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Abstract. We consider the Beilinson–Bloch heights and Abel–Jacobian periods of
homologically trivial Chow cycles in families. For the Beilinson–Bloch heights, we
show that for any g ≥ 3, there is a Zariski open dense subset U of Mg, the coarse

moduli of curves of genus g over Q, such that the heights of Ceresa cycles and Gross–
Schoen cycles over U satisfy the Northcott property. For the Abel–Jacobi periods,
we provide an algebraic criterion for the existence of a Zariski open dense subset of
any family such that all cycles not defined over Q are non-torsion and verify that this
criterion holds true for Ceresa cycles and Gross–Schoen cycles.
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1. Introduction

This paper aims to initiate a project to study Beilinson–Bloch heights and Abel–
Jacobi periods for homologically trivial cycles in families. We have achieved two goals:
the Northcott property for the heights of the Gross–Schoen cycles and Cerasa cycles
and an algebraic criterion for the non-degeneracy of Abel–Jacobi periods for the general
family of cycles.

1.1. Gross–Schoen and Ceresa cycles. For a smooth projective irreducible curve C
defined over a filed k of g ≥ 3 and a class ξ ∈ Pic1(C) such that (2g − 2)ξ = ωC , we
have two homologically trivial 1-cycles:

(1) the Gross–Schoen cycle GS(C) := ∆ξ(C) ∈ Ch1(C3) obtained by modified the
diagonal cycle in C3 using base class ξ ([GS95, Zha10]);

(2) the Ceresa cycle by Ce(C) := iξ(C) − [−1]∗iξ(C) ∈ Ch1(Jac(C)) defined by
embedding iξ : C−→Jac(C) via ξ.

1
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Up to torsions, the definition of these cycles does not depend on the choice of ξ.
Let Mg be the moduli space of smooth projective curves of genus g. For each s ∈

Mg(C), denote by Cs the curve parametrized by s.

Theorem 1.1. For each g ≥ 3, there exists a Zariski open dense subset U of Mg defined

over Q, and positive numbers ε and c, such that for any s ∈ U(Q),

〈GS(Cs),GS(Cs)〉BB ≥ εhFal(s)− c,

〈Ce(Cs),Ce(Cs)〉BB ≥ εhFal(s)− c,

where hFal is the Faltings height on Mg(Q).

Theorem 1.1 yields the following Northcott property immediately.

Corollary 1.2 (Northcott property). For each g ≥ 3, there exists a Zariski open dense
subset of the Mg defined over Q such that for any H,D ∈ R,

#{s ∈ U(Q) : deg[Q(s) : Q] < D, 〈GS(Cs),GS(Cs)〉BB < H} <∞,

#{s ∈ U(Q) : deg[Q(s) : Q] < D, 〈Ce(Cs),Ce(Cs)〉BB < H} <∞.

In the course of the proof, we also establish the following geometric result.

Theorem 1.3. For each g ≥ 3, there exists a Zariski open dense subset U of Mg such
that the followings hold true:

(i) GS(Cs) and Ce(Cs) are both non-torsion in the Chow groups for all s ∈ U(C) \
U(Q).

(ii) there exist at most countably many s ∈ U(C) such that AJ(GS(Cs)) or AJ(Ce(Cs))
is torsion in the intermediate Jacobians.

Hain [Ha24] also proved Theorem 1.3 with U a non-empty analytic open subset of
Man

g with a different method. When g = 3, Hain’s result is completely explicit, while
ours is not.

The proofs of Theorem 1.1, Corollary 1.2 and Theorem 1.3 have two parts: the arith-
metic part and the geometric part. Both parts are needed to prove Theorem 1.1 and
Corollary 1.2, while Theorem 1.3 only relies on the geometric part. We will explain each
part in more detail in §1.3.

Before moving on, let us mention that the geometric part of our paper works for any
family of homologically trivial cycles and, more generally, for any admissible normal
function. More specifically, for any smooth projective morphism f : X → S of algebraic
varieties with irreducible fibers and any family of homologically trivial cycles Z, all
defined over Q, we show that there exists a Zariski closed subset SF (1) of S such that:
(i) [Zs] is non-torsion in Ch∗(Xs) for every transcendental point s of S \SF (1); (ii) there
are at most countably many s ∈ S(C) outside SF (1) such that AJ(Zs) is torsion in the
intermediate Jacobian. We then prove a checkable criterion for SF (1) 6= S. A simple
case will be presented in Corollary 1.9 and Remark 1.10. We do these by studying the
normal function associated with Z, which is defined in §C.5, and by studying its Betti
rank.
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1.2. Normal functions. Now, we turn to the geometric part of the framework and
explain our results.

Let S be a quasi-projective variety. Let (VZ,F
•)→ S be a VHS of weight −1 over S,

and consider the intermediate Jacobian (write V for the holomorphic vector associated
with VZ)

π : J(VZ) = VZ\V/F0V−→S.
Let ν : S−→J(VZ) be an admissible normal function; then ν defines an admissible vari-
ation of mixed Hodge structures Eν on S which is an extension of Z(0)S by VZ.

The fiberwise isomorphism VR,s
∼−→VC,s/F

0
s = Vs/F

0
s makes J(VZ) into a local system

of real tori
J(VZ)

∼−→ VR/VZ.

Let FBetti denote the induced foliation, which we call the Betti foliation. More precisely,
for any point x ∈ J(VZ), there is a local section σ : U−→J(VZ) from a neighborhood ∆
of π(x) in San, with x ∈ σ(U), represented by a flat section of VR. The manifolds σ(U)
gluing together to a foliation FBetti on J(VZ). See §C.2 for more details. In particular,
all torsion multi-sections are leaves of FBetti.

1.2.1. Betti strata. The Betti foliation defines a strata on S as follows. For each integer
t ≥ 0, set

(1.1) SF (t) :=
{
s ∈ S(C) : dimν(s)(ν(S) ∩FBetti) ≥ t

}
where by abuse of notation ν(S) ∩FBetti means the intersection with the leaves. This
subset is, by definition, real-analytic. We then have the following Betti strata on S

(1.2) ∅ = SF (dimS + 1) ⊆ SF (dimS) ⊆ · · · ⊆ SF (1) ⊆ SF (0) = S.

A main theorem of the geometric part is that the Betti strata are algebraic:

Theorem 1.4 (Theorem 3.2). For each t ≥ 0, SF (t) is Zariski closed in S.

Remark 1.5. In the Betti strata, SF (1) plays a particularly important role. For exam-
ple, by definition of the Betti foliation, SF (1) contains any analytic curve C ⊆ San such
that ν(C) is torsion. In particular, there are at most countably many s ∈ S(C) outside
SF (1) such that ν(s) is torsion.

Finally, let us point out that SF (t) is closely related to the degeneracy loci defined
by the first-named author. Indeed, when J(VZ) → S is an abelian scheme, then SF (t)
is the ν(S)deg(−t+ 1) in [Gao20a, Defn. 1.6] for each t ≥ 1.

1.2.2. Betti rank. Now assume that S is smooth. Then the Betti foliation induces a
decomposition TxJ(VZ) = TxFBetti ⊕ TxJ(VZ)π(x) for each x ∈ J(VZ). Thus for each
s ∈ S(C) we have a linear map

(1.3) νBetti,s : TsS
dν−→ Tν(s)J(VZ)→ Tν(s)J(VZ)s.

The Betti rank of ν is defined to be:

(1.4) r(ν) := max
s∈S(C)

dim νBetti,s(TsS).

A trivial upper bound for r(ν) is r(ν) ≤ min{dimS, 1
2

dimVQ,s} for any s ∈ S(C). One
can also easily improve this trivial upper bound as will be explained below.
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The Betti rank is easily seen to be related to the Betti strata in the following way:
dimS − r(ν) is the maximum of t ≥ 0 such that SF (t) contains a non-empty open
subset of San. Thus Theorem 1.4 implies that r(ν) = dimS −min{t ≥ 0 : SF (t) = S}.
However, this equality is, in general, not applicable to compute r(ν). But at this stage,
we have

(1.5) SF (1) 6= S ⇔ r(ν) = dimS.

The second main theorem for the geometric part is the following formula for r(ν),
which is often computable in practice. The VMHS Eν on S induces a period map
ϕ = ϕν : S−→Γ\D, with D a mixed Mumford–Tate domain with Mumford–Tate group
G (so D is a G(R)+-orbit for G the generic Mumford–Tate group of the VMHS Eν); we
refer to §2.1–2.2 for the construction of ϕ and D.

Denote by V the unipotent radical of G. It equals V′Q,s for any s ∈ S(C), where
V′Z is the largest sub-VHS of VZ such that ν becomes torsion under the projection
J(VZ)→ J(VZ/V′Z); see Remark 2.2. Now the trivial upper bound on r(ν) can be easily
improved to be r(ν) ≤ min{dimϕ(S), 1

2
dimV }.

Here is our formula to compute r(ν).

Theorem 1.6 (Theorem 3.1). The Betti rank is given by

(1.6) r(ν) = min
N

(
dimϕ/N(S) +

1

2
dimQ(V ∩N)

)
,

where N runs through the set of normal subgroup of G, and ϕ/N is the induced period
map

ϕ/N : S
ϕ−→ Γ\D [pN ]−−→ Γ/N\(D/N)

with [pN ] the quotient by N (see §B.3).

Notice that the trivial upper bound on r(ν) above is recovered by taking N = {1}
and N = G.

Here are two applications of Theorem 1.6, on two cases where the trivial upper bound
on r(ν) is attained.

Corollary 1.7 (Theorem 5.1). Assume: (i) (VZ,F
•) → S is irreducible, i.e. the

only sub-VHSs are trivial or itself; (ii) ν(S) is not a torsion section. Then r(ν) =
min{dimϕ(S), 1

2
dimQVQ,s} for one (and hence all) s ∈ S(C).

Notice that in the situation of Corollary 1.7, we have V = VQ,s.

Corollary 1.8 (Theorem 5.2). Assume: (i) the connected algebraic monodromy group
H of (VZ,F

•) → S is simple; (ii) (VZ,F
•) → S has no isotrivial sub-VHS, i.e. locally

constant VHS. Then r(ν) = min{dimϕ(S), 1
2

dimQ V }.

An immediate corollary on the torsion locus, combining (1.5) and Remark 1.5 and
Theorem 1.4, is:

Corollary 1.9. Under the assumptions of either Corollary 1.7 or Corollary 1.8. Assume
that ϕ is generically finite and that dimS ≤ 1

2
dimQ V . Then there exists a Zariski open

dense subset U of S such that ν(s) is torsion for at most countably many s ∈ U(C).
Indeed, one can take U = S \ SF (1).
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Remark 1.10. If ϕ is not necessarily generically finite, then the conclusion becomes:
there exists a Zariski open dense subset U of S such that {s ∈ U(C) : ν(s) is torsion}
is contained in at most countably many fibers of ϕ. Indeed, ϕ(S) is an algebraic variety
by [BBT23]. Then we can conclude by applying Corollary 1.9 to ϕ(S) and the induced
normal function ν ′ (see §3.1 for the construction of ν ′).

Applying either Corollary 1.7 or Corollary 1.8 to the Gross–Schoen and the Ceresa
normal functions, we obtain the following corollary will be used to prove Theorem 1.1,
Corollary 1.2 and Theorem 1.3.

Corollary 1.11 (Corollary 5.3). If g ≥ 3, then the Betti rank of the Gross-Schoen (resp.
of the Ceresa) normal function is 3g − 3.

Hain [Ha24] gave a different proof of Corollary 1.11. When g = 3, he even gave an
explicit description on the locus where dim νBetti,s(TsS) < 3g − 3.

1.3. Plan and Ingredients of proofs. Our plan to prove results like Theorem 1.1,
Corollary 1.2 and Theorem 1.3 has two parts: the arithmetic part and the geometric part.
Let f : X → S be a smooth projective morphism of algebraic varieties with irreducible
fibers and let Z be a family of homologically trivial cycles, all defined over Q

The arithmetic part requires the construction of a suitable adelic line bundle L over
the base, a theory initiated by the second-named author and developed in further joint
work with Yuan [YZ21], such that the height function hL is the Beilinsin–Bloch height.

Then, the desired height inequalities will follow from suitable bigness properties of L .
In the context of Theorem 1.1 and Corollary 1.2, by the second-named author’s [Zha10,
Thm. 2.5.5] the desired L can be obtained from a suitable Deligne pairing. The required

bigness property is the bigness of the generic fiber L̃ of L . We furthermore show in
Proposition 6.3 that the bigness of L̃ will follow from the non-vanishing of c1(L )∧ dimS,
with c1(L ) the curvature form. The arithmetic part of this paper is confined to the
Gross-Shoen and the Ceresa cycles.

The geometric part studies the (admissible) normal function ν associated with Z.
The main results are the Zariski closedness of the Betti strata and the formula for the
Betti rank r(ν). This part has been explained in §1.2. The proofs of Theorem 1.4
and Theorem 1.6 are simultaneous and follow the guideline of the first-named author’s
[Gao20a] on the generic rank of the Betti map for abelian schemes. A core of our proof
is Ax–Schanuel for VMHS independently proved by Chiu [Chi21] and Gao–Klingler
[GK24], which will be used multiple times.

Hain’s works on the Hodge-theoretic computation of the Archimedean local height
pairing and the Betti form are the key ingredients to bridging the geometric and arith-
metic parts. Indeed, Hain in [Hai90] proved that the archimedean local height pairing
could be computed using the metricized biextension line bundle on S, and in [HR04]
computed (joint with Reed), the curvature form of the metrized biextension line bundle.
In our situation, we work with the height pairing of Zs with itself for any s ∈ S(Q), and
the metrized biextension line bundle in question is the pullback of the metrized tauto-
logical line bundle under ν. Hain in [Hai13] proved that its curvature form βν , called the
Betti form, is a semi-positive (1, 1)-form. We show in Corollary D.7 that β∧ dimS

ν 6≡ 0 if
and only if r(ν) = dimS. Finally, back to the situation of Theorem 1.1, Corollary 1.2,
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and Theorem 1.3. Hain’s formula [Hai90, Prop. 3.3.12] and the second-named author’s
[Zha10, Thm. 2.5.5] together imply that the curvature c1(L ) is precisely the Betti form.
This finishes the bridge between the geometric part and the arithmetic part. Again,
the bridge between the geometric part and the arithmetic part works in much larger
generality, provided that the arithmetic part is solved.
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2. Period map associated with normal functions

Let S be a smooth irreducible quasi-projective variety. Let (VZ,F
•) be a polarized

VHS on S of weight −1. Let ν : S → J(VZ) be an admissible normal function.
The first goal of this section is to define the period map ϕν associated with ν (when ν

is clearly in context, we simply denote it by ϕ). This map fits into the diagram in the
category of complex varieties

(2.1) D

u

��
S

ϕ // Γ\D

where

(i) D is a (mixed) Mumford–Tate domain with generic Mumford–Tate group G (see
§B.2 for definition), and is smallest for such a diagram to exist (see below (2.3)
for the meaning); denote by V the unipotent radical of G and by G0 := G/V ;

(ii) Γ is a suitable arithmetic subgroup of G(Q).

We emphasize that V is, in general, not a fiber of VQ, and its geometric meaning will
be given in Remark 2.2.

The second goal of this section is to explain how to see the Betti foliation on J(VZ) in
terms of the period map and the fibered structure of the Mumford–Tate domain D, or
as called in references, how to see the fibration (B.6) of the classifying space M → M0

as the universal intermediate Jacobians. This is done in §2.4.
We also recall in §2.3 the o-minimal structure attached to the period map.

