefore o‘jleZ = Z by maximality of Z and [49, Lemma 4.1]. So

B Cow StabW(R) (2)

Fix a ow € B N Ty such that p'r(ow) € Oy (V/(R), MY/*). We have
shown that p/m(BNTy ) contains at least M%/® /ng elements of Oy (V' (R), M1/4).
For any oy, € p'n(BNT)N Oy (V' (R), M/*), let o}, be one of its pre-

images in B N I'y. Then vy = o;vl oy is an element of I'yy N Stabyy (g)(Z)
and H(p'm(yw)) < M'/2. Therefore for M > 0, p'n(Tw N StabW(R)(Z))
contains at least M%/®/ny elements v, such that H(yy:) < M. There-
fore dim(p'm(Wy)) > O since it is an infinite set. So p'w(Wp) = V' since
dim(V’) = 1. But V' is an arbitrary 1-dimensional quotient of V' such that
p' (V1) = V'. Therefore VI < 7(Wy) = V.

Step II. We prove in this step that Vj is a MT(b)-module. This implies
that Wy is a MT(b)-subgroup of W by Proposition [LT.T9(2).

By definition of VT, Zy C VT(R) + Zy. By definition of Vp, Vo(R) + Zy C
ZV. Now the conclusion of Step I implies Vy = VI and ZV = Vo(R) + zy.
However Zy is complex, so Vy(R) is a complex subspace of V(R). Therefore by
considering the complex structure of V(R), we get that Vo (R) is a MT(b)(R)-
module. So Vp is a MT(b)-module.
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Step III. can be seen as an analogue to the proof of Theorem B2.8(1).
Consider a fibre of Z over a point v € 7(Z) such that 7: W (C )/ FYW(C) —
Lie(A) is flat at v (such a point exists by generic flatness). Let W be an

irreducible algebraic component of Z, such that dlm(Z ) = dlm(W) then
since 7 is flat at v,

dim(Z) = dim(n(Z)) + dim(Z,) = dim(x(Z)) + dim(W).

Consider the set F := WO(R)UO((C)W. It is semi-algebraic. The fact
W C Z implies that F C Z. So by [A9, Lemma 4.1], there exists an irreducible
algebraic subvariety of W (C)/F)W (C), say ﬁalg, which contains F and is
contained in Z. Since

7(F) = m(Wo)(R) +v = n(Z)

and every fiber of 7|z has R-dimension at least dimR(W), we have
alg

dim(Fly) > dim(7(F)) 4 dim(W) = dim(7(Z)) + dim(W) = dim(Z).

So F = Z since Z is irreducible. In other words, Z = Wy (R)Uy(C)Z, and Z,
is irreducible for any v € 7T(Z )

Next for any v € 7(Z), let W’ be an irreducible algebraic subvariety which
contains Z, and is contained in unif” Y(Y),, maximal for these properties.
Then W' is weakly special by Case ii. Consider F' := WO(]R)UO((C)W’. Let
Y be the irreducible component of unif ~*(Y') which contains Z, then W cy
and so F/ C Y by Lemma BZ2 But F’ is semi-algebraic, and hence by [
Lemma 4.1] there exists an irreducible algebraic subvariety of W(C)/FW (C),

say Falg, which contains F” and is contained in Y. So Z = Wy(R)Uy(C)Z, C
Fa’lg C wnif 7} (Y), and hence Z = Fa’lg — F’ by the maximality of Z. So
Zy = W’, ie.

For any v € 7(Z), Z, is a maximal irreducible algebraic

A.
subvariety of W (C)/FOW (C) contained in unif ~*(Y),. (346)

Now that Z, = W’ is weakly special, we can write Z, = U’(C) + % with
U' <Uand z € Z,. Then Uy < U’. The product W’ := WU’ is a subgroup
of W, and hence

Z = Wo(R)Uy(C)Z, = Wo(R)U'(C)z = W (R)U'(C)Z.
So Wy = W’ and Uy = U’. In other words,
Z =E = Wy(R)U(C)Z (3.4.7)

for some point z € Zo.



CHAPTER 3. THE MIXED AX-LINDEMANN THEOREM 97

Step IV. Let us now conclude that Z is weakly special.

First of all, Uy<tP by Proposition [LITI%2). Consider (P, X*) 2 (P, X*)/Uy,
then by definition Z is weakly special iff p(Z) is. Replace (P, Xt) (resp.
W, Z, Wo, %) by (P,X%)/Uq (vesp. W/Uy, p(Z), Wo /Uy = Vo, p(Z)), then
Vo is a subgroup of W and Z = Vo(R)z. Use the notation of JL.T.2H and
g3l and suppose z = (Zy, zy). By Proposition 21.2] 7 is weakly special iff
zZv € (Nw(Vo)/U)(R) iff T(Vp(R),Zy) = 0. We shall prove the last claim.

Define Z := wunif(Z), z = unif(2) and 2y = [r](z) € A, then n(Z) =
Vo(R) + zZy and [7](Z) = Ao + zy where Ag = T'y, \Vo(R) is an abelian subva-
riety of A. We can compute the fiber

Z,, = (umf(rWZ)) =3+ %\I/(FV,EV) +Ty modly.  (3.4.8)
2v

We have ¥(V(R), V(R)) C U(R) since ¥ is defined over Q. Let us prove
U(Ty,zy) C U(Q). Fix an isomorphism I'yy ~ Z™, which induces an isomor-
phism U(Q) ~ Q™. Suppose that there exists a v € U(T'y,zy) \ U(Q), then
at least one of the coordinates of w is irrational. Without loss of generality we
may assume that its first coordinate u; € R\ Q. Denote by U; the Q-subgroup
of U corresponding to the first factor of U(Q) ~ Q™, then

unif (EU + U, (R)) C Z—ZV
since {lu; mod Z|l € Z} is dense in [0,1). So Z,,, contains
unif (Zy + U1 (C)),

and so does Y;,, since Z C Y. Let v := vy + 2y € V(R), then zy + U;(C) C
unif ~*(Y),. However Zz, = Zy by @A) (recall that we have reduced to
Wy = Vp and Uy = 0), which contradicts B:46). Hence ¥(T'y,zy) C U(Q),
and therefore (1/2)¥(NTy,zy) C T'y for some N > 0 (since rankI'y < 00).
Now we can construct a new lattice I'};, with NT'y and I'y. T'yy, is of finite
index in I'yy. Replacing I'yy by I'fy, does not change the assumption or the
conclusion of Ax-Lindemann, so we may assume (1/2)¥(I'y,2zy) C I'y. Now
we can define C'°°-morphisms

fiAg+ 2y T

ag+zv — zy+ (1/2)\11(110, z\/) mod 'y

and

s: Ag + zv > E|A0+ZV

ag+ 2y — (EU + (1/2)\11(1)0,5‘/),0,0 + Zv) mod 'y

where vy is any point of V(R) such that unify (vo) = ap. But Z, is a single
point for all a € Ay + zy by BAF), so s is the inverse of [7]|z, and therefore
s is a holomorphic section of F|4,+., — Ao + zv. Locally on U; C Ag + 2y,
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s is represented by a holomorphic morphism U; — T, which must equal to
flu, by definition. Hence f is holomorphic since being holomorphic is a local
condition. So f is constant.

But ¥(0,zy) = 0, and therefore (1/2)¥(V5(R), zy) C T'y. But U(V5(R), Zv)
is continuous and ¥ (0, zy) = 0, so ¥(V5(R), zy) = 0. Hence we are done. O

3.5 Appendix

3.5.1 About the definability

This subsection is devoted to explain more details for the definability in §3.311.
For any connected mixed Shimura variety S = I'\X't associated with (P, X'™)
whose uniformization is denoted by unif: X* — S, we have the following
diagram by the reduction lemma (Lemma [[LT-35):

(P!, X') < (Go, D) x [](GSpay. )

4 -
(P.x*)

where Ker(p: P’ — P) C U’ is a Q-vector group of dimension 1 or 0. Hence
there exists a congruence group I C P’(Q) such that p(I") = I'. Now in
order to find a fundamental subset F for the action of I' on X'* such that
unif | £ is definable, it suffices to find a fundamental subset F’ for the action
of I” on X'T such that unif’ |7 is definable (here unif: X't — S’ := "\ &A'*).
By [53, 3.8], there exists a congruence subgroup I'l C (G x]Tj=1 GSpay)(Q)+

li

such that IV = ' N P/(Q)y and S’ gt = '\ (D* x HX;;) is a closed
immersion. Applying Lemma 3511 to

((P',X'%),T") = [ (Go,DF) x [[(GSpyy, A5), T |,

j=1

it suffices to find a fundamental subset F' for the action of I'f on D+ x
11 Xé; such that unif’ | 7+ is definable. Replacing I'! by a smaller congruence
subgroup does not change the conclusion, hence we may furthermore assume
't =Ty x H;Zl I'; such that Iy is a congruence subgroup of Go(Q)4+ and T';
is a congruence subgroup of the j-th GSp,,(Q)-factor. Hence we are reduced
to the situation as stated in §3.311.

Lemma 3.5.1. Consider the diagram

(P17X1+) — (P27X2+)

unify l unifs l

Sl = Fl\/’){l—F &L SQ = FQ\X;
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where Ty = T N Py (Q)y. If there exists a fundamental set Fo for the action
of Ty on X3 such that wnifs |7, is definable, then there exists a fundamental
set F1 for the action of I'y on Xt such that unify |z, is definable.

Proof. One possible way to prove this lemma is to repeat the proof of Ullmo
[64, Proposition 2.4] (remark that Théoréme 2.6 of loc.cit. holds for arbitrary
linear algebraic groups over Q). The proof we present here, which uses the
o-minimal theory, is due to Pila-Tsimerman [50] Section 4.2].

First of all, note that unif;*(S;) is the (not disjoint) union over v € TI'y
of vX;". Secondly consider unify*(S1) N F. Since unify |5, is definable, this
intersection has only finitely many connected components. Therefore there are
finitely many elements v; € I's (1 < j < m) such that

unify U ’yj_le NFy | =5
j=1

and thus

unify U Xl—r N ’}/jfg =51.

Jj=1

Define I'} to be the subgroup of 'y which stabilizes X;". Then I'; C T3.

Now for any x € XfL, there exists a v € I'y such that yx € F5 because Fy
is a fundamental set for the action of I'; on X,". As above this means that
there exists a 7 with 1 < 7 < m such that vz € 73-_1X1+ and 7X1+ = 73-_1X1+.
Therefore there exists a 7/ € T'y with v = ”yj_lfy’. Therefore *yj_lfy’x € FoN
*yj_l)(fr and so ¥z € v;F2 N X;". To sum it up, Xf = U;nzl()(f' N, F2)
contains a fundamental set for the action of I'y on X;". Now by picking coset
representatives for I'y in F%, we can find a finite union of elements o € I'y
such that (J;(eq Xf N A7) contains a fundamental set, which we call F, for
the action of I'y on X1+. Then F; is what we desire. [l

3.5.2 A simplified proof of flat Ax-Lindemann

We prove here Theorem B.T.H when E = T is an algebraic torus over C (which
corresponds to the case W = U) and when E = A is a complex abelian variety
(which corresponds to the case W = V). The proof is a rearrangement of
existing proofs (combining the point counting of Pila-Zannier [5I] and volume
calculation of Ullmo-Yafaev [67]). We use the notation of §3.41

|Case i : E—A.|In this case, W = V and T'y = &2, Ze; C Lie(A) = C" =
R?" is a lattice. Denote by unif: Lie(4) — A. Let Fy := X2 (-1, 1)e;, then
Fv is a fundamental set for the action of I'y on Lie(A) such that unif |z, is
definable. Define the norm of z = (21,41, ..., Tn, Yn) € Lie(A) = R?" to be

| 2 ll:= Max([a], |y, -, [2nl; [yn])-



100 3.5. APPENDIX

It is clear that Vz € Lie(A) and Vyy € T'y such that vy z € Fy,
H(w) <[ zv || (3.5.1)

Let wy := dz1 AdZ1 +...+dz, AdZ,, be the canonical (1, 1)-form of Lie(A) =
C™. Let p; (1 =1,...,n) be the n natural projections of Lie(4) = C™ to C. Let
C' be an algebraic curve of Z and define Cyy := {z € C| || z ||< M}. We have

/ wy < dZ/ dz; \dz; (352)
CNFyv i=1 i(Cﬂfv)

n

<d2/ dz Ndz; = d-O(1)
i—1 /pi(Fv)

and
/ wy = O(M?) (3.5.3)
Cum
with d = deg(C) by [27, Theorem 0.1].
By BL.I)

cuc |J (@©ny'A).

7V66(27M)

Integrating both sides w.r.t. wywe have
M? < #0(Z, M)

by (B2 and (53,

Let Staby (Z) == Ty N Staby ) (Z) . Now by Pila-Wilkie [§7, Theo-
rem 3.4|, there exists an semi-algebraic block B C 3(Z ) of positive dimen-
sion containing arbtrarlly many points vy € I'yy. We have BZ C unif” ( )
since (Z)Z C unif “}(Y) by definition. Hence for any v € I'y N B, Z C
'y;lBZ C unif *(Y), and therefore 7 = 'yleZ by maximality of Z. So
771 (BNTy) C Staby(Z)(Q), and hence dim(Staby (Z)) > 0. For any point
Z € Z, Staby (Z)(R) + 2 C Z. By |51l Lemma 2.3], Staby (Z)(R) is full and
complex. Define V’ := V/ Staby (Z) and I'y: := I'y/(Dy N Staby (2)(Q)), and
then A’ := V/(R)/T'y+ is a quotient abelian variety of A. Let Y’ (resp. Z') be
the Zariski closure of the projection of Y (resp. Z) in A’ (resp. V'(R)). We
prove that the image of Z'is a point. If not, then proceeding as before for
the triple (A", Y’, Z’) can we prove dlm(Stabvl (Z')) > 0. This contradicts the
definition (maximality) of Staby (Z). Hence Z is a translate of Staby (Z)(R).
So Z is weakly special.

|Case w: E=T. | Define the norm of zy = (zu,1,2v2, ..., Tum) € U(C) to
be

| zv ||:=Max(l| zva [, | zv2 I, - | 2O, |])-
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It is clear that for all xy € U(C) and for all v € Ty such that yyzy € Fr,
H(w) <[ zv || - (3.5.4)

Let w|r = dz; Adzy + ... + dzy A dZ,, be the canonical (1,1)-form of
U(C) ~C™. Let p; (i =1,...,m) be the m natural projections of U(C) ~ C™
to C. Let C be an algebraic curve of Z and define Cy; := {z € C| || z ||< M}.
We have

/ w|T dZ/ dz; N\ dz; (355)
CyunNFu

pi (CuNFu)
m

i—1 J{s€C|=1<MRe(s)<1,||s]|[<M}

where d := deg(C). On the other hand by [27, Theorem 0.1],
/ wlr = O(M?). (3.5.6)
Cm

By B.5.4)
Cy C U (CM ﬂ”y_lf)-
~EO(Z,M)

Integrating both side w.r.t. w|r and taking into account that
v-Cm C (¥C)an  if H(y) < M,
we have _
M? < #O(Z,M)- M
by B55) and (35.6). Hence #6(Z, M) > M.

Zar

Let Staby(Z) = I'y N Staby(c)(Z Z) . Now by Pila-Wilkie [48, Theo-
rem 3.6], there exists an semi-algebraic subset B C X(Z ) of positive dlmen—

sion containing arbtrarlly many points vy € I'y. We have BZ C unif” ( )
since $(Z)Z C unif ~*(Y) by definition. Hence for any vy € Ty N B, Z C
'y[}lBZ C unif_l(Y), and therefore Z = 'yUlBZ by maxunahty of Z. So
g1 (B NTy) C Staby(Z)(Q), and hence dim(Staby(Z)) > 0. Let U’ :=
U/ Staby(Z), Tyr == Ty /(Ty N Staby(Z2)(Q)) and T7 := U'(C)/Tyr. T
is an algebraic torus over C. Let Y’ (resp. Z') be the Zariski closure of
the projection of Y (resp. Z) in T” (resp. U’(C)). We prove that Z’ is
a point. If not, then proceeding as before for the triple (T’,Y’,Z’ ) we can
prove dun(StabU/( }) > 0. This contradicts the definition (maximality) of
Staby (Z). Hence Z is a translate of Staby (Z)(C). So Z is weakly special.
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Chapter 4

From Ax-Lindemann to André-Oort

4.1 Distribution of positive-dimensional weakly
special subvarieties

4.1.1 Weakly special subvarieties defined by a fixed Q-
subgroup

Let S = I'\X* be a connected mixed Shimura variety associated with the
connected mixed Shimura datum (P,XT) and let unif: X* — S be the
uniformization. Suppose that N is a connected subgroup of P such that
N/(W N N) — G is semi-simple. A subvariety of S is said to be weakly
special defined by N if it is of the form unif(i(¢»~1(y’))) under the notation
of Definition such that N = Ker(p). Let F(N) be the set of all weakly
special subvarieties of S defined by N. The goal of this subsection is to prove:

Proposition 4.1.1. If§(N) # 0 and N #4 P, then Uzcz(n)Z is a finite union
of proper special subvarieties of S.

