
PANORAMA ON AX TYPE TRANSCENDENCE RESULTS

ZIYANG GAO

Abstract. We summarize the current situation of the geometric Ax type transcendence results.
In particular the Ax-Schanuel conjecture we state here contains all existing geometric Ax type
transcendence results. In the case of mixed Shimura varieties, we also prove the refinement of
a distribution theorem of positive dimensional weakly special subvarieties by Ullmo (for pure
Shimura varieties) and the author (for mixed Shimura varieties).
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1. Introduction

The goal of this survey is to summarize the current development of functional transcendence
results, which we call geometric transcendence results in contrast to classical transcendence num-
ber theory. We use the language of bi-algebraic geometry to state these results. This language
and these geometric transcendence results have been proven to be very useful in Diophantine
geometry, for example the unconditional proof of the André-Oort conjecture for any mixed
Shimura variety of abelian type [17].

We start with the simple example of complex algebraic tori in §2. We characterize the geo-
metric bi-algebraic subvarieties, state the Ax-Schanuel theorem and explain the two aspects of
this theorem. Then we briefly talk about the arithmetic bi-algebraicity and the Manin-Mumford
theorem. Then we pass to mixed Shimura varieties in §3. We give a brief example-based revi-
sion of the theory of mixed Shimura variety. Then we give the characterization of the geometric
bi-algebraic subvariety (which in this case are precisely the weakly special subvarieties defined
by Pink) and explain them in details in geometric terms. Next we state the Ax-Schanuel con-
jecture for mixed Shimura varieties and its current situation. We close this section by proving
the refinement of a distribution theorem of positive dimensional weakly special subvarieties by
Ullmo’s [19, Théorème 4.1] (for pure Shimura varieties) and the author’s [6, Theorem 12.2] (for
mixed Shimura varieties). In §4 we discuss the geometric bi-algebraic system associated with
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universal vector extensions of abelian varieties. It is necessary to study these universal vector
extensions if we want to study arithmetic bi-algebraic systems for abelian varieties. Then we
formulate the Ax-Schanuel statement for these universal vector extensions of abelian varieties.
In the last section §5 we put together mixed Shimura varieties and vector extensions. We give
an example-based introduction to enlarged mixed Shimura varieties, give the characterization
of geometric bi-algebraic subvarieties, state the Ax-Schanuel conjecture (which is in its most
general form and contains all previous Ax-Schanuel statements as special cases) and explain its
situation.

2. First example: algebraic tori

In this section our goal is to explain the topics of this survey by the example of algebraic tori.
Let T be a complex algebraic tori, then T ' (C∗)n for some n. Take the universal cover of T

u : Cn = Lie(T )→ T = (C∗)n, (x1, . . . , xn) 7→ (e2πix1 , . . . , e2πixn).

The map u is not algebraic.

2.1. Geometric bi-algebraicity. We say that a closed irreducible subvariety Z of T is geo-
metric bi-algebraic if one (and hence any) complex analytic irreducible component of u−1(Z) is
an algebraic subvariety of Cn.

We have the following characterization of geometric bi-algebraic subvarieties of T : the closed
irreducible bi-algebraic subvarieties of T are precisely the translates of algebraic subtori. Here
we briefly explain an easy proof using the idea of monodromy.

One direction is immediate. For the other direction, let Z be a closed irreducible bi-algebraic
subvariety of T and denote by j : Zsm ↪→ T the inclusion. Up to translating Z we may assume
that Z contains the neutral element 1 of T . We re-interpret the uniformizing map u as

π1(T, z)⊗Z C ' H1(T, z)⊗Z C→ T.

Then we are done if we can prove that the smallest subtorus containing Z is u(j∗π1(Z
sm, z)⊗ZC).

Now up to replacing T by a subtorus we may assume that Z is not contained in any proper
subtorus of T . We are done if we can prove [π1(T, z) : j∗π1(Z

sm, z)] <∞. If not, then

(2.1) j∗π1(Z
sm, z) ⊂ Ker(ρ : Zm � Z)

for some map ρ. Since the covariant functor T 7→ X∗(T ) (X∗(T ) is the co-character group of
T ) is an equivalence between the category {algebraic tori over C} and the category {free Z-
modules of finite rank}, the map ρ corresponds to a surjective map (with connected kernel) of

tori p : T � T ′. The composition of the maps Zsm j−→ T
p−→ T ′ = Gm,C is dominant by the choice

of T . But then we have

[π1(T
′, p(z)) : (p ◦ j)∗π1(Zsm, z)] <∞

([9, 2.10.2]), which contradicts to (2.1) by the canonical isomorphism

ψT : X∗(T )
∼−→ π1(T, 1), ν 7→ [ν ◦ i]

where i is the inclusion {z ∈ C : |z| = 1} ⊂ C∗.
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2.2. Ax-Schanuel. Ax [1] proved the following theorem, which is the functional analogue of
the Schanuel conjecture. Our statement here is the geometric version formulated by Tsimerman
[16].

Theorem 2.1. Let ∆ ⊂ Cn× (C∗)n be the graph of u. Let Z = graph(Z̃
u−→ Z) be an irreducible

complex subspace of ∆, and let B be its Zariski closure in Cn × (C∗)n. Then dimB− dimZ ≥
dimF , where F is the smallest translate of subtorus containing Z.

We explain this theorem. First replace Z be a complex analytic irreducible component of

B ∩∆. Then denote by X̃ := pr1(B) = Z̃Zar and Y := pr2(B) = ZZar. We have B ⊂ X̃ × Y .
Therefore Theorem 2.1 implies

(2.2) dim X̃ + dimY − dim Z̃ ≥ dimB− dimZ ≥ dimF.

On the other hand let Ỹ (resp. F̃ ) be the complex analytic irreducible component of u−1(Y )

(resp. of u−1(F )) containing Z̃, then Z̃ is a complex analytic irreducible component of X̃ ∩ Ỹ
since Z is a complex analytic irreducible component of B ∩∆. Hence we always have

(2.3) dim Z̃ ≥ dim X̃ + dim Ỹ − dim F̃ .