2.1. Universal period map to the classifying space. Recall that ν induces a VMHS
(Eν ,W•,F•E) on S of weight −1 and 0 which is graded-polarized (better, admissible),
fitting into the short exact sequence in the category of graded-polarized VMHS 0 →
VZ → Eν → Z(0)S → 0 with the canonical polarization on Z(0)S.
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Let uS : S̃ → San be the universal covering map. Then the pullback u∗SEν (resp. u∗SVZ)

is canonically trivialized as a local system u∗SEν ∼= S̃ × Eν (resp. u∗SVZ ∼= S̃ ×M−1,Z),

with Eν = H0(S̃, u∗SEν) (resp. with M−1,Z = H0(S̃, u∗SVZ)). Then for each s ∈ S(C),
the fiber Eν,s can be canonically identified with Eν and VZ,s can be canonically identified
with M−1,Z. The pullback under uS of the short exact sequence of VMHS defined by ν

becomes split after ⊗Q since S̃ is simply connected.
Each s̃ ∈ S̃ gives rise to a polarized mixed Hodge structure (Eν,Q, (W•)s̃, (F

•
E)s̃) on

Eν,Q, And this induces the universal period map

ϕ̃ = ϕ̃ν : S̃ −→M

to the classifying space M defined in §B.1.2, and M is a GM(R)+-orbit for some Q-group
GM, whose unipotent radical is M−1,Q = M−1,Z ⊗Q; see (B.3).

Similarly each s̃ gives rise to a polarized pure Hodge structure of weight −1 on M−1,Q,

and this induces a universal period map ϕ̃0 : S̃ →M0 to the classifying space defined in
§B.1.1. Notice that ϕ̃0 does not depend on the choice of ν, in contrast to ϕ̃. We have a
commutative diagram, with p the projection from (B.6)

(2.2) M

p

��
S̃

ϕ̃
>>

ϕ̃0

//M0.

2.2. Construction of the Mumford–Tate domain. In practice, we need to refine
this period map and replace the classifying space M by the smallest Mumford–Tate
domain D, which contains ϕ̃(S̃). It is constructed as follows.

By the first part of the proof of [And92, §4, Lemma 4], the Mumford-Tate group
MTs̃ ⊆ GL(Eν,Q) of the Hodge structure (Eν,Q, (W•)s̃, (F

•
E)s̃) is locally constant on S̃◦ =

S̃ \ Σ for a meager subset Σ of S̃. We call this group the generic Mumford–Tate group
of (Eν ,W•,F•)→ S and denote it by G. It is known that MTs̃ ⊆ G for all s̃ ∈ S̃.

Fix s̃ ∈ S̃. Define

(2.3) D := G(R)+ · ϕ̃(s̃) ⊆M.

Then D is the smallest Mumford–Tate domain which contains ϕ̃(S̃); see [GK24, §7.1].

Finally, since S is a quasi-projective variety, there exists an arithmetic subgroup Γ of
G(Q) such that ϕ̃ descends to a morphism ϕ : San → Γ\D fitting into the diagram (2.1).

2.3. Setup for o-minimality. Let F ⊆ D be a fundamental set for the quotient
u : D → Γ\D, i.e. u|F is surjective and (u|F)−1(x̄) is finite for each x̄ ∈ Γ\D. If F
is a semi-algebraic subset of D, then we have a semi-algebraic structure on Γ\D induced
by u|F.

By the main result of [BBKT24], there exists a semi-algebraic fundamental set F ⊆ D

for the quotient u : D → Γ\D with the following properties: ϕ is Ran,exp-definable for
the semi-algebraic structure on Γ\D defined by F.
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2.4. Relating the Betti foliation and the period map. Recall the projection to the
pure part p : D→ D0 ⊆M0 from (2.2) and the semi-algebraic structure D = V (R)×D0

as in Proposition B.3.(i). The diagram (2.1) can be complete into:

(2.4) S̃
ϕ̃
//

uS

��

ϕ̃0

))
D = V (R)×D0

u

��

p
// D0

u0

��
S

ϕ //

ϕ0

44Γ\D
[p]

// Γ0\D0

and ϕ0 = p ◦ ϕ is the period map for the VHS VZ → S.
For each s̃ ∈ S̃, write s̃V for the image ϕ̃(s̃) under the natural projection D =

V (R)×D0 → V (R). This gives a map ϕ̃V : S̃ → V (R) sending s̃ 7→ s̃V . Notice that

(2.5) ϕ̃ = (ϕ̃V , ϕ̃0) : S̃ −→ V (R)×D0 = D.

Recall SF (t) = {s ∈ S(C) : dimν(s)(ν(S) ∩ FBetti) ≥ t} and define Srk(t) = {s ∈
S(C) : dim νBetti,s(TsS) ≤ t} for νBetti,s : TsS → Tν(s)J(VZ,s) defined in (1.3).

Lemma 2.1. For each t ≥ 0, we have

u−1
S (SF (t)) = {s̃ ∈ S̃ : dims̃ ϕ̃

−1({s̃V } ×D0) ≥ t}

=
⋃

r≥0
{s̃ ∈ S̃ : dims̃ ϕ̃

−1(ϕ̃(s̃)) = r, {s̃V } × C̃ ⊆ ϕ̃(S̃) for(2.6)

some complex analytic C̃ with dim C̃ ≥ t− r}.

and

(2.7) u−1
S (Srk(t)) = {s̃ ∈ S̃ : rank(dϕ̃V )s̃ ≤ t}.

Notice that in the union in (2.6), the second condition {s̃V }× C̃ ⊆ ϕ̃(S̃) always holds
true for r > t.

Proof. Consider π : J(VZ) → S. Each x ∈ J(VZ) lies in J(VZ)s = J(VZ,s) for s = π(x),
which is canonically isomorphic to ExtMHS(Z(0),VZ,s) by Carlson [Car85]. Hence each
x gives rise to a Z-mixed Hodge structure of weight −1 and 0, and for the universal
covering map uJ : J̃→ J(VZ) we obtain a period map ϕ̃J : J̃→M. The map ν ◦uS : S̃ →
S → J(VZ) lifts to ν̃ : S̃ → J̃, and ϕ̃ = ϕ̃J ◦ ν̃.

Recall that M−1 = H0(S̃, u∗SVQ). Thus M−1,Z := H0(S̃, u∗SVZ) is a lattice in M−1(R)

and u∗SVZ ∼= M−1,Z × S̃. So J(VZ) = VR/VZ induces J(VZ) ×S S̃ = (M−1,R/M−1,Z) × S̃
and hence J̃ = M−1(R) × S̃. By definition of the Betti foliation in §C.2, the leaves of
FBetti are precisely uJ({a} × S̃) for all a ∈M−1(R).

The zero section of π : J(VZ)→ S gives rise to a Levi decomposition of GM and hence
an identification M = M−1(R) ×M0 as in Proposition B.3.(i) applied to M, and ϕ̃J

becomes

(2.8) ϕ̃J : J̃ = M−1(R)× S̃ (1,ϕ̃0)−−−→M−1(R)×D0 ⊆M−1(R)×M0.

By the last paragraph, the leaves of FBetti are precisely uJ
(
ϕ̃−1
J ({a} ×M0)

)
for all

a ∈M−1(R).
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Thus u−1
J (ν(SF (t))) = {s̃′ ∈ ν̃(S̃) : dims̃′ ϕ̃

−1
J ({s̃′V } ×M0}) ≥ t}, where s̃′V is the

image of s̃ ∈ J̃
ϕ̃J−→ M−1(R) × M0 → M−1(R) with the last map being the natural

projection. Applying ν̃−1 (whose fibers are of dimension 0 because ν is injective) to the
set above and noticing that uJ ◦ ν̃ = ν ◦ uS, we have

u−1
S (SF (t)) = {s̃ ∈ S̃ : dims̃(ϕ̃J ◦ ν̃)−1({s̃′V } ×M0}) ≥ t}.

Hence the first equality in (2.6) holds true because ϕ̃J◦ ν̃ = ϕ̃ and by Lemma B.5 applied
to D ⊆M. Similarly, we get (2.7).

The second equality in (2.6) clearly holds. Hence, we are done. �

Remark 2.2. The proof of Lemma 2.1 (with Lemma B.5 applied to D ⊆M and the iden-

tification J̃ = M−1(R)× S̃) also yields the following assertion: Jν := S ×Γ0\D0 (Γ\D) ⊆
J(VZ) is the intermediate Jacobian of a sub-VHS translated by a torsion multisection;
it contains ν(S) and is the minimal one containing ν(S) with respect to inclusion. The
relative dimension dim Jν − dimS equals 1

2
dimV .

Similarly, V equals V′Q,s for any s ∈ S(C), where V′Z is the largest sub-VHS of VZ
such that ν is torsion under the projection J(VZ)→ J(VZ/V′Z).

Moreover for the natural projection ϕJν : Jν → Γ\D, we have ϕ(S) = ϕJν (ν(S)).

Since ϕ̃V factors through ϕ̃ and has target V (R), (2.7) immediately yields the following
trivial upper bound

(2.9) νBetti,s(TsS) ≤ min

{
dimϕ(S),

1

2
dimV

}
for all s ∈ S(C).

3. The Betti rank and Zariski closedness of the rank-strata

The goal of this section is to prove one of the main theorems of this paper. We will
prove a formula to compute the Betti rank r(ν), and in the process, we show that the
Betti foliation on the intermediate Jacobian defines Zariski closed strata.

Let S be a smooth irreducible quasi-projective variety. Let (VZ,F
•) be a polarized

VHS on S of weight −1. Let ν : S → J(VZ) be an admissible normal function.
Recall the Betti foliation FBetti on J(VZ) defined in §C.2, the linear map (1.3) νBetti,s : TsS →

Tν(s)J(VZ,s) at each s ∈ S(C), and the Betti rank (1.4)

r(ν) = max
s∈S(C)

dim νBetti,s(TsS).

Retain the notation from (2.1). In particular, we have the period map ϕ = ϕν : S →
Γ\D for the (mixed) Mumford–Tate domain D, the Q-group G and its unipotent radical
V which is a vector group. We emphasize that V is, in general, not a fiber of VQ.

The main result of this section is the following formula for r(ν). The advantage is
that it is often computable in practice.

Theorem 3.1. The Betti rank is given by the following formula:

(3.1) r(ν) = min
N

{
dimϕ/N(S) +

1

2
dimQ(V ∩N)

}
,

where N runs through the set of normal subgroups of G, and ϕ/N is the induced map

ϕ/N : S
ϕ−→ Γ\D [pN ]−−→ Γ/N\(D/N)
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with [pN ] the quotient defined in §B.3.

Taking N = {1} and N = G, we recover the trivial upper bound (2.9) of r(ν).
We also show that the Betti foliation defines Zariski’s closed strata on S.

Theorem 3.2. For each t ≥ 0, the set SF (t) := {s ∈ S(C) : dimν(s)(ν(S)∩FBetti) ≥ t}
is Zariski closed in S. In particular, r(ν) = dimS −min{t ≥ 0 : SF (t) = S}.

The proofs of Theorem 3.1 and Theorem 3.2 are simultaneous and follow the guideline
of the first-named author’s [Gao20a] on the case when J(VZ) is polarizable. A key
ingredient for our proof is the mixed Ax-Schanuel theorem, which is used multiple times.
In [Gao20a], the version for universal abelian varieties [Gao20b, Thm. 1.1] was used. In
the current paper, we need the version for admissible VMHS independently proved by
Chiu [Chi21] and Gao–Klingler [GK24]. We also invoke [BBT23] on the algebraicity of
ϕ(S), whose proof builds up on o-minimal GAGA, for two reasons. First, it eases the
notation for the proof. Second and more importantly, [BBT23] is necessary to prove the
full version of Theorem 1.6. Still, we point out that [BBT23] is not needed in the case
which we care the most about in this paper, i.e. r(ν) = dimS if and only if the RHS of
(1.6) equals dimS because we can easily reduce the proof to the case where every fiber
of ϕ has dimension 0.

Another crucial input for the proof is the o-minimal structure associated with the
period map [BBKT24], which we will recall in §2.3. This allows us to apply (o-minimal)
definable Chow.

3.1. Replacing S by ϕ(S). We shall replace S by ϕ(S) in the proof using [BBT23].
This largely eases the notation.

By the main result of [BBT23], the period map ϕ = ϕν : S → Γ\D factors as S →
S ′

ι−→ Γ\D, with S → S ′ a dominant morphism between algebraic varieties and ι an
immersion in the category of complex varieties. Then ι induces an integral admissible
VMHS on S ′ for which ι is the period map. By abuse of notation, we use ϕ : S → S ′

and see ι as an inclusion. We have the following diagram.

S ′ �
� //

""

Γ\D

[p]
��

S
ϕ0 //

ϕ
@@

Γ0\D0

with the dotted arrow being the restriction [p]|S′ .
Recall from Remark 2.2 that Jν := S ×Γ0\D0 (Γ\D) is an intermediate Jacobian over

S. Set J′ := S ′×Γ0\D0 (Γ\D); it is an intermediate Jacobian over S ′. Then the inclusion
S ′ ⊆ Γ\D yields a section ν ′ of J′ → S ′, and thus we can define S ′F (t) for each t ≥ 0
with respect to ν ′. We have the following commutative diagram, with ϕJ induced by ϕ,
such that ϕJ ◦ ν = ν ′ ◦ ϕ:

Jν
ϕJ //

��

J′

��
S

ϕ //

ν

DD

S ′.

ν′

DD
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For each r ≥ 0, denote by

(3.2) S≥r := {s ∈ S(C) : dims ϕ
−1(ϕ(s)) ≥ r}.

It is a closed algebraic subset of S by upper semi-continuity.
By (the proof of) Lemma 2.1, more precisely the second equality of (2.6), we have

(3.3) SF (t) = S≥t ∪
⋃

0≤r≤t−1
S≥r ∩ ϕ−1 (S ′F (t− r)) .

This equality allows us to replace S by ϕ(S) to study the Betti rank and the Betti strata.

3.2. Bi-algebraic system and Ax–Schanuel. From now on, in the whole section, we
replace S by ϕ(S) and view S as an algebraic subvariety of the complex analytic space
Γ\D, unless otherwise stated.

Recall that weak Mumford–Tate domain is defined in Definition B.6. The following
proposition [BBKT24, Cor. 6.7] follows from the o-minimal setup explained in §2.3 and
definable Chow.

Proposition 3.3. Let DN be a weak Mumford–Tate domain. Then u(DN) ∩ S is a
closed algebraic subset of S.

Definition 3.4. (i) Let Ỹ ⊆ D be a complex analytic irreducible subset. The weakly
special closure of Ỹ , denoted by Ỹ ws, is the smallest weak Mumford–Tate do-
main in D which contains Ỹ .

(ii) Let Y ⊆ S be an irreducible subvariety. The weakly special closure of Y ,

denoted by Y ws, is u(Ỹ ws) for one (hence any) complex analytic irreducible com-

ponent Ỹ of u−1(Y ).

The following Ax–Schanuel theorem for VMHS was independently proved by Chiu
[Chi21] and Gao–Klingler [GK24]. We refer to Definition B.2 for the algebraic structure
on D.

Theorem 3.5 (weak Ax–Schanuel for VMHS). Let Z̃ ⊆ u−1(S) be a complex analytic
irreducible subset. Then

(3.4) dim Z̃Zar + dimu(Z̃)Zar ≥ dim Z̃ws + dim Z̃,

where Z̃ws is the smallest weak Mumford–Tate domain which contains Z̃.

Proof. Let Y := u(Z̃)Zar. Let Z := {(z, y) ∈ Z̃ × Y (C) : u(z) = y}, then Z is a complex
analytic irreducible subset of D×Γ\D Y

′. The Zariski closure of Z in D×Y is contained

in Z̃Zar × Y , and dimZ = dim Z̃. Then (3.4) is a direct consequence of the mixed
Ax–Schanuel theorem [GK24, Thm. 1.1] applied to Z. �

We close this introductory subsection with the following definition. In practice, we
often need to work with algebraic subvarieties Y ⊆ S, which are not weak Mumford–Tate
domains, and the following number measures how far it is from being one.

(3.5) δws(Y ) := dimY ws − dimY.

If we do not replace S by ϕ(S), then each Y on the right-hand side should be replaced
by ϕ(Y ).

Definition 3.6. An irreducible algebraic subvariety Y of S is called weakly optimal if
the following holds true: Y ( Y ′ ⊆ S ⇒ δws(Y ) < δws(Y

′), for any Y ′ ⊆ S irreducible.
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3.3. Applications of Ax–Schanuel. Retain the notation in (2.4). We start with the
following application of mixed Ax–Schanuel.