Proof. Take any F' € F(N). Let F be a fundamental domain for the action I" on
XT. Suppose that 2/ € F is such that F' = unif(N(R)*Upx(C)2’). Consider
Q' := Np(N), the normalizer of N in P. By definition of weakly special
subvarieties, there exists (R', ZT) < (P, X") such that h, : Sc — P¢ factors
through R and N < R’. Hence R’ < Q'. Define G¢/ := Q'/(W N Q). Then
Go /(Z(G) N Gg) is reductive by [I5, Lemma 4.3 or [63 Proposition 3.28],
and hence G is reductive. Write

1—>WﬂQ’—>Q’Wi>GQ/—>1.

The group Go = Z(Gq )°GeyGY is an almost-direct product, where G
(resp. G{,) is the product of the Q-simple factors whose set of R-points is
non-compact (resp. compact). Let Gq 1= Z(Gq)°GE and then define @ :=
wé,l(GQ), then h, factors through Q¢ and R’ < @ by Definition [LT.12(4).
So N <@ and (Q,Y"), where YT := Q(R)"Ug(C)z’, is a connected mixed
Shimura subdatum of (P, X*). But then F' C unif(¥") C Uzegn)Z.

Define Q¢ = {z € X" |h, factors through Qc}, then Q(R)"Uq(C)Yg =
Pq. The discussion of last paragraph tells us that F' C unif(9)q) for any
F € F(N). On the other hand, for any z € 9¢, (Q,Y"), where Y :=
Q(R)TUg(C)z, is a connected mixed Shimura subdatum of (P, X*) and hence
unif (N (R)"Un (C)z) € F(N). Therefore unif(Pq) C UzeznyZ. To sum it
up, Uzegv)Z = unif(Yq).

103
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Now we are done if we can prove

Claim 4.1.2. The set Q¢ is a finite union of Q(R)*TUq(C)-conjugacy classes.
In other words, Qg is a finite union of connected mized Shimura subdata of
(P, XT).

Fix a special point z of X" contained in 9¢. There exists by definition a
torus 7, C () such that h, : S¢ — Q¢ factors through 7T, ¢. Furthermore, we
may and do assume that 7}, ¢ is a maximal torus of Q)c. Let 1" be a maximal
torus of P defined over Q such that T" > T,. Take a Levi decomposition

P =W x G such that T'< G < P. Then the composite S¢ LN Tyc < Pc i
Gc < Pc equals h, and is defined over R by Definition [LT.T2(1).

For any other special point y of Xt contained in )¢, there exists g € Q(C)
such that g7, cg™ = Ty c. The number of the Q(R)-conjugacy classes of

maximal tori of Qg defined over R is at most
#(Ker(H" (R, Now)(Tor)) — H'(R,Q))) < oo,

where Ng) (7% r) is the normalizer of T, g in Q(R). So it is equivalent to
prove the finiteness of the Q(R)*Ug(C)-conjugay classes in Q¢ and to prove
the finiteness of the Q(R)'-conjugacy classes of the morphisms S — T g.
But T, < T < G, so the Q(R)T-conjugacy classes of the morphisms S —
T, r equals the Go(R)T-conjugacy classes of the morphisms S — T, r. In
otherwords, it suffices to prove the claim for (G, X7). Now the result follows
from [I5] Lemma 4.4(ii)] (or [39, 2.4] or |66, Lemma 3.7]).

O

4.1.2 The distribution theorem

Now we use the result of the previous subsection to prove the following theo-
rem about the distribution of positive-dimensional weakly special subvarieties.
This is a direct generalization of the comparative result of Ullmo for pure
Shimura varieties [64, Théoréme 4.1].

Theorem 4.1.3. Let S =T\X™T be a connected mized Shimura variety asso-
ciated with the connected mized Shimura datum (P,X™). Let Y be a Hodge
generic irreducible subvariety of S. Then there exists an N <1 P such that for
the diagram

(P,xt) L (P X)) = (P,XT)/N
unif lunif/ s (411)
S [p] o SI

e the union of positive-dimensional weakly special subvarieties which are

contained in Y' := [p|(Y) is NOT Zariski dense in Y';

o Y =Y.
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Proof. Without any loss of generality, we assume that the union of positive-
dimensional weakly special subvarieties which are contained in Y is Zariski
dense in Y.

Take a fundamental domain F for the action of I on Xt such that unif | #
is definable. Such an F exists by §3.3/1.

By Reduction Lemma (Lemma [[.T.37), we may assume

)\ T
(P,XT) S (Go, D) x [[(Pag. Xsfy),
i=1

i.e. replace (P, X1) by (P’, X'T) in the reduction lemma if necessary. Identify
(P, X*) with its image under .

Let 7 be the set of the triples (U’, V', G’) consisting of an R-subgroup of
Ur, an R-sub-Hodge structure of Vg and a connected R-subgroup of Gg which
is semi-simple and has no compact factors. Let

g .= Gm(R)T X GSp2g(R) X G(R)a

then G acts on 7 by (9u,9v,9)- (U, V',G') := (guU’, gy V', gG'g™1). Also we
define the action of a triple (U'(R), V'(R),G'(R)) on X ~ U(C) x V(R) x X3
as (L32). This action is algebraic.

Lemma 4.1.4. Up to the action of G on T, there exist only finitely many
such triples.

Proof. First of all by root system theory and Galois cohomology, there exist
only finitely many semi-simple subgroups of Gg up to conjugation by G(R).
Secondly, V' is by definition a symplectic subspace of V. Hence a symplec-
tic base of V' extends to a symplectic base of Vg = Va4 r. But GSp,,(R) acts
transitively on the set of symplectic bases of Vo4, so there are only finitely
many choices for V'’ up to the action of GSp,,(R).
Finally, observe that for all (A1,...,;\,) € G, (R)" and (u1,...,u,) € U ~

2g>

()\1, veey /\r) . (ul, ...,ur) = ()\1’&1, ...,)\TUT)

Now (uq,...,u,) and (u},...,u)) are under the same orbit of the action of

Gy, (R)" if and only if wuf > 0 with wju, =0=u; =u; =0foralli=1,...r.
Hence up to the action of G,,(R)", there are only finitely many U’’s. O

Let 25(Y) (vesp. 20,(Y)) be the union of weakly special subvarieties of
positive dimension (resp. of real dimension [) contained in Y.

For any [ with 20;,(Y") # 0, there exist by definition (and Proposition [L24))
a subgroup N of P9 and a point x¢ € F such that unif(N;(R)* Uy, (C)xzo) is
a weakly special subvariety of dimension [ contained in Y. Note that the triple
(Un, &, VN, RS G?\}’Z“CR) € T, where G}?)CR is the product of the R-simple factors

of Gj\',hR which are non-compact. We say that two such subgroups N;, N; of

P are equivalent if (Un, g, VN, R, G]J(]’l“fR) = (UN[-Rv VN R G;’?C}R) By condition
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(4) of Definition [LTT2 unif(N;(R)* Uy, (C)zo) = unif(N](R)* Uy, (C)xo) iff
N; and N/ are equivalent.
Define

B(Ni,Y) = {(gu, gv,g,2) € G x F| uif((guUx, (C), gv Vi, (R), gGn, (R) g™ "))
is contained in Y and is not contained in Uy~; 20,/ (Y)}.

Then by analytic continuation,

B(Nl,Rvy) = {(gU,gV,ng) €gx ‘7:| unif |.7-'((9UUNL (R)ngvNL (R)79GNL (R)+ncg—1)m)
is contained in Y and is not contained in Uy ~; 20,/ (Y)}.
(4.1.2)

Lemma 4.1.5. For any (gu,gv,g9,z) € B(N,r,Y), define

Z := (quUni(C), gv Vi, (R), G, (R) g~ ).
Then unif(Z) is a weakly special subvariety of Y .

Proof. The set Zisa connected irreducible semi-algebraic subset of X+ which
is contained in unif~*(Y) (see the paragraph before Theorem B2 for the

definition of “connected irreducible semi-algebraic subsets of X1”). Let A
be a connected irreducible semi-algebraic subset of X which is contained

in unif ~!(Y") and which contains Z, maximal for these properties. By Ax-
Lindemann (here we use Theorem B1J), Z! is complex analytic and each of
its complex analytic irreducible component is weakly special. But 7 is smooth,
so Z is contained in one complex analytic irreducible component of Z 7" which
we denote by Z'. Now we have

dim(Z) — dim(N;(R) " Un, (C)z0) = dim(gGn, (R) g™ - z¢) — dim(Gw, (R) T zo,c)
= dim(StabGNl @)+ (To,c)) — dim(StabgGNl ®+g-1(zc))
20

because Stab,g, ®)+g-1(2c) is a compact subgroup of gGu, (R)*g=! and
Stabg , (r)+(%o,¢) is a maximal compact subgroup of G, (R)™. Hence

dim(Z') <1 = dim(N;(R)* Uy, (C)) < dim(Z) < dim(Z")

where the first inequality follows from the definition of B(N;r,Y"). Therefore
Z = 7' is weakly special. So unif(Z) is weakly special. O

Define

C(Nig,Y):={t:= (gUUNl (R), gvVn, (R), 9G N, (R)+ncg71)|(gy7 gv,g) € G such that
Jz € F with unif(¢-z) C Y and is not contained in Up~; 20,/ (Y)} °

Let 9; be the morphism from B(N;r,Y") to
(Gm (R)"/ Stabg,, ) Un, (R)) X GSpy, (R)/ Stabasp,, ) Viv, (R) X G(R) /Ne@ G, (R) ™,

sending (v, gv, 9, %) — (9uUn,(R), gv Va, (R), gGn,(R)*"°g™"). Then there
is a bijection between 1, (B(N;gr,Y)) and C(N;r,Y).
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Lemma 4.1.6. The set C(N;r,Y) (hence ¥i(B(Nyr,Y))) is countable.

Proof. By Lemma IEIT, wnif(guUn, (C), gy Vi, (R), G, (R) g ) - 2) is
weakly special. Hence by Proposition [[.2.4] there exists a Q-subgroup N’ of
Pder such that

(9uUN,(C), gv Vi, (R), G, (R) g ™) = (Un+(C), Vv (R), G (Rﬁc)- )
4.1.3
But gyUn, (R) = guUn, (C) NU(R) and Un+(R) = Un+(C) NU(R), so

(9uUn,(R), 9v Vi, (R), gG v, (R)*"g™") = (Un'(R), Viv (R), G (R)F7).
So C(Nyr,Y), and therefore ¢;(B(N;r,Y)) is countable. O
Proposition 4.1.7. For any [ > 0 and Ny,

1. the set C(Nir,Y) (hence ¥y (B(Niwr,Y))) is finite;

2. the set Uy (Y) is definable;

Proof. We prove the two statements together by induction on .

Step I. Let d be the maximum of the dimensions of weakly special sub-
varieties of positive dimension contained in Y. For any Ng, B(Ngg,Y) is
definable by (AI12), and hence 94(B(Ngr,Y)) is definable since 14 is alge-
braic. So 1q(B(Ngg,Y)), and therefore C(Nyr,Y), is finite by Lemma [L.1.6

Consider all the triples

W,(Y,T):={(U",V',G') € T| 3z € F with unif((U'(C), V'(R),G'(R)*")x)
weakly special of dimension d contained in Y'}.

By Lemma[AT4] there exist finitely many triples (U/,V/,G}) € T (i=1,...,n)

1) 7))

such that any t € 24(Y,7) is of the form g - (U], V/,G}) for some g € G and

i Ve

some 4. Furthermore, by Proposition [[.2.4] we may assume

U}V, G) = (Uns s Vv &, GR0R)
for some N/ < @ (i = 1,....,n). But we just proved that C'(N/p,Y) is finite
(Vi =1,...,n). Hence 24(Y,7) is a finite set. Again by Propostition [[2.4]
each triple of 24(Y,7) equals (UN/R,VN/R,G}‘,‘fR) for some N’ < P. We
shall denote this triple by N’ for simplicity.

Hence
wy(V)=J U wif(N'(R)TUn(C)2)
N'eW, (Y, 7) (1,1,1,z)
E€B(N{,Y)

is definable.
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Step II. For any | and N;, B(N;r,Y) is definable by (£1.2) and induction

hypothesis (2). Arguing as in the previous case we get that C(N; r,Y) is finite.
Define

WY, T):={(U,V',G') € T| Iz € F with unif((U’'(C), V'(R), G'(R)")x) weakly
special of dimension [ contained in Y but not contained in Uy ~; 20,/ (Y)}.

Arguing as in the previous case we can get that 20;(Y,7) is a finite set and
each element of it equals (Un' g, VN' R, Gj\',’i‘fR) for some N’ < P. Hence

o) =Jwmxuv (J U wif(V(R)*Un (C))

1>l >l N’ew, (Y, T) (1,1,1,x)
€B(Ng,Y)

is definable by induction hypothesis (2). O

From now on, for any connected subgroup NT of P, we will denote by
F(NT) the set of all weakly special subvarieties of S defined by the group N
(see the beginning of this section) and F(NT,Y) := {Z € F(NT) s.t. Z C Y}.
Remark that when proving Proposition .T.7, we have also given the following
description of W(Y) = UL, 253,(Y):

W(Y) = Uunif(N’ (R)T U (C)-orbits contained in unif ~* U U Z
g N’ ZEF(N',Y)
(4.1.4)

which is a finite union on N’’s and each N’ is of positive dimension. We have
assumed that 20(Y") is Zariski dense in Y (otherwise there is nothing to prove).
Therefore by (AI4]), there exists an Ny of positive dimension such that

U = (4.1.5)

ZeF(N1,Y)

is Zariski dense in Y.

We now prove Ny <l P. If not, then by Proposition 1.1l Uzcgz(n,)Z equals
a finite union of proper special subvarieties of S. The intersection of this
union and Y is not Zariski dense in Y since Y is Hodge generic in S. This is
a contradiction. Hence N; < P.

Consider the diagram

(P, X+) > (P = (P,XT) /N,

unifl unify l (416)
S [Pl] Sl

and let Y7 := [p1](Y), which is Hodge generic in S;. Since dim(Ny) > 0,
dim(S;) < dim(S). It is not hard to prove [p]~}(Y1) = Y by the fact [@IH).
If the union of positive-dimensional weakly special subvarieties contained in
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Y1 is not Zariski dense in Y7, then take N = N;. Otherwise by the same
argument, there exists a normal subgroup Nj o of P; such that dim(Ny2) >0
and Uzcg(n, ,,v;)Z is Zariski dense in 7. Let N := py (N1 2), then Ny <1 P.
Draw the same diagram (AI0) with Ny instead of Ny, then we get a mixed
Shimura variety S; with dim(S3) < dim(S;) and a Hodge generic subvariety
Y5 of S3. Continue the process (if the union of positive-dimensional weakly
special subvarieties contained in Y3 is Zariski dense in Y3).

Since dim(.S) < oo, this process will end in a finite step. Hence there exists
a number k£ > 0 such that the union of positive-dimensional weakly special
subvarieties contained in Y} is not Zariski dense in Y. Then N := Ny is the
desired subgroup of P. O

4.2 Lower bound for Galois orbits of special points

For pure Shimura varieties, Ullmo and Pila-Tsimerman have explained sep-
arately in [64, §5] [50, §7] how to deduce the André-Oort Conjecture from
Ax-Lindemann with a suitable lower bound for Galois orbits of special points.
In this section we prove that in order to get a suitable lower bound for Galois
orbits of special points for an arbitrary mixed Shimura variety, it is enough to
have one for its pure part.

In this section, we will consider mixed Shimura data (resp. varieties) in-
stead of only connected ones. See Definition

Let (P, X) be a mixed Shimura datum. Let 7: (P,X) — (G, Xg) be the
projection to its pure part. We use the notation of §L.T.2.5 In particular, we
fix a Levi decomposition P = W x G and an embedding (G, Xg) — (P, X) as
in [71] pp 6].