Now (2.2) and (2.3) together imply

dimB = dim X̃ + dimY, dim Z̃ = dim X̃ + dim Ỹ − dim F̃ ,

so Theorem 2.1 is equivalent to:

• B = X̃ × Y ;

• X̃ and Ỹ intersect properly in F̃ .

2.3. Arithmetic bi-algebraicity. Note that every closed point of T is geometric bi-algebraic
by definition, so for points we need a new notion of bi-algebraicity. This is the arithmetic
bi-algebraicity we will discuss in this subsection. To study arithmetic bi-algebraicity, we need
Q-structures on both T and its universal cover Cn. So in this subsection we assume that T is
defined over Q.

We say that a point t ∈ T (Q) is arithmetic bi-algebraic if u−1(t) ⊂ Qn
.

We have the following characterization of arithmetic bi-algebraic points of T : t ∈ T (C) is
arithmetic bi-algebraic if and only if t is a torsion coset of T . Let us briefly explain the reason.

It is easy to see that any torsion coset of T is arithmetic bi-algebraic. The other implication
follows from the Gel’fond-Schneider theorem: Given complex numbers λ 6= 0 and β, if eλ, β and
eβλ are all algebraic, then β ∈ Q. It suffices to apply this theorem to λ = 2πi.

2.4. Manin-Mumford for algebraic tori. The following theorem is the analogue of the
Manin-Mumford conjecture for algebraic tori.

Theorem 2.2. Let T be an algebraic torus over C. Then any irreducible component of the the
Zariski closure of a subset of T (C)tor is a torsion coset of T .

As usual, the proof of the theorem can be reduced to those T over Q by specialization
argument. But then the theorem becomes:

Theorem 2.3. Let T be an algebraic torus over Q. Then any irreducible component of the
Zariski closure of arbitrarily many arithmetic bi-algebraic points is geometric bi-algebraic.
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3. Mixed Shimura varieties

We generalize the discussion in the last section to mixed Shimura varieties.

3.1. Examples of mixed Shimura varieties. Pure (resp. mixed) Shimura varieties are mod-
uli spaces of certain pure (resp. mixed) Hodge structures. Shimura varieties have an extremely
rich arithmetic and are central objects in the theory of automorphic forms (Langlands program)
and in Diophantine geometry.

The prototype of pure Shimura varieties is the moduli spaceAg of principally polarized abelian
varieties of dimension g. A first example of mixed but not pure Shimura varieties is the universal
abelian variety Ag over a fine moduli space. More concretely we let N ≥ 3 be an integer and
let Ag(N) be the moduli space of principally polarized abelian varieties of dimension g with
a level-N -structure. Then Ag(N) is a fine moduli space, and thus admits a universal family
Ag(N). However, Ag(N) is NOT the typical example of mixed Shimura varieties. There are
several reasons for this, and here let me just point out one: the points of Ag parametrize not
only abelian varieties of dimension g, but also a fixed polarization on each abelian variety. In
other words every point of Ag is of the form [(A,L)], where A is an abelian variety and L is
an ample line bundle on A of degree 1. Hence when making the universal family, one should
not only consider the abelian varieties themselves, but also the fixed polarizations. However the
family Ag(N)→ Ag(N) does not contain any information of the polarizations.

This is why we need to introduce Lg(N), the symmetric relatively ample Gm-torsor over
Ag(N) → Ag(N) such that every fiber of Lg(N) → Ag(N) over [(A,L)] ∈ Ag(N) is the total
space of the Gm-torsor associated with L, i.e. L with the zero section removed. For technical
reasons we let N ≥ 3 to be even when defining Lg(N). The reduction lemma of Pink [, 2.26]
suggests that many problems concerning mixed Shimura varieties can be reduced to the product
of a pure Shimura variety and copies of Lg(N), and the most enlightening case is Lg(N)×Lg(N).

When considering geometric transcendence theorems for mixed Shimura varieties, e.g. Ax type
transcendence statements, passing from Lg to Lg × Lg is usually nontrivial and even contains

the core of the difficulty.[1] On the other hand it is sometimes more convenient to work with a
Gm-torsor over an abelian scheme than with a product of two Gm-torsors. Thus it is sometimes
more convenient to work with the universal Poincaré biextension Pg, i.e. the Gm-torsor over
Ag ×A∨g whose fiber (Pg)a for any point a ∈ Ag is the Poincaré biextension over (Ag)a× (A∨g )a.
Now Pg is an intermediate object between Lg and Lg × Lg.

3.2. Brief introduction to the Deligne-Pink language of mixed Shimura varieties.
The uniformization of Ag is u : H+

g → Ag, where H+
g is the Siegel upper half space

H+
g = {Z = X + iY : Z = Zt, Y > 0} ⊂ Mat2g×2g(C).

The group GSp2g(R)+ acts on H+
g by the law(

A B
C D

)
Z = (AZ +B)(CZ +D)−1,

[1]The reason, as revealed by the proof of Pink’s reduction lemma, is that the weight −2 part of an arbitrary
mixed Shimura variety may a priori NOT give any polarization of its weight −1 part and thus we need to pass to
a unipotent extension by Ga.
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making H+
g a GSp2g(R)+-orbit. As complex spaces, we have Ag = Sp2g(Z)\H+

g . To sum it

up, there is a pair (GSp2g,H+
g ) associated with Ag, where GSp2g is a Q-group and GSp2g(R)+

acts transitively on H+
g , such that Ag = Sp2g(Z)\H+

g as complex spaces. By definition H+
g is

naturally an open semialgebraic subset of {Z = X + iY : Z = Zt} ' Cg(g+1)/2 in the usual
topology.