Proposition 3.7. For each t ≥ 0, SF (t) is contained in the union of weakly optimal
subvarieties Y ⊆ S satisfying

(3.6) dimY ≥ dimY ws − dim[p](Y ws) + t.

Proof. It suffices to prove two things:

(i) SF (t) is covered by the union of irreducible subvarieties Y ⊆ S satisfying (3.6)
(without requiring Y to be weakly optimal);

(ii) If Y ⊆ S is an irreducible subvariety satisfying (3.6) and is maximal for this
property with respect to inclusions, then Y is weakly optimal.

Let us prove (i). By Lemma 2.1, more precisely the first equality of (2.6), SF (t) is
covered by irreducible subvarieties Y ⊆ S such that

Y := u({a} × C̃)
Zar

,

for some complex analytic irreducible C̃ ⊆ D0 with dim C̃ = t and some a ∈ V (R).
Apply mixed Ax–Schanuel in this context (Theorem 3.5 to {a} × C̃). Then we get

dim {a} × C̃
Zar

+ dimY ≥ dim({a} × C̃)ws + t.

By Lemma B.4, {a} × C̃
Zar

= {a} × C̃
Zar

. Hence

dimY ≥ dim({a} × C̃)ws − dim C̃
Zar

+ t ≥ dim({a} × C̃)ws − dim C̃ws + t.

The last inequality holds because C̃
Zar

⊆ C̃ws. So

dimY ≥ dim({a} × C̃)ws − dim C̃ws + t.

Now, to prove (i), it suffices to prove dim({a} × C̃)ws = dimY ws and dim C̃ws =
dim[p](Y ws).

Let us prove u(({a} × C̃)ws) = Y ws; the upshot is dim({a} × C̃)ws = dimY ws. By
definition of Y , we have u({a} × C̃) ⊆ Y . Hence u(({a} × C̃)ws) ⊆ Y ws. On the other
hand, u(({a} × C̃)ws) is closed algebraic by Proposition 3.3, so Y ⊆ u(({a} × C̃)ws). So
Y ws ⊆ u(({a} × C̃)ws). Now we have established u(({a} × C̃)ws) = Y ws.

Similarly, we have dim C̃ws = dim[p](Y ws). Hence, we are done for (i).
For (ii), let Y ⊆ Y ′ ⊆ X. Assume δws(Y ) ≥ δws(Y

′), i.e.

dimY ws − dimY ≥ dimY ′,ws − dimY ′.

The assumption on Y implies dimY ws − dimY ≤ dim[p](Y ws)− t. Combined with the
inequality above, we obtain dimY ′,ws − dimY ′ ≤ dim[p](Y ′,ws) − t because Y ⊆ Y ′.
Therefore Y = Y ′ by maximality of Y . Hence, (ii) is established. �

Next, we state a finiteness proposition for weakly optimal subvarieties in S à la Ullmo,
which we give a proof using twice mixed Ax–Schanuel in the next section. When J(VZ)
is polarizable, i.e. in the mixed Shimura case, this is [Gao20b, Thm. 1.4].
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Proposition 3.8. There exist finitely many pairs (D′1, N1), . . . , (D′k, Nk), with each D′j
a Mumford–Tate domain contained in D and Nj a normal subgroup of MT(D′j), such
that the following holds true. For each weakly optimal subvariety Y ⊆ S, Y ws is the
image of an Nj(R)+-orbit contained in D′j under u : D→ Γ\D for some j ∈ {1, . . . , k}.

The same statement (with Y ws replaced by ϕ(Y )ws) still holds true without replacing
S by ϕ(S).

Denote by Γj = Γ ∩MT(D′j)(Q) and Γj,/Nj = Γj/(Γj ∩ Nj(Q)). Then equivalently,
each such Y ws is a fiber of the quotient [pNj ] : u(D′j) = Γj\D′j → Γj,/Nj\(D′j/Nj).

In §2.3, we have endowed Γ\D with a semi-algebraic structure, and hence Γj\D′j with
a semi-algebraic structure. In a similar way, we can endow Γj,/Nj\(D′j/Nj) with a semi-
algebraic structure. Then [pN ] is semi-algebraic because the quotient map D′j → D′j/Nj

is; see §B.3.

3.4. Proof of Theorem 3.1. For each j ∈ {1, . . . , k}, Proposition 3.3 says that u(D′j)∩
S is a closed algebraic subset of S. The restriction

[pNj ]|S : u(D′j) ∩ S → Γj,/Nj\(D′j/Nj)

is both complex analytic and definable; see §2.3.
For each t ≥ 0, the subset

(3.7) Ej(t) :=

{
s ∈ u(D′j) ∩ S : dims[pNj ]|−1

S ([pNj ](s)) ≥
1

2
dim(V ∩Nj) + t

}
is both definable and complex analytic in u(D′j) ∩ S. Hence, Ej(t) is algebraic by
definable Chow. Moreover, it is closed in u(D′j)∩S by the upper semi-continuity of fiber
dimensions. So Ej(t) is a closed algebraic subset of S.

Proposition 3.9. For each t ≥ 0, we have

SF (t) ⊆
⋃k

j=1
Ej(t).

Proof. Let t ≥ 0. By Proposition 3.7, SF (t) is covered by weakly optimal Y ⊆ S
such that dimY ≥ dimY ws − dim[p](Y ws) + t. Then by Proposition 3.8, Y ws is a fiber
[pNj ] for some j ∈ {1, . . . , k}, and hence dimY ws − dim[p](Y ws) = 1

2
dim(V ∩ Nj). So

dimY ≥ 1
2

dim(V ∩Nj) + t. So Y ⊆ Ej(t) because [pNj ](Y ) is a point. �

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. In this proof, we go back to our original setting and do not replace

S by ϕ(S). We have S
ϕ−→ S ′ ⊆ Γ\D with S ′ = ϕ(S) an algebraic subvariety of Γ\D.

Let us prove “≤”. By (2.7) we have r(ν) = maxs̃∈S̃(dϕ̃V )s̃. Hence r(ν) ≤ dimϕ/N(S)+
1
2

dim(V ∩N) for any normal subgroup N CG.
Let us prove “≥”. Let t = dimS − r(ν). Then SF (t) contains a non-empty open

subset of San. By (3.3) and Proposition 3.9 (which should be applied to S ′F (t − r) for
each 0 ≤ r ≤ t− 1), we have

SF (t) ⊆ S≥t ∪
⋃

0≤r≤t−1, 1≤j≤k
S≥r ∩ ϕ−1 (Ej(t− r)) .
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Each S≥r is Zariski closed in S, and each Ej(t−r) is Zariski closed in S ′ = ϕ(S). Hence,
each member in the union on the right-hand side is Zariski closed in S. Taking the
Zariski closure of both sides, we then have S equal to a member on the right-hand side.

If S = S≥t, then “≥” holds true already for N = {1}.
Assume S = S≥r ∩ ϕ−1 (Ej(t− r)) for some 0 ≤ r ≤ t − 1 and some j. Then

S = S≥r = ϕ−1 (Ej(t− r)), So each fiber of ϕ has dimension ≥ r, and S ′ = Ej(t − r).
Moreover, MT(D′j) = G because S ′ = ϕ(S) is Hodge generic in Γ\D. Set N = Nj. Each
fiber of the map

ϕ/N : S
ϕ−→ S ′ ⊆ Γ\D [pN ]−−→ Γ/N\(D/N),

has C-dimension ≥ r +
(

1
2

dim(V ∩N) + (t− r)
)

= 1
2

dim(V ∩ N) + t by definition of
Ej(t− r). So

r(ν) = dimS−t ≥
(

dimϕ/N(S) +
1

2
dim(V ∩N) + t

)
−t = dimϕ/N(S)+

1

2
dim(V ∩N).

So, “≥” is established. �

3.5. Zariski closedness of the degeneracy loci. We start with the following lemma,
which is the converse of Proposition 3.9.

Lemma 3.10. For each t ≥ 0 and each j ∈ {1, . . . , k}, we have Ej(t) ⊆ SF (t).

Proof. Fix j. Denote by Hj = MT(D′j), Vj := V ∩Hj, and Hj,0 := Hj/Vj. Under the
identification D = V (R)×D0 in Proposition B.3.(i), we have D′j = (Vj(R) + v0)× p(D′j)
by Lemma B.5 (applied to D′j ⊆ D).

Because Nj CHj, we have: (i) V ∩Nj = Vj ∩Nj is a Hj,0-module; (ii) the action of
p(Nj)CHj,0 on Vj/(Vj ∩Nj) is trivial. Let x ∈ D′j. Under D′j = (Vj(R) + v0)× p(D′j),
write x = (v, x0). Then Nj(R)+x becomes ((V ∩ Nj)(R) + v) × p(Nj)(R)+x0. Notice
that this v ∈ V (R) is fixed.

For each s ∈ Ej(t), by definition there exist an irreducible Ỹ ⊆ u−1(S) ∩ D′j such

that s ∈ u(Ỹ ), dim Ỹ ≥ 1
2

dim(V ∩ Nj) + t, and that Ỹ is contained in a fiber of the

quotient D′j → D′j/Nj. The last condition implies that Ỹ ⊆ Nj(R)+x for some x ∈ D′j.

Hence by the discussion above, Ỹ ⊆ ((V ∩ Nj)(R) + v) × D0 for a fixed v ∈ V (R).

Now that dimC Ỹ ≥ 1
2

dim(V ∩ Nj) + t, the following property holds true: For each

(a, x0) ∈ Ỹ ⊆ ((V ∩ Nj)(R) + v) ×D0, there exists a complex analytic subset C̃ ⊆ D0

with dim C̃ ≥ t such that {a}× C̃ ⊆ Ỹ . Hence s ∈ SF (t) by Lemma 2.1 (more precisely,
the first equality in (2.6)). Now, the conclusion of the lemma holds as s runs over
Ej(t). �

Now we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. In this proof, we go back to our original setting and do not replace

S by ϕ(S). We have S
ϕ−→ S ′ ⊆ Γ\D with S ′ = ϕ(S) an algebraic subvariety of Γ\D.

By (3.3), Proposition 3.9 and Lemma 3.10 (both applied to S ′F (t − r) for each 0 ≤
r ≤ t− 1), we have

(3.8) SF (t) = S≥t ∪
⋃

0≤r≤t−1, 1≤j≤k
S≥r ∩ ϕ−1 (Ej(t− r)) .
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So SF (t) is Zariski closed in S because each member in the union on the right-hand
side is. The “In particular” part is easy to check once we have established the Zariski
closedness of SF (t). �

4. Proof of the finiteness result à la Ullmo

The goal of this section is to prove Proposition 3.8, the finiteness result regarding
weakly optimal subvarieties for admissible VMHS of weight −1 and 0.

Before moving on to the proof, let us take a step back and look at this proposition
from a historical point of view. In studying the André–Oort conjecture, Ullmo [Ull14,
Thm. 4.1] proved this finiteness result for maximal weakly special subvarieties (a par-
ticular kind of weakly optimal subvarieties) in the case of pure Shimura varieties as
an application of the pure Ax–Lindemann theorem (a special case of Ax–Schanuel).
The finiteness is ultimately obtained by the following fact: any countable set which is
definable in an o-minimal structure is finite.

Ullmo’s result should be seen as the analog of the classical result [Bog81, Thm. 1]
in the Shimura case. His proof laid a blueprint for later generalizations: in the pure
case and for weakly optimal subvarieties by Daw–Ren in the pure Shimura case and by
Baldi–Klingler–Ullmo [BKU24, §6] for VHS, and in the mixed Shimura case by the first-
named author [Gao17, Thm. 12.2] for maximal weakly special subvarieties and [Gao20b,
Thm. 1.4] for weakly optimal subvarieties when the mixed Shimura variety is of Kuga
type. Our proof of Proposition 3.8 follows this blueprint. While the method also works
for admissible VMHS of general weights if one considers the successive fibered structure
of Mumford–Tate domain [GK24, §6], we focus on our case for our application and to
ease notation.

Recently, Baldi–Urbanik [BU24, Thm. 7.1] proved Proposition 3.8 for general admis-
sible VMHS in a different way (but also uses Ax–Schanuel as a core). Weakly optimal
subvarieties are called monodromically atypical maximal, and Proposition 3.8 is called
Geometric Zilber–Pink as in [BKU24]. Their proof does not use o-minimality, and gives
some effective results.

Retain the notation in (2.4). In this section, we also replace S by ϕ(S) to ease notation.
The proof also works without doing so, except that when we apply Ax–Schanuel for
Theorem 4.2, we need to combine it with [BBT23].

4.1. Zariski optimal subsets and an application of mixed Ax–Schanuel.

Definition 4.1. A complex analytic irreducible subset Ỹ of u−1(S) is called Zariski
optimal if the following holds true: Ỹ ( Ỹ ′ ⊆ u−1(S) ⇒ δZar(Ỹ ) < δZar(Ỹ

′), with Ỹ ′

complex analytic irreducible.

The following theorem is, in fact, an equivalent statement to the weak mixed Ax–
Schanuel theorem (Theorem 3.5). In this paper, we only need one deduction.

Theorem 4.2. Assume Ỹ ⊆ u−1(S) is Zariski optimal. Then Ỹ Zar = Ỹ ws and Ỹ is a
complex analytic irreducible component of Ỹ ws ∩ u−1(S).

Proof. Let Ỹ ⊆ u−1(S) be Zariski optimal. Then Ỹ is a complex analytic irreducible
component of Ỹ Zar ∩ u−1(S). Hence it suffices to prove Ỹ Zar = Ỹ ws.
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Let Ỹ ′ be a complex analytic irreducible component of Ỹ ws ∩ u−1(S) which contains
Ỹ . Then u(Ỹ ′) is closed algebraic in S because u(Ỹ ws) ∩ S is a closed algebraic subset
of S by Proposition 3.3.

Assume Ỹ 6= Ỹ ′. Then δZar(Ỹ ) < δZar(Ỹ
′) by the Zariski optimality of Ỹ . So

dim Ỹ Zar − dim Ỹ < dim Ỹ ′Zar − dim Ỹ ′ ≤ dim Ỹ ws − dim Ỹ ′.

Now that u(Ỹ ) ⊆ u(Ỹ ′), we have u(Ỹ )Zar ⊆ u(Ỹ ′) because the right hand side is closed
algebraic in S. So

dimu(Ỹ )Zar ≤ dimu(Ỹ ′) = dim Ỹ ′.

These two inequalities together yield.

dim Ỹ Zar + dimu(Ỹ )Zar < dim Ỹ ws + dim Ỹ .

This contradicts the weak mixed Ax–Schanuel theorem (Theorem 3.5) for Ỹ .
Hence we must have Ỹ = Ỹ ′. In particular, u(Ỹ ) is algebraic. So Ỹ Zar = Ỹ ws. �

For Y ⊆ S irreducible, let Ỹ be a complex analytic irreducible component of u−1(Y ).

Corollary 4.3. If Y ⊆ X is weakly optimal, then Ỹ is Zariski optimal in u−1(S).

Proof. Let Ỹ ′ ⊇ Ỹ be a complex analytic irreducible subset of u−1(S) such that δZar(Ỹ ) ≥
δZar(Ỹ

′). We may and do assume that Ỹ ′ is Zariski optimal.
Set Y ′′ := u(Ỹ ′)Zar. Then Y ′′ ⊆ u(Ỹ ′,ws) ∩ S because u(Ỹ ′,ws) ∩ S is closed and

algebraic. Thus

δws(Y
′′) = dimY ′′,ws − dimY ′′ ≤ dim Ỹ ′,ws − dim Ỹ ′.

Since Ỹ ′ is Zariski optimal, we have Ỹ ′,Zar = Ỹ ′,ws by Theorem 4.2. So, the inequality
above further implies

δws(Y
′′) ≤ dim Ỹ ′,Zar − dim Ỹ ′ = δZar(Ỹ

′) ≤ δZar(Ỹ ) ≤ dim Ỹ ws − dim Ỹ = δws(Y ).