Let K be an open compact subgroup of P(Ay) defined as follows: for M > 3
even, Ky := MU(Z), Ky = MV(Z), Kw := Ky x Ky with the group law as
in L1250 K¢ :={g€ G(Z)|]g=1mod M} and K := Ky » K.

Let s be a special point of Mg (P, X') which corresponds to a special point
z € X. The group MT(z) is of the form wTw™" for a torus T C G and w €
W(Q). Let ord(w) € Z~¢ be the smallest integer such that ord(w)w € W(Z).
Define the order of s to be N(s) := ord(w).

Remark 4.2.1. It is not hard to show that if the fiber of S 1, Sq is a semi-
abelian variety, then N(s) coincides with the order of s as a torsion point on
the fiber (up to a constant).

Attached to (P, X) there is a number field F = E(P, X') called the reflex
field and Mg (P, X) is defined over E (cf. [53], 11.5]). We want a comparison
of |Gal(Q/E)s| and |Gal(Q/E)[x](s)|.

Define (G%, Xguv) = (wGw™ ! w™ - Xg), Kgw := GY(Af)NK and K[, :=
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w~ ' Kgww, then we have the following commutative diagram:
Mng (Gw, ng) — MK(P, X)

zl[w*w (]
My, (G, Xa) —* Mk, (G, Xe)

All the morphisms in this diagram are defined over E since the reflex field
of (P, X), (G,Xg) and (G¥, Xgw) are all E. Denote by s’ := [w™!:](s). Let
Tv = wTw . Let Ky := KNT"(Ay) and let Ky := K NT(Af). The
following inequality follows essentially from [66, §2.2] (note that we do not
need GRH for this inequality since [66, Lemma 2.13, 2.14| are not used!). We
refer to the Appendix of this chapter, or more concretely Theorem [Z.4.1], for a
more precise version.

|Gal(Q/E)s| = |Gal(Q/E)s'|

> B'D|Kp/Kf||Gal(Q/E)p(s")
= B | Kr/K7||Gal(Q/E)[7](s

| (4.2.1)
)l
for some B € (0,1) depending only on (P, X).

Write w = (u,v) under the identification W ~ U x V in §L.T20 All
elements of w™'Kw are of the form

(=u, —v, D@, ¢')(u, 0,1) = (v = (u = g'u) = ¥ (v,0),0" = (v = g'v),9')
with (u/,v",¢") € K. Since Ky = w™ ' Kpww = w™ ' Kw N T(Ay), this element
is in K/, iff

e ' =u—gu+¥v,v)e Ky
e v =v—gve Ky
o ¢ € T(As)N K¢ = Kr.
So
te Kr;
tew 'Kpow < v—tve Ky = MV(Z); (4.2.2)
u—tu+ V(v,v—tv) € Ky = MU(Z).
Lemma 4.2.2. |[K7/K7p| > ord(w) [T oraquw)(1 — %)
Proof. Let T" be the image of G,, r 'S w GR, then it is an algebraic
torus defined over Q by Remark [[TI3[(1). We always have 77 < T. If T" is

trivial, then P = G is adjoint by reason of weight, and ord(w) = 1. If not,
T ~ Gy, and

T'(M) :={t' € T'(Z)|t' = 1 mod (M)} C KgNT(Af) = Kr.
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So
T'(M)/(T' (M) Nw ' Kpww) — Kr/w ' Kpww.

Hence it is enough to prove that LHS is of cardinality> ord(w).
Since 7" acts on V and U via a scalar, ¢’ € T'(M) Nw™ ! Krww iff

1.t/ e T'(M)

2. v—tve MV(Z)

3. u—tue MU(Z).

Let t' € T'(M) C T'(Z) = Z*. Suppose ord(w) = [[p" and M = []p™>.
If n, = 0, then condition (2) and (3) are automatically satisfied. If n, > 0,
then condition (2) and (3) imply that ¢, = 1+ an, ym,p"* " + ... € Zs, hence

IT'(Z,) N T (M)/(T'(Z,) N T'(M) Aw™ K )| = p"(p — 1), (4.2.3)

To sum up,

T (M)/(T' (M) Nw™ Krww)| = ord(w) [ (1~ L. (4.2.4)

plodw) P

O

Theorem 4.2.3. For any € € (0,1), there exist a positive constant Ce (de-
pending only on (P, X) and €) such that

|Gal(Q/E)s| > C-N(s)'~°|Gal(Q/E)|[x](s)].
Proof. We have proved in Lemma E2.T]
plord(w) <= K1, # K1, (4.2.5)
Hence denoting by (M) := |{p, p| M }| for any M € Z, we have by LemmalZ21]
— 1 —
(Gal@/E)s| > BNIN(s) [ (1= -)IGal@/E)p(s)]
pIN(s)

by Lemma [£.2.21 Now the theorem follows from the basic facts of elementary
math:

Ve € (0,1), there exists C. > 0 such that BENVEIN(s)* > C..  (4.2.6)

1
Ve € (0,1), there exists C. > 0 such that N(s)° H 1-=)=CL. (42.7)

NGy P
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Corollary 4.2.4. For A an abelian variety over a number field k C C andt a
torsion point of A(C), denote by N (t) its order and k(t) the field of definition
of t over k.

Let g,d € Ny and lete € (0,1). There exists ¢ > 0 such that for all number
fields k C C of degree d over Q, all g-dimensional CM abelian varieties A over
k and all torsion points t in A(C),

[k(t) : k] > eN(t)' =,

Proof. (compare with [59]) By Zarhin’s trick, it suffices to give a proof for A
principally polarized. Such an A can be realized as a fiber of 2y (4) — A, (4),
and any torsion point ¢ of A is a special point of ,(4). Now this result is a
direct consequence of Proposition O

Remark 4.2.5. The lower bound of the Galois orbit of a special point for pure
Shimura varieties is given by [64), Conjecture 2.7]. It has been proved under the
Generalized Riemann Hypothesis by Ullmo-Yafaev [66]. For the case of Ag,
it is equivalent to the following conjectural lower bound (suggested and proved
for g =2 by Edizhoven [19,[18]): suppose that x € Ag is a special point. Let
A, denote the CM abelian variety parametrised by x and let R, be the center
of End(A,), then there exists 5(g) > 0 such that

|Gal(Q/Q)z| >, | disc(R,)|*9). (4.2.8)

For their equivalence see [62, Theorem 7.1]. The best unconditional result is
given by Tsimerman [62, Theorem 1.1]: A28 is true when g < 6 (and for
g < 3 by a similar method in [68]).

Hence for a mized Shimura variety of Siegel type of genus g and any special
point x, Theorem [J.2-3 tells us that if [0, Conjecture 2.7] is verified for the
pure part, then for any e € (0,1), there exists 6(g) > 0 such that

Gal(@/Q)x| >4, N(z)'~¢| disc(Rpra))]*@.

4.3 The André-Oort conjecture and its weak form

4.3.1 The André-Oort conjecture

Theorem 4.3.1. Let S be a connected mixed Shimura variety of abelian type
(i.e. its pure part is of abelian type). Let Y be an irreducible subvariety of S
containing a Zariski-dense set of special points. If [EZI)) holds for the pure
part of S (this is true if we assume GRH), then'Y is special.

In particular, by [63, Theorem 1.1], the André-Oort Conjecture holds un-
conditionally for any mixed Shimura variety whose pure part is a subvariety

of Ag.
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Proof. Suppose S is associated with (P, XT). Replacing I by a neat subgroup
does not change the assumption or the conclusion, so we may assume that
I' ={y € P(Z)]y = 1 mod M} for some M > 3 even. Replacing S by the
smallest connected mixed Shimura subvariety does not change the assumption
or the conclusion, so we may assume that Y is Hodge generic in S. Since Y
contains a Zariski-dense set of special points, we may assume that Y is defined
over a number field k. Suppose that Y is not special.

If the set of positive-dimensional weakly special subvarieties of Y is Zariski
dense in Y, then let NV be the normal subgroup P as in Theorem .T.3l Con-
sider the diagram (@I, then Y is special iff Y’ := [p](Y) is. The connected
mixed Shimura variety S’ is again of abelian type. Replacing (S,Y) by (5',Y”),
we may assume that the set of positive-dimensional special subvarieties of Y
is not Zariski dense in Y.

Now we are left prove that the set of special points of Y which do not lie
in any positive-dimensional special subvariety is finite.

By definition, there exists a Shimura morphism (G, X&) — [];_, (GSpgg) , H;(i))
(the upper-index (i) is to distinguish different factors) such that G — [];_, GSpgig)
has a finite kernel (contained in the center) and X7 — [],_, H;(i). Therefore
under Proposition [[33] we can identify X* as a subspace of U(C) x V(R) x

HF". Then any special point is contained in U(Q) x V(Q) x (H" N M2,4(Q)")
and hence we can define its height (for Q-points, see [12, Definition 1.5.4 mul-
tiplicative height]).

Now take F as in §3.3l1. For any special point z € S, take a representative
Z € unif () in F, then by [49, Theorem 3.1, H(Zg:) < | disc(Rpzr)(a),)|Pe
for a constant B, (Vi =1, ...,7). By choice of F, H(zv), H(Zy) < N(z) (see
Remark [[34). If (A2:]) holds, then by Proposition .23

Gal(Q/k)z| >, H(Z)*W

for some €(g) > 0. Hence for H(z) > 0, Pila-Wilkie [48, 3.2| implies that
Jo € Gal(Q/k) such that o(x) is contained in a connected semi-algebraic

subset Z of unif ~H(Y') N F of positive dimension. Let Z’ be an irreducible

component of unif(Z) containing unif (o (z)). Theorem B4 tells us that Z’ is
weakly special. Hence o~1(Z’) is weakly special containing a special point z,
and therefore is special. But dim(Z’) > 0 since dim(Z) > 0. Hence o=1(2’) is
special of positive dimension. To sum up, the heights of the elements of

{Z € unif "' (Y) N F special and unif(Z) is not contained in any

positive-dimensional special subvariety }

is uniformly bounded, and hence this set is finite by Northcott’s theorem [12]
Theorem 1.6.8]. O
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4.3.2 The weak form of the André-Oort conjecture

By the proof of Theorem .3.1] we can see that the only obstacle left to claim
the whole André-Oort conjecture for mixed Shimura varieties of abelian type is
the lower bound ([L2.8)). However if we consider a weaker version of the André-
Oort conjecture, this obstacle is removed by a series of work of Habegger-Pila
[24] and Orr [43]. Thus by a similar proof to Theorem 31l we can prove
the following theorem unconditionally. This theorem generalizes the previous
work of Edixhoven-Yafaev [72] 20] (for curves in pure Shimura varieties) and
Klingler-Ullmo-Yafaev [66, [30] (for pure Shimura varieties). Its p-adic version
for 24 has been proved by Scanlon [58] based on the result of Moonen for A,

[40].

Theorem 4.3.2. Let S be a connected mized Shimura variety whose pure

part Sg is a subvariety of A, for some g. Denote by S LN Sg. LetY

be an irreducible subvariety of S and let a be a special point of A, whose
corresponding abelian variety is denoted by A,. Consider the set

! = {s € S special such that Afr]s 18 isogenous to Ag, where App

is the abelian variety represented by [w]s}.

IfYNX, =Y, thenY is a special subvariety.

Proof. We may assume a € [7]Y. Suppose S is associated with (P, XT). Re-
placing I' by a neat subgroup does not change the assumption or the conclusion,
so we may assume that I' = {y € P(Z)|y = 1 mod M} for some M > 3 even.
Replacing S by the smallest connected mixed Shimura subvariety does not
change the assumption or the conclusion, so we may assume that Y is Hodge
generic in S.

Let (G, XJ%) := (P,X")/R.(P). By TheoremE1.3] such a group N (which
may be trivial) exists: N is the maximal normal subgroup of P such that the
followings hold:

e there exists a diagram of Shimura morphisms
(PXF)/N Zo (G, X ) = (P, X"%) [Ru(P)

unif/G l

‘S/G

(P,xt) L (PLX)

-~

unifl unif’

IS [P] R

[*]

il

e the union of positive-dimensional weakly special subvarieties which are
contained in Y’ := [p](Y') is not Zariski dense in Y;

o Y =[] '(Y").
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Suppose that Y is not special. Then Y” is not a special subvariety of S’.
On the other hand, Y is defined over a number field since it contains a Zariski
dense subset of special points.

Define Wy := Ru(N) < W := Ry (P) and Gy := N/Wxn <G < GSp,,.
The reductive group G decomposes as an almost direct product Z(G)°H;...H,
with all H;’s simple. Without any loss of generality, we may assume that
H,,...,H; are the simple factors of G which appear in the decomposition of
Gy. Define G3; := Hj41...H,. Define T := MT(a), then T is a torus since a
is a special point of A,.

Let G; := GxT. This is a subgroup of G (and therefore a subgroup of
GSp,,). Moreover, it defines a connected Shimura subdatum (Gl,ngl) of
(GSpy,, Hf') and hence its associated connected Shimura subvariety S, of
A, such that a € Sg,. Recall that (P/,X’") = (P,X")/N and (G, X;") =

(G, X%)/Gn. Therefore the natural Shimura morphisms
(G1, X5,) = (G, Xd) » (G, X))

identify Xg and X5

Consider the connected mixed Shimura datum (P, XT). Then W := R, (P)
is a Gi-module such that the action of G; on W induces a Hodge-structure
of type {(—1,0),(0,—1), (=1, —1)} on Lie W. Therefore by Proposition [[.T.23]
there exists a connected mixed Shimura datum (P, X;") such that P = W x
G1and (G, Xe,) = (P, X,7)/W. Now (P, X;") is a connected mixed Shimura
subdatum of (P, XT). Since N <1 P, we have Wy <1 P;. Now we have the
following diagram of Shimura morphisms:

(Po, X5) o= (P, X)W 4o (P, &) < (PLAT) Lo (P, X'F) = (P, X*)/N

lunifz l l unif’

S5 (0] S (7] g [P] g/

Then the map pojop’~': (Py, X57) — (P, X'*) is well-defined and is a Shimura
morphism. Hence Y” is a special subvariety of S iff Y := ([p]o[j]o[p/] 1)1 (Y”)
is a special subvariety of S5. Hence it suffices to prove that Y5 is special. But
X; and X'T are identified under p o j o p~! by the discussion in the last
paragraph, so the union of positive-dimensional weakly special subvarieties of
Y5 is not Zariski dense in Y3 by choice of Y'. Therefore we are left to prove
that the set of special points of Y5 which do not lie in any positive-dimensional
special subvariety is finite. Remark that Y5 is defined over a number field
(which we call k) since Y is.

Take the pure part of the diagram above, we get the following diagram of
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Shimura morphisms between pure Shimura data and pure Shimura varieties:

(G2, XZ) 49 (Gr. &g <5 (G, x%) 2% (@, x%)

R N

Se, lpc] Se, lic] S [pc] SIG

~

Therefore Xcz can be seen as a subset of X&L , and hence of ]HI;‘. Denote by
[ma]: So — Sg,. Let

¥ .= {t € Sy special such that Afr,)¢ 18 isogenous to A,, where A,

is the abelian variety represented by [ma]t}.

Since Y N¥/, =Y, we have Y’ N [p|(X/) = Y’. But then by the identification
of X;7 and X', we get that

VNSl =Y.

For any t € ¥, take a representative t € unif, ' () in the fundamental set
F asin §831. Then t = (ty,tv,tq) € U2(Q) x V2(Q) x (H N My, (Q)) and
hence we can define its height. By choice of F, both H(ty) and H(ty) are
bounded by N(t) which is defined as in the paragraph above Remark [L21]
(see Remark [[34). But up to constants depending only on a (or more ex-
plicitely, only on H(@)), H(tg) is polynomially bounded from above by the
minimum degree of the isogenies A.,;; — A,. This follows from [43, Proposi-
tion 4.1, Section 4.2]. But the minimum degree of the isogenies A, — Aq is
polynomially bounded from above by |Gal(Q/k)[m2]t|. This follows from [43]
Theorem 5.1]. Hence by Theorem 23]

|Gal(Q/k)t| >y H(E)"9

for some p(g,a) > 0. Hence for H(t) > 0, Pila-Wilkie [48, 3.2] implies that
there exists ¢ € Gal(Q/k) such that c?(?) is contained in a connected semi-
algebraic subset Z of unify *(Yz) N F of positive dimension. Let Z’ be an
irreducible component of unif(Z) containing unif (c%) Theorem BT tells
us that Z’ is weakly special. Hence o~1(Z’) is weakly special containing a
special point £, and therefore is special. But dim(Z’) > 0 since dim(Z) > 0.
Hence o~1(Z') is special of positive dimension. To sum it up, the heights of
the elements of

{t € unif; ' (Y3) N F special and unify(£) is not contained in

a positive-dimensional special subvariety of So}

is uniformly bounded from above. Therefore this set is finite by Northcott’s
theorem. (|
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4.4 Appendix: comparison of Galois orbits of
special points of pure Shimura varieties

Let (G, Xg) be a pure Shimura datum satisfying

Z(G)° is an almost direct product of a Q-split torus Z¢

with a torus of compact type Z¢ defined over Q (SV5)

In this case, G is an almost direct product of Z¢, with G¢ := ZéGdcr. Let
E = E(G, Xg) be its reflex field and let K’ = [[, K}, C K =[], K, be two
neat open compact subgroups of G(Ay). We have a natural morphism

P MK/(G, Xg) — MK(G, Xg). (441)

By [37, Theorem 5.5, Proposition 5.2], Mk/ (G, Xg), Mk (G, Xg) and p can all
be defined over E.

