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ABSTRACT. We prove the geometric Bogomolov conjecture over a function
field of characteristic zero.

1. INTRODUCTION

1.1. The geometric Bogomolov conjecture.

1.1.1. Abelian varieties and heights. Let k be an algebraically closed field.
Let B be an irreducible normal projective variety over k of dimension dB ≥ 1.
Let K := k(B) be the function field of B. Let A be an abelian variety defined
over K, of dimension g. Fix an ample line bundle M on B, and a symmetric
ample line bundle L on A.

Let K be an algebraic closure of K, and set AK = A⊗K K. Denote by
ĥ : A(K)→ [0,+∞) the canonical height on A with respect to L and M (see
Section 3.1). For any irreducible subvariety X of AK and any ε > 0, we define

Xε := {x ∈ X(K)| ĥ(x)< ε}.
In this paper we study the subvarieties X of A for which Xε is Zariski dense

in X for all ε > 0. Both ĥ and the sets Xε depend on the ample line bundles
M and L, but different choices give rise to comparable height functions [31,
Proposition 2.6], so that the density of Xε in X for all ε > 0 does not depend on
these choices.

Denote by (AK/k, tr) the K/k-trace of AK: it is the final object of the category
of pairs (C, f ), where C is an abelian variety over k and f is a morphism from
C⊗k K to AK (see [18, §7] or [4, §6]). If chark = 0, tr is a closed immersion
and AK/k⊗k K can be naturally viewed as an abelian subvariety of AK . By
definition, a torsion coset of A is a translate a+C of an abelian subvariety
C ⊂ A by a torsion point a. An irreducible subvariety X of AK is said to be
special if

X = tr(Y⊗kK)+T
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for some torsion coset T of AK and some subvariety Y of AK/k. When X is
special, Xε is Zariski dense in X for all ε > 0 [19, Theorem 5.4, Chapter 6].

1.1.2. Bogomolov conjecture. The following conjecture was proposed by Ya-
maki [30, Conjecture 0.3], but particular instances of it were studied earlier by
Gubler in [13]. It is an analog over function fields of the Bogomolov conjecture
which was proved by Ullmo [27] and Zhang [36].
Geometric Bogomolov Conjecture. Let X be an irreducible subvariety of AK .
If X is not special there exists ε > 0 such that Xε is not Zariski dense in X.

The aim of this paper is to prove the geometric Bogomolov conjecture over
function fields of characteristic zero.

Theorem A. Assume that k is an algebraically closed field of characteristic 0.
Let X be an irreducible subvariety of AK . If X is not special then there exists
ε > 0 such that Xε is not Zariski dense in X .

1.1.3. Historical note. Gubler proved the geometric Bogomolov conjecture
in [13] when A is totally degenerate at some place of K. Then, Yamaki reduced
the conjecture to the case of abelian varieties with good reduction everywhere
and trivial trace (see [32]). He also settled the conjecture when dim(X) or
codim(X) is equal to 1 (see [33], and [28, 29] for previous works on curves).
These important contributions of Gubler and Yamaki work in arbitrary charac-
teristic.

In characteristic 0, Cinkir had proved the geometric Bogomolov conjecture
when X is a curve of arbitrary genus (see [3], and [7] when the genus is small).
Recently, the second and the third-named authors [8] proved the conjecture in
the case chark = 0 and dimB = 1. This last reference, as well as the present ar-
ticle, make use of the Betti map and its monodromy: the idea comes from [15],
in which the third-named author gave a new proof of the conjecture in charac-
teristic 0 when A is the power of an elliptic curve and dimB = 1.

1.2. An overview of the proof of Theorem A.

1.2.1. Notation. We keep the notation of Section 1.1.1, with k an algebraically
closed field of characteristic 0.

We now construct a model of A that is sufficient for our purpose. Since the
symmetric line bundle L is ample we can replace it by some positive power to
assume it be very ample, and then we use L to embed A into PN

k(B) for some
N > 0. The Zariski closure A of A inside PN

k ×k B is an irreducible projective
variety. We write π : A → B for the projection. The pullback L ′ of OPN

k
(1) on

PN
k ×k B to A is very ample relative to B. But L ′ may fail to be ample on A .

To remedy this we use instead L = L ′⊗π∗M⊗k which is ample for all k ≥ 1
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large enough by [9, Proposition 13.65]. The restriction of L to A still equals
L. Finally, replacing A by its normalization, we assume that A is normal (L
remains ample on the normalization).

We may also assume that M is very ample, and we fix an embedding of B
in a projective space such that the restriction of O(1) to B coincides with M.
For b ∈ B, we set Ab = π−1(b). We denote by e : B 99K A the zero section
and by [n] the multiplication by n on A; it defines a rational mapping A 99K A .
Fix a Zariski dense open subset Bo of B such that Bo is smooth and π|π−1(Bo) is
smooth; then, set Ao := π−1(Bo).

After base changing K by a finite extension, we may let X be a geometrically
irreducible subvariety of A and assume that Xε is Zariski dense in X for every
ε > 0. We denote by X its Zariski closure in A , by X o its Zariski closure in Ao,
and by X o,reg the regular locus of X o. Our goal is to show that X is special.

1.2.2. Complex numbers. We will see below in Remark 3.2 that it suffices
to prove Theorem A in the case k = C. For the rest of the paper, except if
explicitly stated otherwise (in § 3.1 and 3.2), we will assume that B and M are
defined over C and A, X , and L are defined over C(B). Since M is the restriction
of O(1) (in some fixed embedding of B in a projective space), its Chern class
is represented by the restriction of the Fubini-Study form to B; we denote by ν

this Kähler form.

1.2.3. The main ingredients. One of the main ideas of this paper is to con-
sider the Betti foliation (see Section 2.1). It is a C ∞-smooth foliation of Ao by
holomorphic leaves, which is transverse to π.

Every torsion point of A gives local sections of π|π−1(Bo). These sections are
local leaves of the Betti foliation, and this property characterizes it.

To prove Theorem A, the first step is to show that X o is invariant under the
foliation when small points are dense in X ; in other words, at every smooth
point x ∈ X o, the tangent space to the Betti foliation is contained in TxX o.
For this, we introduce a semi-positive closed (1,1)-form ω on Ao which is
canonically associated to L and vanishes along the foliation. An inequality of
Gubler implies that the canonical height ĥ(X) (see Section 3.1 for its definition)
of X is 0 when small points are dense in X ; Theorem B asserts that the condition
ĥ(X) = 0 translates into ∫

X o
ω

dimX+1∧ (π∗κ)m−1 = 0

where κ is any Kähler form on the base Bo. From the construction of ω, we
deduce that X is invariant under the Betti foliation.

The first step implies that the fibers of π|X o are invariant under the action of
the holonomy of the Betti foliation; the second step shows that a subvariety of a
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fiber Ab which is invariant under the holonomy is the sum of a torsion coset and
a subset of AK/k. The conclusion easily follows from these two main steps. For
this second step, we apply results of Deligne to describe the holonomy group,
and we import ideas from dynamical systems, in particular from Muchnik, to
describe its invariant subsets. This second step already appeared in [8] but the
final argument was based on Pila-Zannier’s counting strategy and in the special
case [15] as a consequence of a theorem of Kronecker.

1.3. Acknowledgement. The authors thank Pascal Autissier and Walter Gubler
for providing comments and references, and are grateful to the referees for
many suggestions leading to a much clearer and detailed exposition.

2. THE BETTI FOLIATION AND THE BETTI FORM

In this section, k = C. We define a foliation and a closed (1,1)-form on Ao.
This form, which is naturally associated to the line bundle L, was introduced
by Mok in [22, pp. 374] to study Mordell-Weil groups over function fields.
The foliation, or more precisely the local Betti maps defined below, is also
implicitely present in the work of Mok, Masser and Zannier [34, §3.3], or Pink
[26, 2.9 and 2.10]. A recent paper of André, Corvaja and Zannier studies also
these Betti maps to prove the density of torsion points on sections of certain
abelian schemes with maximal variation (see [1, Theorem 2.3.2]).

2.1. The local Betti maps. Let b be a point of Bo, and U ⊆ Bo(C) be a con-
nected and simply connected open neighbourhood of b in the euclidean topol-
ogy. Fix a basis of H1(Ab;Z) and extend it by continuity to all fibers above U .