So Y ′′ = Y because Y is weakly optimal. Thus Ỹ = Ỹ ′ is Zariski optimal. �

4.2. A parametrization of Zariski optimal subsets. The goal of this subsection is
to construct a space N 0 which parametrizes Zariski optimal subsets of u−1(S).

Fix a Levi decomposition G = V o G0. Then for the identification D = V (R) ×D0

in Proposition B.3.(i), the action of G(R) on D is given by (v, g0) · (xV , x0) = (v +
g0xV , g0x0).

Let F be the semi-algebraic fundamental set for u : D→ Γ\D from §2.3.
Consider the set N of pairs (x,H) consisting of x ∈ (u|F)−1(S) and H a connected

subgroup of GR with the following properties: H0 := H/(VR ∩ H) is a semi-simple
subgroup of G0,R, and hx(S) ⊆ NGR(H).

For each (x,H) ∈ N , denote by VH := VR ∩ H. Then VH is the unipotent radical
of H. It can be easily shown that each weak Mumford–Tate domain is N(R)x for some
(x,NR) ∈ N (with NR defined over Q).

Lemma 4.4. Let (x,H) ∈ N . Then H(R)x is:

(i) an algebraic subset of D;
(ii) (v′ + VH(R))×H0(R)x0 ⊆ V (R)×D0 = D for some v′ ∈ V (R) and x0 = p(x).
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Proof. H(R)x is by definition semi-algebraic, and is complex analytic since hx(S) ⊆
NGR(H). So (i) holds.

Any two Levi decompositions differ from the conjugation by an element of the unipo-
tent radical. Hence there exists a v ∈ V (R) such that

H = (v, 1)(VH oH0)(−v, 1).

Thus the condition hx(S) ⊆ NGR(H) implies Int(−v)(hx(S)) ⊆ NGR(VHoH0) = V ′oG′0
for some V ′ < VR and G′0 < G0,R. Then H0 acts trivially on V ′/VH by the normality
condition.

Write x = (xV , x0) ∈ V (R)×D0 = D, then Int(−v)(hx(S)) = h(xV −v,x0)(S) by Propo-
sition B.3.(i). So by the last paragraph xV − v ∈ VH(R) + v′′ for some v′′ ∈ V (R) with
H0(R) · v′′ = v′′. Thus (v, 1)(VH oH0)(R)(−v, 1) · x = (VH(R) + v′′ + v)×H0(R)x0. So
(ii) holds. �

Define the following two functions on N :

d : N → R, (x,H) 7→ dimx

(
u−1(S)

⋂
H(R)x

)
,(4.1)

δ : N → R, (x,H) 7→ dimxH(R)x− dimx

(
u−1(S)

⋂
H(R)x

)
.

Finally, we are ready to define

N 0 :=
{

(x,H) ∈N : for any (x,H ′) ∈ N , we have(4.2)

H ′(R)x ( H(R)x⇒ d(x,H) > d(x,H ′),

H(R)x ( H ′(R)x⇒ δ(x,H) < δ(x,H ′)
}
.

The proof of the following proposition uses Theorem 4.2 (twice) and hence mixed
Ax–Schanuel.

Proposition 4.5. The following two sets are equal:

- the set of orbits {H(R)x : (x,H) ∈ N 0};
- {Ỹ Zar = Ỹ ws : Ỹ ⊆ u−1(S) Zariski optimal, with Ỹ ∩ F 6= ∅}.

Moreover, H(R)x is a weak Mumford–Tate domain for each (x,H) ∈ N 0.

Proof. Take (x,H) ∈ N 0. We wish to prove that H(R)x equals Ỹ Zar for some Zariski
optimal Ỹ ⊆ u−1(S) which passes through x ∈ F.

Let Ỹ ′ be a complex analytic irreducible component of u−1(S) ∩H(R)x which passes
through x with dim Ỹ ′ = d(x,H).

Take Ỹ ⊇ Ỹ ′ with Ỹ ⊆ u−1(S) complex analytic irreducible and δZar(Ỹ ) ≤ δZar(Ỹ
′).

We may and do assume that Ỹ is Zariski optimal. Then Ỹ Zar = Ỹ ws is a weak Mumford–
Tate domain by Theorem 4.2, and hence Ỹ Zar = H ′(R)x for some (x,H ′) ∈ N . Thus
δZar(Ỹ ) = δ(x,H ′).

Thus Ỹ ′ is contained in some irreducible component of H(R)x ∩ H ′(R)x, which by
Lemma 4.4.(ii) is H ′′(R)x for some (x,H ′′) ∈ N . Hence d(x,H) = d(x,H ′′), so by
definition of N 0 we have H(R)x = H ′′(R)x. So H(R)x ⊆ H ′(R)x. But δ(x,H) =
δ(x,H ′). So by definition of N 0 we have H(R)x = H ′(R)x, and hence H(R)x = Ỹ Zar.
Now we have proved that the first set is contained in the second set and the “Moreover”
part of the proposition.
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Conversely let Ỹ ⊆ u−1(S) be Zariski optimal with Ỹ ∩F 6= ∅. By Theorem 4.2, Ỹ Zar =
Ỹ ws is a weak Mumford–Tate domain, and hence equals H(R)x for some (x,H) ∈ N .
We may furthermore choose this x to be a smooth point of H(R)x ∩ u−1(S) ∩ F; then
dim Ỹ = d(x,H).

We wish to prove (x,H) ∈ N 0. Let us check the two properties which define N 0 by
contradiction.

Assume there exists (x,H ′) ∈ N such that H ′(R)x ( H(R)x and d(x,H) = d(x,H ′).
Then dim Ỹ = d(x,H ′) and hence Ỹ ⊆ H ′(R)x by analytic continuation. But then
Ỹ Zar ⊆ H ′(R)x by Lemma 4.4.(i). So Ỹ Zar ⊆ H ′(R)x ( H(R)x = Ỹ Zar, which is
impossible. So for any (x,H ′) ∈ N , we have H ′(R)x ( H(R)x⇒ d(x,H) > d(x,H ′).

Next, assume there exists (x,H ′) ∈ N such that H(R)x ( H ′(R)x and δ(x,H) ≥
δ(x,H ′). Take a complex analytic irreducible component Ỹ ′ of u−1(S)

⋂
H ′(R)x such

that dim Ỹ ′ = d(x,H ′). Then Ỹ ⊆ Ỹ ′ by analytic continuation. By Lemma 4.4.(i),
we have Ỹ ′,Zar ⊆ H ′(R)x. So δZar(Ỹ

′) ≤ δ(x,H ′) ≤ δ(x,H) = δZar(Ỹ ). Hence Ỹ ′ = Ỹ
because Ỹ is Zariski optimal. So δ(x,H ′) = δ(x,H) and d(x,H ′) = d(x,H), and so

dimH(R)x = d(x,H) + δ(x,H) = d(x,H ′) + δ(x,H ′) = dimH ′(R)x.

This contradicts H(R)x ( H ′(R)x. So for any (x,H ′) ∈ N , we have H(R)x (
H ′(R)x⇒ δ(x,H) < δ(x,H ′).

This finishes the proof of (x,H) ∈ N 0. So, the second set is contained in the first
set. Now we are done. �

4.3. A finiteness result for N 0. Let N 0 be as defined in (4.2). In this subsection,
we prove that the following finiteness result. The proof relies on o-minimality.

Proposition 4.6. There are only finitely many subgroups H of GR such that (x,H) ∈
N 0 for some x ∈ (u|F)−1(S).

We start with the following classical result.

Lemma 4.7. (i) There exists a finite set ΩV = {V1, . . . , Vn} of subspaces of VR with
the following property: Each subspace of VR equals gV Vj for some gV ∈ GL(VR)
and some j ∈ {1, . . . , n}.

(ii) There exists a finite set Ω0 = {G1, . . . , Gn} of semi-simple subgroups of G0,R, with
no compact factors, such that the following holds: Each semi-simple subgroups
of G0,R equals g0Gjg

−1
0 for some g0 ∈ G0(R) and some j ∈ {1, . . . , n}.

Consider the set Υ consisting of elements (x, gV , g0, Vj, Gj, v) ∈ (u|F)−1(S)×GL(VR)×
G0(R)× ΩV × Ω0 × V (R) satisfying the following properties:

(a) g0Gjg
−1
0 stabilizes gV Vj; hence gV Vjog0Gjg

−1
0 is a subgroup of GR = (V oG0)R;

(b) hx(S) ⊆ NG(R)

(
(v, 1)(gV Vj o g0Gjg

−1
0 )(−v, 1)

)
.

Recall from §2.3 that (u|F)−1(S) is a definable subset of D. Hence, Υ is a definable set.

For each (x, gV , g0, Vj, Gj, v) ∈ Υ, denote by H
(j)
v := (v, 1)(gV Vj o g0Gjg

−1
0 )(−v, 1).

Then we obtain a map that is surjective by Lemma 4.7

(4.3) ψ : Υ→ N , (x, gV , g0, Vj, Gj, v) 7→
(
x,H(j)

v

)
.
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Composing this map with the functions d : N → R and δ : N → R from (4.1), we
obtain two functions on Υ

dΥ : Υ→ R, (x, gV , g0, Vj, Gj, v) 7→ dimx

(
(u|F)−1(S)

⋂
H(j)
v (R)x

)
,

δΥ : Υ→ R, (x, gV , g0, Vj, Gj, v) 7→ dimxH
(j)
v (R)x− dimx

(
(u|F)−1(S)

⋂
H(j)
v (R)x

)
.

The general theory of o-minimal geometry says that x 7→ dimxX is a definable function
for any definable set X. Hence dΥ and δΥ are definable functions on Υ.

For the subset N 0 ⊆ N , the inverse ψ−1(N 0) ⊆ Υ is

Ξ =
{

(x, gV , g0, Vj, Gj, v) ∈ Υ : for any (x, g′V , g
′
0, Vj′ , Gj′ , v

′) ∈ Υ,

H
(j′)
v′ (R)x ( H(j)

v (R)x⇒ dΥ(x, gV , g0, Vj, Gj, v) > dΥ(x, g′V , g
′
0, Vj′ , Gj′ , v

′),

H(j)
v (R)x ( H

(j′)
v′ (R)x⇒ δΥ(x, gV , g0, Vj, Gj, v) < δΥ(x, g′V , g

′
0, Vj′ , Gj′ , v

′)
}
,

which is a definable subset of Υ since both dΥ and δΥ are definable functions.

With these preparations, we are ready to prove Proposition 4.6.

Proof of Proposition 4.6. Consider the map

ρ : Ξ →
⋃n
i=1

(
GL(VR)/StabGL(VR)(Vj)

)
×
(
G0(R)/NG0(R)(Gj)

)
× V (R)

(x, gV , g0, Vj, Gj, v) 7→ (gV Vj, g0Gjg
−1
0 , v).

By the surjectivity of ψ, for any (x,H) ∈ N 0, the group H equals H
(j)
v = (v, 1)(gV Vj o

g0Gjg
−1
0 )(−v, 1) for some (gV Vj, g0Gjg

−1
0 , v) ∈ ρ(Ξ).

So, it suffices to prove that ρ(Ξ) is finite.
First, the map ρ is clearly definable. Hence ρ(Ξ) is definable.

Next, Proposition 4.5 says that H
(j)
v (R)x is a weak Mumford–Tate domain. Hence

there exists a Q-subgroupN of G such thatNR = (v, 1)(gV Vjog0Gjg
−1
0 )(−v, 1). This im-

plies that gV Vj = (V ∩N)R and g0Gjg
−1
0 = N0,R. Moreover, (v, 1) ((V ∩N) oN0) (−v, 1) =

N and hence v ∈ V (Q). So ρ(Ξ) is countable since Q is countable.
Therefore, ρ(Ξ) is finite because it is definable and countable. �

4.4. Proof of Proposition 3.8. Let Y be a weakly optimal subvariety of S. Take
a complex analytic irreducible component Ỹ of u−1(Y ) such that Ỹ ∩ F 6= ∅. Then
Ỹ is Zariski optimal in u−1(S) by Corollary 4.3. Then by Proposition 4.5, we have
Ỹ ws = H(R)x for some (x,H) ∈ N 0.

Hence by the finiteness result Proposition 4.6, there exist finitely many Q-groups
N1, . . . , Nk < G satisfying the following property: For each weakly optimal subvariety
Y ⊆ S, Y ws = u(Ỹ ws) equals u(Nj(R)+x) for some j ∈ {1, . . . , k} and some x ∈ D

with hx(S) ⊆ NG(Nj)(R). Then D′j := NG(Nj)(R)+x is a Mumford–Tate domain and is
independent of the choice of such x. We are done. �

5. Application to non-degeneracy in case of irreducible VHSs

In this section, we give two applications of Theorem 3.1: when the VHS is irreducible
and when it has a simple algebraic monodromy group. Both cases apply to the Gross-
Shoen and the Ceresa normal functions.
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Let S be a smooth irreducible quasi-projective variety. Let (VZ,F
•) be a polarized

VHS on S of weight −1. Let ν : S → J(VZ) be an admissible normal function. Then
we have the associated Betti form βν defined in Definition D.5; it is a semi-positive
(1, 1)-form on S.

We wish to check whether β∧ dimS
ν 6≡ 0, which by Corollary D.7 becomes r(ν) = dimS

for the Betti rank r(ν) defined in (1.4). Now Theorem 3.1 gives a checkable criterion.
Recall the period map ϕ = ϕν : S → Γ\D, the Q-group G and its unipotent radical V
which is a vector group from (2.1). We emphasize that V is in general not a fiber of VQ
and its geometric meaning is given by Remark 2.2: 1

2
dimV is the relative dimension of

Jν , the smallest intermediate Jacobian of sub-VHS of J(VZ)→ S translated by a torsion
multisection which contains ν(S).

Notice that the trivial upper bound (2.9) yields the following necessary condition for
r(ν) = dimS:

(Hyp) : dimϕ(S) = dimS ≤ 1

2
dimQ V.

Theorem 5.1. Assume: (i) (VZ,F
•) → S is irreducible, i.e. the only sub-VHSs are

trivial or itself; (ii) ν(S) is not a torsion section. Then

r(ν) = min

{
dimϕ(S),

1

2
dimVQ,s

}
for one (and hence for all) s ∈ S(C).

In particular, if futhermore dimϕ(S) = dimS and dimVQ,s ≥ 2 dimS, then we have
β∧ dimS
ν 6≡ 0.

Proof. Set G0 = G/V . Then V is a G0-submodule of VQ,s for one (and hence all)
s ∈ S(C).

By (i), VQ,s is irreducible as a G0-module. By (ii), V 6= {0}. Hence V = VQ,s.
Let N be a normal subgroup of G. Then V ∩N is a G0-submodule of V , and hence

gives rise to a sub-VHS of (VZ,F
•)→ S. Hence by (i), either V ∩N = {0} or V ∩N = V .

Assume V ∩ N = {0}. Then N C G0 = G/V is reductive and it acts trivially on
V = V/(V ∩ N). Hence, N(R)+x0 is a point for any x0 ∈ D0, and therefore N is
contained in the center of G0. Using again the fact that N acts trivially on V , we see
that N is contained in the center of G. So dimϕ/N(S) = dimϕ(S) in this case.

On the other hand, it is clearly true that minN, V ∩N=V

{
dimϕ/N(S)

}
+ 1

2
dimV is

attained at N = G and hence equals 1
2

dimV . Now we are done. �

Theorem 5.2. Assume: (i) the connected algebraic monodromy group H of (VZ,F
•)→

S is simple; (ii) (VZ,F
•) → S has no isotrivial sub-VHS, i.e. locally constant VHS.

Then

r(ν) = min

{
dimϕ(S),

1

2
dimV

}
.

Proof. Set G0 = G/V . By Deligne, H CGder
0 .

Let N be a normal subgroup of G. We may and do assume N CGder. The reductive
part GN := N/(V ∩ N) is a normal subgroup of G. Now that GN ∩ H is a normal
subgroup of H, we have either GN ∩H = {1} or H < GN by (i).