Let s be a special point of My (G, Xg), then s € Mg/ (G, Xg)(E). The
goal of this section is to compare |Gal(E/E)s| and |Gal(E/E)p(s)|. Let T :=
MT(s) be the Mumford-Tate group of s. Define K7 := K' N T(Ay) and
Kr = KNT(Af). Then Ki = [[, K7, and Kr = [[, K1p. Now we can
state our theorem:

Theorem 4.4.1. There exists a constant B € (0,1) depending only on (G, X)
such that - ‘ -
(Gal(B/E)s| > B'D|Kr | Kzl|Gal(B/ E)p(s)]

where i(T) = |[{p: K1 # K1, }|-

Proof. This is a direct consequence of Lemma 44 (LZ2]), Lemma 206 and
Lemma [1.47 O

Remark 4.4.2. This theorem has essentially been proved by Ullmo-Yafaev [66,
§2.2/: the authors proved this result for a less general (G, Xg) and a particular
K, but their proof also works for our (G, Xg) and arbitrary K as long as
it is neat. To make the demonstration more clear, we summarize their results
and arguments and see how they apply to our (G, Xg) and a general Kr.

Lemma 4.4.3. For any pointy € Mk (G, Xg), K acts transitively on the right
on p~1(y) and the stabilizer of any point of p~1(y) is K'. By consequence p is
étale of degree |K/K'|.

Proof. (cf. [66l Lemma 2.11]) Let y = (z,g) be a point of Mg (G, X), then
p~(y) = (x,9K). We first prove that Va € K,

(x,ga) = (x,gak) in Mk/(G,X) < ke K’

The direction <= is trivial. Now let us prove =. Suppose

(z, ga) = (2, gak) € M/ (G, X)
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with k& € K. There exist ¢ € G(Q) and ¥ € K’ such that z = ¢z and
ga = qgakk’. The second condition implies ¢ € gKg~*.

Define G’ := G/Z¢,, then (G, Xq)/ZE = (G, Xg) is a Shimura datum such
that Z(G’)(R) is compact. Now we have = gz and § € gKg~—! where we
add ~ to denote elements and subsets of G’. The set gKg—! is a neat open
compact subgroup of G'(Ay) and 7 € G'(Q). Since Z(G')(R) is compact,
Stabg (k) () is compact (see e.g. [66, Remark 2.3]). But G'(Q) NgKg~1!is
a lattice of G'(R), so Stabg/m)(z) N G'(Q) N gK g1 is finite. Furthermore
the latter intersection must be {1} since gKg~! is neat. Therefore as an
element of the latter intersection, § = 1. Hence ¢ € Z&(Q) ~ (Q*)™. This
implies also ¢ € Z&(Af) NgKg~', which is a neat open compact subgroup of
Z¢(Ay) ~ (A%)". But the intersection of (Q*)" with any neat open compact
subgroup of (A%})" is trivial, hence ¢ = 1.

Now ga = gakk’ implies k = (k')~! € K’. So K acts transitively on the
right on p~!(y) and the stabilizer of any point of p~1(y) is K'. O

Lemma 4.4.4. |Gal(E/E)s| > |Gal(E/E)s N p~tp(s)| - |Gal(E/E)p(s)|.

Proof. (cf. [66, Lemma 2.12]) Because p is defined over E, |Gal(E/E)s N
p (o (p(s)))] is independent of ¢ € Gal(E/E). This allows us to conclude. [

To give a lower bound for |Gal(E/E)s N p~'p(s)|, we shall work with the
Shimura subdatum (7, z) of (G, X). The Shimura subdatum (7', ) is defined
as follows: T'= MT(s). By |38, Lemma 5.13], Mx/(G, Xg) = [[T(9)\X™,
where I'(g) = G(Q)4+ NgK'g™! is a congruence subgroup of G(Q). Choose
x € X such that s is the image of x under the uniformization. The Shimura
datum (7, z) still satisfies (SV5) (see e.g. [66], Remark 2.3]).

Let F be the reflex field of (T, x), then F' is a finite extension of E. Define

p's Mgy (T, x) — Mg, (T, x),
which is the restriction of p, then p’ is defined over F. We have
|Gal(E/E)s N p~'p(s)| > |Gal(E/F)s N p'~1p/(s)] (4.4.2)

Let mo(Mp (T, x)) be the set of geometric components of My (T',z). Re-
call that

mo(Mr (T, z)) = T(Q)4\T(Ag)/ K.
This is a finite abelian group. The action of Gal(E/F) on mo(Mg; (T, x)) is
given by the reciprocity morphism

r: Gal(E/F) — mo(Mk, (T, 7).

Let us describe this action more explicitly. Denote for any o € T'(Ay) by (z, «)
the image of (2, ) in My (T, x). It is a connected component of My (T, x).
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As sets we have the following identification:

{allaeT(A)} = mo(Mi,(T,2))

(J?,Oé) — o}

Let 0 € Gal(E/F) and let t € T(Ay) such that = r(c), then Vo € T(Ay),

o((z,a)) = (z,ta) = (z, at). (4.4.3)
Recall the following result from Ullmo-Yafaev [66, Proposition 2.9]:

Lemma 4.4.5. There exists a positive integer A depending only on (G, X)
such that Ym € T(Ay), the image of m* in mo(Mg; (T, x)) is r(o) for some
o c Gal(E/F).

Proof. |66, Proposition 2.9], which follows from Lemma 2.4-Lemma 2.8 of
loc.cit., announces this result when Z(G)(R) is compact. However the only
role this hypothesis plays is to guarantee that T'(Q) is discrete (hence closed)
in T(A) in Lemma 2.8 of loc.cit.. Our hypothesis for Z(G) at the beginning
of this section implies that T is an almost product of a Q-split torus with a
torus of compact type defined over Q (see e.g. [66, Remark 2.3]), and hence
T(Q) is discrete in T'(Af) ([38, Theorem 5.26]). O

Lemma 4.4.6. Let ©4 be the image of the morphism k — k“ on Kr /K.
We have

1. ©4-sC Gal(E/F)snp'~tp'(s);
2. |Gal(E/F)snp'~tp'(s)| = |©al.
Proof. (cf. [66, Lemma 2.15 & 2.16])

1. We have p'(©4 - s) = p/(s). So ©4-s C p'~1p'(s). Moreover similar

/—1 1

to Lemma 43 Ky /K}, acts simply transitively on p'~'p/(s). For any

/—1 1

T,a) €p s) and k € Kr/K’., this action is given by
P T

(x, )k = (x, ak). (4.4.4)

Let m € Kr, then the image of m* in mo(Mk; (T, )) is (o) for some

o € Gal(E/F) by Lemma It follows that the image of ©4 in
mo(Mk, (T, ) = T(Q)+\T (Ay)/ K7 is contained in the image of Gal(£/ F).
So for s = (x, 3), we have © 4 -s C Gal(E/F)s by ([@44) and (EZL3). To
sum it up,

O4-5C Gal(E/F)snp~p/(s).
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2. By (1) we have |Gal(E/F)s N p'~1p/(s)| = |©4 - s|. Moreover we have

|Kr/K7|

|
©4- ]
[eal

"= ()| = |(Kz/K7) - ] <

and
|Kr/K7| ="~ ()]

by the same argument for Lemma [£.43] These three (in)equalities yield
the desired inequality. Remark that we have also proved |© 4 - s| = [©4].

O

Lemma 4.4.7. There exists an integer r > 0 depending only on (G, X) such
that 1
|©4] > H E'KT;P/KCITml'
{p:Krp#Kz )

Proof. (cf. [66] Lemma 2.18) Since Kr/K7 =[], K7,/ K7 ), we have

Oa= J[ Oan

{p3KT,p7éKér*,p}

Let Ly be the splitting field of T and let d := dim(7"). Then [Ly : Q] is the size
of the image of the representation of Gal(E/Q) on the character group X*(T')
of T. This is a finite subgroup of GL4(Z) and hence its size is bounded from
above in terms of d only. But d is bounded from above in terms of dim(G)
only, so [Lt : Q] is bounded from above in terms of dim(G) only.
Using a basis of the character group of 7" one can embed T" into Resy, .. /oG, 1.1

Via this embedding, K and K. are both subgroups of the product of (Z, ®
Or.)*. The group (Z, ® Or,)* is the direct product of the groups of units of

E,, completion of F at the place v with v|p. By the local unit theorem, the

group of units of such an FE, is a dirct product of a cyclic group and Z[ v Q]

It follows that there exists a constant r depending only on (G, X') such that
Kr,/Kf, is a finite abelian group which is the product of at most 7 cyclic
factors. Therefore the size of the kernel of the A-th power map on Kr,/K7,
is bounded by A", i.e.

1
Onp > = |Krp/ K.



Chapter 5

From André-Oort to André-Pink-Zannier

5.1 Main results

5.1.1 Background

In the last chapter we have studied the André-Oort conjecture, which is a
subconjecture of the Zilber-Pink conjecture. In particular we have proved a
weaker version of the André-Oort conjecture (Theorem E32)). This weaker
version corresponds to another important case of the Zilber-Pink conjecture,
which we call the André-Pink-Zannier conjecture. The goal of this chapter is
to study this André-Pink-Zannier conjecture.

In the whole chapter, we restrict to the case 2, I, Ag.

Conjecture 5.1.1. Let Y be a subvariety of A,. Let s € ™Ay and X be the
generalized Hecke orbit of s. If Y NX =Y, then Y is weakly special.

Several cases of this conjecture had been studied by André before its final
form was made by Pink [54] Conjecture 1.6]. It is also closely related to a
problem (Conjecture B.1.3) proposed by Zannier. Pink has also proved [54]
Theorem 5.4] that Conjecture BTl implies that Mordell-Lang conjecture.

ConjectureB. I Tlfor Ay, the pure part of 2, has been intensively studied by
Orr [43] [42], generalizing the previous work of Habegger-Pila [24, Theorem 3]
with the Pila-Zannier method.

The set ¥ has good moduli interpretation: by Corollary [5.2.3]

3 = division points of the polarized isogeny orbit of s
= {t € Ay| In € N and a polarized isogeny (5.1.1)
f: (Q[gﬁ[ﬂ.]s, )\[ﬂ.]s) — (Q[gy[ﬂ.]t, /\[ﬂ.]t) such that nt = f(s)}

There are authors who consider isogenies instead of polarized isogenies.
However this does not essentially improve the result because of Zarhin’s trick
(see |42, Proposition 4.4]): for any isogeny f: A — A’ between polarized
abelian varieties, there exists u € End(A*) such that f*owu: A* — A" is a
polarized isogeny. See §5.5] for more details.

Although Conjecture B.IT] and the André-Oort conjecture do not imply
each other, they do have some overlap, which for 2, is precisely Theorem .32
when § = 2,.

We shall divide Conjecture BT Tlinto two cases: when s is a torsion point of
A, (x)s and when s is not a torsion point of 2, (r,. The diophantine estimates
for both cases are not quite the same.

121
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5.1.2 The torsion case

When s is a torsion point of 2, ., this conjecture is related to a special-
point problem proposed by Zannier. We define the following “special topology”
proposed by Zannier:

Definition 5.1.2. Fiz a point a € A,. Then a corresponds to a principally
polarized abelian variety (Aq, Aa) of dimension g.

1. We say that a point t € Ay is Ag-special (or a-special) if there exists an
isogeny A, — Ug (x)¢ and that t is a torsion point on the abelian variety
Ay (- We shall denote by X!, (or ¥ when there is no confusion) the set
of a-special points.

2. We say that a pointt € Uy is (Aa, Aa)-special if there exists a polarized
isogeny (Aa;Aa) — (g [x)t> A\x)e) and that t is a torsion point on the
abelian variety g (.. We shall denote by X, (or X when there is no
confusion) the set of (Ag, Ag)-special points.

3. We say that a subvariety Z of U, is a-special if Z contains an a-special
point, [T]Z is a totally geodesic subvariety of Ay and Z is an irreducible
component of a subgroup of [7]~1([7]2).

In view of Proposition [L2Z.TH every a-special subvariety is weakly special.
The following conjecture is proposed by Zannier.

Conjecture 5.1.3. Let Y be a subvariety of Uy and let a € Aq. If Y NY! =
Y, then Y is a-special.

By (BII), Conjecture B.I.T] when s is a torsion point of 2y (55 is equiv-
alently to a weaker version of Conjecture BI3] i.e. replace X! by X, in
Conjecture However by [42, Proposition 4.4], Conjecture 5.1.T] for 24,
also implies Conjecture for ™A,. Our first main result is:

Theorem 5.1.4. Conjecture [7.1.3 holds if dim([7](Y)) < 1.

The proof of this theorem will be presented in §5.31 Remark that by Corol-
lary [2206] the case where dim([7]Y") = 0 (i.e. [7](Y) is a point) is nothing but
the Manin-Mumford conjecture, which has been proved by many people (the
first proof was given by Raynaud).

5.1.3 The non-torsion case

The situation becomes more complicated when s is not a torsion point of

2y (x)s- In this case we prove:

Theorem 5.1.5. Conjecture 511l holds if s € A4(Q) and Y is a curve.
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As we have seen in Theorem [[LI.34 2, is defined over Q. Hence it is
reasonable to talk about its Q-points. Moreover, if s € ,(Q), then its gener-

alized Hecke orbit X is also contained in 2,(Q) by Corollary 5.2.61 Hence if
Y NX =Y, then Y itself is defined over Q. The proof of this theorem will be

presented in §5.41

5.2 Generalized Hecke orbits in 2,

In this section, we discuss the matrix expression of a polarized isogeny and
then compute the generalized Hecke orbit of a point of 2.

5.2.1 Polarized isogenies and their matrix expressions

Let b € Ay. Denote by A, = 2, and denote by \,: A, — A) the principal
polarization induced by £4;. Then the point b corresponds to the polarized
abelian variety (Ap, \y). Let B be a symplectic basis of Hi(Ap, Z) w.r.t. the
polarization \,. Let be H; be the period matrix of A, w.r.t. the basis B. In
this subsection, we fix B to be the Q-basis of Va,.

Consider all points b" € A, such that there exists a polarized isogeny

I (Ap, o) = (A, \y)

where (A, \p) = (U, Ay — A, induced by £,). Let B’ be a symplectic
basis of Hy(Ay,Z) w.r.t. the polarization Ay and let b’ € H; be the period
matrix of Ay w.r.t. the basis B’.

Definition 5.2.1. The matriz o € GSpy,(Q)" N Mayx24(Z) associated to
f*: Hl(Ab, Z) — Hl(Ab/,Z)

in terms of B and B’ is called the rational representation of f w.r.t. B
and B'.

The periods band b are related by « in the following way:

A B > and b,b’ € HF C Myyxg(C).

7 t.~/: 77 ™ -1 t_
b=a"b =(Ab'+B)(Cb'+D)" ", where o (C D

Under the Q-basis B of Va,, the matrix o' corresponds to the dual isogeny of
f, i.e. the following diagram commutes:
t ~ ~ ~
(X;;;,a)g’ U (X;;;,a)57 (’L),b/) = (atvvatbl) = (atvvb)

unifl unifl

Ay Ay . (5.2.1)

)\bll /\b/ll

v 1Y v
A} A
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)1/
However, since f is a polarized isogeny, f*£4, = Efgdegf) ’. So the
following diagram commutes:

Ay
[(deg f)l/g]okbl Ny lz . (5.2.2)

f\/
Ay ——— Ay

Ay

Therefore by (2Z1)) and (22)), we get the following commutative diagram:

(deg /)9 (")~
(Xl ——— (Xyp.)i
unifl unifl . (523)
Ab f Ab’

Definition 5.2.2. The matriz (deg f)'/9(a')~" is called the matrix expres-
ston of [ in coordinates B w.r.t. B'.