Consider the Lie algebra of Ac, for c ∈ U : it may be identified with the
tangent space Te(c)Ac, where e denotes the zero section. The family of these
vector spaces determines a complex vector bundle of dimension g over U . If
U is small enough, we can trivialize this bundle, and we obtain g holomorphic
vector fields (θ j)1≤ j≤g on π−1(U) which are tangent to the fibers of π and triv-
ialize their tangent bundle. Integrating these vector fields gives a holomorphic
action of the additive group Cg on π−1(U) whose orbits are the fibers of π.
Then, the stabilizer of e(c), for c in U , is a lattice Λc in Cg and Ac = Cg/Λc.
The continuous choice of a basis for H1(Ac;Z), c ∈U , gives a choice of ba-
sis of the Z-module Λc ⊂ Cg that depends holomorphically on c. Now, using
this basis to identify Λc with Z2g and Cg with R2g, we see that there is a real
analytic diffeomorphism φU : π−1(U)→U×R2g/Z2g such that

(1) π1 ◦φU = π, where π1 : U×R2g/Z2g→U is the first projection;
(2) for every c ∈ U , the map φU |Ac : Ac → π

−1
1 (c) is an isomorphism of

real Lie groups that maps the basis of H1(Ac;Z) to the canonical basis
of Z2g.
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For b in U , denote by ib : R2g/Z2g →U ×R2g/Z2g the inclusion y 7→ (b,y).
The Betti map is the C∞-projection βb

U : π−1(U)→ Ab defined by

β
b
U := (φU |Ab)

−1 ◦ ib ◦π2 ◦φU

where π2 : U ×R2g/Z2g → R2g/Z2g is the projection to the second factor.
Changing the basis of H1(Ab;Z), we obtain another trivialization φ′U that is
given by post-composing φU with a constant linear transformation

(b,z) ∈U×R2g/Z2g 7→ (b,h(z))

for some element h of the group GL2g(Z); thus, βb
U does not depend on φU .

Note that βb
U is the identity on Ab. In general, βb

U is not holomorphic. How-
ever, for every p ∈ Ab, (βb

U)
−1(p) is a complex submanifold of Ao∩π−1(U).

To see this, pick a torsion point of A, of order r. Its Zariski closure in A gives a
multisection of π, and above U the connected components of this multisection
are fibers of βb

U : indeed, on such a component the values of βb
U are contained

in the finite set (1
r Z2g)/Z2g. Thus, a dense set of fibers are complex submani-

folds. By continuity of the complex structure J ∈ End(T A) and of the tangent
spaces x∈ π−1(U) 7→ Tx((β

b
U)
−1(βb

U(x))), all fibers are complex submanifolds.

2.2. The Betti foliation. The local Betti maps determine a natural foliation F
on Ao: for every point p ∈ π−1(U), the local leaf FU,p through p is the fiber
(β

π(p)
U )−1(p). We call F the Betti foliation. The leaves of F are holomorphic,

in the following sense: for every p ∈ Ao, the local leaf FU,p is a complex
submanifold of π−1(U)⊂ Ao. But a global leaf Fp can be dense in Ao for the
euclidean topology. Moreover, F is everywhere transverse to the fibers of π,
and π|Fp : Fp→ Bo is a regular holomorphic covering for every point p (it may
have finite or infinite degree, and this may depend on p).

Remark 2.1. Assume that the family π : Ao→ Bo is trivial, i.e. Ao = Bo×AC
where AC is an abelian variety over C and π is the first projection. Then, the
leaves of F are exactly the fibers of the second projection.

Remark 2.2. The foliation F is characterized as follows. Let q be a torsion
point of Ab; it determines a multisection of the fibration π, obtained by analytic
continuation of q as a torsion point in nearby fibers of π. This multisection co-
incides with the leaf Fq. There is a unique foliation of Ao which is everywhere
transverse to π and whose set of leaves contains all those multisections.

Remark 2.3. One can also think about F dynamically. The endomorphism
[n] determines a rational transformation of the model A and induces a regular
transformation of Ao. It preserves F , mapping leaves to leaves. Preperiodic
leaves correspond to preperiodic points of [n] in the fiber Ab; they are exactly
the leaves given by the torsion points of A.
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2.3. Holonomy versus monodromy. Let γ be a loop in Bo, based at some
point b. Following the trivialization of H1(Ab;Z) along the loop γ(t), t ∈ [0,1],
we obtain a second basis of H1(Ab;Z) when t = 1. The change of basis is an el-
ement Mon(γ) of the group GL(H1(Ab;Z))' GL2g(Z), called the monodromy
along γ. Note that Mon(γ) gives a linear transformation of H1(Ab;R) ' R2g

that preserves the lattice H1(Ab;Z)'Z2g, hence also a (linear) diffeomorphism
of the torus R2g/Z2g (i.e. of Ab). By definition, the image of Mon in GL2g(Z)
(resp. in GL(H1(Ab;Z))) is the monodromy group of Ao→ Bo.

Now, let x be a point of Ab. Since π : Fx → Bo is an unramified cover, γ

lifts to a unique path γ̂x : [0,1]→ A such that π◦ γ̂x = γ and γ̂x(t) ∈ Fx for all t.
By definition, the point γ̂x(1) is the image of x by the holonomy Hol(γ): this
construction defines a representation of the fundamental group π1(B,b) in the
diffeomorphism group Diff∞(Ab). By construction of the Betti map, we have

Hol(γ) = Mon(γ)

as C ∞-diffeomorphisms of Ab ' R2g/Z2g.

2.4. The Betti form. For b ∈ Bo, there exists a unique smooth (1,1)-form
ωb ∈ c1(L |Ab) on Ab which is invariant under translations; this form is classi-
cally called the harmonic, or Riemann form associated to c1(L |Ab). If we write
Ab = Cg/Λ and denote by z1, . . . ,zg the standard coordinates of Cg, then

ωb = ∑
1≤i, j≤g

ai, jdzi∧dz̄ j

for some complex numbers ai, j. This form ωb is positive since L |Ab is ample.
Now, we define a smooth 2-form ω on Ao. Let p be a point of Ao. First,

define Pp : TpAo→ TpAπ(p) to be the projection onto the first factor in

TpAo = TpAπ(p)⊕TpF .

Since the tangent spaces TpF and TpAπ(p) are complex subspaces of TpAo, the
map Pp is a complex linear map. Then, for v1 and v2 ∈ TpAo we set

ω(v1,v2) := ωπ(p)(Pp(v1),Pp(v2)).

We call ω the Betti form. By construction, ω|Ab = ωb for every b. Since ωb
is of type (1,1) and Pp is C-linear, ω is an antisymmetric form of type (1,1).
Since ωb is positive, ω is semi-positive.

Let U and φU be as in Section 2.1. Let yi, i = 1, . . . ,2g, denote the standard
coordinates of R2g. Then there are real numbers bi, j such that

(φ−1
U )∗ω = ∑

1≤i< j≤2g
bi, jdyi∧dy j.

The bi, j are constant: they do not depend on the point p∈U×R2g/Z2g. Indeed,
the bi, j are the coordinates of the cohomology class c1(L |Ab) in a fixed basis
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of H2(Ab;Z). It follows that d((φ−1
U )∗ω) = 0 and that ω is closed. Moreover,

[n]∗ω = n2ω. Thus, we get the following lemma.

Lemma 2.4. The Betti form ω is a real analytic, closed, and semi-positive
(1,1)-form on Ao such that ω|Ab = ωb for every point b∈ Bo. In particular, the
cohomology class of ω|Ab coincides with c1(L |Ab) for every b ∈ Bo.

3. THE CANONICAL HEIGHT AND THE BETTI FORM

In Sections 3.1 and 3.2, k is any algebraically closed field of characteristic
zero, and we use an inequality of Gubler and Zhang to reduce the proof to the
case k = C. Then, Section 3.3 shows how to translate the density of small
points in X into an invariance with respect to the Betti foliation.

3.1. The canonical height. Recall that K = k(B). Let X be any irreducible
subvariety of AK , and let K′ be a finite field extension of K over which X
is defined: there exists a subvariety X ′ of AK′ such that X = X ′⊗K′ K. Let
ρ′ : B′→B be the normalization of B in K′. Let A be the model of A constructed
at the beginning of Section 1.2.1; A is normal and L is an ample line bundle
on A . Set A ′ := A ×B B′ and denote by ρ : A ′→ A the projection to the first
factor; then, denote by X ′ the Zariski closure of X ′ in A ′. The naive height of
X associated to the model π : A → B and the line bundles L and M is defined
by the intersection number

h(X) =
1

[K′ : K]

(
X ′ · c1(ρ

∗L)dX+1 ·ρ∗π∗(c1(M))dB−1
)

(3.1)

where dX = dimX and dB = dimB. It depends on the model A and the exten-
sion L of L to A but it does not depend on the choice of K′.