Assume H < GN . Since G0 is reductive, we can decompose V = (V ∩N)
⊕

(V ∩N)⊥

as G0-modules. Now (V ∩N)⊥ gives rise to a sub-VHS of (VZ,F
•). But H acts trivially
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on (V ∩N)⊥ because GN acts trivially on V/(V ∩N). So (V ∩N)⊥ = {0} by (ii). Hence
V ∩N = V , and hence V < N . Thus ϕ/N(S) is a point. So dimϕ/N(S)+ 1

2
dim(V ∩N) =

1
2

dimV .
If GN ∩H = {1}, then dimϕ/N(S) = dimϕ(S). Now we are done. �

Now, we apply these two theorems to the Gross-Shoen and the Ceresa normal func-
tions. Let νGS (resp. νCe) be the Gross–Schoen (resp. Ceresa) normal function Mg →
J(VZ) defined in (C.5), with VZ from Proposition C.10. Let βGS and βCe be the associ-
ated Betti forms.

Corollary 5.3. Assume g ≥ 3. The Betti ranks r(νGS) = r(νCe) = 3g−3. Equivalently,

β
∧(3g−3)
GS 6≡ 0 and β

∧(3g−3)
Ce 6≡ 0.

Proof. We shall apply Theorem 5.1 and let us check the assumptions. Assumption (i)
holds by Proposition C.10. (iii). Assumption (ii) holds by Proposition C.10. (ii). More-
over the VHS VZ on S has maximal moduli, so dimϕGS(Mg) = dimϕCe(Mg) = dimMg =

3g − 3 where ϕGS and ϕCe are the period maps. Finally, dimVQ,s = 2g(2g−1)(2g−2)
6

− 2g,
which is > 2(3g − 3) when g ≥ 3. Hence, we can conclude by Theorem 5.1. �

We are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Denote for simplicity by S = Mg. Let ν be either νGS or νCe.
Set U := S \ SF (1), which is Zariski open by Theorem 3.2.
By Corollary 5.3 and the “In particular” part of Theorem 3.2, we have that min{t ≥

0 : SF (t) = S} = 0. Thus SF (1) 6= S. Now, part (i) follows from Proposition C.7.
For (ii), notice that by definition SF (1) contains any analytic curve C ⊆ San such

that ν(C) is torsion. Thus, the set {s ∈ U(C) : ν(s) is torsion} is discrete, and hence at
most countable. �

6. Northcott property for Gross–Schoen and Ceresa cycles

In this section, we turn to the arithmetic applications.

6.1. Construction of the adelic line bundle. Let Mg be the moduli scheme of
smooth curves of genus g over Z, and let Cg →Mg be the universal curve.

Denote by Jg = Jac(Cg/Mg) the relative Jacobian. Identify Jg with its dual via the
principal polarization given by a suitable theta divisor.

The Poincaré line bundle P on Jg ×Mg Jg extends to an integrable adelic line bundle

P as follows. Define P∆ := ∆∗P for the diagonal ∆: Jg → Jg ×Mg Jg. Then P∆ is
relatively ample on Jg → Mg, and [2]∗P∆ = (P∆)⊗4. So (Jg, [2],P∆) is a polarized
dynamical system over Mg in the sense of [YZ21, §2.6.1]. Thus, Tate’s limit process

gives a nef adelic line bundle P
∆

on Jg, as executed by [YZ21, Thm. 6.1.1]. Now we

obtain the desired P ∈ P̂ic(Jg/Z)Q by letting

2P := m∗P
∆ − p∗1P

∆ − p∗2P
∆
,

where m, p1, p2 : Jg → Jg ×Mg Jg with m being the addition and p1 (resp. p2) being the
projection to the first (resp. second) factor.

Take ξ ∈ Pic1(Cg/Mg) such that (2g − 2)ξ = ωCg/Mg . Let

iξ : Cg −→ Jg
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be the Abel–Jacobi map based at ξ. Then we have an Mg-morphism (iξ, iξ) : Cg×MgCg →
Jg ×Mg Jg, and hence get an integrable adelic line bundle on Cg ×Mg Cg

Q := (iξ, iξ)
∗P ∈ P̂ic(Cg ×Mg Cg/Z)Q,

and we can compute

(6.1) Q = O(∆)− p∗1ξ − p∗2ξ.
with ∆ the diagonal of Cg → Cg ×Mg Cg, and p1, p2 the projections Cg ×Mg Cg → Cg.

Finally the Deligne pairing gives an adelic line bundle on Mg by [YZ21, Thm. 4.1.3]

(6.2) L := 〈Q,Q,Q〉 ∈ P̂ic(Mg/Z)Q.

The following theorem is a reformulation of the second-named author’s [Zha10, Thm. 2.3.5].

Theorem 6.1. For any s ∈Mg(Q), we have

〈∆GS(Cs),∆GS(Cs)〉BB = hL (s).

Proof. In some neighborhood U of s in Mg, ∆GS(CU) = ∆GS,ξ(CU) is an element of
Z2(C3

U), i.e. it is a 2-cocycle of C3
U .

Let ` be a rational section of Q over C2
U . By (6.1), the divisor div(`s′) at each s′ ∈ U(C)

is not the pullback of a divisor under the two natural projections C2
U → CU . So div(`)

can be seen as a correspondence of CU . Up to shrinking U we can take rational sections
`1, `2, `3 of Q over C2

U with the following property: For their divisors t1, t2, t3 ∈ Div(C2
U),

we have

|t1| ∩ |t2| ∩ |t3| = ∅, |∆GS,ξ(CU)| ∩ |(t1 ⊗ t2 ⊗ t3)∗∆GS,ξ(CU)| = ∅,
where t1 ⊗ t2 ⊗ t3 is seen as a correspondence of C3

U . Notice that we have a rational
section 〈`1, `2, `3〉 of L on U .

We shall apply [Zha10, Thm. 2.3.5] to Cs. We have seen that t1, t2, t3 restricted to the
fiber over s ∈ U(Q) satisfies the assumption of [Zha10, Thm. 2.3.5], so

(6.3) 〈∆GS(Cs), (t1,s ⊗ t2,s ⊗ t3,s)∗∆GS(Cs)〉BB = t̂1,s · t̂2,s · t̂3,s
where t̂1,s, t̂2,s, t̂3,s are suitable arithmetic divisors on some model of C2

s extending t1,s,

t2,s, t3,s. The right hand side is precisely 1
[Q(s):Q]

d̂egL |s = hL (s). The left hand side is

〈∆GS(Cs),∆GS(Cs)〉BB because, by (6.1), (t1⊗ t2⊗ t3)∗∆GS,ξ(CU) is rationally equivalent
to ∆GS,ξ(CU). Hence, we are done. �

6.2. Relating with the Gross–Schoen normal function. Let νGS be the Gross–
Schoen normal function Mg → J(VZ) defined in (C.5) (with VZ from Proposition C.10).

By (6.1), (t1 ⊗ t2 ⊗ t3)∗∆GS,ξ(CU) is rationally equivalent to ∆GS,ξ(CU) . Hence, they
define the same normal functions νGS on U . Set

PGS := (νGS, νGS)∗P = ν∗GSP
∆

for the metrized Poincaré bundle P on J(VZ) ×Mg J(VZ) defined in Definition D.1 (or

the metrized tautological bundle P∆ from Definition D.3). Set

βGS := c1(PGS)

to be the Betti form, i.e. the curvature of PGS. It is a semi-positive (1, 1)-form. The
following Proposition can also be deduced from R. de Jong’s work [dJ16, (9.3)]:
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Proposition 6.2. We have the following identity of (1, 1)-forms on Mg:

c1(L C) = βGS.

In particular, c1(L C) is semi-positive.

Proof. We use the notation in the proof of Theorem 6.1. For any s ∈Mg(C), we obtain
a neighborhood U such that (6.3) holds for any s′ ∈ U(C). So we get

〈∆GS(CU), (t1 ⊗ t2 ⊗ t3)∗∆GS(CU)〉∞ = − log ‖〈`1, `2, `3〉‖∞ on U.

By Proposition D.2, we have a section β ∈ H0(U,PGS) such that

〈∆GS(CU), (t1 ⊗ t2 ⊗ t3)∗∆GS(CU)〉∞ = − log ‖β‖ on U.

So log ‖β‖ = log ‖〈`1, `2, `3〉‖∞ on U . Taking ∂∂̄
πi

, we get that c1(PGS) = c1(L C) on U .
Now we can conclude by letting s run over Mg(C). �

6.3. Bigness of the generic fiber of the adelic line bundle. By [YZ21, Thm. 5.3.5],
lower bounds of the height function hL correspond to bigness properties of L . In this

paper, we prove the bigness of the generic fiber of L and deduce the desired height
comparison from it.

There is a natural base change of adelic line bundles P̂ic(Mg/Z)Q → P̂ic(Mg/Q)Q.

Denote by L̃ the image of L under this base change map; L̃ is called the generic fiber
of L .

We start by stating the following formula for v̂ol(L̃ ). Notice that it does not follow

from arithmetic Hilbert–Samuel because we have not proved the nefness of L̃ .

Proposition 6.3. We have

v̂ol(L̃ ) =

∫
Mg(C)

c1(L C)3g−3.

The proof of this proposition shall be postponed to §6.4.

Theorem 6.4. Assume g ≥ 3. Then the adelic line bundle L̃ is big, i.e. v̂ol(L̃ ) > 0.

Proof. By Proposition 6.3 and Proposition 6.2, we have v̂ol(L̃ ) =
∫
Mg(C)

β
∧(3g−3)
GS . Now

β
∧(3g−3)
GS ≥ 0 since βGS is semi-positive. By Corollary 5.3, β

∧(3g−3)
GS 6≡ 0. Hence v̂ol(L̃ ) >

0. �

Proof of Theorem 1.1. The claim for 〈GS(Cs),GS(Cs)〉BB is a direct consequence of The-
orem 6.4 and [YZ21, Thm. 5.3.5.(iii)]. Notice that one can either take the adelic line
bundle on Mg, which defines the Faltings height (it exists by [YZ21, §2.6.2]), or one
can take any ample line bundle on a suitable compactification of Mg and then use the
comparison of the logarithmic Weil height and the Faltings height.

The claim for 〈Ce(Cs),Ce(Cs)〉BB follows because, by work of the second-named author
[Zha10], the Ceresa cycles and Gross–Schoen have the same height up to some positive
multiple. �
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6.4. Proof of Proposition 6.3. Denote for simplicity by S = Mg.

By the flatness of extension Q ⊆ C, we have v̂ol(L̃Q) = v̂ol(L̃C). By [YZ21, Theo-
rem 5.2.1], it suffices to construct a sequence of model Hermitian line bundles (Si,L i)
with limit (S,L ) so that

lim
i−→∞

v̂ol(L̃i) =

∫
S(C)

c1(L C)3g−3.

Let N be an ample Hermitian line bundle on some integral model S of S. Following

proof of [YZ21, Theorem 6.1.1], we have a sequence of model line bundles (Ji,P
∆

i , `i)

with the limit (J,P
∆

), so that P
∆

i + 4−iπ∗N is nef.
For any n ∈ N, we have an action of J[n] on J by translating torsion points:

mn : J[n]× J
(m,p)−→J× J, (t, x) 7→ (x+ t, x)

By the Theorem of square, Npm
∗
nP

∆ = (P∆)n
2g

. Thus, we obtain an adelic metrized
line bundle

P
∆

i,n := n−2gNpm
∗
nP

∆

i .

This bundle is again realized on some model Ji,n of J with connection morphism `i,n :
P∆−→P∆

i,n,J. Moreover div(`i,n) is in fact bounded by div(`i). Over C, the curvature

form c1(P
∆

i,n,C) is obtained from the curvature form c1(P
∆

i,C) by taking over average

over n-torsion points. It follows that these forms converge to c1(P
∆

) uniformly in any
compact subset of J(C). These bundles also induce a double sequence of model line
bundles (Si,L i,n) of (S,L ) so that they convergent to (S,L ) as i−→∞, and that the

metric c1(L i,n,C) uniformly convergent to c1(L C) as n−→∞.
More precisely, we let Ωi be an increasing sequence of relatively compact open sub-

sets of S(C) so that S(C) = ∪Ωi and εi be a decreasing sequence of positive numbers
convergent to 0 so that on Ωi,

c1(L C) ≤ ε−1
i c1(N C).

Then for each i, we choose ni so that

(6.4) − εdi c1(N C) ≤ c1(L i,ni,C)− c1(L C) ≤ εdi c1(N C)

as hermitian forms on the tangent bundle on Ωi. We simply write L i = L i,ni . Using

the reference curvature c1(N C), we may talk about eigenvalues of c1(L C) and c1(L i,C).

Now we apply Demailly’s Morse inequality [Dem91] for the bundle L i on Si(C). For
each q ∈ N, let Si,q denote the subset of Si(C) of points where c1(L i) has q-negative
eigenvalues and n − q positive eigenvalues. Then by [Dem91, (1.3), (1.5)], we have the
following estimate as k−→∞:

hq(kLi) ≤
kd

d!

∣∣∣∣∣
∫
Si,q

c1(L i)
d

∣∣∣∣∣+ o(kd), d := 3g − 3

∑
q

(−1)qhq(kLi) =
kd

d!

∫
S(C)

c1(Li)
d + o(kd).
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It follows that ∣∣∣∣v̂ol(Li)−
∫
S(C)

c1(Li)
d

∣∣∣∣ ≤∑
q>0

∣∣∣∣∣
∫
Si,q

c1(L i)
d

∣∣∣∣∣ .
By [YZ21, Theorem 5.4.4],

lim
i−→∞

∫
S(C)

c1(Li)
d =

∫
S(C)

c1(L )d.

Thus, it remains to the following estimate for each q > 0:

lim
i−→∞

∫
Si,q

c1(L i)
d = 0.

We want to prove this on Ωi ∩ Si,q and on its complement Si,q \ Ωi respectively.
By (6.4), we have

−εdi c1(N C) ≤ c1(L i) ≤ (ε−1 + εd)c1(N C).

Thus on Ωi ∩ Si,q, c1(L i) has all eigenvalue ≤ ε−1 + εd and one negative eigenvalue with
absolute value bounded by ≤ εd. It follows that |c1(Li)

d| is bounded by

εd(ε−1 + εd)d−1c1(N )d = εi(1 + εd+1
i )d−1c1(N )d.

It follows that ∫
Si,q∩Ωi

|c1(L i)
d| = O(εi).

It remains to treat the integral over Si,q \ Ωi. Using decomposition

P =
1

2
(m∗P∆ − p∗1P∆ − p∗2P∆),

we may write L i = E i − F i, where E i and F i are two sequences of new bundles
convergent to E and F with smooth metrics respectively. Then we have∫

Si,q\Ωi
|c1(L i)

d| ≤
∫
S(C)\Ωi

c1(E i + F i)
d.

Now let Ω′i ⊂ Ωi be another increasing sequence of relatively compact open subsets so
that ∪Ω′i = S(C). Then we can construct an increasing sequence of continuous functions
fi so that fi(x) = 1 on S(C) \ Ωi and fi = 0 on Ω′i. Then for any i ≥ j we have∫

S(C)\Ωi
c1(E i + F i)

d ≤
∫
S(C)

fi · c1(E i + F i)
d ≤

∫
S(C)

fj · c1(E i + F i)
d.

Fix j and take i−→∞, we get

lim sup
i−→∞

∫
S(C)\Ωi

c1(E i + F i)
d ≤

∫
S(C)

fj · c1(E + F )d ≤
∫
S(C)\Ω′j

c1(E + F )d.

Let j−→∞. We get

lim
i−→∞

∫
S(C)\Ωi

c1(E i + F i)
d = 0.

We are done. �
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Appendix A. Variation of mixed Hodge structures

A.1. Definitions. Let R be a subring of R.

Definition A.1. Let M be a free R-module of finite rank.

(i) An R-pure Hodge structure on M of weight n is a decreasing filtration F • on MC
(the Hodge filtration) such that MC = F pMC ⊕ F n+1−pMC for all p ∈ Z.

(ii) An R-mixed Hodge structure on M is a triple (M,W•, F
•) consisting of two

filtrations, an increasing filtration W• on MQ (the weight filtration) and a de-
creasing filtration F • on MC (the Hodge filtration), such that for each k ∈ Z,
GrWk MQ = Wk/Wk−1 is a Q-pure Hodge structure of weight k for the filtration
on GrWk (MC) deduced from F •.