Remark 5.2.3. 1. The two bases B and B’ play different roles for the ma-
triz expression of f: the matriz expression of f depends on both bases
because it depends on the period matrices determined by these bases, but
its dependence on B is more important because we fix B to be the Q-basis
for Vag when writing the matriz expression.

2. It is good to give the matriz (deg f)Y/9(at)™! a name because we will use
it several times in the proof of Theorem [0 The name “matric ex-
pression” is given by the author. Remark that this definition only works
for polarized isogenies because (22D fails for general non-polarized iso-
genies.

5.2.2 Generalized Hecke orbits in 2,

Lemma 5.2.4. Let ¢ € Aut ((Pag.a, X;;)a)). Then there exist g’ € GSpa, (Q)

and vy € Va,(Q) such that the action of ¢ on Xy

2g.a 1S given by

¢ ((v,2)) = (g'v + vo, g'x).

Proof. Notice that ¢(Vag) = @(Ru(Peg,a)) C Ru(Paga) = Vag. Since ev-
ery two Levi decompositions of Fsg . differ by the conjugation by an ele-
ment vy € Va,(Q), there exists a vy € Vo, (Q) such that ¢ := Int(vg) ™! o ¢
maps ({0} x GSp,,, {0} x H) to itself. Now ¢ maps Vo and (GSpy,, H})
to themselves. So 1 can be written as (A, B), where A € GLyy(Q) and
B € Aut ((GSpy,, Hf)) = GSp,,(Q)". Remark that ¢ € Aut(Paya), so
we can do the following computation:
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For any v € V54(Q) and h € GSp,,(Q)*,

(Ahvv BhB_l) = "/J((hvv h)) = "/J((Oﬂ h)(’l}, 1)) = "/’(07 h)w(vv 1)
= (0, BhB™)(Av,1) = (BhB~' Av, BAB™1).

Because v is an arbitrary element of Va,(Q), this implies that Ah = BhB™'A
for any h € GSp,,(Q)". But this tells us that A~'B commutes with any ele-
ment of GSp,,(Q)*, and hence A™'B € G,,(Q). So ¢ acts on the group Py,
as ¢¥((v,h)) = (cBv, BhB™') where ¢ € Q" and B € GSp,,(Q)". There-
fore 1 acts on XZ—;,a as Y((v,x)) = (¢cBv,Bx) = (cBv,cBx). Denote by
g =cB¢€ GSpQg(Q)+, then the action of ¢ on X2Z7a is given by

¢ ((v,2)) = (g'v+ vo,g'7).
O

Let s € g, then [r]s € A, corresponds to the polarized abelian variety
(g, (x)s> Afm]s)-
Corollary 5.2.5. Let s € A,. Then a point t is in the generalized Hecke orbit
of s iff there exist a polarized isogeny f: (Ug (x]s> Ax)s) — (g, (x]ts A\jmjt) and
n’ € N such that f(s) =n't.

Proof. Let (v,x) € X3, (vesp. (vy,2;) € Xy ) be such that s = unif ((v, z))
(resp. t = unif ((v¢,2¢))). Then by Proposition [[T31] and Lemma B2, ¢ is

in the generalized Hecke orbit of s iff
(vi,2¢) = (9'v + vo,g'T) (5.2.4)

for some g’ € GSp,,(Q)" and vy € Va, (Q).

If (BZ4) is satisfied, then there exists ¢ € G,,(Q) = Q* st h:=c"1g €
GSpQg((@)+ is a Z-coefficient matrix. Hence h corresponds to a polarized
isogeny f: (g, (x]s> Ajn)s) — (g, [x]ts Ajnje)- We have ¢ = unif ((chv + vo, z¢))
by ([24)), and therefore

n't = m/ f(s) + unif ((vo, ¢))

where ¢ = m’/n/. But unif ((vo,z;)) is a torsion point of 2, ), since vy €
V24(Q), and therefore can be removed by replacing m’ and n’ by sufficient
large multiples. On the other hand m’f is still a polarized isogeny, and hence
replacing f by m/f, we may assume m’ = 1. Finally we may assume n’ € N
by possibly replacing f by —f.

Conversly, suppose that there exist a polarized isogeny f: (g (x]s» Afx]s) —
(Ag,1x)ts Ar)e) and n' € N such that f(s) = n't. Let By (resp. B;) be a
symplectic basis of Hy (g )5, Z) (vesp. Hi(Ug [x)¢,Z)) and let h be the matrix
expression of f in coordiante B, w.r.t. B;. Then h € GSp,,(Q)" and there
exists (yv,7va) € I’ such that

(n'vp, 20) = (v, v6) (v, he) = (v +vchv, yahe).
Now ¢" :=ygh/n’ € GSp,,(Q)" and vy := v /n' € Vo, (Q) satisty (EZ4). O
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Corollary 5.2.6. Let s € A, and t be a point in the generalized Hecke orbit
of s. Let fi: (Ug,[x]s> Ma]s) — g, [x]ts Ain)e) be a polarized isogeny of minimal
degree. Then there exist

e a point o € Ay [(x]s;

e pEC End ((Q[g,[ﬂ']sa )\[ﬂ]s));
e ng N

such that s = ngsgp and
fi(e(s0) +p) =t

for some torsion point p € g (rs-

Proof. By Corollary 5.2.5] there exist a polarized isogeny f: (g (z]s) Afx]s) —
(Ag,(x)t> Aprje) and m/,n" € N such that py := m’f(s) — n't is a torsion point
of g 7. Now frtof € End ((ngﬁ[ﬂ]s,)\[ﬂ]s)) ® Q, i.e. there exist ¢ €
End ((9[97[7@5, /\[F]S)) and n, € N such that f; ' o f = ¢/ @ (1/ng). Sonjo f =
ft o ¢ and hence

m' fe(¢'(s)) = m'ng f(s) = no(n't + p1) = non't + nopy.

Let ¢ :=m/ o ¢’ € End ((ngﬁ[,,]s, )\[,T]s)) and ng := nin’ € N, then there exists
a torsion point pa € A, (5] such that

fi(p(s)) = not + pa.

Hence the conclusion follows. O

5.3 Proof for the torsion case

5.3.1 Preliminary

In this subsection, we fix some definitions and notation for the proof of Theo-
rem B.1.4

Let a € A,. The point a € A, corresponds to the polarized abelian variety
(A, Aa) == (Ag,a, Aa). We use X instead of 3, to denote the set of all (Aq, A\q)-
special points of ;. Let unif: Xz—z,a — 2, be the uniformization map and let
F be the fundamental set in XQ—;,a defined as in Theorem [[T341(3). Let

Y = unif 1Y) N F and ¥ := unif ~1(2) N F.

Let B be a symplectic basis for Hq(A,,Z) w.r.t. the polarization \,. Let a be
the period matrix of A, w.r.t. the chosen basis B. In the rest of the paper, we
shall sometimes identify a € H and (0,a) € {0} x H C Vo, (R) x HF ~ X5 .

For any t € X, there exists by definition of ¥, a polarized isogeny (A4, Aq) —
(g, [x)t> Ajx)t)- Besides, ¢ is a torsion point of A, := 2, (5)¢, Whose order we
denote by N(t).
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Definition 5.3.1. For any t € ¥, define its complexity to be
max (minimum degree of polarized isogenies (Aa, Aa) — (A, Ax]t), N(t)) .

Besides, define the complexity of any point of S to be the complexity of its
mmage in 2.

5.3.2 Application of Pila-Wilkie

The goal of this subsection is to prove the following proposition:

Proposition 5.3.2. Let Y, a be as in the last subsection. Let e > 0. There
exists a constant ¢ = ¢(Y,a,e) > 0 with the following property:

For every n > 1, there exist at most cn® definable blocks B; C Y such that
UB; contains all points of complexity at most n in Y NX.

Lemma 5.3.3. There exist constants ¢, k depending only on g and @ such
that o

For any t € Y NX of complexity n, there exists (v,h) € Pag(Q)* such that
(v,h)a =t and H((v,h)) < n”.

Proof. Let t = unif(¢). By [43 Proposition 4.1], there exist
e a polarized isogeny f: 2y (r; — Aqg;
e a symplectic basis B’ for Hy (g (5, Z) w.r.t. the polarization A,

such that the rational representation hy of f w.r.t. the chosen bases satisfies
that H(h) is polynomially bounded by deg(f).

But unifg(hia) = [r]t by (E23). Hence there exists a ha € I'g such that
hohlia = 7(t) € Fo. By A9, Lemma 3.2], H(hsy) is polynomially bounded by
the norm of h! - a.

Now define h := hohl. We have then ha = 7(t) and

H(h) < codeg(f)"™

where ¢g > 0 and ¢ > 0 depend only on g and a.
Next write t = (ty,7(t)) € F. Let v := ty, then v € V5 (Q) since ¢ is a
torsion point of A, r¢. Besides, the denominator of v is precisely the order of

the torsion point ¢. But by choice, F =~ [0, N)* x Fg C Vou(R) x H ~ X3

(see Theorem [LT.341(3)). Therefore up to a constant depending on nothing,
H(v) is bounded by its denominator, i.e. the order of the torsion point ¢ of
g, ]t

To sum it up, (v,h) is the element of P, (Q)" which we desire. O

Now we can prove Proposition [£.3.2] with the help of Lemma
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Proof of Proposition[5.3.2. Let
o1 Pay(R)T — XQ—;,a

(v,h) — (v,h)a

The set R := o~ 1(Y) = o~ (unif "' (Y) N F) is definable because o is semi-
algebraic and unif | is definable. Hence we can apply the family version of
the Pila-Wilkie theorem (48] 3.6]) to the definable set R: for every e > 0,
there are only finitely many definable block families BY)(¢) € R x R™ and
a constant C7(R,¢e) such that for every T > 1, the rational points of R of
height at most 7" are contained in the union of at most C17° definable blocks
B;(T,¢), taken (as fibers) from the families BU)(¢). Since o is semi-algebraic,
the image under o of a definable block in R is a finite union of definable blocks
in Y. Furthermore the number of blocks in the image is uniformly bounded in
each definable block family BY) (). Hence o(B;(T,¢)) is the union of at most
CsT* blocks in 37, for some new constant Cy(Y, a,e) > 0.

By Lemma .33, for any point ¢ € Y NS of complexity n, there exists
a rational element v € R such that o(y) = t and H(y) < ¢n®. By the
discussion in the last paragraph, all such ¥’s are contained in the union of at
most C(¢'n")¢ definable blocks. Therefore all points of Y N'Y of complexity
n are contained in the union of at most C;Cac’®n”*¢ blocks in Y. O

5.3.3 Galois orbit

In this section we shall deal with the Galois orbit. We handle the case of
Q-points at first and then use the standard specialization argument to prove
the result for general points of X NY.

Proposition 5.3.4. Suppose a € Ay(Q). There exist positive constants ¢| =
ci(g), ¢ =ch(g,k(a)) and ¢ = c5(g) satisfying the following property:

For any point t € ENY NA,(Q) of complexity n,

’
nc2

max (1, hF(Aa))cé’

k() : Q> ¢

where k(t) is the definition field of t.

Proof. Define (as Gaudron-Rémond [21])

Ry (r1e) 1= ((149)™9 [k([7]t) : Q) max(hr (U ry0); loglk([]t) = Q],1)%)109".
Take a point ¢ € ¥NY NA, (Q) of complexity n. Denote by k([r]t) the definition

field of [7]t. Denote by N(t) the order of ¢ as a torsion point of Apj, := Ag (74
There are two cases.
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n = minimum degree of polarized isogenies (Aq, Aa) — (A{r)t, Aja]t)-
Then by [21, Théoréme 1.4] and [42] Theorem 5.6],

n < KAy [x)t)-
On the other hand, by a result of Faltings [16, Chapter II, §4, Lemma 5|,

hF(Q[g [ﬂ']t) < hF(Aa) + (1/2) 1Ogn'

)

Now the conclusion for this case follows from the two inequalities above and
the easy fact [k(t) : Q] = [k([x]t) : Q).

n = N(t). By [2IL Théoréme 1.2], there exist positive natural
numbers [, simple abelian varieties Ay,...,A; over a finite extension &’ of k([x]t)
(A; and A; can be isogenious to each other over Q for i # j) and an isogeny

1
0 Ag e — [ [ Ai (5.3.1)
i=1
such that ¢ is defined over k', deg p < k(g [x)¢) and [k : k([7]t)] < &(Ag,r)9-
Call p;: A — A; the composite of ¢ and the i-th projection Hézl A — A
(Vi=1,...,0).
Now t € A is a torsion point of order N(¢). Without any loss of generality
we may assuime

N(pi(t)) = N(pi(t))
where N (p;(t)) is the order of p;(t) as a torsion point of A;.
Lemma 5.3.5.

N(t) < 6(g,(xe) N (p1(1)? and [k(t) - Q) = [k(p1(1) - Ql/k(Ag,x1)*.
where k(p1(t)) is the definition field of p1(t).

Proof. Denote by N (¢(t)) the order of ¢(t) as a torsion point of Hé:l A;. We
have

N(p(t)) = N(t)/ degp = N(t)/k(Ag,[x)t)-

On the other hand, N(¢(t)) = led(N(p1(t)), ..., N(pi(t))) < N(p1(t))9. Now
the first inequality follows.

For the second inequality, first of all since ¢ and Hé:l A; are both defined
over k', we have

[k(e(t) : QU< k(K - Q= [k(t) : QKK k(O] < [k(t) : QUK : K] < [k(2) - Qlr(Ag,fm10)°-

Next since all abelian varieties A1,...,A; are defined over k', we have then

k()K" Q] = [k(p1 (1)) - Q.
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But

Now the second inequality follows from the three inequalities above. O

By [I7, Corollaire 1.5],

_ Ny ()¢9
PO Q= 00 oy N @) e (A1) 10 N )

By the comment below [2I], Corollaire 1.5], we have

(5.3.2)

1
hr(Ap) < hF(Q[g,[ﬂ.]t) + B log H(Q[g,[ﬂ.]t). (5.3.3)

By assumption, there exists an isogeny A, — 2, (r); of degree < n. So by
Faltings [16, Chapter II, §4, Lemma 5|,

hF(Q[g7[7r]t) < hp(AL) + (1/2)logn. (5.3.4)

Now because [k(t) : Q] = [k([7]t) : Q], the conclusion of Case i now follows

from Lemma 5335 (532), (33) and (B34). O

Corollary 5.3.6. Suppose that a is defined over a finitely generated field k.
There exist positive constants ¢1 = ¢1(Aq, k) and ca = ca(Aq, k) satisfying the
following property:
For any point t € X NY of complexity n defined over a finitely extension
k(t) of k,
[k(t) : k] = e1n.

Proof. This follows from Proposition[5:34 and a specialization argument. The
case where n = minimum degree of polarized isogenies (A4, Aa) — (Apxjes Ajr)t)
is proved by Orr [43 Theorem 5.1] (possibly combined with [42, Theorem 5.6]).
The case where n = N(t), the order of ¢ as a torsion point of 2 5, follows

from the standard specialization argument introduced by Raynaud (see [43|
Section 5] and [56, Section 7]). O

5.3.4 End of the proof for the torsion case

In this section, Y is always an irreducible subvariety of 2, a € A, and ¥ is
the set of all a-strongly special points of 2.

Theorem 5.3.7. If YNX =Y, then the union of all positive-dimensional
weakly special subvarieties contained in'Y is Zariski dense in Y.
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Proof. Let ¥; be the set of points ¢ € ¥ N ¥ such that there is a positive-
dimensional block B C Y with ¢ € unif(B). Let Y; be the Zariski closure of
¥1. Let k be the finitely generated field k(a). Enlarge k if necessary such that
both Y and Y7 are defined over k.

Let t be a point in Y N'Y of complexity n. By Corollary [5.3.6] there exist
positive constants ¢; and ¢z depending only on g, A, and k such that

[k(t) : k] = ein®/2,

But all Gal(k/k)-conjugates of ¢ are contained in Y’ NY. and have complexity
n. By Proposition [£.3.2] the preimages in F of these points are contained in
the union of ¢(Y,a,cy/4)n°/* definable blocks, each of these blocks being
contained in Y.