The canonical height is the limit

ĥ(X) = lim
n→+∞

h([n]∗X)

n2(dX+1)
= lim

n→+∞

deg([n]|X)h([n]X)

n2(dX+1)
. (3.2)

It depends on L but not on the model (A ,L); see Gubler’s work [13, Theorem
3.6] and [12, Theorem 11.18].

To simplify the notation, we suppose now that K′=K, so ρ is the identity and
B′ = B, A ′ = A , X ′ = X . Suppose that k′ is an algebraically closed subfield of
k such that B and M are the base change to k of a variety Bk′ and a line bundle
Mk′ defined over k′. Suppose furthermore, that A, X , and L are the base change
of an abelian variety, a subvariety, and a line bundle which are defined over
k′(Bk′). We get models Ak′ and Xk′ now defined over k′. Intersection numbers
as in Equation (3.1) are invariant under extending the field of constants. And so
the limit in Equation (3.2) is unchanged, that is, ĥ(X) = ĥ(Xk′). In particular,

ĥ(X) = 0 if and only if ĥ(Xk′) = 0. (3.3)
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3.2. Gubler-Zhang inequality. By definition, the essential minimum ess(X)

of a subvariety X ⊂ A is the real number

ess(X) = sup
Y

inf
x∈X(K)\Y (K)

ĥ(x),

where Y runs through all proper Zariski closed subsets of X . The following
inequality is due to Gubler (see [13, Lemma 4.1]); it is an analogue of Zhang’s
inequality [35, Theorem 1.10] that concerns the number field case:

0≤ ĥ(X)

(dX +1)degL(X)
≤ ess(X).

We refer to it as the Gubler-Zhang inequality. The converse inequality ess(X)≤
ĥ(X)/degL(X) also holds, but we shall not use it in this article.

Definition 3.1. We say that X is small, if Xε is Zariski dense in X for all ε > 0.

Clearly, X is small if and only if ess(X) = 0. The Gubler-Zhang inequality
shows that ĥ(X) = 0 if X is small (and from the converse inequality, this is
in fact an equivalence). So, to prove Theorem A, we only need to show the
following theorem.
Theorem A’. Assume that k is an algebraically closed field of characteristic 0.
Let X be an irreducible subvariety of AK . If ĥ(X) = 0, then X is special.

Remark 3.2. We now explain why it suffices to prove Theorem A’ when the
field of constants is C. Let X be as in the theorem and k algebraically closed of
characteristic 0 and say ĥ(X) = 0. There exists an algebraically closed subfield
k′ ⊂ k of finite transcendence degree over Q such that B (resp. M) comes from
a variety (resp. a line bundle on it) defined over k′ via base change, and A, L,
and X come from an abelian variety, a line bundle, and a subvariety defined
over its function field. Now k′ can be embedded into C. So we get a variety
BC over C, and by abusing notation an abelian variety AC(B) with a subvariety
XC(B) ⊂ AC(B), both over C(B), and their corresponding line bundles. Applied
two times, the equivalence in Equation (3.3) and ĥ(X) = 0 give ĥ(XC(B)) = 0.
So, if Theorem A’ is established over C, as will be done in Section 5, we deduce
that XC(B) is special. But then X is special too.

Proposition 3.3. Let g : A→ A′ be a morphism of abelian varieties over K, and
let a∈ A(K) be a torsion point. Let X be a geometrically irreducible subvariety
of A over K.

(1) If X is small, then g(X) is small.
(2) If g is an isogeny and g(X) is small, then X is small.
(3) X is small if and only if a+X is small.
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Proof. Assertions (1) and (2) follow from [31, Proposition 2.6.]. To prove the
third one fix an integer n≥ 1 such that na = 0. By assertions (1) and (2), a+X
is small if and only if [n](a+X) = [n](X) is small, if and only if X is small. �

3.3. Smallness and the Betti form. Now we assume k = C and we reformu-
late the canonical height in differential geometric terms.

Recall the setup of Equation (3.1) assuming, for simplicity, that X is already
defined over K. Pick a Kähler form α in c1(L) (such a form exists because we
chose L ample). For every n≥ 1, there exists an irreducible smooth projective
variety πn : An → B over B, extending π|Ao : Ao → Bo, such that the rational
map [n] : A 99KA lifts to a morphism fn : An→A over B. Write Ln := f ∗n L and
αn := f ∗n α; in particular A1 is a smooth model of A and α1 = α on Ao. Denote
by Xn the Zariski closure of X o in An. Since the Kähler form ν introduced in
Section 1.2.1 represents the class c1(M), the projection formula gives

ĥ(X) = lim
n→∞

n−2(dX+1)(Xn · c1(Ln)
dX+1 · c1(π

∗
nM)dB−1)

= lim
n→∞

n−2(dX+1)
∫

Xn

α
dX+1
n ∧ (π∗nν)dB−1

= lim
n→∞

n−2(dX+1)
∫

X o
([n]∗α)dX+1∧ (π∗ν)dB−1 (3.4)

because the integral on Xn is equal to the integral on the dense Zariski open
subset X o, or better on the regular locus X o,reg.

Here is the key relationship between the canonical height and the Betti form.

Theorem B. Let X be a geometrically irreducible subvariety of A over K. If
ĥ(X) = 0, then ∫

X o
ω

dX+1∧ (π∗ν)dB−1 = 0,

with ω the Betti form associated to L and ν the Kähler form on B representing
the class c1(M).

Proof. We may assume that X is defined over K. Since ĥ(X) = 0, Equation
(3.4) shows that

0 = lim
n→∞

n−2(dX+1)
∫

X o
([n]∗α)dX+1∧ (π∗ν)dB−1. (3.5)

Let U ⊂ Bo be any relatively compact open subset of Bo in the euclidean
topology. There exists a constant CU > 0 such that CU α−ω is semi-positive
on π−1(U). Since [n] : Ao→Ao is regular, the (1,1)-form n−2[n]∗(CU α−ω) =

CU n−2[n]∗α−ω is semi-positive. Since ω and ν are semi-positive, we get

0≤
∫

π−1(U)∩X o
ω

dX+1∧ (π∗ν)dB−1 ≤
(

CU

n2

)dX+1∫
X o
([n]∗α)dX+1∧ (π∗ν)dB−1
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for all n≥ 1. Letting n go to +∞, Equation (3.5) gives∫
π−1(U)∩X o

ω
dX+1∧ (π∗ν)dB−1 = 0.

Since this holds for all relatively compact subsets U of Bo, the theorem is
proved. �

Corollary 3.4. Assume that X is small. Let U and V be open subsets of Bo and
X o respectively (in the euclidean topology) such that U contains the closure
π(V )⊂ B. If µ is any smooth real semi-positive (1,1)-form on U, then∫

V
ω

dX+1∧ (π∗µ)dB−1 = 0.

Proof. We can assume U to be a relatively compact subset of Bo. Since ω and
µ are semi-positive, the integral is non-negative. Since ν is strictly positive on
U , there is a constant C > 0 such that Cν−µ is semi-positive. From Theorem B
we get

0≤
∫

V
ω

dX+1∧ (π∗µ)dB−1 ≤CdB−1
∫

V
ω

dX+1∧ (π∗ν)dB−1 = 0,

and the conclusion follows. �

Theorem B’. Assume that X is small. Then at every point p ∈ X o, we have
TpF ⊆ TpX o. In other words, X o is invariant under the Betti foliation: for
every p ∈ X o, the leaf Fp is contained in X o.

Proof. We start with a simple remark. Let P : CN+1→CN be a complex linear
map of rank N. Let ω0 be a positive (1,1)-form on CN . If V is a complex
linear subspace of CN+1 of dimension N, then ker(P) ⊂ V if and only if P|V
is not onto, if and only if (P∗ωN

0 )|V = 0. Now, assume that B has dimension
1. Then, the integral of ωdX+1 on X o vanishes by Theorem B; since the form
ω is semi-positive, the remark implies that the kernel of the projection Pp from
Section 2.4 is contained in TpX o at every smooth point p of X o. This proves
the proposition when dB = 1.

The general case reduces to dB = 1 as follows. Let U and U ′ be open subsets
of Bo such that: (i) U ⊂U ′ in the euclidean topology and (ii) there are complex
coordinates (z j) on U ′ such that U = {|z j|< 1, j = 1, . . . ,dB}. Set

µ := i(dz2∧dz2 + . . .+dzdB ∧dzdB).