Pure Hodge structures of weight n can be defined in terms of bigradings. Indeed,
set Mp,n−p := F pMC ∩ F p+1MC, then MC = ⊕pMp,n−p (the Hodge decomposition) and

Mn−p,p = Mp,n−p. We have F p = ⊕p′≥pMp′,n−p′ .
For a mixed Hodge structure (M,W•, F

•), the numbers k ∈ Z such that GrWk MQ 6= 0
are called its weights, and the numbers hp,q(M) = dimC F

pGrWp+q(MC)/F p+1GrWp+q(MC)
are called its Hodge numbers .

For each n ∈ Z, define R(n) to be the pure Hodge structure on R of weight −2n such
that R(n)−n,−n = C and R(n)p,q = 0 for all (p, q) 6= (−n,−n).

A polarization on a pure Hodge structure V of weight n is a morphism of Hodge
structures

Q : VQ ⊗ VQ −→ Q(−n)

such that the Hermitian form on VC given by Q(Cu, v̄) is positive-definite where C is
the Weil operator (C|Hp,q = ip−q for all p, q).

A.2. Mumford–Tate group. Now, let us turn to a more group theoretical point of
view on mixed Hodge structures. Let S = ResC/RGm,C be the Deligne torus, i.e. the
real algebraic group such that S(R) = C∗ and S(C) = C∗ × C∗, and that the complex
conjugation on S(C) sends (z1, z2) 7→ (z̄2, z̄1).

As for pure Hodge structures, mixed Hodge structures can also be equivalently de-
fined in terms of bigradings by Deligne [Del71, 1.2.8]. Given a Q-vector space M
of finite dimension, a bigrading MC = ⊕p,q∈ZIp,q is equivalent to a homomorphism
h : SC → GL(MC). In particular, any mixed Hodge structure on M defines a unique
homomorphism h : SC → GL(MC), and we use (M,h) to denote this mixed Hodge struc-
ture.

Definition A.2. For any mixed Hodge structure (M,h), its Mumford–Tate group is the
smallest Q-subgroup G of GL(MQ) such that h(SC) ⊆ G(C).

Now we assume that M has weight 0 and −1 with M−1 := GrW−1M and M0 := GrW0 M .
Then, we have an exact sequence

0−→M−1−→M−→M0−→0.

It is clear that h(S) stabilizes this exact sequence and induced identity on N . Let G0

denote the Mumford–Tate group of M−1. Then, we have an exact sequence of reductive
groups:

0−→V−→G−→G0−→0,
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where V is a vector group included into Hom(M0,M−1). If M−1 is polarized, then G0 is
reductive by Deligne. Thus, V is the unipotent radical of G.

The base change to R has a natural splitting MR = M−1,R⊕M0,R of Hodge structures

given by the inverse of the isomorphism MR ∩ F 0MC
∼−→M0,R. This induces splittings

GR = VR o G0,R.

Moreover h(S) is included into G0,R. Thus, we have proved the following:

Lemma A.3. Assume (M,h) has weight −1 and 0. The following holds.

(i) The h is defined over R.
(ii) The unipotent radical V of G is a vector group.

A.3. Variation of mixed Hodge structures and admissibility.

Definition A.4. Let S be a connected complex manifold. A variation of mixed Hodge
structures (VMHS) on S is a triple (MZ,W•,F

•) consisting of

- a local system MZ of free Z-modules of finite rank on S ,
- a finite increasing filtration (weight filtration) W• of the local system M :=
MZ ⊗ZS QS by local subsystems,

- a finite decreasing filtration (Hodge filtration) F• of the holomorphic vector bun-
dle M := MZ ⊗ZS OS by holomorphic subbundles

satisfying the following properties

(i) for each s ∈ S, the triple (Ms,W•,F
•
s) defines a mixed Hodge structure on Ms,

(ii) the connection ∇ : M → M ⊗OS Ω1
S whose sheaf of horizontal sections is MC :=

MZ ⊗ZS CS satisfies the Griffiths’ transversality condition

∇(Fp) ⊆ Fp−1 ⊗ Ω1
S.

The weights and Hodge numbers of (Ms,W•,F
•
s) are the same for all s ∈ S. We call

them the weights and the Hodge numbers of the VMHS (MZ,W•,F
•).

If there is only one n ∈ Z such that GrWn M 6= 0, then each fiber of this VMHS is a
pure Hodge structure of weight n. In this case, the VMHS is said to be pure. More
precisely, we have the following definition.

Definition A.5. A variation of Hodge structures (VHS) of weight n on S is a pair
(VZ,F

•) such that (VZ,W•,F
•) is a VMHS, where W• is the increasing filtration on

V := VZ ⊗ZS QS defined by Wn−1 = 0 and Wn = V.

To each VMHS (MZ,W•,F
•) on S, we can associate variations of pure Hodge structures

obtained from GrWk M.
We shall use the following convention: For each n ∈ Z and any VHS (VZ,F

•) → S,
define VZ(n) to be the VHS (VZ,F

•−n). In particular Z(n)S be the VHS on S of weight
−2n such that (Z(n)S)s = Z(n) for each s ∈ S.

Definition A.6. A polarization of VHS (VZ,F
•) on S of weight n is a morphism of

VHS V⊗ V→ Q(−n)S inducing on each fiber a polarization.
We say that a VMHS (MZ,W•,F

•) is graded-polarizable if GrWk M has a polarization
for each k ∈ Z.
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Example A.7. Let f : X → S be a projective smooth morphism of algebraic varieties
over C with irreducible fibers of dimension d. For each s ∈ S(C), the cohomology group
Hn(Xs,Z) is endowed with a natural Hodge structure of weight n by the de Rham–Betti
comparison, and this makes Rnf∗ZX into a VHS on San of weight n. It is polarizable by
the hard Lefschetz theorem and the Lefschetz decomposition.

We close this subsection with a discussion on the admissibility of VMHS. Let S be
a smooth, complex quasi-projective variety. Given a VMHS on San, we often need to
extend it to suitable compactifications of San and hence study the asymptotic behavior
of the VMHS near the boundary. This leads to the definition of admissible VMHS, which
are the graded-polarized VMHSs with good asymptotic properties. This concept was
introduced by Steenbrick–Zucker [SZ85, Prop. 3.13] on a curve and Kashiwara [Kas86,
1.8 and 1.9] in general, and the property for a VMHS on San to be admissible does not
depend on the choice of the compactification. We shall not recall the precise definition
here (see, for example, [PS08, Defn. 14.49]), but point out the following:

(1) Any VMHS arising from geometry is admissible [EZ86] (see also [BZ14]).
(2) Any VHS is admissible.

Appendix B. Classfying space and Mumford–Tate domain

We relate the Betti foliation on intermediate Jacobians to the fibered structure of
certain Mumford–Tate domain parametrizing Q-mixed Hodge structure of weight −1
and 0. In this appendix, we recall and prove some results about such classifying spaces
and Mumford–Tate domains. The main result is Proposition B.3, which explains and
compares the semi-algebraic structure and the complex structure of such Mumford–Tate
domains. This comparison is used to study the Betti foliation of intermediate Jacobians.

B.1. Classifying space. Let M−1 be a finite dimensional Q-vector space. Let M =
M−1 ⊕Q.

B.1.1. Pure Hodge structures. Consider the polarized Hodge data on M−1: a non-
degenerate skew pairing Q−1 : M−1 ⊗ M−1 → Q(1), and a partition {hp,qM−1

}p,q∈Z of

dimM−1,C into non-negative integers with p + q = −1 such that hp,qM−1
= hq,pM−1

. Then
there exists a classifying space M0 parametrizing Q-Hodge structures on M−1 of weight
−1 with a polarization by Q−1 such that the (p, q)-constituent of M−1,C has complex
dimension hp,q. Moreover, the Q-group GM

0 := Aut(M−1, Q−1), the associated real Lie
group GM

0 (R)+ acts transitively on M0, i.e.

M0 = G0(R)+x0

for any point x0 ∈M0. This makes M0 into a semi-algebraic open subset of a flag variety
M∨0 , which is a suitable GM

0 (C)-orbit, and hence endows M0 with a complex structure.
We can be more explicit on the action of GM

0 (R)+ on M0. For each x0 ∈M0, we have
a Hodge decomposition and a Hodge filtration F •x0

(B.1) M−1,C =
⊕

p+q=−1
(M−1,x0)

p,q, F p
x0
M−1,C =

⊕
p′≥p

(M−1,x0)
p′,q′

with (M−1,x0)
q,p = (M−1,x0)

p,q. The inclusion M0 ⊆M∨0 is given by x0 7→ F •x0 .



HEIGHTS AND PERIODS OF ALGEBRAIC CYCLES IN FAMILIES 29

For the Deligne torus S = ResC/RGm,C, the bi-grading decomposition above defines a
morphism hx0 : S → GL(M−1,R), with (M−1,x0)

p,q the eigenspace of the character z 7→
z−pz̄−q of S. It is known that hx0(S) < GM

0 (R) for all x0 ∈ M0. Hence we have a
GM

0 (R)+-equivariant map, which is known to be injective,

(B.2) M0 → Hom(S,GM
0,R), x0 7→ hx0

with the action of GM
0 (R)+ on Hom(S,GM

0,R) given by conjugation. So we will view M0

as a subset of Hom(S,GM
0,R).

We close this subsubsection with the following remark on the Mumford–Tate group
MTx0 of the pure Hodge structure on M−1 determined by x0. We have that MTx0 is a
subgroup of GM

0 for all x0 ∈M0 and equals GM
0 for some x0 ∈M0.

B.1.2. Weight −1 and 0. Next, we turn to mixed Hodge structures of weight of −1 and
0.

Fix the following data on M = M−1 ⊕Q: the weight filtration W• := (0 = W−2M ⊆
W−1M = M−1 ⊆ W0M = M); the partition {hp,q}p,q∈Z of dimMC into non-negative
integers, with hp,q = hp,qM−1

for p+ q = −1 and h0,0 = 1 and hp,q = 0 otherwise.

There exists the classifying space M parametrizing Q-mixed Hodge structures (M,W•, F
•)

of weight −1 and 0 such that:

(a) the (p, q)-constituent GrpFGrWp+qMC has complex dimension hp,q;

(b) GrW−1M = M−1 is polarized by Q−1.

See for example [Pea00, below (3.7) to the Remark below Lem. 3.9]. Notice that
GrW0 M = Q is polarized by Q0 : Q⊗Q→ Q is a⊗ b 7→ ab. So M is graded-polarized.

In our case, we need a better understanding of the structure of M than [Pea00]. The
map x 7→ F •x realizes M as a semi-algebraic open subset of a suitable flag variety M∨,
which is easily seen to be an orbit under G(C) for the Q-group

(B.3) GM := M−1 o Aut(M−1, Q−1) = M−1 o GM
0 .

Moreover since the morphism hx is defined over R for each x ∈ M by Lemma A.3, we
have (see for example [Pea00, last Remark of §3])

(B.4) M = GM(R)+x

and a GM(R)+-equivariant map, which is known to be injective

(B.5) M −→ Hom(S,GM
R ), x 7→ hx.

As in the pure case, for the Mumford–Tate group MTx for the mixed Hodge structure
on M determined by x, we have that MTx < GM for all x ∈ M, and MTx = GM for
some x ∈M.

B.1.3. For the quotient p : GM → GM
0 = GM/M−1, consider the following surjective

GM(R)+-equivariant map

(B.6) p : M→M0, g · x 7→ p(g) · h̄x
with h̄x = p ◦ hx : S → GM

R → GM
0,R. This map sends the mixed Hodge structure

(M,W•M,F •MC) to the associated pure Hodge structure on M−1 = Gr−1
W M .

We will study the fibered structure given by p more carefully. We will do this in the
finer setting of Mumford–Tate domains.
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B.2. Mumford–Tate domains.

Definition B.1. A subset D of the classifying space M is called a (mixed) Mumford–
Tate domain if there exists an element x ∈ D such that D = G(R)+x, where G =
MT(hx).

The group G in the definition above is called the generic Mumford–Tate group of D
and is denoted by MT(D). It is known that G < GM.

Here are some basic properties of Mumford–Tate domains (for a reference see [GK24,
§2.4]): M is a Mumford–Tate domain in itself with MT(M) = GM, every Mumford–
Tate domain is a complex analytic subspace of M, and the collection of Mumford–Tate
domains is stable under intersection.

Recall that M is a semi-algebraic open subset in some algebraic variety M∨ over C.
Hence, D is a semi-algebraic open subset in some algebraic variety D∨ over C. This
endows D with a semi-algebraic structure and a complex structure.

Definition B.2. A subset of D is said to be irreducible algebraic if it is both complex
analytic irreducible and semi-algebraic.

In view of [KUY16, Lem. B.1 and its proof], a subset of D is irreducible algebraic if
and only if it is a component of U ∩D with U an algebraic subvariety of D∨.

Now, let us take a closer look at the semi-algebraic structure and a complex structure
on D.

The unipotent radical V of G = MT(D) equals M−1 ∩G by reason of weight. Let
G0 := G/V be the reductive part. Set D0 := p(D) ⊆ M0 for the map p defined in
(B.6). Then D0 is a G0(R)+-orbit and is in fact a (pure) Mumford–Tate domain in the
classifying space M0, and MTx0 < G0 for all x0 ∈ D0.

By abuse of notation, we also use p to denote the natural projections

(B.7) p : G→ G0 = G/V and p : D→ D0.

Fix a Levi decomposition G = V o G0. Identify G0 with {0} ×G0.
Recall that each x0 ∈ M0 endows M−1 with a Hodge structure of weight −1. For

x0 ∈ D0, V is a sub-Hodge structure because V is a G0-submodule of M−1 and that
MTx0 < G0.

Finally, consider the constant bundle V (C) × D0 → D0. Define the holomorphic
subbundle F 0(V (C)×D0) to be such that the fiber over each x0 ∈ D0 is F 0

x0
VC.

Proposition B.3. The following is true:

(i) The semi-algebraic structure on D ⊆ Hom(S,GR) is given by

V (R)×D0
∼−→ D, (v, x0) 7→ Int(v) ◦ hx0 .

(ii) The complex structure on D is given by D = (V (C)×D0)/F 0(V (C)×D0).
(iii) These two structures are related by the natural bijection

(B.8) V (R)×D0 ⊆ V (C)×D0 −→ (V (C)×D0)/F 0(V (C)×D0).

Proof. Fix x ∈ D and let hx : S→ GR be the corresponding homomorphism.
The Levi decomposition G = V oG0 induces a bijection G(R)+x ∼= V (R)×D0, which

is semi-algebraic. This establishes (i).
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Set X := G(R)+V (C) · hx ⊆ Hom(SC,GC), where the action is given by conjugation.
The quotient p : GM → GM

0 induces a natural surjective map X → D0, and by [Pin89,
1.8(a)] each fiber of this map is a V (C)-torsor.

The Levi decomposition G = V o G0 induces a global section of X→ D0, and hence
an isomorphism X ∼= V (C)×D0 over D0.

Consider the following surjective equivariant map

(B.9) ϕ : X→ D, ghxg
−1 7→ g · x.

By [Pin89, 1.8(b)], for each x ∈ D, the fiber ϕ−1(x) is a principle homogeneous space
under F 0

x0
VC with x0 = p(x). Hence ϕ gives a bijection (V (C)×D0)/F 0(V (C)×D0)→ D

over D0. Moreover, the complex structure of D is precisely given by this bijection; see
[GK24, Proof of Prop. 2.6 in Appendix A] which is a consequence of [Pea00, Thm. 3.13].
This establishes (ii).

To see (iii), let XR := G(R)+ · hx ⊆ X. Then (B.8) is XR ⊆ X
ϕ−→ D under the Levi

decomposition G = V o G0. Now we are done. �

Corollary B.4. Let Z̃0 ⊆ D0 be an irreducible algebraic subset. Then for any a ∈ V (R),
the subset {a} × Z̃0 ⊆ V (R)×D0

∼= D is irreducible algebraic.