The discussion above can be generalized to any mixed Shimura varieties. Associated with
any connected mixed Shimura variety there is a pair (P,X+) consisting of a Q-group P and a
complex space X+ such that X+ is an open semialgebraic subset of a complex algebraic variety
X∨, that P (R)+U(C) acts transitively on X+,[2] and that S = Γ\X+ as complex spaces for
some congruent subgroup Γ of P (Q). We call this the Deligne-Pink language of mixed Shimura
varieties. The pair (P,X+) is called a mixed Shimura datum.

As an example let us look at Ag(N). The pair associated with Ag(N) is (P2g,a,X+
2g,a), where

• P2g,a = V2g o GSp2g, where V2g is the vector group of dimension 2g and the action of
GSp2g on V2g is the natural representation of GSp2g;

• X+
2g,a = Lie(AH+

g
/H+

g ), where AH+
g

is the pullback of Ag(N)→ Ag(N) by the uniformiza-

tion H+
g → Ag(N) (and hence a family of abelian varieties with a principal polarization).

By the theory of variation of Hodge structures, we have an exact sequence

0→ F0H1
dR(AH+

g
/H+

g )∨ → H1
dR(AH+

g
/H+

g )∨ → Lie(AH+
g
/H+

g )→ 0

and hence the composite of

R2g ×H+
g ⊂ C2g ×H+

g ' H1
dR(AH+

g
/H+

g )∨ → Lie(AH+
g
/H+

g ) = X+
2g,a

is a semialgebraic bijection. Now the action of P2g,a(R)+ on X+
2g,a is given by (v, h) · (v′, x) =

(v + hv′, hx). If we denote by Sp2g(1 + NZ) = {h ∈ Sp2g(Z) : h ≡ 1 mod N}, then Ag(N) =

Sp2g(1 +NZ)\X+
2g,a.

The underlying group P2g associated with Lg(N) is the following group: Let W2g be the
Heisenberg group on the symplectic vector space V2g, namely W2g = Ga × V2g as sets and the
group law on W2g is (u1, v1)(u2, v2) = (u1 + u2 + 1

2Ψ(v1, v2), v1 + v2) where Ψ: V2g × V2g → Ga

is the symplectic form on V2g. Then P2g = W2g o GSp2g where the action of GSp2g on W2g is
given by h · (u, v) = (ν(h)u, hv) with ν : GSp2g → Gm the multiplier.

The underlying group P2g,b associated with Pg(N) is the unipotent extension of P2g,a by
V2g ⊕Ga via the action P2g,a on V2g ⊕Ga defined by (v, h)(v′, u) = (hv′, ν(h)u+ Ψ(v, v′)).

3.3. Two-step filtration. Let S be a mixed Shimura variety associated with (P,X+). Let W
be the unipotent radical of P and let G := P/W be its reductive part. The general theory of
mixed Shimura varieties says that W is an extension of a vector group V by a vector group U ,
so there is an exact sequence of groups

1→ U →W → V → 1.

Moreover the groups U and V can be uniquely determined by (P,X+), U is a normal subgroup
of P and W = U × V with the group law (u1, v1)(u2, v2) = (u1 + u2 + 1

2Ψ(v1, v2), v1 + v2) for
some alternating form Ψ: V ×V → U . We call U the weight −2 part and V the weight −1 part.
Then the natural projections P → P/U and P → G = P/W induces morphisms of Shimura

[2]U is a unipotent normal subgroup of P uniquely determined by S.
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data (P,X+) → (P/U,X+
P/U ) and (P,X+) → (G,X+

G ). We say that (P/U,X+
P/U ) is the Kuga

part of (P,X+) and that (G,X+
G ) is the pure part of (P,X+). For example the Kuga part of

(P2g,X+
2g) is (P2g,a,X+

2g,a) and the pure part of (P2g,X+
2g) is (GSp2g,H+

g ). Another example: the

Kuga part of (P2g,a,X+
2g,a) is itself and the pure part of (P2g,a,X+

2g,a) is (GSp2g,H+
g ).

Assume S = Γ\X+. Define ΓP/U to be the image of Γ under the projection P → P/U and

ΓG to be the image of Γ under the projection P → G = P/W . Let SP/U = ΓP/U\X+
P/U and

let SG = ΓG\X+
G . We say that SP/U is the Kuga part of S and that SG is the pure part of S.

For example the Kuga part of Lg(N) is Ag(N) and the pure part of Lg(N) is Ag(N). Another
example: the Kuga part of Ag(N) is itself and the pure part of Ag(N) is Ag(N).

The discussion above can be generalized in the following sense: For any normal subgroup N of
P , there is a connected mixed Shimura datum (P,X+)/N induced by the group homomorphism
P → P/N , which furthermore gives rise to a connected mixed Shimura variety SP/N together
with a Shimura morphism S → SP/N .

3.4. Geometric bi-algebraicity. We explain in this subsection the geometric bi-algebraic sys-
tem associated with mixed Shimura varieties and the characterization of geometric bi-algebraic
subvarieties. Let S be a connected mixed Shimura variety associated with (P,X+). Denote by
u : X+ → S the uniformization.

We say that a closed irreducible subvariety Z of S is geometric bi-algebraic if one (and hence
every) complex analytic irreducible component of u−1(Z) is algebraizable, i.e. its dimension
equals the dimension of its Zariski closure in X∨.

To give the characterization of geometric bi-algebraic subvarieties of S, we recall the definition
of weakly special subvarieties introduced by Pink [15, Definition 4.1(b)] and refined by the author
[6, Proposition 5.4]: A subvariety Z of S is called weakly special if there exist a connected mixed
Shimura subvariety SQ of S and a Shimura morphism [p] : SQ → SQ/N for some normal subgroup

N of Q such that Z = [p]−1(t) for some point t ∈ SQ/N . We have the following theorem [6,
Corollary 8.3].

Theorem 3.1. The geometric bi-algebraic subvarieties of S are precisely the weakly special
subvarieties of S.

Weakly special subvarieties of S have good geometric descriptions. In order to give this
decomposition let us first recall some facts about connected mixed Shimura varieties.