For n large enough, c1n®?/? > en®/*. Hence for n > 0, there exists a de-
finable block B C Y such that unif(B) contains at least two Galois conjugates
of ¢, and therefore dim B > 0 since blocks are connected. So being in unif (B),
those conjugates of t are in ;. But Y7 is defined over k, so t € Y7.

In summary, all points of Y NY of large enough complexity are in ;. This
excludes only finitely many points of Y N X. So Y; =Y.

Let Y3 be the set of points ¢ € Y'NY such that there is a connected positive-
dimensional semi-algebraic set B’ C Y with ¢ € unif(B’). Let Y5 be the Zariski
closure of ¥p. By definition of blocks, ¥ = 31, and hence Yo =Y; =Y.

But for any connected semi-algebraic set B’ C Y, the Ax-Lindemann the-
orem (in the form of Theorem B.I4) implies that every irreducible component
of unif(B’), whose dimension is positive if dim(B’) > 0, is weakly special. Now
the conclusion follows. O

Proof of Theorem[5.1.7) Let S be the smallest connected mixed Shimura sub-
variety containing Y. Assume S is associated with the connected mixed
Shimura datum (P, X*). Let (G, XZ) := (P, X*)/Ry(P). By Theorem 13
and Theorem .37 such a non-trivial group N exists: N is the maximal nor-
mal subgroup of P such that the followings hold:

e there exists a diagram of Shimura morphisms

(P.A*) Lo (PLX) o= (PAY)IN Do (G X)) = (PLX)/Ru(P)

unifl unif’ l unif/G l

S [P] o SI [ﬂ'/] o S/G

(then S’ is by definition a connected Shimura variety of Kuga type)

e the union of positive-dimensional weakly special subvarieties which are
contained in Y’ := [p](Y') is not Zariski dense in Y;

o Y =[] '(Y").
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We prove the theorem by induction on g. When ¢g = 1, the only non-trivial
case is when Y is a curve. But then Y must be weakly special by Theorem [£.1.3]
(Or more simply, one can use Theorem [2Z3.3to avoid using the Ax-Lindemann
theorem). Remark that this case has also been proved by André [3, Lecture
4] when he proposed the mixed André-Oort conjecture.

When dim([7](Y)) = 0, this is the Manin-Mumford conjecture by Corol-
lary[5.2.61 Hence we only have to treat the case dim([7](Y")) = 1. Remark that
in this case [7](Y") is weakly special by the main result of [43], and hence equals
unifg (G"(R)*y) for some G” < GSp,, of positive dimension and y € H .
Now there are two cases:

If dim([7'](Y")) = 0, then [7'](Y”) is a point. In this case Y is a subvariety
of an abelian variety. The hypothesis Y N'X = Y implies that Y’ contains a
Zariski dense subset of torsion points. Therefore by the result of the Manin-
Mumford conjecture, Y” is a special subvariety, i.e. the translate of an abelian
subvariety by a torsion point. But the union of positive-dimensional weakly
special subvarieties which are contained in Y is not Zariski dense in Y’, so Y’
is a point. Therefore Y is weakly special by definition.

If dim([#'](Y")) = 1, then N/R,(N) is trivial because the dimension of
[7](Y) = unife (G”(R)Ty) is 1. Therefore Vy := Ry (N) < Vaq is non-trivial
since N is non-trivial.

Denote for simplicity by B = [7/](Y’) = wnifo(G”(R)*p(y)) and X :=
[7/]7Y(B). Then X — B is a family of abelian varieties of dimension g’. We
have ¢’ < g since Vi is non-trivial. Besides, X — B is non-isotrivial because
otherwise G” acts trivially on Va,/Vy, and therefore G” < P’. This contradicts
the maximality of V. Hence there exists, up to taking finite covers of X — B,
a cartesian diagram

X — 9,

|

iB
B - 4,

such that both ¢ and ip are finite. Apply induction hypothesis to i(Y") C 2,
we get that ¢(Y") is weakly special. By the geometric interpretation of weakly
special subvarieties (Proposition [L2Z15), i ~1(i(Y")) is irreducible. Therefore
Y’ = i71(i(Y")) since they are of the same dimension. So Y’ is a weakly
special subvariety of S’ (again by Proposition [[2.TH). But then Y’ must be a
point because the union of the positive-dimensional weakly special subvarieties
contained in Y’ is not Zariski dense in Y’'. Hence Y is weakly special by
definition. O

5.4 Proof for the non-torsion case

We prove Theorem [F.1.H in this section. Let Y be a curve over Q in Ag, let

s € Ay(Q) and let ¥ be the generalized Hecke orbit of s. Then ¥ C A, (Q).



CHAPTER 5. FROM ANDRE-OORT TO ANDRE-PINK-ZANNIER 133

For simplicity, we will denote by (A4, \) := (A (x5, Ar)s) the polarized abelian
variety attached to [r](s) in this section. Assume that s is not a torsion point
of A. Through all this section, we assume that Y is not contained in a fiber of
[r]: Ay — Ay (otherwise this is a special case of the Mordell-Lang conjecture,
which is proved by a series of work of Vojta, Faltings and Hindry).

We fix some notation here. Let B be a symplectic basis of Hy(A,Z) w.r.t.
the polarization X\. Let s € H be the period matrix of (4,)\) w.r.t. the
basis B, then unifc(3¢) = [r]s. Now let 5 = (5v,3¢) € Vag(R) x H}f ~ X5, |
be a point in 7' (3¢) Nunif '(s). In the whole section, we will fix B to be
the Q-basis of V3, as in §0.2.11

Denote by k the definition field of s. Then A is defined over the number
field k.

5.4.1 Complexity of points in a generalized Hecke orbit

Let unif : XQ—;,a — 24 be the uniformization map and let 7 be the fundamental
set in X2;7a defined in Theorem [[T.341(3). Let

Y = unif H(Y) N F and & := unif ~}(X) N F.

Let t € 3. Let f; be as in Corollary 5.2.0] (i.e. a polarized isogeny (A, \) —
(g, 17)t> Ajx)¢) of minimum degree). Define

n¢ := min{n € N| Jp € End ((4, \)) such that nt € f;(¢(s) + A(Q)or) }-

The existence of such an n; is guaranteed by Corollary [5.22.6l Furthermore, let
s¢ == unif ((sv/n¢, 8c)) € Uy x)s = A. Then there exist by definition of n;

e ;€ End ((4,N));
e J; a torsion point of A

such that
ft (pi(se) +0¢) = t. (5.4.1)

The notation ng, fi, @, s¢ and d; will be used through the whole section.

Definition 5.4.1. Define the complexity of t € X to be
max (Tlt, N((St))

where N(0;) is the order of 6;. Besides, define the complexity of any point
of X to be the complexity of its image in 3.

The fact that this complexity is a “good enough” parameter will be proved

in §5.43
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5.4.2 Galois orbit

In contrast to the torsion case, we deal with the Galois orbit at first for the
non-torsion case. Keep the notation of the beginning of this section and §5.2.11

Proposition 5.4.2. Lett € ¥ be of complexity n, then
[k(t) : Q] = csn™
where ¢z = c3(A, N, 8) and cq = c4(A, N, 8) are two positive constants.

Proof. By [2I], Théoréme 1.2] and [42] Theorem 5.6], there exist positive con-
stants ¢5 = ¢5(A, \) and ¢g = ¢(A, A) such that

deg(f:) < es[k(t) : Q] (5.4.2)

The abelian variety A is defined over k. By the main result of [34], there
exist two positive constants cg and c¢19 depending only on A and & such that
for any torsion point ¢ € A of order N(gq), we have

[k(q) : Q] = coN(q)°. (5.4.3)

N(6;)c10/2 > nfg2+4g+1. By |26, Proposition 1] or [36, Theo-

rem 2.1.2]|, there exists a positive constant ¢11 = ¢11(4, s, k) such that
Gal (k(ps(s1), Alne])/k(Alna])) < eniny?.

Hence )
[k(pe(s1)) : Q) < ¢hyng? F97 (5.4.4)

for another positive constant ¢}, depending only on A, s and k. Now by (5.4.4),
(E43) and the assumption for this case,

N(8,)c10
[k(pe(st),6t) « k(e (se))] = 0122;%3@“ > c1aN(6;) 0/ (5.4.5)
ny N

for a positive constant ¢1o = c12(4, s, k).
Since A is defined over the number field &, every element of Gal(Q/k)

induces a homomorphism A(Q) — A(Q), and hence a homomorphism A — A.
It is not hard to prove the following claim:

Claim 5.4.3. For any o1, 02 € Gal (Q/k(¢i(s1))), o1(pe(se)+0¢) = o2 (e (se)+
8¢) iff o5 to1 € Gal (Q/k(pi(s1), 61))-

This claim implies [k(@¢(st) + 0¢) : Q] = [k(pi(se),0e) = k(pi(se))]. Hence

by B.43),
[k((se) + 6¢) : Q] > c1aN(6y)°10/2,

Since t = fi(vi(s¢) + 0¢), we have therefore

N(5t)610/2

k(1) : @) > ere deg(ft)

(5.4.6)
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Now the conclusion for this case follows from (£.4.2)), (5.4.6) and the definition
of complexity (recall that k is the definition field of s, and therefore depends
only on s).

N (§;)e0/2 < nfgz 4911 Roughly speaking, this case follows from
the Kummer theory [26, Appendix 2|. Here are the details of the proof:

Let A := End ((4,))) s and let A := End(A)s C A. Then A is a finitely
generated subgroup of A. Let k' be the smallest number field over which all
points of A are defined, then k&’ depends only on A and s. Then by the Mordell-
Weil theorem, A(k’) is a finitely generated subgroup of A. By definition of &,

A C A(K). Let A := QAN A(K') and let A := QAN A(K'). Then A is
again a finitely generated subgroup of A. It contains A and rank A = rankA.

Therefore [Z/ : Al is a finite number depending only on &', and hence only on
A and s. On the other hand, A C ANA" C A+ A(K )or- So [ANA’: Alisa
finite number depending only on k', and hence only on A and s. Therefore by

A A=A ANA)ANA A <A AANA Al

there exists ¢13 > 0 depending only on A and s such that [A": A] = ¢13.

For each t € %, define another number nj := min{n € N| nt € f(A(K") +
A(Q)sor)}- Let s" € A(K') be such that njt = fi(s' + A(Q)tor). Then because
t = fi(¢e(se) + 0r), we have

st =5 —nlwi(st) € AQ)ior.
So 5" € nhpi(st) + A(Q)tor € QA, and therefore njpy(s;) + st = s € A’. So
n}, = min{n € N| nt € f;(A" + A(Q)ior)}- (5.4.7)

However by definition,

ny = min{n € N| nt € fi(A + A(Q)tor)- (5.4.8)
Compare (B47) and (G48), we get
ny/ny < [A Al = 3. (5.4.9)

By |26l Lemma 14] or [36, Corollary 2.1.5], there exists a positive constant
c1q = c14(A, k') = c14(A4, s) such that

Gal(k’(g@t(st), Aln,N(8,)]) /k/(A[n;N(at)])) > e

Hence

[F"(pe(se) +6¢) : Q) c1any
deg(fo)[k" - k] = deg(fi)[k" : k]

Now the conclusion follows from (E42), (49) and (BEAI0) (remark that
[k’ : k] is a constant depending only on A and s). O

[k(t) : Q] > (5.4.10)
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5.4.3 Néron-Tate height in family

Next we prove that the complexity defined in Definition F.4.1] is a good pa-
rameter. More explicitly we have the following proposition:

Proposition 5.4.4. Let Y be as in the beginning of this section. Let t €
Y(Q)NXE. Let fi, ne, s¢, pr and & be as in §5.7.1} Then

deg(pt) < cerny®  and  deg(f:) < c7nt

for some positive constants c; = c7(g,Y, s), ¢k = c4(g,Y, s) and cs = cs(g,Y, s),
g = cg(9,Y,s).

We shall prove this proposition with help of a well-chosen family of Néron-
Tate heights, i.e. the one related to the G,,-torsor £, defined in Theo-
rem [[ T34l Then we shall use a theorem of Silverman-Tate [60, Theorem A].

By Theorem [[T34(2), £, — 2, is a symmetric and relatively ample G,,-
torsor w.r.t. A, — A,. Now consider the Néron-Tate height ?ng,b on A, for
each b € A,(Q). For any s € 2,(Q), we shall denote by

he,(s) = he, .. (s).

Lemma 5.4.5. Let 51 and s2 be two points of Ay (Q). Assume that there exists
a polarized isogeny

K (Q[Q,[ﬂ']sw)‘[ﬂ]ﬂ) - (Q’[g,[ﬂ]527)\[ﬂ]52)

such that sy = f(s2). Then ﬁgg(Sg) = (deg f)l/g/ﬁgg (s1)-

Proof. By the moduli interpretation of £, (Theorem [LT34(3)), f*£4 (x5, =

®(deg f)1/*

ol . So we have

~

he,(s2) = he, .. (f(s51))
"

2®(dcg /e (s1)
HEJES

= (deg f) /ghsq ey (51)
= (deg )Y 9he, (51).

Now we begin the proof of Proposition (.44

Proof of Proposition [5.].4 Denote by ¢: A; — 2, the zero section.

By abuse of notation we denote also by £, the relative ample line bundle
associated to the G,,-torsor. Let M be an ample line bundle over Q over A,
which extends over Q to an ample line bundle M over A_g. For a > 0, the line
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bundle £ := £, @ [7]* M®* over 2, is ample. Moreover the canonical height
he defined by Silverman [60, §2, pp 200] satisfies

o~

he = hg,.

By Theorem [[LT.34(6), we can apply [60, Theorem Al: there exist constants
c15 = ¢15(g) > 0 and ¢16 = ¢16(g) such that

he, (t) — ha, (1) < c1sha, oo ([7]t) + ci6 (5.4.11)
for any t € A,(Q).
We need the following lemma, which uses the fact that Y is a curve in an
essential way:

Lemma 5.4.6. There exist two constants ci7 > 0 and c1s depending only on
Y such that

ha,, e (t) < cirha, o ([7]t) + c18

Proof. The idea is due to Lin-Wang [32, Proof of Proposition 2.1]. The fol-
lowing notation will be used only in this proof: denote by B = [7](Y) and
X = [r]71(B). By abuse of notation, we will not distinguish [7] and [r]|x.
Remark that X — B is a non-isotrivial family of abelian varieties.

Let Y’ be a smooth resolution of Y C 2, then X xgY”’ — Y” is also a non-
isotrivial family of abelian varieties of dimension g and we write ey : Y' —
X xp Y’ to be the zero-section. Let f: Y’ — 2, be the natural morphism.
Consider the following commutative diagram

[r]

Now let t' € Y'(Q) be such that f(¢') = ¢. Then up to bounded functions,

hQ[g.,Q(t) = hX,Sg\X(t) hAg,s*S([Tr]t) = hB7a*2\x([7T]t)
ey (F(E) = s e (f 0 [7](#)
= hy s pegix (t) = hy' (fofm)-e2lx (t)

= hY’-,Ei,,;DIrMX (tl)

Since Y is a curve, the morphism [r]o f: Y’ — B is finite. Therefore pj£|x
is ample. So €}, p;£|x is ample. Hence there exist two constants ¢i7 > 0 and
c1s depending only on Y’ (and hence only on Y') such that

hY’-,f*S‘X (t/) < Cl7hy/75;«,,p~{2‘x (tl) =+ C18 (5412)

for any #' € Y/(Q). Now the conclusion follows. O
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Now for any t € Y N X N A, (Q), by (4I) and Lemma [5.4.7]

R /o
he, (1) = deg(ft)”-‘; deg(@) ™7 (). (5.4.13)
t

But for any t € ¥ N A, (Q), we have the following result of Faltings [16, Chap-
ter 11, §4, Lemma 5|

[h(Awe) — har(4)] < logdes(f,). (5.4.14)

Besides by [44l, Corollary 1.3], there exists a positive constant ¢19 = ¢19(g, M)
such that

1
|§hF(A[7T]t) — hAg7€*g([7T]t)| < c19 log (max (1, hF(A[ﬂ-]t)) + 2) (5.4.15)

for any t € A4 (Q).
Now (B4I1), Lemma B46, (G4I13), (G-AI4) and (G4ATIH) together imply

de Vg ~ 1
% deg(ft)l/ghilg (s) < (c15 + c17)c19 log (max (17 hr(A) + 3 log deg(ft)> + 2)
+$ log deg(f:) + @hﬂfl) + c16 + cis.

Since deg(p:) > 1, we get that deg(f;) is polynomially bounded by n; from
above.