Note that µdB−1 is the volume form (dB−1)!idB−1dz2∧dz2∧ ...∧dzdB . It is a
smooth real semi-positive (1,1)-form on U ′. By Corollary 3.4, we have∫

π−1(U)∩X
ω

dX+1∧ (π∗µ)dB−1 = 0. (3.6)
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For (w2, . . . ,wdB) in CdB−1 with modulus |w j|< 1 for all j, consider the slice

X (w2, . . . ,wdB) = X ∩π
−1(U ∩{z2 = w2, . . . ,zdB = wdB});

these slices provide a family of subsets of A over the one-dimensional disk
{(z1,w2, . . . ,wdB) ; |z1|< 1}. Now (3.6) can be reformulated to∫

|w2|<1,...,|wdB |<1

(∫
X (w2,...,xdB)

ω
dX+1

)
(π∗µ)dB−1 = 0.

Both ω and π∗µ are semi-positive on Ao, and so the integral of ωdX+1 over
X (w2, . . . ,wdB) vanishes for (µdB−1)-almost all (w2, . . . ,wdB); from the case
dB = 1, we know that, at every point p of X o∩π−1(U), the intersection TpX o∩
TpF contains a line whose projection in Tπ(p)B is the line {z2 = · · · = zdB =

0}. Doing the same for all coordinates zi, we see that TpF is contained in
TpX o. �

As a direct application of Theorem B’ and Remark 2.1, we prove Theorem A
in the isotrivival case.

Corollary 3.5. If AK =AK/C⊗C K and X is small, then there exists a subvariety
Y ⊆ AK/C such that X⊗K K = Y ⊗C K.

Proof. Replacing K by a suitable finite extension K′ and then B by its normal-
ization in K′, we may assume that Ao = Bo×AK/C and that π : Ao→ B is the
projection to the first factor. By Remark 2.1, the leaves of the Betti foliation
are exactly the fibers of the projection π2 onto the second factor. Since X is
small, Theorem B’ shows that X = π

−1
2 (Y ), with Y := π2(X ). �

4. INVARIANT ANALYTIC SUBSETS OF REAL AND COMPLEX TORI

Let m be a positive integer. Let M = Rm/Zm be the torus of dimension m
and π : Rm → M be the natural projection. The group GLm(Z) acts by real
analytic homomorphisms on M. In this section, we study analytic subsets of
M which are invariant under the action of a subgroup Γ⊂ GLm(Z); our goal is
Theorem 4.18, stated in Section 4.4. The main ingredient is a result of Muchnik
and of Guivarc’h and Starkov.

4.1. Zariski closure of Γ. We denote by

G = Zar(Γ)irr

the neutral component, for the Zariski topology, of the Zariski closure of Γ in
the real algebraic group GLm(R). Note that the Lie group G(R) is not neces-
sarily connected for the euclidean topology.
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Lemma 4.1. The group Γ∩G(R) has finite index in Γ. If Γ0 is a finite index
subgroup of Γ, then Zar(Γ0)

irr = G.

Proof. The index of G in Zar(Γ) is equal to the number ` of irreducible com-
ponents of the algebraic variety Zar(Γ), and the index of Γ∩G(R) in Γ is also
`. Now, let Γ0 be a finite index subgroup of Γ. Then, Γ0∩G has finite index
in Γ∩G(R), and we can fix a finite subset {α1, . . . ,αk} ⊂ Γ∩G(R) such that
Γ∩G(R) = ∪ jα j(Γ0∩G(R)). So

Zar(Γ∩G(R))⊂ ∪ jα jZar(Γ0∩G(R))⊂ G(R).

Because Γ∩G(R) is Zariski dense in the irreducible group G we find G =

Zar(Γ0∩G(R)). So G⊂ Zar(Γ0) and the lemma follows as G = Zar(Γ)irr. �

We shall denote by V the vector space Rm; the lattice Zm determines an
integral, hence a rational structure on V . The Zariski closure Zar(Γ) is a Q-
algebraic subgroup of GLm for this rational structure; the same is true for every
subgroup of Γ. In particular, G is defined over Q. For simplicity, we denote by
G(v), instead of G(R)(v), the orbit of a point v ∈V under the action of G(R).

We shall say that G (or Γ) has no invariant vector in V \{0} or that every
G-invariant vector is trivial if every vector u ∈ V such that g(u) = u for all
g ∈ G is equal to 0. This notion depends only on G, not on Γ: by Lemma 4.1,
this property is inherited by finite index subgroups of Γ.

4.2. Results of Muchnik and Guivarc’h and Starkov. From now on, we
assume that G is semi-simple, in particular dim(G) is positive, and dimV > 0.

Assume that V is an irreducible representation of G over Q; this means that
every proper Q-subspace of V which is G-invariant is the trivial subspace {0}.
Since G is semi-simple, we can decompose V into irreducible subrepresenta-
tions Wi of G over R (see [20], Proposition 22.41):

V =W1⊕W2⊕·· ·⊕Ws.

To each Wi corresponds a subgroup Gi of GL(Wi) given by the restriction of the
action of G to Wi. Some of the groups Gi(R) may be compact, and we denote
by Vc the sum of the corresponding subspaces: Vc is the maximal G-invariant
subspace of V on which G(R) acts by a compact factor.

Lemma 4.2. Let W ⊂V be a Γ-invariant subspace. Then, W ⊂Vc if and only
if the orbit Γ(w) of every vector w ∈W is a bounded subset of V .

Proof. If W ⊂ Vc then every orbit is bounded because Γ|W is contained in a
compact subgroup of GL(W ).

For the reverse implication, we shall use the following fact (see [5] for a
more general result): Let N be a real or complex vector space. Let H be a
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subgroup of GL(N) such that all complex eigenvalues of all elements of H
have modulus ≤ 1. If the action of H on N is irreducible, then H is contained
in a compact subgroup of GL(N). Indeed, assume first that we work over C.
By Burnside’s theorem, H generates the vector space End(N) (see [17]). Let
(hi) ⊂ H be a basis of End(N). The trace map g ∈ End(N) 7→ (trace(ghi)) ∈
C(dimN)2

is a linear isomorphism, so there is a basis (gi) of End(N) with g =

∑i trace(ghi)gi for all g ∈ End(N). From the hypothesis on the eigenvalues,
the trace functions h 7→ trace(hhi) are bounded by dim(N) on H, so the image
of H in GL(N) is relatively compact. Now, suppose we work over R, and set
NC = N⊗R C. Let N0 ⊂ NC be a non-trivial and H-invariant complex subspace
on which H acts irreducibly; N0 and its complex conjugate N0 are both H-
invariant, and by the first step, the images of H in GL(N0) and GL(N0) are
relatively compact. Moreover, N0 +N0 = NC because the representation of H
on N is irreducible; thus, the image of H in GL(N) is compact.

Now, assume that W is not contained in Vc. Then W contains an irreducible
subrepresentation W0 ⊂W such that G0(R) (the image of G(R) in GL(W0))
is not compact. The group Γ|W0 is unbounded, because otherwise its closure
would be a compact group, hence it would preserve some positive definite qua-
dratic form, G0(R) would also preserve this quadratic form because Γ∩G(R)

is Zariski dense in G, and then G0(R) would be compact. Thus, the fact we
just recalled gives an element of Γ with a (complex) eigenvalue of modulus
> 1 on W0⊗C; as a consequence, there is a vector w ∈W0 whose orbit is
unbounded. �

Recall that V = Rm and M is the torus Rm/Zm.

Lemma 4.3. The subspace Vc is a proper subspace of V . The projection
π|Vc : Vc → M is injective; in other words, Vc ∩Zm = {0}. If a and a′ are
two distinct torsion points of M, then a+π(Vc) does not intersect a′+π(Vc).

Proof. If Vc were equal to V then G(R) would be compact, Γ would be finite,
and G would be trivial (contradicting dim(G)> 0).

If π|Vc is not injective, Vc contains an element u 6= 0 of the lattice Zm. The Γ-
orbit of u is contained in Vc∩Zm; as a consequence, the vector subspace W ⊂V
spanned by this orbit is defined over Q and is G-invariant. Since Vc is a proper
subspace of V , W is a proper, G-invariant subspace defined over Q, and this
contradicts the irreducibility of the representation over Q. This contradiction
proves the second assertion.