Let S = Γ\X+ be a connected mixed Shimura variety. Denote by SG its pure part and by
SP/U its Kuga part. Then up to replacing Γ by a subgroup of finite index, we have

(1) The morphism ad: G → Gad induces a Shimura morphism (G,X+) → (Gad,X+), and
the decomposition Gad =

∏r
i=1Gi into simple adjoint groups induces a decomposition

of connected Shimura varieties Sad
G =

∏r
i=1 Si. See §3.4.1 for more details.

(2) The Shimura morphism SP/U → SG is an abelian scheme.
(3) The Shimura morphism [πP/U ] : S → SP/U is a T -torsor, where T = ΓU\U(C).

With this preparation, we have the following theorem.

Theorem 3.2. Let S = Γ\X+ be a connected mixed Shimura variety and let Z be a Hodge-
generic irreducible subvariety. Then Z is weakly special if and only if, up to replacing Γ by a
subgroup of finite index, Z is of the following form:
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(1) Under the decomposition ad: SG → Sad
G =

∏r
i=1 Si, we have ZG = ad−1(

∏
i∈I Si×{zG})

for some I ⊂ {1, . . . , r} and some zG ∈
∏
j 6∈I Sj.

(2) There exists a decomposition SP/U = B×SG C of abelian schemes over SG, where C|ZG =
C × ZG is a trivial abelian scheme, such that ZP/U = B|ZG ×ZG ({c} × ZG) for some
c ∈ C.

(3) There exists a subtorus TN of T such that we have the following commutative diagram

S|ZP/U

T -torsor $$

TN -torsor [ρ] // ZP/U × (T/TN )

T/TN -torsorww
ZP/U ,

and Z = [ρ]−1(ZP/U × {t}) for some t ∈ T/TN .

The rest of the subsection is devoted to prove this theorem. The proof will occupy §3.4.1-3.4.3,
with each subsection showing one part of the theorem.

3.4.1. Pure Shimura varieties. Let S be a connected pure Shimura variety, namely S equals
its pure part. In this case weakly special subvarieties of S are precisely the totally geodesic
subvarieties of S. See Moonen [11, 4.3].

Another description is as follows. Let Gad be the adjoint group of G, then the group homo-

morphism G
ad−→ Gad induces a Shimura morphism (G,X+) → (Gad,X+) which is the identity

map on the underlying space. Hence there is a finite map ad: S → Sad where Sad = Γad\X+.
Moreover, the adjoint semi-simple group Gad admits a decomposition Gad = G1×. . .×Gr into

simple adjoint groups. It induces a decomposition of the underlying space X+ = X+
1 × . . .×X+

r .
Up to replacing Γ by a finite index subgroup we may assume that Γad = Γ1× . . .×Γr under the
decomposition Gad = G1 × . . .×Gr. Hence Sad = S1 × . . .× Sr where Si = Γi\X+

i .
Now let Z be a closed irreducible subvariety of S. Assume that Z is Hodge generic in S,

namely Z is not contained in any proper connected Shimura subvariety of S. Then Z is weakly
special if and only if Z = ad−1(SI × {z}) where I ⊂ {1, . . . , r}, SI =

∏
i∈I Si and z ∈

∏
j 6∈I Sj .

This establishes part (1) of Theorem 3.2.

3.4.2. Mixed Shimura varieties of Kuga type. Let S be a connected mixed Shimura variety of
Kuga type, namely S equals its Kuga part. Denote by [πG] : S → SG the Shimura morphism of
S to its pure part. Then [πG] : S → SG is an abelian scheme. Hence for any subvariety ZG of
SG, the restriction S|ZG → ZG is again an abelian scheme. In this case the author has proven
[7, Proposition 1.1] that a subvariety Z of S is weakly special if and only if the followings hold:

(i) The variety ZG = [πG](Z) is a weakly special subvariety of SG;
(ii) There exists a finite cover Z ′G → ZG such that Z is the image under the natural projection

S|ZG ×ZG Z ′G → S|ZG of an abelian subscheme of S|ZG ×ZG Z ′G/Z ′G by a torsion section
and then by a constant section.

Now let us assume that Z is weakly special and not contained in any proper connected mixed
Shimura subvariety of S. Then ZG is not contained in any proper connected Shimura subvariety
of SG. So by §3.4.1, condition (i) above becomes ZG = ad−1(SG,I×{zG}) for some I ⊂ {1, . . . , r}
and some zG ∈

∏
j 6∈I Sj .
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Let us look at condition (ii) above. Up to replacing Γ by a subgroup of finite index we may
assume that Z is the translate of the abelian subscheme BZ of S|ZG/ZG. But Z is Hodge generic
in S. So by (the proof of) [7, Proposition 3.5], we see that BZ extends to an abelian subscheme
B of S/SG and there exists an abelian subscheme C of S/SG such that the followings hold:

• We have B + C = S as abelian schemes over SG;
• We have that B ∩ C is a finite group over SG;
• For any yG ∈

∏
j 6∈I Sj , the restriction of C to ad−1(SG,I × {yG}) is isotrivial.

Now up to replacing Γ by a subgroup of finite index we may assume S = B ×SG C. Since the
algebraic monodromy groups of ad−1(SG,I×{yG}) stay the same when yG varies, up to replacing
Γ by a subgroup of finite index we may assume that C|ad−1(SG,I×{yG}) is trivial for any yG. In

particular taking yG to be zG, we have that C|ZG = C × ZG for some abelian variety C. Then
again by (the proof of) [7, Proposition 3.5] we have Z = B|ZG ×ZG ({c} × ZG) for some c ∈ C.
This establishes part (2) of Theorem 3.2.

3.4.3. General mixed Shimura varieties. Let Z be a weakly special subvariety of S. Assume
that Z is not contained in any proper connected mixed Shimura subvariety of S. We want to
characterize Z in geometric terms.

Denote by [πP/U ] : S → SP/U the projection of S to its Kuga part. Then [πP/U ] is a T -
torsor with T being the algebraic torus ΓU\U(C), where ΓU = Γ ∩ U(Q). By assumption,
ZP/U = [πP/U ](Z) is not contained in any proper connected mixed Shimura subvariety of SP/U .
Hence we can apply §3.4.2 to ZP/U and get the geometric description of ZP/U . Note that
S|ZP/U → ZP/U is again a T -torsor.