On the other hand, letting deg(f;) — oo, we see that there exist two
positive constants My and cpg depending on nothing such that deg(p;)*/9 <
coon? for any t € Y(Q) N X with deg(f;) > My. But if deg(f;) < My, then
deg(f:) takes value in a finite set {1,..., My}. So deg(y:) is bounded by n;
from above. O

5.4.4 Application of Pila-Wilkie
Keep the notation of the beginning of this section and §5.4.T1

Proposition 5.4.7. Let Y and s be as in the beginning of this section. Let
e > 0. There exists a constant C' = C(Y, s,e) > 0 with the following property:

For everyn > 1, there exist at most C?f deﬁnable blocks B; C Y such that
UB; contains all point of complexity n of Y N 3.

Proof. The proof starts with the following lemma:

Lemma 5.4.8. There exist constants C' and k' depending only on g and 5
such that L

For any t € Y N'Y of complexity n, there exists a (v,h) € Pay(Q)T such
that (v,h) -3 =t and H ((v,h)) < C'n"".
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Proof. Let t := unif(f). Then t € ¥ and therefore we have a relation as
(BAT). Let f{ := frops, then f{: (A, X) — (Ag,[x)¢, Ax]¢) is a polarized isogeny.
Moreover, there exists a 8, € A(Q)or such that N (&) < N(;) deg(¢:) and

t= fl(se+ L) (5.4.16)

Claim 5.4.9. There exists a symplectic basis B' for Hy(Upxe, Z) w.r.t. the
polarization Az, such that the height of vy € G:szg((@)"r (the matriz expres-
sion of f{ in coordinate B w.r.t. B') is polynomially bounded by deg(f;) =
deg(p;) deg(f) from above (see the beginning of this section for BB).

This claim follows from [43] Proposition 4.1]: remark that f/ is a polarized
isogeny instead of an arbitrary isogeny, hence the endomorphism ¢ € End(A)
in [43, 4.3] equals [deg ¢¢]'/9, and therefore the u € (End A)* in [43] 4.6] can
be taken to be 14. B _

Then unifG (v - s5¢) = [r]s. Besides let 6; = (d;y,,5¢) € F be such that

unif(gé) = ¢;. Then g,’fyv € Vo4(Q) and, by (E4I0) and (523),

unif ('yf/(~ +6 V,SG)) =t.

So there exists an element v = (yv,7¢) € T such that

+ o vesa) =t,

Yf (

i.e.

SV ~ =~ VGV ~
= (Wv + vy (n_t + 51/5,V)a’7G7f/5G) (W + 7@%“52 v ! ) S.

Denote by

(v,h) = ( 04% +”YG’Yf’ th M)

then (v,h) is an element of Py, (Q)* such that (v,h)s = t. Now we prove
that H ((v,h)) is polynomially bounded by the complexity n of t. To prove
this, it suffices to prove that n, H(g,’fv), H(vys), H(ye) and H(yy) are all
polynomially bounded by n.

The fact that n; is bounded by n follows directly from the definition of
complexity. B

For H(d;y): because §; € F ~ [0,N)* x Fg (where N is the level
structure, and hence depend on nothing), we have 4, v € [0,N)*. There-

fore H (57’5 ) is bounded up to a constant by the denominator of 6t v, Which
equals N(6)). But N(6}) < deg(¢:)N(5;), hence it suffices to bound both
deg(et) and N(6;) by n. Now deg(p;:) is polynomially bounded by n:, and
hence by n, by Proposition 544l By definition of complexity, N(d;) < n.
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For H(vy/): by choice, H(7y) is polynomially bounded by deg(f;) deg(v:),
which is polynomially bounded by n: by Proposition B.4.4l Hence H(vy/) is
polynomially bounded by n by definition of complexity.

For H(vg): remark yovyp3g = 7(t) € Fo. By A9, Lemma 3.2|, H(yq) is
polynomially bounded by ||y;S¢||. Therefore H () is polynomially bounded,
with constants depending on |[s¢||, by n.

For H(vy): remark vy + 'YGW"S;,V + veypsv/ne = ty € [0, N)29 (where
N is the level structure, and hence depend on nothing). Therefore H(vyy )
is polynomially bounded by ||7G7f/&,v + vavs Sv/ne||. Therefore H(yy) is
polynomially bounded, with constants depending on |[sy||, by n. O

Let 0: Pog(R)* — X3 , be the map (v, h) — (v,h) 3.

The set R = o~ 1(Y) = o~ (unif “}(Y)) N F) is definable because o is semi-
algebraic and unif |+ is definable. Hence we can apply the family version of
the Pila-Wilkie theorem (48] 3.6]) to the definable set R: for every e > 0,
there are only finitely many definable block families BY) () € R x R™ and
a constant C](R,e) such that for every 7' > 1, the rational points of R of
height at most T are contained in the union of at most C{T* definable blocks
B;(T,¢), taken (as fibers) from the families BU)(¢). Since o is semi-algebraic,
the image under o of a definable block in R is a finite union of definable blocks
in Y. Furthermore the number of blocks in the image is uniformly bounded in
each definable block family BY) (). Hence o(B;(T,¢)) is the union of at most
C4T* blocks in Y, for some new constant C4(Y,a,e) > 0.

By Lemma 548, for any point ¢ € ¥ N'Y of complexity n, there exists
a rational element v € R such that o(y) = ¢ and H(y) < C'n". By the
discussion in the last paragraph, all such ¥’s are contained in the union of at
most €} (C'n"")¢ definable blocks. Therefore all points of ¥ N3 of complexity
n are contained in the union of at most ¢} C4C"*n"" blocks in Y. O

5.4.5 End of proof of Theorem

Now we are ready to finish the proof of Theorem
Let ¥; be the set of points t € Y N X such that there is a positive-
dimensional block B C Y with ¢ € unif(B). Let Y7 be the Zariski closure
of ¥1. Let k be a number field such that both Y and Y; are defined over k.
Let ¢t be a point in Y N'Y of complexity n. By Proposition[.4.2] there exist
positive constants ¢5 and ¢g depending only on (A4, \) and s such that

C5

[k Q)

C6

k(1) : k] > n

But all Gal(k/k)-conjugates of ¢ are contained in Y'NY. and have complexity
n. By Proposition [B.4.7 the preimages in F of these points are contained in
the union of C(Y,s,cs/2)n°/? definable blocks, each of these blocks being

contained in Y.



CHAPTER 5. FROM ANDRE-OORT TO ANDRE-PINK-ZANNIER 141

For n large enough, (c5/[k : Q)n® > Cn°/2. Hence for n > 0, there
exists a definable block B C Y such that unif(B) contains at least two Galois
conjugates of ¢, and therefore dim B > 0 since blocks are connected. So being
in unif(B), those conjugates of ¢ are in X1. But Y] is defined over k, so t € Y;.

In summary, all points of Y N¥ of large enough complexity are in 3;. This
excludes only finitely many points of Y NX¥. So Y1 =Y.

Let Y3 be the set of points ¢ € Y'NY such that there is a connected positive-
dimensional semi-algebraic set B’ C Y with ¢ € unif(B’). Let Y3 be the Zariski
closure of 5. By definition of blocks, X5 = 31, and hence Y =Y; =Y.

Now the mixed Ax-Lindemann theorem (Theorem BI4) yields the con-
clusion since dim(Y) = 1. Alternatively, let Y’ be a complex analytic irre-
ducible component of unif~*(Y"). Then since Y = Y3, there exists a positive-
dimensional irreducible algebraic subset (in the sense of Definition [3.5) Z of
Xog,a contained in Y’ by [A9, Lemma 4.1]. But dimY’ = dim Z = 1, therefore

Y' = Z is algebraic in the sense of Definition L35l In other Words Y is
algebraic and a complex analytic irreducible component of unif ™ ( ) is also
algebraic. Hence by Theorem 2:33] Y is weakly special.

5.5 Variants of the André-Pink-Zannier conjec-
ture

In the previous sections we have discussed the intersection of a subvariety of
A, with the set of division points of the polarized isogeny orbit of a given point
(EII). The goal of this section is twofold: one is to replace the given point by
a finitely generated subgroup of one fiber of %, — A, (remark that the fiber
is an abelian variety), the other is to replace the polarized isogeny orbit by
the isogeny orbit. In particular we will prove that although these changes to
Conjecture [B.1.1] a priori seem to generalize the conjecture, both can actually
be implied by Conjecture B.I.T] itself.

In the rest of the section, fix a point b € Ay, which corresponds to a
polarized abelian variety (A, \) := (g4, Ap). Let A be any finitely generated
subgroup of A.

Theorem 5.5.1. Let Y be an irreducible subvariety of 4. Let ¥o be the set
of division points of the polarized isogeny orbit of A, i.e.

Yo = {t € Ay| In € N and a polarized isogeny f: (A,N) = (Ag,(x)t» Ax)e) with nt € f(A)}.

Assume that Conjecture [l 11l holds for all g. If Y NXg =Y, then'Y is weakly
special.

Proof. The proof is basically the same as Pink [54] Theorem 5.4] (how Con-
jecture BTl implies the Mordell-Lang conjecture).

Suppose rank A = r — 1. Let V5, be the direct sum of r copies of Va4
as a representation of GSp,,. Then the connected mixed Shimura variety
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associated with V3 x GSp,,, is the r-fold fiber product of 2, over Ay, and so
its fiber over b is A”. Denote by

o g Xy, o Xy, Ay — 2y

the summation map (remark that both varieties are abelian schemes over Ay).
Now the homomorphisms

Poga = Vaog X GSpy, — Vi, % GSpyy — Vagr X GSpyg,
(v, h) = ((vy..,0),h) —  ((v,...;0), (hy.... h))

induce Shimura immersions

Ay —> Ay Xa, o Xa, Ay — Ay,

| | |

‘Ag( ‘Agr

For simplicity we shall not distinguish a point in 2, (resp. Ay) and its image
in Ay, (resp. Agr). Then Agrp = A”.

Fix generators ag,...,a,_1 of A and set a, := —a; — ... —a,_1. Let A’ be
the division group of A, i.e. A’ = {s| In € N such that ns € A} C A. Then
[54, Lemma 5.3] asserts that

N =A% 4+ AL = o(AL x .. x AL) (5.5.1)

where (as Pink defined) A} := {s € A| 3m,n € Z\ {0} such that ns = ma,}.
Now consider

At .= g—l(Y)m{fT(AZ‘L1 XX AL ) f: (A, N) — (g6, Ar) a polarized isogeny}.
We have

oAy =Y n a({f" (A, x .. x AL )| f: (A N) — (g, \y) a polarized isogeny})
=Y N{f (o(A;, x .. x A; )| f: (A X) — (g, Ay) a polarized isogeny}
=Y N{fT(A)] f: (A4, )N) — (Uyp, A\) a polarized isogeny} (5.

Because Y NXo =Y, YN{f(A)] f: (A, \) = (g, \v) a polarized isogeny}
is Zariski dense in Y (as subsets of 2l,). Therefore o(AT) is Zariski dense in Y’
(as subsets of Ay x 4, ... x4, Ay, and hence as subsets of 2, ). Let YT be the
Zariski closure of AT in 2y x 4, ... X 4, 2. Then YT is also a subvariety of 2.
Since taking Zariski closures commutes with taking images under proper mor-
phisms, we deduce that o(YT) =Y. So there exists an irreducible component
Y’ of YT such that o(Y') =Y.

For any polarized isogeny f: (A,\) — (Ugpr, Apr), the generalized Hecke
orbit of (ai,...,a,) € A" as a point on Ay, contains f"(A; x .. x A} ) by
Corollary 5.2.5 Therefore the intersection of Y with generalized Hecke orbit
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of (a1,...,a,) in Ay, is Zariski dense in Y'. Hence Conjecture [.I1] for A,
implies that Y’ is weakly special. Therefore Y = o(Y”) is also weakly special
by the geometric interpretation of weakly special subvarieties of 2, and of 2,

(Proposition [L2TH). O
Corollary 5.5.2. Let Y be an irreducible subvariety of A,. Let X, be the set
of division points of the isogeny orbit of A, i.e.

o = {t € Ay| In € N and an isogeny f: A — Uy ze such that nt € f(A)}.

Assume that Conjecture[5 11 holds for all g. If Y NXL =Y, thenY is weakly
special.

Proof. Recall Zarhin’s trick (see Orr [42] Proposition 4.4]): for any isogeny
f: A — A’ between polarized abelian varieties, there exists u € End(A4*) such
that f4ou: A* — (A’)* is a polarized isogeny.

Now let i: 2, < 24, be the natural embedding. Then A4 := End(A*)i(A)
is a finitely generated subgroup of A% = 24g.i(») and hence

Yy C{t €Uyl In € N and a polarized isogeny
fo (A% N4 — (Agy (2145 Apre) such that nt € f(Ag)}.

Now the conclusion follows from Theorem [5.5.11 O



144 5.5. VARIANTS OF THE ANDRE-PINK-ZANNIER CONJECTURE




Bibliography

1

2]

13l

4]

[5]

16]

7]

18]

19]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

Y. André. Mumford-Tate groups of mixed Hodge structures and the
theorem of the fixed part. Compositio Mathematica, 82(1):1-24, 1992.

Y. André. Finitude des couples d’invariants modulaires singuliers sur une
courbe algébrique plane non modulaire. J.Reine Angew. Math (Crelle),
505:203-208, 1998.

Y. André. Shimura varieties, subvarieties, and CM points. Six lectures
at the University of Hsinchu, August-September 2001.

A. Ash, D. Mumford, D. Rapoport, and Y. Tai. Smooth compactifications
of locally symmetric varieties (2nd edition). Cambridge Mathematical
Library. Cambridge University Press, 2010.

J. Ax. On Schanuel’s conjectures. Annals Math., 93:252-268, 1971.

J. Ax. Some topics in differential algebraic geometry I: Analytic sub-
groups of algebraic groups. American Journal of Mathematics, 94:1195—
1204, 1972.

D. Bertrand. Special points and Poincaré bi-extensions. Preprint, avail-
able on the author’s page. with an appendix by B.Edixhoven.

D. Bertrand. Unlikely intersections in Poincaré biextensions over elliptic
schemes. Notre Dame J. Formal Logic, 54(3-4):365-375, 2013.

D. Bertrand and B. Edixhoven. Pink’s conjecture, Poincaré bi-extensions
and generalized Jacobians. in preparation.

D. Bertrand, D. Masser, A. Pillay, and U. Zannier. Relative Manin-
Mumford for semi-abelian surfaces. Preprint, available on the authors’

page.

D. Bertrand and A. Pillay. A Lindemann-Weierstrass theorem for semi-
abelian varieties over function fields. J.Amer.Math.Soc., 23(2):491-533,
2010.

E. Bombieri and W. Gubler. Heights in diophantine geometry. Camb.
Univ. Press, 2006.

A. Borel. Linear Algebraic Groups, volume 126 of GTM. Springer, 1991.

A. Chambert-Loir. Relations de dépendance et intersections exception-
nelles. Séminaire Bourbaki, exposé n. 1032, 63e année, 2010-2011.

L. Clozel and E. Ullmo. Equidistribution adélique des tores et équidis-
tribution des points CM. Doc. Math, en I'honneur de J.Coates:233-260.,
2006.

G. Cornell and J. Silverman. Arithmetic Geometry. Springer, 1986.

145



146

BIBLIOGRAPHY

[17]

[18]

[19]
[20]
[21]

[22]

[23]
[24]
[25]
[26]

[27]

[28]
[29]
[30]
[31]
[32]

[33]

S. David. Minorations de hauteurs sur les variétés abéliennes. Bull. de
la SMF, 121(4):509-522, 1993.

B. Edixhoven. On the André-Oort conjecture for Hilbert modular sur-
faces. In Moduli of abelian varieties (Texel Island, 1999), volume 195,
pages 133—-155. Birkh&user, Basel, 2001.

B. Edixhoven, B. Moonen, and F. Oort. Open problems in algebraic
geometry. Bull. Sci. Math., 125:1-22, 2001.

B. Edixhoven and A. Yafaev. Subvarieties of Shimura varieties. Annals
Math., 157(2):621-645, 2003.

E. Gaudron and G. Rémond. Polarisations et isogénies. Duke Journal
of Mathematics, 2014.

A. Grothendieck and J. Dieudonné. Eléments de géométrie algébrique
(rédigés avec la collaboration de Jean Dieudonné): IV. Etude locale des
schémas et des morphismes de schémas, Premiére partie, volume 20.
Publications Mathématiques de 'THES, 1964.