The third assertion follows from the second: if (a+ π(Vc))∩ (a′+ π(Vc))

were not empty, Vc would contain a non-zero element of π−1(a− a′); since
π−1(a−a′)⊂Qm, Vc would contain an element of Zm \{0}. �
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Let z be a point of Vc and let x = π(z) be its projection. Then the orbit G(z)
is compact, and Γ(x) is contained in π(G(z)), a compact subset of M contained
in π(Vc); in particular, Γ(x) is not dense in M. More generally, if a is a torsion
point of M and x ∈ a+π(Vc), then Γ(x) is not dense in M. This shows that the
two properties of the following theorem are exclusive.

Theorem 4.4 (Muchnik [24]; Guivarc’h and Starkov [14]). Assume that G is
semi-simple, and its representation on Qm is irreducible. Let x be an element
of M. Then, one of the following two exclusive properties occur

(1) the Γ-orbit of x is dense in M;
(2) there exists a torsion point a ∈M such that x ∈ a+π(Vc).

Remark 4.5. In the second assertion, the torsion point a is uniquely determined
by x: this follows from the last assertion in Lemma 4.3.

Remark 4.6. By Lemma 4.1, the hypothesis and, therefore, the conclusion of
Theorem 4.4 remain unchanged if Γ is replaced by a finite index subgroup.

Remark 4.7. Theorem 4.4 will be used to describe Γ-invariant real analytic
subsets Z ⊂M. If it is infinite, such a set contains the image of a non-constant
real analytic curve. The existence of such a curve is the main difficulty in
Muchnik’s argument, but in our situation it is given for free.

Proof of Theorem 4.4. This result is a consequence of Theorem 1.2 of [24].
Indeed, if Γ0 is a finite index subgroup of Γ, then by Lemma 4.1 we have
Zar(Γ0)

irr = G, so that Γ0 does not preserve any proper, non-trivial vector
subspace of V defined over Q; this shows that Γ acts strongly irreducibly on
Qm. If Γ were cyclic-by-finite, then by definition Γ would contain a normal
cyclic subgroup of finite index, and G would be abelian, contradicting its semi-
simplicity. Thus, Properties (1) and (2) in Theorem 1.1 of [24] are satisfied,
and we can apply Theorem 1.2 of [24]: by Lemma 4.2, it gives precisely the
alternative stated in our Theorem 4.4. �

Corollary 4.8. If F ⊂ M is a non-empty closed, proper, connected, and Γ-
invariant subset, then F is contained in a+ π(Vc) for a unique torsion point
a ∈ M. If x ∈ M has a finite orbit under the action of Γ, then x is a torsion
point.

Proof. Let us prove the first assertion. If x ∈ F , then Γ(x) ⊂ F because F
is Γ-invariant. Since F is closed and proper, Γ(x) is not dense in M. From
Theorem 4.4 and Remark 4.5, there is a unique torsion point a(x) such that
x ∈ a(x)+π(Vc). This map x ∈ F 7→ a(x) must be constant.

To see this, let us first assume that F is path connected. Take two points
x and x′ in F , and a continuous path τ : [0,1]→ F that connects x = τ(0) to
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x′ = τ(1). Lifting τ to a path τ̃ in V , and then projecting it to V/Vc we obtain
a continuous map [0,1]→V/Vc; since this map takes at most countably many
values, it is constant, and there is a rational point ã in V that projects onto it.
Then a := π(ã) is a torsion point and F ⊂ a+π(Vc).

To prove Theorem 4.18 and deduce Theorem A’ it suffices to assume that F
is path connected. If F is only assumed to be connected, a similar but more
delicate argument applies, as the following lemma shows.

Lemma 4.9. Let F be a closed and connected subset of M. Assume that every
x ∈ F is the sum of a torsion point a(x) and a point π(v) for some v ∈Vc. Then
F is contained in a unique torsion translate of π(Vc).

Proof. Denote by pc : V → V/Vc the natural projection. The translates b+
π(Vc) form a linear foliation Fc of M. Locally, in small open subsets U, this
foliation is defined by the fibers of the submersion pU = pc ◦ π−1 for some
local inverse of π on U. Say that x ∈ F is locally transversely isolated (l.t.i. for
short) if there is a small neighborhood U of x in M such that F∩U is contained
in a unique fiber of pU , i.e. in a unique local leaf of Fc in U. If every point of
F is l.t.i., the function x ∈ F 7→ a(x) is locally constant, and by connectedness,
it is indeed constant.

Thus, we may assume that F contains at least one point which is not l.t.i..
Consider the subset F1 = F−F = {x−y | x, y ∈ F}. This set is compact, con-
nected, and is also contained in a union of torsion translates of π(Vc). More-
over, the origin π(0) is a point of F1 which is not l.t.i.. Now, F2 = F1−F1 shares
the same properties, and no point of F2 is l.t.i.. Let Bn⊂Vc be the closed ball of
radius n in Vc, for some euclidean metric. Enumerate the set of torsion points
by N and denote by an the n-th torsion point. Set Dn = ∪k≤n(ak + π(Bn)).
This is an increasing sequence of compact subsets of M. Then, F2 is contained
in ∪nDn, and F2 ∩Dn has empty interior in F2 because no point of F2 is l.t.i..
Since F2 is a compact metric space, the theorem of Baire can be applied in F2
(see [25], Theorems 1.3 and 9.1), and we get a contradiction. �

To prove the second assertion of Corollary 4.8, pick a point x ∈ M with a
finite Γ-orbit and write x = a+ π(z) for some torsion point a and some ele-
ment z ∈ Vc. The orbit Γ(a) is finite. Let Gc be the image of G in GL(Vc): it
is an algebraic subgroup of GL(Vc), Gc(R) is compact, and the image Γc of
Γ∩G(R) in GL(Vc) is Zariski dense in Gc. Thus, the closure of Γc for the
euclidean topology is equal to Gc(R), because all closed subgroups of Gc(R)

are algebraic (see [23, §4.6]). We deduce that the orbit (Γ∩G(R))(z) is dense
in G(z) = Gc(z) for the euclidean topology. Since the orbit of x is finite, G(z)
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is finite too. This implies that G(z) is just one point because G is Zariski con-
nected, and that z = 0 because the representation is irreducible over Q. Thus,
z = 0 and x = a. �

Remark 4.10. Assume that m = 2g for some g≥ 1 and M is in fact a complex
torus Cg/Λ, with Λ'Z2g. Suppose that F is a smooth complex analytic subset
of M; then F is a compact Kähler manifold. The inclusion F → M factors
through the Albanese torus F → AF of F , via a morphism AF → M, and the
image of AF is the quotient of a subspace W in Cg by a lattice W ∩Λ (see [10],
p. 331 and 552). So, if F ⊂ a+ π(Vc), the subspace Vc contains a subspace
W ⊂ Rm which is defined over Q, contradicting the irreducibility assumption
(Lemma 4.3). To separate clearly the arguments of complex geometry from
the arguments of dynamical systems, we shall not use this type of idea before
Section 4.4.

Remark 4.11. Theorem 2 of [14] is not correct, but becomes true if there is no
compact factor (Gc,Vc) (this is implicitely assumed in [14, Proposition 1.3]).

4.3. Invariant real analytic subsets. Let F be a closed analytic (resp. sub-
analytic) subset of the torus M (we refer to [2] for subanalytic sets). We say
that F does not fully generate M if there is a proper subspace W of V and a
non-empty open subset U of F such that TxF ⊂W for every regular point x of
F in U. Otherwise, we say that F fully generates M.

Proposition 4.12. Let Γ be a subgroup of GLm(Z). Assume that the neutral
component Zar(Γ)irr ⊂ GLm(R) is semi-simple and has no invariant vector in
Rm \ {0}. Let F be a closed, subanalytic, and Γ-invariant subset of M. If F
fully generates M, it is equal to M.

To prove this result, note that G = Zar(Γ)irr is both defined over Q and semi-
simple (as in § 4.1 and 4.2); so, G is semi-simple as an algebraic group over Q
(see [20], Proposition 19.5). So, we can decompose the linear representation
of G on V into a direct sum of irreducible representations over Q (see [20],
Proposition 22.41):

V =V1⊕·· ·⊕Vs.