On the other hand let us denote by u : X+ → S the uniformization. Then by definition
of weakly special subvarieties, there exist a normal subgroup N of P whose reductive part is
semisimple and a point z̃ ∈ X+ such that

Z = u(N(R)+UN (C)z̃)

with UN = U ∩ N . Let VN = (W ∩ N)/UN and let Ψ: V × V → U be the alternating form
defining the group law on W . Since GN (the reductive part of N) is semisimple, we have that
GN acts trivially on N . The condition N C P implies that Ψ(VN , V ) ⊂ UN . Recall that there
is a semialgebraic bijection X+ ' U(C)× V (R)×X+

G . See [6, equation (4.1)].
Recall that any subgroup of U is normal in P . In particular UN C P . Hence the quotient

P → P/UN induces a quotient connected mixed Shimura datum ρ : (P,X+)→ (P/UN ,X+
P/UN

),

and it furthermore induces a quotient connected mixed Shimura variety [ρ] : S → SP/UN , which
is a TN -torsor with TN bing the algebraic torus (ΓU ∩ UN (Q))\UN (C). We have the following
compatible torsors

S

T -torsor !!

TN -torsor // SP/UN

T/TN -torsorzz
SP/U .

Denote by uP/UN : X+
P/UN

→ SP/UN the uniformization, then we have

[ρ](Z) = uP/UN
(
(N/UN )(R)+ρ(z̃)

)
and Z = [ρ]−1([ρ]Z).
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Now for Ψ: V × V → U/UN the composite of Ψ and the quotient U → U/UN , we have
Ψ(VN , V ) = 0.

The semialgebraic bijection X+
P/UN

' (U/UN )(C)× V (R)×X+
G for X+

P/UN
is compatible with

that of X+, namely the following diagram commutes:

(3.1) X+ ∼ //

ρ

��

U(C)× V (R)×X+
G

��
X+
P/UN

∼ // (U/UN )(C)× V (R)×X+
G

where the right arrow is induced by the natural projection U → U/UN and the identities on

V and X+
G . Write z̃ = (z̃U , z̃V , z̃G) under the top bijection, then ρ(z̃) = (z̃U , z̃V , z̃G) under the

bottom bijection where z̃U is the image of z̃U under the natural projection U → U/UN .
Let us consider the T/TN -torsor SP/UN |ZP/U → ZP/U . We claim that it is a trivial torsor.

To prove this, it suffices to find a global section of SP/UN |ZP/U → ZP/U . But Ψ(VN , V ) = 0

and GN acts trivially on U . So by a simple computation, we have that (N/UN )(R)+ρ(z̃) is

identified with {z̃U} × (VN (R) + z̃V ) × GN (R)+z̃G under the bottom bijection in (3.1). Hence
[ρ](Z) = uP/UN ((N/UN )(R)+ρ(z̃)) is a desired global section. Moreover [ρ](Z) is a constant
section of SP/UN |ZP/U → ZP/U . This establishes condition (3) of Theorem 3.2.

Conversely it is not hard to show that any Z which is not contained in any proper connected
mixed Shimura variety of S and which satisfies the conditions of Theorem 3.2 is weakly special.

3.5. Distribution of positive dimensional weakly special subvarieties. Let S be a con-
nected mixed Shimura variety associated with (P,X+). In the proof of the André-Oort conjec-
ture, an important step is the establish the distribution of positive dimensional weakly special
subvarieties. This distribution is an application of the so called Ax-Lindemann theorem. Here
we sketch the proof of a stronger form of the distribution theorem and relate it to a classical
result of Bogomolov.

Recall that a subvariety Z of S is called weakly special if there exist a connected mixed Shimura
subvariety SQ of S and a Shimura morphism [p] : SQ → SQ/N for some normal subgroup N of Q

such that Z = [p]−1(t) for some point t ∈ SQ/N . When Z is of this form we say that this weakly
special subvariety Z is defined by N .

We start with the following lemma.

Lemma 3.3. Let Y be a closed subvariety of S. Let N be a normal subgroup of P . Then
the union of weakly special subvarieties which are defined by N and contained in Y is a closed
subvariety.

Proof. This follows immediately from the geometric description of weakly special subvarieties
Theorem 3.2: Note that when N is fixed, then the set I in Theorem 3.2.(1), the abelian sub-
scheme B in Theorem 3.2.(2), the algebraic torus TN and the map [ρ] in Theorem 3.2.(3) are all
fixed, so we are only varying zG, c and the point t ∈ T/TN so that the resulting weakly special
subvariety is contained in Y . This is an algebraic condition, so the set of all possible (zG, c, t) is
Zariski closed, from which the result follows. �
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Now we are ready to prove the following theorem, which refines Ullmo’s [19, Théorème 4.1]
(for pure Shimura varieties) and the author’s [6, Theorem 12.2] (for mixed Shimura varieties).

Theorem 3.4. Let Y be a closed irreducible subvariety of S. Let W(Y ) be the union of all
positive dimensional weakly special subvarieties of S which are contained in Y . Then

(1) The set W(Y ) is Zariski closed;
(2) Assume that Y is Hodge generic in S, namely Y is not contained in any proper connected

mixed Shimura subvariety of S. Then W(Y ) = Y if and only if there exists a positive
dimensional normal subgroup N of P such that Y = [ρ]−1([ρ](Y )) for the diagram

(P,X+)
ρ //

u

��

(P,X+)/N

u′

��
S

[ρ] // S′

Remark 3.5. Bogomolov [3, Theorem 1] proved the following result: Let A be a complex
abelian variety and let Y be a closed irreducible subvariety. Then for the Ueno locus Z =⋃
w+B⊂Y (w + B) where w ∈ A and B runs over all positive dimensional abelian subvarieties

of A, there exist finitely many abelian subvarieties of positive dimension B1, . . . , Br such that
Z =

⋃
w+Bi⊂Y, w∈A(w+Bi). From this it is easy to deduce that the union of translates of abelian

subvarieties contained in Y is Zariski closed and equals Y if and only if the stabilizer of Y is of
positive dimension. Our theorem 3.4 is its direct generalization to mixed Shimura varities.