Proof. {a}× Z̃0 is clearly semi-algebraic in D. In view of (B.8), {a}× Z̃0 is also complex
analytic in D. Hence, we are done. �

Lemma B.5. Let D′ be a sub-Mumford–Tate domain of D. Then under the identifica-
tion D = V (R)×D0 in Proposition B.3.(i), we have D′ = (V ′(R)+v0)×p(D′) for some
v0 ∈ V (Q).

Proof. Denote by G′ = MT(D′), V ′ := V ∩G′, and G′0 := G′/V ′. Then, since D′ is a
sub-Mumford–Tate domain of D and by reason of weight, V ′ is the unipotent radical of
G′.

Set G′′ := VG′. Then G′′ is a subgroup of G, with unipotent radical V and reductive
part G′0. We can construct two Levi decompositions of G′′ as follows.

First, G′0 = G′/V ′ = G′/(V ∩ G′) < G/V = G0. Under the Levi decomposition
G = V o G0 fixed above Proposition B.3, we have {0} × G′0 < G′′. The composite
{0}×G′0 < G′′ → G′′/V = G′0 is the natural isomorphism (the projection to the second
factor). Thus, we get a Levi decomposition G′′ = V oG′0, which is compatible with our
fixed Levi decomposition G = V o G0.

Next, fix a Levi decomposition G′ = V ′o′G′0. It is uniquely determined by a section
of G′ → G′0, i.e. an injective morphism s′ : G′0 → G′ such that s′ ◦ pG′ = 1G′0

. Now

abuse of notation denote by s′ the composite G′0
s′−→ G′ < G′′. Then s′ defines a Levi

decomposition G′′ = V o′ G′0.
By the general theory of algebraic groups, any two Levi decompositions of G′′ differ

from the conjugation by some v0 ∈ V (Q). Now, the conclusion follows from Proposi-
tion B.3.(i). �

B.3. Quotient by a normal subgroup and weak Mumford–Tate domains. Let
D be a Mumford–Tate domain in M with MT(D) = G. Let N CMT(D). By [GK24,
Prop. 5.1], we have a quotient in the category of complex varieties

pN : D→ D/N
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with the following properties: (i) D/N is a Mumford–Tate domain in some classifying
space of mixed Hodge structures (which must be of weight −1 and 0) and MT(D/N) =
G/N ; (ii) each fiber of pN is an N(R)+-orbit. It is clearly true that pN is semi-algebraic.
More precisely, let M−1/N be the maximal quotient of M−1 on which N acts trivially,
and let M/N = M−1/N ⊕Q. For each x ∈ D, the composition

h̄x : S hx−→GL(MR)−→GL((M/N)R)

defines some Hodge structure on M/N with weight −1 on M−1/N and weight 0 on the
quotient Q. The Hodge numbers on M/N defined by hx do not depend on the choice of
x. Let M′ denote the corresponding classification space. Then h̄x defined a point x̄ in
M′. The images of such x̄ form a Mumford–Tate domain denoted by D/N . Thus, we
have the desired quotient map pN : D−→D/N which is both complex analytic and real
semi-algebraic.

Assume Γ is an arithmetic subgroup of G(Q). Then the quotient Γ\D is an orbifold.
Denote by Γ/N the image of Γ under the quotient G → G/N . Then the quotient pN
induces

[pN ] : Γ\D→ Γ/N\(D/N).

We will pay special attention to the fibers of pN (and [pN ]). More generally, we define:

Definition B.6. A subset DN of D is called a weak Mumford–Tate domain if there
exist x ∈ D and a normal subgroup N of MT(x) such that DN = N(R)+x.

In this definition, if x is taken to be a Hodge generic point, i.e. MT(x) = G, then the
weakly Mumford–Tate domain thus obtained is a fiber of pN .

Appendix C. Intermediate Jacobians and normal functions

Let n ∈ Z. Let (VZ,F
•) → S be a polarized VHS of weight 2n − 1 over a complex

manifold. As we shall see at the end of §C.1, the essential case is when n = 0.
Write V = VZ ⊗Z OS for the holomorphic vector bundle obtained from VZ.

C.1. Definition and basic property of Intermediate Jacobians.

Definition C.1. The quotient V/(Fn+VZ) is called the (relative) intermediate Jacobian
of (VZ,F

•)→ S, and is denoted by J(VZ,F
•) (or J(VZ) when the Hodge filtration is clear

in the context).

Lemma C.2. π : J(VZ) → S is torus fibration, i.e. a holomorphic family of compact
complex torus.

Proof. For each s ∈ S, we have VC,s = Fns ⊕ Fns because VZ,s has weight 2n − 1.
In particular, dimFns = 1

2
dimVs and VZ,s ∩ Fns = {0}. Hence, each fiber J(VZ)s =

Vs/(F
n
s + VZ,s) is a compact complex torus, and this yields the claim. �

Example C.3. Let us look at the following example from geometry. Let f : X → S be
a smooth projective morphism of relative dimension d over a complex quasi-projective
variety such that each fiber is irreducible. For each n ≥ 1, the relative intermediate
Jacobian of the (polarizable) VHS R2n−1f∗Z(n)X is called the n-th intermediate Jacobian
of X → S and is denoted by Jn(X/S). If S is a point and X = X, then we simply write
Jn(X).
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For each s ∈ S we have H1(J(VZ)s,Z) = VZ,s as Z-modules. So the local system
(R1π∗ZJ(VZ))

∨ is VZ. In particular, Vs = H1(J(VZ,C)).
The dual of H1,0(J(VZ)s) ⊆ H1

dR(J(VZ)s) gives H1
dR(J(VZ)s)

∨ → Lie(J(VZ)s). Thus
the de Rham–Betti comparison H1

dR(J(VZ)s) ∼= H1(J(VZ)s,C) gives rise to a Hodge
filtration F•J on V defined by F1

J = 0, F−1
J = V and

(F0
J)s = ker(Vs = H1(J(VZ)s,C)→ Lie(J(VZ)s)) for all s ∈ S.

Lemma C.4. F0
J = Fn.

Proof. We computed in the proof of Lemma C.2 that J(VZ)s = Vs/(F
n
s + VZ,s). Hence

Lie(J(VZ)s) = Vs/F
n
s . So (F0

J)s = Fns by defintion. We are done. �

By definition, J(VZ) = J(VZ(n)) and VZ(n) is of weight −1. Hence in the rest of the
paper, without loss of generality, we assume (VZ,F

•) to have weight −1 for the discussion
on intermediate Jacobians.

C.2. Betti foliation. Next, we discuss the Betti foliation on J(VZ). Write π : J(VZ)→
S for the natural projection and d for the relative dimension.

The holomorphic vector bundle V is endowed with a connection ∇ whose sheaf of the
horizontal sections is VZ ⊗Z C.

For each open subset ∆ ⊆ S, We have the following exact sequence.

0 −→ F0
JV∆ −→ V∆ −→ Lie(π−1(∆)/∆)→ 0.

Locally on S, the local system VZ|∆ is trivial and so is (V,∇)|∆. Thus VZ|∆ ⊆ V∆

becomes Z2d × ∆ ⊆ C2d × ∆, which extends to R2d × ∆ ⊆ C2d × ∆. Notice that
(R2d × ∆) ∩ F0

JV∆ is 0 on each fiber by weight reasons. Hence R2d × ∆ ⊆ C2d × ∆ →
Lie(π−1(∆)/∆) is a real analytic diffeomorphism, and over each s ∈ ∆ it becomes a
group homomorphism. Moreover, the image of {r} × ∆ is easily seen to be complex
analytic for any r ∈ R2d.

Taking the quotient of VZ on both sides, we obtain a real analytic diffeomorphism
(R2d/Z2d) × ∆

∼−→ π−1(∆). Let b∆ : π−1(∆) → R2d/Z2d be the composite of its inverse
with the projection to the first factor (R2d/Z2d)×∆→ R2d/Z2d. Then, each fiber of b∆

is complex analytic by the last sentence of the last paragraph.
The construction above patches to a real analytic homeomorphism

(C.1) J(VZ)
∼−→ VR/VZ.

This gives a foliation FBetti on J(VZ) which we call the Betti foliation. More concretely
FBetti is defined as follows: for each x ∈ π−1(∆), the local leaf through x is the fiber
b−1

∆ (b∆(x)). Each leaf is holomorphic to the discussion above. In fact, the Betti foliation
is the unique foliation on J(VZ) which is everywhere transverse to the fibers of π and
whose set of leaves contains all torsion multisections.

For each x ∈ J(VZ), the Betti foliation induces a decomposition TxJ(VZ) = TxFBetti⊕
TxJ(VZ)π(x), and π : J(VZ) → S induces a natural isomorphism TxFBetti

∼= Tπ(x)S.
The translation on the torus J(VZ,π(x)) = J(VZ)π(x) yields a canonical isomorphism
TxJ(VZ,π(x)) = T0J(VZ,π(x)). Hence, we have a linear map

(C.2) qx : TxJ(VZ) = TxFBetti ⊕ TxJ(VZ,π(x))→ TxJ(VZ,π(x)) = T0J(VZ,π(x)),

whose kernel is TxFBetti.
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We close this subsection with the following discussion. Take a holomorphic section
ν : S → J(VZ) of the intermediate Jacobian. Then we have a linear map, at each s ∈ S,

(C.3) νBetti,s : TsS
dν−→ Tν(s)J(VZ)

qν(s)−−→ T0J(VZ,s).

Notice that, since π induces canonically Tν(s)FBetti = TsS, the map dν is exactly
(1, νBetti,s) : TsS → TsS ⊕ T0J(VZ,s) = TsS ⊕ Tν(s)J(VZ,s) = Tν(s)J(VZ).

C.3. Sections of intermediate Jacobians. In this subsection, we explain how any
holomorphic section ν : S → J(VZ) defines a family of mixed Hodge structures on S
which varies holomorphically (Definition A.4 without the Griffiths’ transversality) of
weight −1 and 0.

First we define a local system Eν on S associated with ν. Write J for the sheaf of
holomorphic sections of J(VZ)→ S. Then we have the following exact sequence

0→ VZ → V/F0V→ J→ 0.

Taking cohomology yields the boundary map.

c : H0(S, J)→ H1(S,VZ).

On the other hand, it is known that H1(S,VZ) can be canonically identified with
Extloc.sys(ZS,VZ), the isomorphism classes of the extensions of local systems (ZS by
VZ) on S, so c(ν) ∈ H1(S,VZ) defines a local system Eν on S fitting into the short exact
sequence 0 → VZ → Eν → ZS → 0. Notice that this defines a weight filtration W• on
Eν of weight −1 and 0, by letting W−2Eν = 0 and W−1Eν = VZ and W0Eν = Eν . Notice
that in the category of local systems, this exact sequence is split after ⊗Q if S is simply
connected.

Carlson [Car85] proved that J(VZ)s = J(VZ,s) is canonically isomorphic to ExtMHS(Z(0),VZ,s),
the set of congruence classes of extensions of Z(0) by VZ,s in the category of mixed Hodge
structures; see for example [BZ14, Thm. 8.4.2]. In our context, this says the following.
For each s ∈ S(C), ν(s) defines a mixed Hodge structure on Eν,s, and hence a Hodge
filtration F•E on the fiber Eν,s ⊗ C. Since ν is holomorphic, the fiberwise Hodge filtra-
tions give rise to a Hodge filtration on Eν . So (Eν ,W•,F•E) is a family of mixed Hodge
structures on S which varies holomorphically and has weight −1 and 0. We are done.

Moreover, if VZ is polarized, then Eν is graded-polarized with this polarization on VZ
and the canonical polarization on Z(0) given by Q⊗Q→ Q, a⊗ b 7→ ab.

C.4. Normal functions. Each holomorphic section ν : S → J(VZ) defines a family of
mixed Hodge structures (Eν ,W•,F•E) on S of weight −1 and 0 which varies holomorphi-
cally and is graded-polarized; see §C.3.

Definition C.5. A holomorphic section ν : S → J(VZ) is called an admissible normal
function if (Eν ,W•,F•E) is an admissible VMHS.

C.5. Normal functions arising from families of algebraic cycles. Let X be a
smooth irreducible projective variety over C with dimX = d. For each n, the Chow
group of n-cocycles CHn(X) is the group of algebraic cycles of codimension n on X mod-
ulo rational equivalence. Denote by CHn(X)hom the kernel of the cycle map CHn(X)→
H2n(X,Z). An n-cocycle Z is said to be homologically trivial if its Chow class lies in
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CHn(X)hom. By abuse of notation, we will denote the Chow class of a (co)cycle Z also
by Z.

Let Jn(X) be the intermediate Jacobian corresponding to H2n−1(X,Z) from Exam-
ple C.3.

The Abel–Jacobi map

(C.4) AJ: CHn(X)hom −→ Jn(X)

is constructed by Griffiths and Carlson in two equivalent ways (up to sign). Let us sketch
Griffiths’ construction [Gri69, §11]. Take Z as a homologically trivial n-cocycle. Then
Z equals the boundary ∂ΓZ of a (2d− 2n+ 1)-chain ΓZ in X, and any two such chains
differ from an element of H2d−2n+1(X,Z). Then Z induces a functional ω 7→

∫
ΓZ
ω on

H2d−2n+1(X,C). One can check that this functional lies in (F d−n+1H2d−2n+1(X))∨. So

we obtain an element [
∫

ΓZ
] in (F d−n+1H2d−2n+1(X))∨

H2d−2n+1(X,Z)
. Finally Jn(X) = (F d−n+1H2d−2n+1(X))∨

H2d−2n+1(X,Z)

by Poincaré duality. The map AJ is defined by sending the class of Z to [
∫

ΓZ
].

Now, we turn to the family version and define the corresponding normal function.
Let f : X → S be a smooth projective morphism of algebraic varieties with irreducible
fibers of dimension d. Let Z be a family of homologically trivial n-cocycle in X/S, i.e.
a formal sum of integral subschemes of X which are flat and dominant over S such that
each fiber Zs is a homologically trivial n-cocycle of Xs.

Theorem C.6 ([EZ86]). The holomorphic section

νZ : S → Jn(X/S), s 7→ AJ(Zs)

It is an admissible normal function.

The following proposition is a simple application of the Abel–Jacobi map and the
Betti foliation FBetti on intermediate Jacobians introduced in §C.2.

Proposition C.7. Set S◦ := S \ SF (1).
Assume X/S and Z are defined over Q. Then [Zs] ∈ CHn(Xs) is non-torsion for any

s ∈ S◦(C) \ S◦(Q).

Proof. Take s ∈ S(C), and set s̄ to be the Q-Zariski closure of s in S.
Assume [Zs] is a torsion point of CHn(Xs). Then [Zt] is a torsion point of CHn(Xt)

for each t ∈ s̄(Q), and t 7→ AJ(Zt) is a torsion section of Jn(X/S) ×S s̄ → s̄. So
νZ(s̄) ⊆ FBetti. If s 6∈ S(Q), then dim s̄ ≥ 1, and hence s̄ ⊆ SF (1) by definition. Now
we are done. �

C.6. Normal functions associated with Gross–Schoen cycles and Ceresa cy-
cles. Let C be an irreducible smooth projective curve defined over a field k of genus
g ≥ 3. Let ξ ∈ C(k). We have:

- For each subset T ⊆ {1, 2, 3}, the modified diagonal ∆T (C) = {(x1, x2, x3) : xi =
ξ for i 6∈ T, xj = xj′ for all j, j′ ∈ T} ∈ CH2(C3).

- The (classical) Abel–Jacobi map iξ : C → Jac(C) sending x 7→ [x− ξ].
Both ∆T (C) and iξ can be extended to any ξ =

∑
i niei ∈ Div1(C)(k) = Pic1(C)(k).