Since every invariant vector is trivial, none of the Vi is the trivial representation.
For each index i, we denote by Vi,c the compact factor of Vi. As in Lemma 4.3,
the projection π is an injective map from Vi,c onto its image in M. Set

Mi =Vi/(Zm∩Vi). (4.1)

Then, each Mi is a compact torus of dimension dim(Vi), and M is isogenous to
the product of the Mi. We may, and we shall assume that M is in fact equal to
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this product:
M = M1×·· ·×Ms;

this assumption simplifies the exposition without any loss of generality, be-
cause the image and the pre-image of a subanalytic set by an isogeny is suban-
alytic too. We can also assume (see Remark 4.6) that Γ is contained in G. For
every index 1≤ i≤ s, we denote by πi the projection on the i-th factor Mi.

Lemma 4.13. If F fully generates M, the projection Fi := πi(F) is equal to Mi
for every 1≤ i≤ s.

Proof. By construction, Fi is a closed and Γ-invariant subset of Mi. Since F is
compact and subanalytic, F and Fi have finitely many connected components.
Fix a connected component F0

i of Fi; it is invariant by a finite index subgroup
Γ0 of Γ. If it were contained in a translate of π(Vi,c), then F would not fully
generate M. The first assertion of Corollary 4.8, applied to Γ0, implies F0

i =

Mi. �

We prove Proposition 4.12 by induction on the number s of irreducible fac-
tors. For just one factor, this is the previous lemma. Assuming that the propo-
sition has been proven for s− 1 irreducible factors, we now want to prove it
for s factors. To simplify the exposition, we suppose that s = 2, which means
that M is the product of just two factors M1×M2. The proof will only use that
π1(F) = M1 and F fully generates M; thus, changing M1 into M1× . . .×Ms−1,
this proof also establishes the induction in full generality.

Let ϕ : N → F be a surjective and proper analytic map, from an analytic
manifold N of dimension dim(F), as in the uniformization theorem of Bier-
stone and Milman (see [2, Theorem 0.1]). The composition π1 ◦ϕ : N → M1
is analytic and onto. Let C be the set of critical values of π1 ◦ϕ. From Sard’s
theorem, C is a closed subanalytic subset of M1 of dimension strictly less than
dim(M1).

The set of points x ∈ M1 with Fx = M2 is closed; if it coincides with M1,
then F = M. Otherwise, there is an open ball U0 ⊂M1 such that Fx is a non-
empty, proper and subanalytic subset of M2 for every x ∈ U0. Let U be an
open ball contained in U0 \C. On NU := (π1 ◦ϕ)−1(U), the map π1 ◦ϕ is a
proper submersion so, by Ehresmann’s Product Neighborhood Theorem, it is
a trivial fibration because U is a ball: there is a C ∞-diffeomorphism ψ : NU →
U ×Y for some compact manifold Y such that π1 ◦ϕ corresponds to the first
projection (see [21], § 7, p. 46). The fibers Fx, for x in U , are parametrized
by ϕ◦ψ−1 : {x}×Y → Fx. Let Y1, . . ., YJ0 be the connected components of Y .
The number J(x) of connected components of Fx is a lower semi-continuous
function of x ∈ U , because the condition ϕ ◦ψ−1({x}×Yj)∩ϕ ◦ψ−1({x}×
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Yk) = /0 is open. Let J be the maximum of this function on U ; changing U in
a smaller ball if necessary, we may assume that (1) J(x) = J for all x ∈U , and
(2) each connected component Fx, j of Fx is the image of

⋃
i∈I( j)({x}×Yi) by

ϕ◦ψ−1 for a fixed set of indices I( j)⊂ {1, . . . ,J}. In particular,
⋃

x∈U Fx, j is a
connected component of F ∩π

−1
1 (U) and is subanalytic.

Let x ∈U be a torsion point. The stabilizer of x is a finite index subgroup
of Γ, and we can apply Corollary 4.8 to each connected component of Fx. We
deduce that there is a unique torsion point a j(x) such that

Fx, j ⊂ a j(x)+π(V2,c), and Fx ⊂
J⋃

j=1

a j(x)+π(V2,c). (4.2)

Since torsion points are dense in U and ϕ◦ψ−1 is smooth, the inclusions (4.2)
hold for every x in U , but now the a j(x) ∈M2 are not torsion points anymore.

Assume temporarily that J = 1, so that Fx = Fx,1 is contained in a(x) +
π(V2,c) for some point a(x) of M2. The point a(x) is not uniquely defined
by this property (one can replace it by a(x)+π(v) for any v ∈ V2,c), but there
is a way to choose a(x) unequivocally. First, the action of G(R) on V2,c fac-
tors through a compact subgroup of GL(V2,c), so we can fix a G(R)-invariant
euclidean metric dist2 on V2,c. Then, any compact subset K of V2,c is contained
in a unique ball of smallest radius for the metric dist2; we denote by c(K) and
r(K) the center and radius of this ball. Since J is assumed to be 1, Fx is a com-
pact, connected, and subanalytic subset of M that is contained in a+π(V2,c) for
some point a. Since M can be analytically embedded in R2m, Theorem 6.10
of [2] implies that Fx is locally path connected, hence also globally path con-
nected. Let γ : [0,1]→ Fx be a continuous path. Then γ lifts to a path γ̃ into
the universal cover V of M, and because Fx is contained in a+π(Vc), γ̃([0,1])
is contained in the countable union of subspaces V2,c +π−1({a}). Since [0,1]
is connected and γ̃ is continuous, γ̃([0,1]) is in fact contained in some fixed
translate of ã+Vc, with π(ã) = a. Now, assume that γ is a loop, with base point
γ(0) = γ(1). By Lemma 4.3, π is injective on V2,c, so γ̃(0) = γ̃(1), γ̃ is in fact a
loop in V2,c, and there is a homotopy that contracts γ̃ to a constant loop in V2,c.
Projecting back to M by π, we deduce that the image of the fundamental group
of Fx in the fundamental group of M is trivial. By Propositions 1.33 and 1.34
of [16], there exists a unique continuous lift ι̃ : (Fx− a)→ V of the inclusion
ι : (Fx− a)→ M that maps the origin 0 ∈ (FX − a) to 0 ∈ V ; since Fx is path
connected, we obtain ι̃(Fx−a)⊂V2,c. Then we define the center of Fx by

c(x) := a+π2(c(ι̃(Fx−a))) ∈M2.

By construction, c(x) does not depend on a, and Fx is contained in c(x) +
π(V2,c). When J > 1, this procedure gives a finite set of centers {c j(x)}1≤ j≤J .
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Lemma 4.14. Let E1 = Rm and E2 = Rn be two euclidean vector spaces. Let
B1 ⊂ E1 be a closed ball. Let Z ⊂ B1×E2 be a relatively compact subanalytic
subset such that the projection π1 : Z→ B1 is onto. For each x in E1, denote by
r(x) and c(x) the radius and center of the smallest ball containing the fiber Zx.
Then r and c are subanalytic functions of x.

Proof. Denote by ‖ · ‖ the euclidean norm on E2. Let B2 ⊂ E2 be a closed ball
such that Z ⊂ B1×B2, let R be its radius, and let I be the interval [0,R]. As in
[2], Remark 3.11(1), we consider the set

A = {(x,y,z, t) ∈ B1×B2×Z× I |π1(z) = x, and t <‖ π2(z)− y ‖}.

It is subanalytic, and so is its projection τ(A)⊂ B1×B2× I, where τ(x,y,z, t) =
(x,y, t). This projection is the set {(x,y, t) | ∃z ∈ Zx, t <‖ z− y ‖}. By the
theorem of the complement (see [2, Theorem 3.10]),

τ(A)c = {(x,y, t) ∈ B1×B2× I | t ≥‖ z− y ‖ for every z ∈ Zx}

is also subanalytic. By Remark 3.11(2) of [2], the function

r(x) = min
y∈B2

(min{t | (x,y, t) ∈ τ(A)c})

is subanalytic. Now, consider the subanalytic set

C = {(x,y, t) ∈ B1×B2× I | t = r(x)}∩ τ(A)c.

Denote by ι : C→ B1×B2 the projection (x,y, t) 7→ (x,y). Then ι(C) is suban-
alytic and it is the graph of the map B1→ B2 : x 7→ c(x). It follows that c(x) is
a subanalytic function of x. �

This lemma shows that the radius r j(x) and the center c j(x) are subanalytic
functions of x for every index j ≤ J. The uniformization theorem [2, Theorem
0.1] provides a real analytic manifold N j and a real analytic mapping Φ j =

(ϕ j,η j) : N j→U×R such that the graph of r j is the image of Φ, and ϕ j : N j→
U is generically of rank dim(U) = dim(M1). By [2, Theorem 7.10] there is a
proper, closed, analytic subset D j of U with the following property: if a ∈ N j
and ϕ j(a) /∈ D j, there is a neighborhood W of a and an analytic funtion η̂ j on
ϕ j(W ) such that ϕ j is a diffeomorphism from W to ϕ j(W ) and η j = η̂ j ◦ϕ j on
W . Thus, on U \D j, r j is locally a smooth analytic function. A similar result
holds for c j, for some proper analytic set D′j ⊂U . Set D = ∪ j(D j ∪D′j). Let
G be the subset of π

−1
1 (U \D) given by the union of the graphs of the centers:

G = {(x,y) ∈M1×M2; x ∈U \D, y = c j(x) for some j}.