P. Habegger and J. Pila. O-minimality and certain atypical intersections.
Preprint, available on the authors’ page.

P. Habegger and J. Pila. Some unlikely intersections beyond André-Oort.
Compositio Mathematica, 148(01):1-27, January 2012.

R. Hain and S. Zucker. Unipotent variations of mixed Hodge structure.
Inv. Math., 88:83-124, 1987.

M. Hindry. Autour d’une conjecture de Serge Lang. Inv. Math., 94:575~
603, 1988.

J. Hwang and W. To. Volumes of complex analytic subvarieties of Hermi-
tian symmetric spaces. American Journal of Mathematics, 124(6):1221-
1246, 2002.

M. Kashiwara. A study of variation of mixed Hodge structure. Publ.
RIMS Kyoto Univ., 22:991-1024, 1986.

B. Klingler, E. Ullmo, and A. Yafaev. The hyperbolic Ax-Lindemann-
Weierstrass conjecture. Preprint, available on the authors’ page.

B. Klingler and A. Yafaev. The André-Oort conjecture. Annals Math.,
to appear.

J. Kollar. Shafarevich maps and automorphic forms. Princeton Univ.
Press, 1995.

Q. Lin and M.-X. Wang. Isogeny orbits in a family of abelian varieties.
Preprint, available on arXiv.

M. Lopuhaé. Pink’s conjecture on semiabelian varieties. Master Thesis,
2014.



BIBLIOGRAPHY 147

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

D. Masser. Small values of the quadratic part of the Néron-Tate height
on an abelian variety. Compositio Mathematica, 53:153-170, 1984.

D. Masser and G. Wiistholz. Isogeny estimates for abelian varieties, and
finiteness theorems. Annals Math., 137(3):459-472, 1993.

M. McQuillan. Division points on semi-abelian varieties. Inv. Math.,
120(143-160), 1995.

J. Milne. Canonical models of (mixed) Shimura varieties and automor-
phic vector bundles. In Automorphic forms, Shimura varieties, and L-
functions. Vol. I. Proceedings of the conference held at the University of
Michigan, Ann Arbor, Michigan, July 6-16 1988.

J. Milne. Introduction to Shimura varieties. In Harmonic analysis,
the trace formula, and Shimura varieties, volume 4 of Clay Math. Proc.
Amer. Math. Soc., 2005.

B. Moonen. Linearity properties of Shimura varieties, I. Journal of
Algebraic Geometry, 7(3):539-467, 1988.

B. Moonen. Linearity properties of Shimura varieties, II. Compositio
Mathematica, 114:3-35, 1998.

D. Mumford. The red book of varieties and schemes, Second, expanded
edition, volume 1358 of LNM. Springer, 1999.

M. Orr. La conjecture d’André-Pink: Orbites de Hecke et sous-variétés
faiblement spéciales. PhD thesis, Université Paris-Sud, 2013.

M. Orr. Families of abelian varieties with many isogenous fibres. J.Reine
Angew. Math (Crelle), to appear.

F. Pazuki. Theta height and Faltings height. Bull. de la SMF, 140:19-49,
2012.

C. Peters and J. Steenbrink. Mixed Hodge Structures, volume 52 of A
Series of Modern Surveys in Mathematics. Springer, 2008.

Y. Peterzil and S. Starchenko. Around Pila-Zannier: the semi-abelian
case. Awailable on the authors’ page.

Y. Peterzil and S. Starchenko. Definability of restricted theta func-
tions and families of abelian varieties. Duke Journal of Mathematics,
162(4):731-765, 2013.

J. Pila. O-minimality and the André-Oort conjecture for C". Annals
Math., 173:1779-1840, 2011.

J. Pila and J. Tsimerman. The André-Oort conjecture for the moduli
space of Abelian surfaces. Compositio Mathematica, 149:204-216, Febru-
ary 2013.



148 BIBLIOGRAPHY

[50] J. Pila and J. Tsimerman. Ax-Lindemann for A,. Annals Math.,
179:659-681, 2014.

[51] J. Pila and U. Zannier. Rational points in periodic analytic sets and the
Manin-Mumford conjecture. Rend. Mat. Acc. Lincei, 19:149-162, 2008.

[52] R. Pink. A common generalization of the conjectures of André-Oort,
Manin-Mumford, and Mordell-Lang. Preprint, available on the author’s

page.
[53] R. Pink. Arithmetical compactification of mized Shimura varieties. PhD
thesis, Bonner Mathematische Schriften, 1989.

[54] R. Pink. A combination of the conjectures of Mordell-Lang and André-
Oort. In Geometric Methods in Algebra and Number Theory, volume 253
of Progress in Mathematics, pages 251-282. Birkh&user, 2005.

[55] V. Platonov and A. Rapinchuk. Algebraic Groups and Number Theory.
Academic Press, INC., 1994.

[56] M. Raynaud. Courbes sur une variété abélienne et points de torsion.
Inv. Math., 71(1):207-233, 1983.

[57] G. Rémond. Autour de la conjecture de Zilber-Pink. Journal de Théorie
des Nombres de Bordeauz, 21(2):405-414, 2009.

[58] T. Scanlon. Local André-Oort conjecture for the universal abelian vari-
ety. Inv. Math., 163(1):191-211, 2006.

[59] A. Silverberg. Torsion points on abelian varieties of CM-type. Compo-
sitio Mathematica, 68:241-249, 1988.

[60] J. Silverman. Heights and the specialization map for families of abelian
varieties. J.Reine Angew. Math (Crelle), 342:197-211, 1983.

[61] J. Steenbrink and S. Zucker. Variation of mixed Hodge structure I. Inv.
Math., 80:489-542, 1985.

[62] J. Tsimerman. Brauer-Siegel for arithmetic tori and lower bounds for
Galois orbits of special points. J.Amer.Math.Soc., 25:1091-1117, 2012.

[63] E. Ullmo. Autour de la conjecture d’André-Oort. Available on the au-
thor’s page. Notes de cours pour les états de la recherche sur la conjecture
de Zilber-Pink (CIRM 2011).

[64] E. Ullmo. Quelques applications du théoréme de Ax-Lindemann hyper-
bolique. Compositio Mathematica, to appear.

[65] E. Ullmo and A. Yafaev. A characterisation of special subvarieties. Math-
ematika, 57(2):263-273, 2011.

[66] E. Ullmo and A. Yafaev. Galois orbits and equidistribution of special
subvarieties: towards the André-Oort conjecture. Annals Math., to ap-
pear.



BIBLIOGRAPHY 149

[67]

[68]

[69]
[70]

[71]

[72]

73]

E. Ullmo and A. Yafaev. The hyperbolic Ax-Lindemann in the compact
case. Duke Journal of Mathematics, to appear.

E. Ullmo and A. Yafaev. Nombre de classes des tores de multiplica-
tion complexe et bornes inférieures pour orbites Galoisiennes de points
spéciaux. Bull. de la SMF, to appear.

L. van der Dries. Tame topology and o-minimal structures, volume 248
of London Math. Soc. Lecture Note Series. Camb. Univ. Press, 1998.

C. Voisin. Hodge theory and complex algebraic geometry I, volume 76 of
Cambridge Studies in Advanced Mathematics. Camb. Univ. Press, 2002.

J. Wildeshaus. The canonical construction of mixed sheaves on mixed
Shimura varieties. In Realizations of Polylogarithms, volume 1650 of
LNM, pages 77-140. Springer, 1997.

A. Yafaev. Sous-variétés des variétés de Shimura. PhD thesis, Université
de Rennes, December 2000.

B. Zilber. Exponential sums equations and the Schanuel conjecture.
Journal of the London Mathematical Society, 65(01):27-44, February
2002.



150 BIBLIOGRAPHY




Résumé

La conjecture de Zilber-Pink est une conjecture diophantienne concernant les
intersections atypiques dans les variétés de Shimura mixtes. C’est une générali-
sation commune de la conjecture d’André-Oort et de la conjecture de Mordell-
Lang. Le but de cette these est d’étudier Zilber-Pink. Plus concrétement,
nous étudions la conjecture d’André-Oort, selon laquelle une sous-variété d’une
variété de Shimura mixte est spéciale si son intersection avec I’ensemble des
points spéciaux est dense, et la conjecture d’André-Pink-Zannier, selon laque-
lle une sous-variété d’une variété de Shimura mixte est faiblement spéciale si
son intersection avec une orbite de Hecke généralisée est dense. Cette derniére
conjecture généralise Mordell-Lang comme expliqué par Pink.

Dans la méthode de Pila-Zannier, un point clef pour étudier la conjec-
ture de Zilber-Pink est de démontrer le théoréme d’Ax-Lindemann qui est
une généralisation du théoréme classique de Lindemann-Weierstrass dans un
cadre fonctionnel. Un des résultats principaux de cette thése est la démon-
stration du théoréme d’Ax-Lindemann dans sa forme la plus générale, c’est-
a-dire le théoréme d’Ax-Lindemann mixte. Ceci généralise les résultats de
Pila, Pila-Tsimerman, Ullmo-Yafaev et Klingler-Ullmo-Yafaev concernant Ax-
Lindemann pour les variétés de Shimura pures.

Un autre résultat de cette thése est la démonstration de la conjecture
d’André-Oort pour une grande collection de variétés de Shimura mixtes : in-
conditionnellement pour une variété de Shimura mixte arbitraire dont la par-
tie pure est une sous-variété de AY (par exemple les produits des familles
universelles des variétés abéliennes de dimension 6 et le fibré de Poincaré
sur Ag) et sous GRH pour toutes les variétés de Shimura mixtes de type
abélien. Ceci généralise des théorémes connus de Klinger-Ullmo-Yafaev, Pila,
Pila-Tsimerman et Ullmo pour les variétés de Shimura pures.

Quant a la conjecture d’André-Pink-Zannier, nous démontrons plusieurs
cas valables lorsque la variété de Shimura mixte ambiante est la famille uni-
verselle des variétés abéliennes. Tout d’abord nous démontrons l'intersection
d’André-Oort et André-Pink-Zannier, c’est-a-dire que I'on étudie 'orbite de
Hecke généralisée d’un point spécial. Ceci généralise des résultats d’Edixhoven-
Yafaev et Klingler-Ullmo-Yafaev pour 4,. Nous prouvons ensuite la conjec-
ture dans le cas suivant : une sous-variété d’un schéma abélien au dessus d’une
courbe est faiblement spéciale si son intersection avec ’orbite de Hecke général-
isée d’un point de torsion d’une fibre non CM est Zariski dense. Finalement
pour une orbite de Hecke généralisée d'un Q-point arbitraire, nous démontrons
la conjecture pour toutes les courbes. Ces deux derniers cas généralisent des
résultats de Habegger-Pila et Orr pour Aj.

Dans toutes les démonstrations, la théorie o-minimale, en particulier le
théoréme de comptage de Pila-Wilkie, joue un réle important.
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Abstract

The Zilber-Pink conjecture is a diophantine conjecture concerning unlikely
intersections in mixed Shimura varieties. It is a common generalization of the
André-Oort conjecture and the Mordell-Lang conjecture. This dissertation is
aimed to study the Zilber-Pink conjecture. More concretely, we will study the
André-Oort conjecture, which predicts that a subvariety of a mixed Shimura
variety having dense intersection with the set of special points is special, and
the André-Pink-Zannier conjecture which predicts that a subvariety of a mixed
Shimura variety having dense intersection with a generalized Hecke orbit is
weakly special. The latter conjecture generalizes the Mordell-Lang conjecture
as explained by Pink.

In the Pila-Zannier method, a key point to study the Zilber-Pink conjec-
ture is to prove the Ax-Lindemann theorem, which is a generalization of the
functional analogue of the classical Lindemann-Weierstrass theorem. One of
the main results of this dissertation is to prove the Ax-Lindemann theorem in
its most general form, i.e. the mixed Ax-Lindemann theorem. This general-
izes results of Pila, Pila-Tsimerman, Ullmo-Yafaev and Klingler-Ullmo-Yafaev
concerning the Ax-Lindemann theorem for pure Shimura varieties.

Another main result of this dissertation is to prove the André-Oort con-
jecture for a large class of mixed Shimura varieties: unconditionally for any
mixed Shimura variety whose pure part is a subvariety of AY (e.g. products of
universal families of abelian varieties of dimension 6 and the Poincaré bundle
over Ag) and under GRH for all mixed Shimura varieties of abelian type. This
generalizes existing theorems of Klinger-Ullmo-Yafaev, Pila, Pila-Tsimerman
and Ullmo concerning pure Shimura varieties.

As for the André-Pink-Zannier conjecture, we prove several cases when the
ambient mixed Shimura variety is the universal family of abelian varieties.
First we prove the overlap of André-Oort and André-Pink-Zannier, i.e. we
study the generalized Hecke orbit of a special point. This generalizes results
of Edixhoven-Yafaev and Klingler-Ullmo-Yafaev for A,. Secondly we prove
the conjecture in the following case: a subvariety of an abelian scheme over a
curve is weakly special if its intersection with the generalized Hecke orbit of a
torsion point of a non CM fiber is Zariski dense. Finally for the generalized
Hecke orbit of an arbitrary Q-point, we prove the conjecture for curves. These
generalize existing results of Habegger-Pila and Orr for A,.

In all these proofs, the o-minimal theory, in particular the Pila-Wilkie
counting theorems, plays an important role.
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Samenvatting

Het Zilber-Pink vermoeden is een diophantisch vermoeden over zogenaamde
“onwaarschijnlijke intersecties” in gemengde Shimura variéteiten. Het is een
gemeenschappelijke generalisatie van de vermoedens van André-Oort en Mordell-
Lang. In dit proefschrift wordt het Zilber-Pink vermoeden bestudeerd. Pre-
cieser, we bestuderen het André-Oort vermoeden, dat zegt dat in een gemengde
Shimura variéteit iedere deelvariéteit waarin de speciale punten dicht liggen
zelf speciaal is, en het André-Pink-Zannier vermoeden dat zegt dat in een
gemengde Shimura variéteit iedere deelvariéteit met een dichte doorsnede met
een gegeneraliseerde Hecke baan zwak speciaal is. Zoals uitgelegd door Pink
generaliseert dit laatste vermoeden het Mordell-Lang vermoeden.

Een essentieel punt in de benadering van het Zilber-Pink vermoeden door
Pila en Zannier is het bewijzen van de Ax-Lindemann stelling, die een general-
isatie is van een functionaal analogon van de klassieke Lindemann-Weierstrass
stelling. Eén van de hoofdresultaten van dit proefschrift is een bewijs van
de Ax-Lindemann stelling in zijn meest algemene vorm, dat wil zeggen, de
gemengde Ax-Lindemann stelling. Dit generaliseert resultaten van Pila, Pila-
Tsimerman, Ullmo-Yafaev en Klingler-Ullmo-Yafaev over de Ax-Lindemann
stelling voor pure Shimura variéteiten.

Een ander hoofdresultaat in dit proefschrift is een bewijs van het André-
Oort vermoeden voor een grote klasse van gemengde Shimura variéteiten: on-
voorwaardelijk voor elke gemengde Shimura variéteit waarvan het pure quotiént
een deelvariéteit is van AY (d.w.z., producten van universele families van
abelse variéteiten van dimensie 6 en de Poincaré bundel over Ag) en onder de
gegeneraliseerde Riemann hypothese (GRH) voor alle gemengde Shimura var-
iéteiten van abels type. Dit generaliseert stellingen van Klinger-Ullmo- Yafaev,
Pila, Pila-Tsimerman and Ullmo betreffende pure Shimura variéteiten.

Wat het André-Pink-Zannier vermoeden betreft, bewijzen we een aantal
gevallen waarin de ambiénte gemengde Shimura variéteit een universele familie
van abelse variéteiten is. Eerst bewijzen we de overlap tussen André-Oort en
André-Pink-Zannier, d.w.z., we bestuderen de gegeneraliseerde Hecke baan
van een speciaal punt. Dit generaliseert resultaten van Edixhoven-Yafaev en
Klingler-Ullmo-Yafaev voor A,;. Daarna bewijzen we het vermoeden in het
volgende geval: een deelvariéteit van een abels schema over een kromme is
zwak speciaal als zijn doorsnede met de gegeneraliseerde Hecke baan van een
torsiepunt van een niet CM-vezel Zariski dicht is. Tenslotte bewijzen we het
vermoeden voor krommen en de gegeneraliseerde Hecke baan van een Q-punt.
Deze resultaten generaliseren resultaten van Habegger-Pila en Orr voor A,.

In al deze bewijzen speelt o-minimale theorie, en in het bijzonder de tel-
stelling van Pila-Wilkie, een belangrijke rol.
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