Proof. We may and do replace S by its smallest connected mixed Shimura subvariety containing
Y .

For any subgroup N ′ of P , denote by F(N ′, Y ) the set of all weakly special subvarieties of S
defined by N which are contained in Y . By [6, equation (12.4)], we know that

(3.2) W(Y ) =
⋃
N ′

⋃
Z∈F(N ′,Y )

Z

which is a finite union on N ′’s and each N ′ is of positive dimension.
On the other hand by [6, Proposition 12.1], we know that ∪Z∈F(N ′,Y )Z is contained the union

of finitely many connected mixed Shimura subvarieties of S with the same underlying group of
which N ′ is a normal subgroup. We call these mixed Shimura subvarieties S′1, . . . , S

′
r.

Now to prove that W(Y ) is a closed subvariety of S, it suffices to prove: For any S′i above
(i = 1, . . . , r), the union of weakly special subvarieties which are defined by N ′ and contained in
Y ∩ S′i is a closed subvariety. But N ′ is a normal subgroup of the underlying group associated
with S′i, so this is true by Lemma 3.3. This prove part (1).

Part (2) is then a direct consequence of Part (1) and [6, Theorem 12.2]. �

3.6. Ax-Schanuel. Let S be a connected mixed Shimura variety with u : X+ → S the uni-
formization. The Ax-Schanuel conjecture for S is the analogous statement of Theorem 2.1.

Conjecture 3.6. Let ∆ ⊂ X+ × S be the graph of u. Let Z = graph(Z̃
u−→ Z) be a complex

analytic irreducible subvariety of ∆ and let B be its Zariski closure in X+ × S. Let F be the
smallest weakly special subvariety which contains Z. Then

dimB− dimZ ≥ dimF.
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Theorem 3.7. Conjecture 3.6 is true in the following cases:

(1) when Z̃ is algebraic;
(2) when Z is algebraic;
(3) when S = Y (1)N .

It is proven by the author [5, Theorem 8.5 and 8.4] that Conjecture 3.6 is equivalent to Ax-

Lindemann when Z̃ is algebraic and equivalent to logarithmic Ax when Z is algebraic. So when

Z̃ is algebraic, Conjecture 3.6 is proven for Y (1)n by Pila [12], for projective pure Shimura
varieties by Ullmo-Yafaev [20], for Ag by Pila-Tsimerman [13], for any pure Shimura variety by
Klingler-Ullmo-Yafaev [8], and for any mixed Shimura variety by the author [6, Theorem 1.2].
When Z is algebraic, Conjecture 3.6 is proven by the author [6, Theorem 8.1]. When S = Y (1)N ,
Conjecture 3.6 is proven by Pila-Tsimerman [14].

Remark 3.8. When this survey is under review, Mok-Pila-Tsimerman [10] proved Conjec-
ture 3.6 for all pure Shimura varieties. A version for variations of pure Hodge structures is also
proven by Bakker-Tsimerman [2] in the mean time.

4. Universal vector extension of abelian varieties

We turn to abelian varieties A over Q in this section. We wish to endow a Q-structure
on LieAC so that torsion points of A are precisely the arithmetic bi-algebraic points. However
using the Schneider-Lang and Wüstholz’ analytic subgroup theorems, Ullmo [18, Proposition 2.6]
proved: any torsion point of A, except the origin, becomes transcendental in LieAC. A solution
to this problem is proposed by Bost: instead of A we study its universal vector extension A\.
We briefly recall some basic facts about A\.

By a vector extension of A, we mean an algebraic group E such that there exist a vector group
W and an exact sequence 0→ W → E → A→ 0. There exists a universal vector extension A\

of A such that any vector extension E of A is obtained by

0 // WA
//

��

A\ //

��

A

=

��

// 0

0 // W // E // A // 0

In fact A\ is constructed as follows: Let Γ := H1(A(C),Z) ⊂ H1(A(C),C) be the period lattice
of A. For the Hodge decomposition H1(A(C),C) = H0,−1(AC)⊕H−1,0(AC), we have

0 // H0,−1(AC) //

=

��

H1(A(C),C) //

u\

��

H−1,0(AC) ' Lie(AC) //

u

��

0

0 // Ω1
A∨C

// A\(C) ' Γ\H1(A(C),C) // A(C) ' Γ\Lie(AC) // 0

and the bottom line is nowhere split. Take the Q-structure H1(A(C),Z)⊗Q on H1(A(C),C). As
an application of Wüstholz’ analytic subgroup theorem [21, Theorem 1], Ullmo [18, Théorème 2.10]
proved

z ∈ H1(A(C),Z)⊗Q such that u\(z) ∈ A\(Q)⇔ u\(z) is a torsion point of A\.
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Thus we get an arithmetic bi-algebraic description for the torsion points of A because the
projection A\ → A induces a bijection between their torsion points. This suggests that in view
of arithmetic bi-algebraicity and Theorem 2.3, the abelian varieties are not the good objects to
study. Instead, one should study their universal vector extensions.