Lemma 4.15. The tangent space z ∈ G 7→ TzG takes only finitely many values
(Wj)1≤ j≤k; given any point z ∈ G , there is a neighborhood of z in M in which
G coincides with z+π(Wj) for one of these subspaces.
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This lemma concludes the proof of Proposition 4.12, because if G is locally
contained in a+π(W ) for some proper subspace W of V of dimension dimM1,
then F is locally contained in a+π(W +V2,c), and F does not fully generate
M because dim(W +V2,c)< dimV .

Proof. By construction, G is an analytic subset of π
−1
1 (U \D) and it is invariant

by Γ: if z ∈G and g is an element of Γ such that g(z) ∈ π
−1
1 (U), then g(z) ∈G .

For x in U \D, we denote by Gx the finite fiber π
−1
1 (x)∩G .

For every torsion point x ∈ U \D, the stabilizer Γx of x is a finite index
subgroup of Γ that preserves the finite set Gx. By the last statement of Corol-
lary 4.8 applied to Γx, Gx is a finite set of torsion points of M. In particular,
torsion points are dense in G . Fix one of these torsion points z = (x,y) ∈ G ,
and denote by Γz the stabilizer of z in Γ. The tangent subspace TzG is the
graph of a linear morphism ϕz : TxM1→ TyM2. Identifying the tangent spaces
TxM1 and TyM2 with V1 and V2 respectively, ϕz becomes a morphism that inter-
laces the representations ρ1 and ρ2 of Γz on V1 and V2; by Lemma 4.1 and our
assumptions, Γz is Zariski dense in G, so we get

ρ2(g)◦ϕz = ϕz ◦ρ1(g) (4.3)

for every g in G. In other words, ϕz ∈ Hom(V1;V2) is a morphism of G-spaces.
This holds for every torsion point z ∈ G ; by continuity of tangent spaces and
density of torsion points, this holds everywhere on G .

Since G is Γ-invariant, we also have

ϕg(z) ◦ρ1(g) = ρ2(g)◦ϕz

for all g ∈ Γ and z ∈ G such that g(z) ∈ π
−1
1 (U). Then, Equation (4.3) shows

that ϕg(z) = ϕz, which means that the tangent space TzG is constant along the
orbits of Γ. Take a point z in G whose projection π1(z) ∈U \D has a dense
Γ-orbit in M1; such a point exist because the set of points in M1 whose orbit is
not dense has empty interior (see Corollary 4.8). Since T G is constant along
the orbit of z, the tangent space w ∈ G 7→ TwG takes only finitely many values,
at most |Gπ1(z)|. Let (Wj)1≤ j≤k be the list of possible tangent spaces TzG .
Locally, near any point z ∈ G , G coincides with z+π(Wj) for some j. �

4.4. Complex analytic invariant subsets. Let J be a complex structure on
V = Rm, so that M is now endowed with a structure of complex torus. Then,
m = 2g for some integer g, Rm can be identified to Cg, and M = Cg/Λ where Λ

is the lattice Zm; to simplify the exposition, we denote by A the complex torus
Cg/Λ and by M the real torus Rm/Zm. Thus, A is just M, together with the
complex structure J. Let X be an irreducible complex analytic subset of A, and
let X reg be its smooth locus.
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Lemma 4.16. Let W be the real subspace of V generated by the tangent spaces
TxX, for x ∈ X reg. Then W is a complex subspace of V defined over Q, and X
is contained in a translate of the complex torus π(W ).

Proof. Since X is complex analytic, its tangent bundle is invariant under the
complex structure: J(TxX) = TxX for all x ∈ X reg. So, the sum W := ∑x TxX of
the TxX over all points x ∈ X reg is invariant by J and W is a complex subspace
of V 'Cg. Observe that if V ′ is any real subspace of V such that π(V ′) contains
some translate of X reg, then W ⊆V ′.

Let a be a point of X reg, and Y be the translate X−a of X . It is an irreducible
complex analytic subset of A that contains the origin 0 of A and satisfies TyY ⊂
W for every y ∈ Y reg. Thus, Y reg is contained in the projection π(W ) ⊂ A. Set
Y (1) = Y , Y (1)

o = Y reg and then

Y (`+1) = Y (`)−Y (`), Y (`+1)
o = Y (`)

o −Y (`)
o

for every integer ` ≥ 1. Since Y (1) is irreducible, and Y (2) is the image of
Y (1)×Y (1) by the complex analytic map (y1,y2) 7→ y1− y2, we see that Y (2)

is an irreducible complex analytic subset of A. Moreover Y (2)
o is a connected,

dense, and open subset of Y (2). Observe that Y (2)
o is contained in π(W ), because

π(W ) is a subgroup of A, and contains Y (1)
o , because 0∈Y (1)

o . By induction, the
sets Y (`) form an increasing sequence of irreducible complex analytic subsets
of A, and Y (`)

o is a connected, dense and open subset of Y (`) that is contained in
π(W ). By the Noether property, there is an index `0 ≥ 1 such that Y (`) = Y (`0)

for every ` ≥ `0. This complex analytic set is a subgroup of A, hence it is
a complex subtorus. Write Y (`0) = π(V ′) for some rational subspace V ′ of V .
Since Y ⊂ π(V ′), we get W ⊆V ′. Since Y (`0)

o ⊆ π(W ), we derive V ′= TxY
(`0)
o ⊆

W for every x ∈ Y (`0),reg
o . This implies W =V ′, and shows that W is rational.

Thus, π(W ) is a complex subtorus of A. Since TxX is contained in W for
every regular point, X reg is locally contained in a translate of π(W ). Since
X is irreducible, X and X reg are connected; thus X reg is contained in a unique
translate a+π(W ), and by density of X reg, X is also contained in a+π(W ). �

Lemma 4.17. Let X be an irreducible complex analytic subset of A. The fol-
lowing properties are equivalent:

(i) X is contained in a translate of a proper complex subtorus B⊂ A;
(ii) X does not fully generate M;

(iii) there is a proper real subspace V ′ of V that contains TxX for every
x ∈ X reg.

Proof. Obviously (i) ⇒ (iii) ⇒ (ii). Also, if (iii) is satisfied, Lemma 4.16
implies that X is contained in a translate of a complex subtorus B = π(W )⊂ A
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for some complex subspace W of V ′; hence (iii)⇒ (i). To conclude, we prove
that (ii) implies (iii). If X does not fully generate M, then (iii) is satisfied on
some non-empty open subset U of X reg, for some subspace V ′ of V . Once V ′

is given, the property TxX ⊂V ′ is a real analytic condition on x ∈ X reg, so if it
holds on U, it holds on the connected component of X reg containing it. But X
being irreducible, X reg is connected, so TxX ⊂V ′ for every x ∈ X reg. �

Theorem 4.18. Let Γ be a subgroup of GLm(Z). Assume that the neutral com-
ponent, for the Zariski topology, of the Zariski closure of Γ in GLm(R) is semi-
simple and has no invariant vector in Rm \{0}. Let J be a complex structure on
M = Rm/Zm and let X be an irreducible complex analytic subset of the com-
plex torus A = (M, J). If X is Γ-invariant, it is equal to a translate of a complex
subtorus B⊂ A by a torsion point.

Proof. Set W := ∑x∈X reg TxX . Lemma 4.16 shows that W is complex and de-
fined over Q. Since X is Γ-invariant, so is W . Its projection B = π(W ) is a
complex subtorus of A such that

(1) B is Γ-invariant;
(2) B contains a translate Y = X−a of X .

Moreover, Lemma 4.17 shows that

(3) Y fully generates B.