This is classical and direct for iξ, and for ∆T (C) one can define ∆123(C) = {(c, c, c) :
c ∈ C}, ∆12(C) =

∑
ni{(c, c, ei) : c ∈ C}, ∆1(C) =

∑
i,j ninj{(c, ei, ej) : c ∈ C}, etc.
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For any ξ ∈ Pic1(C), define the Gross–Schoen cycle based at ξ (resp. the Ceresa cycle
based at ξ) to be:

• (Gross–Schoen cycle based at ξ) ∆GS,ξ(C) := ∆123(C) − ∆12(C) − ∆13(C) −
∆23(C) + ∆1(C) + ∆2(C) + ∆3(C) ∈ CH2(C3).
• (Ceresa cycle based at ξ) Ceξ(C) := iξ(C)− [−1]∗iξ(C) ∈ CHg−1(Jac(C)).

Ceξ(C) is clearly homologically trivial because [−1] acts trivially on even-degree coho-
mology groups. It is not hard to check that ∆GS,ξ(C) is also homologically trivial; this
follows for example from [GS95, Prop. 3.1] and because the map Pic1(C) → CH2(C3),
ξ 7→ ∆GS,ξ(C) is a group homomorphism.

Let ωC be the canonical divisor on C.

Definition C.8. Let ξ ∈ Pic1(C)(k) such that (2g − 2)ξ = ωC. Define the (canonical)
Gross–Schoen cycle and the (canonical) Ceresa cycle of C to be:

• (Gross–Schoen cycle) ∆GS(C) := ∆GS,ξ(C) ∈ CH2(C3)hom.
• (Ceresa cycle) Ce(C) := Ceξ(C) ∈ CHg−1(Jac(C))hom.

There are finitely many ξ’s with (2g − 2)ξ = ωC and each two differ from a (2g − 2)-
torsion. Hence, the Gross–Schoen cycle and the Ceresa cycle of C are well-defined at
(2g − 2)-torsions.

We will associate normal functions with the Schoen cycles and Ceresa cycles. First
we have AJ(∆GS(C)) ∈ J2(C3) = J(H3(C3,Z)(2)) and AJ(Ce(C)) ∈ Jg−1(Jac(C)) =
J(H2g−3(Jac(C),Z)(g − 1)). Using the Poincaré duality on Jac(C) and on C, we get
H2g−3(Jac(C),Z)(g − 1) = H3(Jac(C),Z)(−1) =

∧3H1(C,Z)(−1) =
∧3H1(C,Z)(2).

So AJ(Ce(C)) ∈ J(
∧3H1(C,Z)(2)).

We have
∧3H1(C,Z)(2) ⊆ H3(C3,Z)(2) in the following way. First, the Künneth for-

mula gives a decompositionH3(C3,Z) = H1(C,Z)⊗3
⊕

H1(C,Z)(−1)⊕6. Next, H1(C,Z)⊗3,
as a subspace of H3(C3,Z), has a basis consisting of α1∧α2∧α3, with αj the pullback of
an element in H1(C,Z) under the j-th projection C3 → C. The symmetric group S3 acts
naturally on C3, and this induces an action of S3 on H1(C,Z)⊗3 with σ(α1 ∧α2 ∧α3) =
sgn(σ)ασ(1) ∧ ασ(2) ∧ ασ(3) for each σ ∈ S3. Then (H1(C,Z)⊗3)S3 =

∧3H1(C,Z) for this
action, with each member having a basis consisting of

∑
σ∈S3

sgn(σ)ασ(1) ∧ ασ(2) ∧ ασ(3).

It is easy to check that the pushforward of ∆GS(C) to any two factors of C3 is trivial.
Hence AJ(∆GS(C)) ∈ J(H1(C,Z)⊗3(2)). Moreover, the modified diagonal is easily seen
to be invariant under the action of S3 on C3. Thus AJ(∆GS(C)) ∈ J(

∧3H1(C,Z)(2)).

Lemma C.9. AJ(∆GS(C)) = 3AJ(Ce(C)).

Proof. Consider ι3 : C3 → Jac(C), (c1, c2, c3) 7→ iξ(c1) + iξ(c2) + iξ(c3). The difference
(ι3)∗∆GS(C)− 3Ce(C) was computed by the second-named author [Zha10, Thm. 1.5.5].
More precisely, the Fourier–Mukai transformation yields a spectrum decomposition C =∑g−1

j=0 Cj in CHg−1(Jac(C)), with [n]∗Cj = n2+jCj for all n ∈ Z and j ∈ {0, . . . , g − 1},
and [Zha10, Thm. 1.5.5 and its proof] implies that

(ι3)∗∆GS(C)− 3Ce(C) =
∑

j≥2
ajCj

For appropriate numbers aj. The multiplication [n] : Jac(C)→ Jac(C) induces
∧3H1(C,Z)→∧3H1(C,Z), x 7→ n3x. Hence n2+jAJ(Cj) = n3AJ(Cj) for all n ∈ Z, and so AJ(Cj) = 0

for all j ≥ 2.
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Hence the conclusion follows because the induced map of ι3 is the natural projection.
�

Now, we turn to defining and studying the normal functions. Let Mg be the moduli
space of curves of genus g, and let f : Cg →Mg be the universal curve. We have a VHS∧3R1f∗ZCg →Mg. The fiberwise polarization qH : H1(C,Z)⊗H1(C,Z)

∪−→ H2(C,Z) ∼=
Z(−1), with ∪ the cup product (the dual of the intersection pairing) onH1(C,Z), induces
a polarization on

∧3R1f∗ZCg .
Now we have two normal functions

νGS : Mg −→ J(
∧3

R1f∗ZCg), s 7→ AJ(∆GS(Cs)),(C.5)

νCe : Mg −→ J(
∧3

R1f∗ZCg), s 7→ AJ(Ce(Cs)).

We can do better.

Proposition C.10. Let VZ be the kernel of the morphism of VHS (called the contractor)

(C.6) c :
∧3

R1f∗ZCg(2) −→ R1f∗ZCg(1)

fiberwise defined by x ∧ y ∧ z 7→ qH(y, z)x+ qH(z, x)y + qH(x, y)z. Then

(i) both νGS and νCe have images in J(VZ);
(ii) neither νGS nor νCe is a torsion section;
(iii) VZ is an irreducible VHS on Mg, i.e. the only sub-VHSs of VZ are 0 and itself.

Proof. For each s ∈ S(C), νGS(s) ∈ J(VZ,s) by [Zha10, Lem. 5.1.5], and hence νCe(s) ∈
J(VZ,s) by Lemma C.9. So (i) holds.

For (ii), it suffices to find a curve C of genus g such that AJ(Ce(C)) is not torsion.
There are many examples of such curves in existing literature. Alternatively, the result
for νCe can be already deduced from Ceresa’s original argument in [Cer83].

For (iii), it suffices to prove that V := VZ,s ⊗ Q is a simple Sp2g-module for one
(and hence all) s ∈ Mg(C), or equivalently V is an irreducible representation of Sp2g.
This is a standard result of the representation theory for sp2g, see for example [FH13,
Thm. 17.5]. �

Appendix D. Metrized Poincaré bundle and local height pairing

Let S be a smooth irreducible quasi-projective variety.

D.1. Height pairing at Archimedean places. Let f : X → S be a smooth projective
morphism of algebraic varieties with irreducible fibers of dimension d. Let p, q be non-
negative integers such that p+ q = d+ 1.

Let Z, resp. W , be a family of homologically trivial p-cocycle in X/S, resp. a family
of homologically trivial q-cocycle in X/S. Assume Z and W have disjoint supports over
the generic fiber, then up to replacing S by a Zariski open dense subset, we may assume
that Zs and Ws have disjoint supports for all s ∈ S(C).

In Arakelov’s theory, the local height pairing at archimedean places in this context is
defined by

(D.1) 〈Zs,Ws〉∞ =

∫
Zs

ηWs .
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where ηWs is a Green’s current for Ws. This pairing is known to be symmetric.
The two families of homologically trivial cocycles give rise to two admissible normal

functions.
νZ : S → Jp(X/S) and νW : S → Jq(X/S).

A particularly important case is when p = q = d+1
2

and that Z and W are rationally
equivalent. In this case, we obtain the height pairings 〈Zs, Zs〉∞, or simply the height
of Zs. More precisely, let Z be a family of homologically trivial p-cocycle in X/S with
p = d+1

2
, and let η be the generic point of S. By Moving Lemma, there exists a p-cocycle

Wη of Xη whose class in CHp(Xη) is the same as the class of Zη such that Wη and Zη
have disjoint supports. Then Wη extends to a family of homologically trivial p-cocycle
W in X/S, and Ws and Zs have disjoint supports for s in a Zariski open dense subset
of S. Then we set 〈Zs, Zs〉∞ = 〈Zs,Ws〉∞. Notice that in this case νZ = νW .

Hain [Hai90, §3.3] related the local height pairing at archimedean places (D.1) to the
metrized Poincaré bundle. We will review this in the next subsection.

D.2. Metrized Poincaré bundle. Let (VZ,F
•) be a polarized VHS on S of weight

−1. The intermediate Jacobian J(VZ) is a torus fibration by Lemma C.2. The dual
torus fibration Pic0(J(VZ)) can be described as follows. Set V∨Z := HomVHS(VZ,Z(1)S)
with the natural Hodge filtration. Then V∨Z is a VHS on S of weight −1, and there is a
canonical isomorphism J(V∨Z) = Pic0(J(VZ)).

The general theory of biextension says that there exists a unique line bundle P →
J(VZ)×S J(V∨Z) satisfying the following properties:

(i) Over each s ∈ S(C), we have P|{0}×J(V∨Z )s
∼= OJ(V∨Z )s ,

(ii) over each s ∈ S(C), P|J(VZ)s×{λ} represents λ ∈ Pic0(J(VZ)s) = J(VZ)∨s ,
(iii) ε∗P ∼= OS for the zero section ε of J(VZ)×S J(VZ)∨ → S.

Moreover, P can be endowed a canonical Hermitian metric ‖ · ‖can uniquely determined
by the following properties: (i) the curvature of P is translation invariant on each fiber
J(VZ)s × J(V∨Z)s; (ii) ε∗P ∼= (OS, ‖ · ‖triv) for the trivial metric on OS.

Definition D.1. The metrized line bundle P := (P, ‖ · ‖can) is called the metrized
Poincaré bundle.

To relate it to the local height pairing (D.1), we need the following Hodge theoretic
construction of P by Hain [Hai90, §3.2]. Denote by P∗ the associated Gm-torsor, i.e. P

with the zero section removed. Over each s ∈ S, P∗s equals B(VZ,s), which is the set of
mixed Hodge structures M of weight 0,−1,−2 such that GrW0 M = Z(0), GrW−1M = VZ,s

and GrW−2M = Z(1). The projection P∗ → J(VZ)×S J(V∨Z) is fiberwise given by sending

M 7→ (M/GrW−2M,W−1M).
Going from Z to R-coefficients, one has the set B(VR,s) of mixed R-Hodge structures

of weight 0,−1,−2 whose weight graded pieces are R(0), VR,s and R(1). One can check
that B(VR,s) is canonically isomorphic to R. Then on P∗s = B(VZ,s),

‖p‖can = efs(p)

where fs is the forgetful map B(VZ,s)→ B(VR,s) = R.

Now, let us go back to the setting of §D.1. Recall the section (νZ , νW ) : S → Jp(X/S)×S
Jq(X/S) obtained from the two families of homologically trivial cocycles Z and W .
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By Poincaré duality, Jp(X/S) and Jq(X/S) are dual to each other. Hence we have the
metrized Poincaré bundle P on Jp(X/S) ×S Jq(X/S). Thus we obtain a metrized line
bundle (νZ , νW )∗P on S. Use ‖ · ‖ to denote this induced metric on (νZ , νW )∗P.

Hain [Hai90, Prop. 3.3.2] constructed a section βZ,W of the line bundle (νZ , νW )∗P→ S
in view of the Hodge-theoretic construction of P explained below Definition D.1, and
proved [Hai90, Prop. 3.3.12] log ‖βZ,W (s)‖ = −

∫
Zs
ηWs for all s ∈ S(C). To summarize,

we have

Proposition D.2 (Hain). We have − log ‖βZ,W (s)‖ = 〈Zs,Ws〉∞ for all s ∈ S(C).

D.3. Metrized tautological bundle. As explained at the end of §D.1, we are often
more interested in the case where Jp(X/S) is self-dual and νZ = νW . In this case,
(νZ , νW )∗P = ν∗Z∆∗P for the diagonal ∆: Jp(X/S)→ Jp(X/S)×S Jp(X/S). We discuss
this case in this and the next subsections in a more general setting.

Let (VZ,F
•) be a VHS on S of weight −1, with a polarization Q : VZ ⊗ VZ → Z(1)S.

Then Q induces a morphism of VHS VZ → V∨Z, and hence a morphism between the
intermediate Jacobians iQ : J(VZ) −→ J(VZ)∨. We thus have a morphism

∆Q = (1, iQ) : J(VZ)→ J(VZ)×S J(VZ)∨.

This is the case, for example, for Poincaré duality, where the polarization is given by
the cup product.

Definition D.3. The metrized line bundle P∆Q := ∆∗QP is called the metrized tautolog-
ical bundle on J(VZ). When the polarization Q is clear in context, we simply denote it

by P∆.

By [HR04, Prop. 7.1 and 7.3], the curvature form c1(P∆) is a closed 2-form, uniquely
determined by the following properties.

Proposition D.4. Recall the Betti foliation FBetti on J(VZ) defined in §C.2.

(i) Restricted to each fiber J(VZ)s, c1(P∆) is the unique translation invariant 2-form
ωs given by 2Qs,

(ii) c1(P∆) vanishes along each leaf of the Betti foliation.

Here is a more explicit formula for c1(P∆). Write π : J(VZ) → S for the natural
projection. Recall the linear map (C.2)

qx : TxJ(VZ)→ T0J(VZ,π(x)).

with kernel TxFBetti. Now for any v1, v2 ∈ TxJ(VZ), we have

(D.2) c1(P∆)(v1, v2) = 2Qπ(x)(qx(v1), qx(v2)).

D.4. Pullback by admissible normal functions. Retain the setup in §D.3. Now we
turn to admissible normal functions ν : S → J(VZ).

Hain proved [Hai13, Thm. 13.1] that ν∗c1(P∆) is a semi-positive (1, 1)-form.

Definition D.5. The semi-positive (1, 1)-form ν∗c1(P∆) is called the Betti form associ-
ated with ν, which we denote by βν.



HEIGHTS AND PERIODS OF ALGEBRAIC CYCLES IN FAMILIES 40

The Betti foliation FBetti on J(VZ) induces a linear map (C.3) at each s ∈ S(C)

νBetti,s : TsS
dν−→ Tν(s)J(VZ)

qν(s)−−→ T0J(VZ,s).

By (D.2), βν(u, ū) = 2Qs(νBetti,s(u), νBetti,s(u)) for any u ∈ TsS. By Griffiths’ transver-
sality, νBetti,s(u) ∈ V−1,0

s . So

(D.3) βν(u, ū) ≥ 0 for all u ∈ TsS, with equality if and only if νBetti,s(u) = 0.

Notice that this also explains the semi-positivity of βν . Now we use (D.3) to prove
the following proposition.

Proposition D.6. For any s ∈ S(C), the following are equivalent:

(i) (β∧ dimS
ν )s 6= 0;

(ii) dim νBetti,s(TsS) = dimS.

This proposition has the following immediate corollary.

Corollary D.7. β∧ dimS
ν 6≡ 0 if and only if maxs∈S(C) dim νBetti,s(TsS) = dimS.

We will call maxs∈S(C) dim νBetti,s(TsS) the Betti rank of ν and denote it by r(ν).

Proof of Proposition D.6. Assume (i) is false, i.e. (β∧ dimS
ν )s = 0. By (D.3) there exists

0 6= u ∈ TsS with νBetti,s(u) = 0. Thus ker νBetti,s 6= 0, and therefore dim νBetti,s(TsS) <
dimS. So (ii) is also false.

Assume (ii) is false. Then there exists 0 6= u ∈ ker νBetti,s. By (D.3), βν(u, ū) = 0.
Thus u is an eigenvector of the Hermitian matrix defining βν with eigenvalue 0. Hence
the determinant of this matrix is 0, so β∧ dimS

ν = 0 at s. So (i) is also false. �
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