4.1. Geometric bi-algebraicity. Before describing the geometric bi-algebraic subvarieties of
A\, let us point out the following rigidity of universal vector extensions: Let B be an abelian
subvariety of A, then by the universal property of B\ we have

0 // Ω1
B

//
� _

��

B\ //

��

B

=

��

// 0

0 // Ω1
A

// A\|B // B // 0

where the left vertical map is the natural inclusion induced by B ⊂ A. In other words the
inclusion B ⊂ A induces a unique embedding B\(⊂ A\|B) ⊂ A\. So A\|B = B\ × Ω1

A/B. Now

let a ∈ A, then there exists a unique point a\ ∈ A\ over a corresponding to the origin of the
C-vector space Ω1

A. Then the inclusion a+B ⊂ A induces a unique embedding a\ +B\ ⊂ A\.
We say that a closed irreducible subvariety Z\ of A\ is geometric bi-algebraic if one (and hence

every) complex analytic irreducible component of (u\)−1(Z\) is algebraic in H1(A(C),C) ' C2g.
We have the following characterization of geometric bi-algebraic subvarieties: a closed irre-

ducible subvariety Z\ of A\ is geometric bi-algebraic if and only if

• the image of Z\ under the projection A\ → A is the translate of an abelian subvariety,
which we denote by a+B;
• Z\ = a\ +B\ +W , where W is a closed irreducible subvariety of Ω1

A/B.

This can be proven similarly as the case of algebraic tori using monodromy. We refer to [5,
Theorem 5.8].

4.2. Ax-Schanuel for A\. Let u\ : C2g → A\ be the uniformization. Let ∆\ ⊂ C2g ×A\ be the
graph of u\. Let Z\ = graph(Z̃\ → Z\) be a irreducible complex subspace of ∆\, and let B\ be

its Zariski closure in C2g ×A\. Denote by X̃\ = (Z̃\)Zar and by Y \ = (Z\)Zar.
In order to formulate the Ax-Schanuel theorem for A\, let us go back to the discussion below

Theorem 2.1. We have seen that the Ax-Schanuel statement contains two aspects: description of

B\, and the intersection behavior of X̃\ and (u\)−1(Y \). The naive guess would be B\ = X̃\×Y \

and that X̃\ intersects properly with (u\)−1(Y \). However the description of B\ cannot be so
neat: say Z\ is in a fiber of the projection A\ → A (which is isomorphic to Cg), assume
furthermore that Z\ is algebraic, then Z\ is an algebraic subvariety of C2g × A\. But then

B\ = Z\ 6= Z̃\×Z\. However this is the only obstacle for the analogous statement of Theorem 2.1
to hold for A\. We have (See [5, Theorem 9.1])

Theorem 4.1. Under the notation above. Let F \ be the smallest geometric bi-algebraic subva-

riety of A\ containing Z\, and let F̃ \ be the irreducible component of (u\)−1(F \) containing Z̃\.
Then

(1) dim X̃\ + dimY \ − dim Z̃\ ≥ dimF \.
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(2) Write F \ = a\+B\+W as in the last subsection, and F̃ \ = ã\+B̃\+W̃ correspondingly.

Denote by prws : F̃ \ → ã\+B̃\ and by [pr]ws : F \ → a\+B\ the natural projections. Then

dim(prws, [pr]ws)(B\)− dim(prws, [pr]ws)(Z\) ≥ dim[pr]ws(F \).

5. Mixed Shimura varieties plus vector extensions

In this section we turn to more general context, unifying algebraic tori and universal vector
extensions of abelian varieties. Moreover we will look into families. The idea is similar to that of
mixed Shimura varieties. However mixed Shimura varieties do not allow any vector extension.
So we need to enlarge the ambient spaces.

Let Ag be the universal family over Ag, where Ag is the moduli space of principally polarized

abelian varieties with level-4-structure, and let A\g be the universal vector extension of the abelian
scheme Ag/Ag.

Take the universal vectorial bi-extension P\
g studied by Coleman [4], which is defined as

follows in geometric terms: Let Pg be the universal Poincaré biextension as in §3.1 and let A\g
be the universal vector extension of the abelian scheme Ag/Ag. Then P\

g is the pullback of Pg

by A\g × (A∨g )\ → Ag × A∨g .
The geometric bi-algebraic system we shall study is associated with enlarged mixed Shimura

varieties. See [5]. We do not go into details of the definition, but look at examples instead. A

first example is A\g. And the typical example of enlarged mixed Shimura variety to keep in mind

is (P\
g)[n], i.e. the n-fiber product of P\

g over A\g × (A∨g )\.

5.1. Geometric bi-algebraicity. Notation: for any abelian scheme A → B with unit section
ε, denote by ωA/B := ε∗Ω1

A/B.

Let S\ be an enlarged mixed Shimura variety, whose uniformization is u\ : X \ → S\. There
exist an algebraic variety X \,∨ over C and a natural inclusion X \ ↪→ X \,∨ such that X \ is open
semialgebraic in X \,∨.

We say that an irreducible subvariety Y \ of S\ is geometric bi-algebraic if one (and hence
every) complex analytic irreducible component of (u\)−1(Y \) is algebraizable, i.e. its dimension
equals the dimension of its Zariski closure in X \,∨.

As we have already seen for universal vector extensions of abelian varieties, the characteri-
zation of geometric bi-algebraic subvarieties cannot be as neat as for mixed Shimura varieties.
The problem arises in the vector extension part. However we show that this is the only problem:

for the exact sequence 0→ ωA∨g /Ag → A\g → Ag → 0 of groups over Ag, the “non-linear” part of

any geometric bi-algebraic subvariety Y \ of A\g can only lie in the TRIVIAL subbundle of the
vector bundle part, i.e. of ωA∨g /Ag |YG where YG is the image of Y \ in Ag. More precisely we have

(see [5, Theorem 1.6])

Theorem 5.1 (Characterization of geometrically bi-algebraic subvarieties of enlarged mixed
Shimura varieties). An irreducible subvariety Y \ of S\ is geometric bi-algebraic if and only if it
is quasi-linear.
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We define quasi-linear subvarieties of S\. There is a commutative diagram for any connected

enlarged mixed Shimura variety (on the right for (P\
g)[n]):

(5.1) S\
[π]] //

[π\
P/U

]

��

S

[π]

  

[πP/U ]

��

(P\
g)[n] //

��

P
[n]
g

""��
S\P/U

[π]
P/U

]

// SP/U
[πP/U ]

// SG A\g × (A∨g )\ // Ag × A∨g // Ag

where

• all maps in the diagram are projections defined in some natural way;
• S is a connected mixed Shimura variety, and SP/U is the quotient of S by its weight −2

part (and hence SP/U is an abelian scheme over SG);

• S\P/U is the universal vector extension of the abelian scheme SP/U → SG.

To define quasi-linear subvarieties of S\ we need some preparation. Let YG be a subvariety
of SG. Let YP/U ⊂ SP/U |YG := [πP/U ]−1(YG) be the translate of an abelian subscheme of
SP/U |YG → YG be a torsion section and then by a constant section of its isotrivial part. Denote

by Y univ
P/U the universal vector extension of the abelian scheme YP/U → YG. Then by the rigidity of

the universal vector extension there is a unique embedding Y univ
P/U ⊂ S

\
P/U |YP/U := [π]P/U ]−1(YP/U )

compatible with the embedding YP/U ⊂ SP/U |YG mentioned above. More concretely there is a
unique embedding i (left vertical arrow) of vector groups over YG inducing the following push-
out:

0 // ωY ∨
P/U

/YG
//

_�

i

��

Y univ
P/U

//

��

YP/U //

=

��

0

0 // ω[πG]−1(YG)∨/YG
// S\P/U |YP/U // YP/U // 0

Then we obtain another vector extension of YP/U

0→
ω[πG]−1(YG)∨/YG

ωY ∨
P/U

/YG

→
S\P/U |YP/U
Y univ
P/U

→ YP/U → 0,

with the unique map Y univ
P/U →

S\
P/U
|YP/U

Y univ
P/U

being 0. Hence
S\
P/U
|YP/U

Y univ
P/U

' YP/U ×YG
ω[πG]−1(YG)∨/YG

ωY ∨
P/U

/YG

.

Thus

S\P/U |YP/U = Y univ
P/U ×YG

ω[πG]−1(YG)∨/YG

ωY ∨
P/U

/YG

Denote by V(0)|YG the largest trivial subbundle of
ω[πG]−1(YG)∨/YG

ωY ∨
P/U

/YG

. For simplicity we use ωextr

to denote
ω[πG]−1(YG)∨/YG

ωY ∨
P/U

/YG

.

If furthermore YG is a weakly special subvariety of SG, then denote by H the connected alge-

braic monodromy group of YG. Then the pullback of ωextr under the universal cover ỸG → YG,
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which we call ω̃extr, is an H(R)-bundle. We say that a subvariety K\ of ωextr is an automorphic

subvariety if it is the image of H(R)+K̃\ under the natural projection ω̃extr → ωextr for some

K̃\ in a fiber of ω̃extr → ỸG. Note that K̃\ can be chosen to be invariant under a maximal
compact subgroup of H(R)+.

Now we are ready to define

Definition 5.2. An irreducible subvariety Y \ of S\ is called quasi-linear if the followings hold:
under the following notations for Y \ compatible with (5.1)

Y \ � //
_

��

Y �

!!

_

��
Y \
P/U

� // YP/U
� // YG

(1) Y is a weakly special subvariety of S. In particular YP/U is the translate of an abelian
subscheme of SP/U |YG → YG by a torsion section and then by a constant section of its
isotrivial part.

(2) Under the notations above the theorem, Y \
P/U = Y univ

P/U ×YG (L\×YG)×YG K\, where L\ is

an irreducible algebraic subvariety of any fiber of V(0)|YG → YG, and K\ is an irreducible

automorphic subvariety of the bundle
ω[πG]−1(YG)∨/YG

ωY ∨
P/U

/YG

whose intersection with V(0)|YG is

contained in the zero section.
(3) Y \ = Y ×YP/U Y

\
P/U for the cartesian diagram in (5.1).

Now we are ready to explain the terminology in part (2) of Conjecture 5.3. Apply Theorem 5.1
to the bi-algebraic subvariety F \ of S\ (hence we change every letter “Y ” by “F”), then we define

(F \)ws := F ×FP/U F
univ
P/U

and [pr]ws
F \

the natural projection F \ → (F \)ws. Let prws
F̃ \

be the natural projection from F̃ \ to

(F̃ \)ws, the uniformization of (F \)ws. Then we define

prws
F \ := (prws

F̃ \
, [pr]ws

F \) : F̃ \ × F \ → (F̃ \)ws × (F \)ws.

5.2. Ax-Schanuel conjecture.

Conjecture 5.3 (Ax-Schanuel). Let ∆\ ⊂ X \+ × S\ be the graph of u\. Let Z\ = graph(Z̃\
u\−→

Z\) be a complex analytic irreducible subvariety of ∆\. Let F \ be the smallest quasi-linear

subvariety of S\ which contains Z\. Let F̃ \ be the complex analytic irreducible component of

(u\)−1(F \) which contains Z̃\. Then

(1) dim(Z̃\)Zar + dim(Z\)Zar − dim Z̃\ ≥ dimF \.
(2) Let B\ := (Z\)Zar ⊂ X \+ × S\. Then dim prlin

F \
(B\)− dim prlin

F \
(Z\) ≥ dim(F \)lin.

Let us explain the terminology in part (2) of Conjecture 5.3. Apply Theorem 5.1 to the
bi-algebraic subvariety F \ of S\ (hence we change every letter “Y ” by “F”), then we define

(F \)lin := F ×FP/U (F univ
P/U ×FG V†|FG)
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and [pr]lin
F \

the natural projection F \ → (F \)lin. Let prlin
F̃ \

be the natural projection from F̃ \ to

(F̃ \)lin, the uniformization of (F \)lin. Then we define

prlinF \ := (prlin
F̃ \
, [pr]linF \) : F̃ \ × F \ → (F̃ \)lin × (F \)lin.

This conjecture is open in general. However we can prove several interesting cases, some of
which having good applications (e.g. to the André-Oort conjecture). In particular the conjecture
for the unipotent part is completely solved.

Theorem 5.4. Conjecture 5.3 holds in the following cases:

(1) When Z̃\ is algebraic.
(2) When Z\ is algebraic.

See [5, Theorem 1.5].
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