The group Γ acts on the quotient torus A/B and preserves the image of X , i.e.
the image a of a. Since G has no invariant vector in V \ {0}, a is a torsion
point of A/B; indeed, A/B is isogeneous to a product of tori Mi = Vi/(Zm ∩
Vi) associated to Q-irreducible subrepresentations, as in Equation (4.1), and
Corollary 4.8 shows that the projection of a in each Mi is a torsion point. Then
there exists a torsion point a′ in A such that X ⊆ a′+B. Replacing a by a′ and
Γ by a finite index subgroup Γ′ which fixes a′, we may assume that a is torsion
and Y = X−a is invariant by Γ. We apply Proposition 4.12 to B, the restriction
ΓB of Γ to B, and the complex analytic subset Y : by Property (3) above, Y
coincides with B. Thus X = a+B. �

5. PROOF OF THEOREMS A AND A’

Let X be an irreducible subvariety of AK , and assume that Xε is dense in
X for every positive ε. We want to prove that X is special. The argument in
Section 3.2, shows that ĥ(X) = 0 and that it is sufficient to prove Theorem A’.
So, in this section, we prove Theorem A’.

Replacing K by a finite extension we may assume that X is defined over K.
In the rest of this section we use A to denote AK . By Remark 3.2 we may
assume k = C and ĥ(X) = 0.
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5.1. Monodromy and invariance. Recall that X is geometrically irreducible.
By [11, Proposition 9.7.8], after replacing Bo by a Zariski open and dense
subset, we may assume that Xb is irreducible for all b ∈ Bo.

Let b ∈ Bo be any point. As explained in Section 2.3, the holonomy of the
Betti foliation and the monodromy of the abelian scheme Ao → Bo give rise
to the same representation Mon : π1(Bo;b)→ GL2g(Z), and we call its image
Γ = Mon(π1(Bo;b))⊂ GL2g(Z) the monodromy group.

Theorem B’ from Section 3.3 implies that X o is invariant under the Betti
foliation F , so Xb is invariant under the action of the holonomy group of F
on Ab. Thus, Xb is invariant under the monodromy group Γ on the torus Ab '
H1(Ab;R)/H1(Ab;Z)' R2g/Z2g.

5.2. Trivial trace. We first treat the case when AK/C is trivial. According to
[32, Theorem 1.5], this is the only case we need to treat. However we shall
also treat the case of a non-trivial trace below for completeness.

To show that X is special, we shall apply Theorem 4.18 to Xb ⊂ R2g/Z2g

and Γ. As in Section 4.1, let G be the neutral component of Zar(Γ)irr ⊂ GL2g.
The key point now is to prove that Γ satisfies the assumption of Theorem 4.18;
this will follow from deep results on variations of Hodge structures:

Theorem 5.1 (Deligne). If the trace AK/C is trivial then G is semi-simple and
has no invariant vector in H1(Ab;R)\{0}.

Proof. By Deligne’s semi-simplicity theorem, the group G is semi-simple (see
[6, Corollary 4.2.9]).

Set Γ′ = Γ∩G(R); it is a Zariski dense subgroup of G, and to see that every
G-invariant vector is trivial we shall prove that W := H1(Ab;Q)Γ′ is {0}.

Recall that Γ is the image of Mon : π1(Bo,b)→ GL2g(Z). Since Γ′ has finite
index in Γ, its inverse image Mon−1(Γ′) is a finite index subgroup of π1(Bo,b).
It gives rise to a finite covering B′ → Bo such that the abelian scheme A ′ :=
Ao×Bo B′ → B′ has monodromy group Γ′. Note that the geometric generic
fiber of π′ : A ′→ B′ is still A. Fix b′ ∈ B′ lying above b. Then H1(A ′b′;Q) =

H1(Ab;Q) and hence W = H1(A ′b′;Q)Γ′ .
The local system R1π′∗Q, defined as the dual of R1π′∗Q, satisfies (R1π′∗Q)s ∼=

H1(A ′s;Q) for each s ∈ B′; it is a variation of Hodge structures on B′ of type
(−1,0)+(0,−1). By standard facts on local systems, R1π′∗Q is determined by
a fiber (R1π′∗Q)b′ and the action of π1(B′,b′) on this fiber, via the monodromy
group Γ′. We have

H0(B′,R1π
′
∗Q) = (R1π

′
∗Q)Γ′

b′ = H1(A ′b′ ;Q)Γ′ =W. (5.1)

Let (R1π′∗Q)const be the largest constant sub-local system of R1π′∗Q. Then
(R1π′∗Q)const

b′ = H0(B′,R1π′∗Q). So (R1π′∗Q)const
b′ =W by Equation (5.1).
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Deligne’s Theorem of the Fixed Part implies that (R1π′∗Q)const is a sub-
variation of Hodge structures of R1π′∗Q on B′ (see [6, Corollaire 4.1.2]). It
gives rise to an abelian subscheme C → B′ of A ′ → B′ with H1(Cb′;Q) =

(R1π′∗Q)const
b′ =W by [6, Rappel 4.4.3].

Denote by C = Cb′; it is defined over C. We claim that C = C×B′. In-
deed, consider the abelian scheme π′′ : C×B′→ B′. The local system R1π′′∗Q,
defined as the dual of R1π′′∗Q, is a constant local system with (R1π′′∗Q)b′ =

H1(C;Q) = H1(Cb′;Q) =W ; it is also a variation of Hodge structures on B′ of
type (−1,0)+(0,−1). Thus R1π′∗Q=R1π′′∗Q as variations of Hodge structures
on B′. Hence C =C×B′ by [6, Rappel 4.4.3].

So the geometric generic fiber of C → B′ is CK . The inclusion C ⊆ A ′ of
abelian schemes over B′ provides an inclusion CK ⊆ A and in fact CK ⊆ AK/C

by definition of AK/C. Thus, the triviality of AK/C implies W = {0}. �

We can now conclude the proof of Theorem A’ when the K/C-trace of A is
trivial. Since G is semi-simple and H1(Ab;R)G = {0}, Theorem 4.18 implies
that Xb is the translate of an abelian subvariety of Ab by some torsion point
yb ∈ Ab. Observe that the leaf Fyb is a multi-section of Ao (see Remark 2.2).
By base change, we may assume that Fyb is a section and is the Zariski closure
of a torsion point y ∈ A(K) in Ao. Theorem B’ from Section 3.3 shows that
y ∈ X , and replacing X by X − y we may suppose that 0 ∈ X ; then, Xb is an
abelian subvariety of Ab for all b ∈ Bo. It follows that X o is a subscheme of
the abelian scheme Ao over Bo which is stable under the group laws. So X is
an abelian subvariety of A. This proves Theorems A’ and A in the trivial trace
case.

5.3. The general case. We do not assume anymore that AK/C is trivial. Set
At = AK/C⊗C K. Replacing K by a finite extension and A by a finite cover,
we assume that A = At×Ant where Ant is an abelian variety over K with trivial
trace. We also choose the model A so that Ao = (A t)o×Bo (Ant)o where (A t)o

and (Ant)o are the Zariski closures of At and Ant in Ao respectively. Denote
by πt : Ao→ (A t)o the projection to the first factor and πnt : Ao→ (Ant)o the
projection to the second factor. After replacing K by a further finite extension
K′ and B by its normalization in K′, we may assume that (A t)o = AK/C×Bo.
Note that πt |A t

b
: A t

b→ AK/C is an isomorphism for every fiber A t
b with b ∈ Bo.

By Proposition 3.3(1), the geometric generic fibers of πt(X o) and πnt(X o)

are small subvarieties of At and Ant respectively. Corollary 3.5 shows that
πt(X o) = Y ×Bo for some subvariety Y of AK/C. Section 5.2 shows that the
geometric generic fiber of πnt(X o) is a torsion coset a+A′ for some torsion
point a∈ Ant

K (K) and some abelian subvariety A′ of Ant
K . Replacing K by a finite
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extension, we may assume that a and A′ are defined over K. We have X o ⊆
πt(X o)×Bo πnt(X o) and we only need to show that X o = πt(X o)×Bo πnt(X o).

For every b ∈ Bo, Ab = A t
b×Ant

b . The monodromy on Ab is the diagonal
product of the monodromies on each factor. It is trivial on the first one so,
for every x ∈ A t

b, the fiber πt |−1
Ab
(x) ' Ant

b is invariant under Γ. It follows
that πt |−1

Ab
(x)∩ Xb, and hence Wx = πnt(πt |−1

Ab
(x)∩ Xb), is also Γ-invariant.

Each irreducible component of Wx is Γ0-invariant for a finite index subgroup
Γ0 ⊂ Γ. Recall that the neutral components of Zar(Γ0) and Zar(Γ) are equal
by Lemma 4.1. Since Ant has trivial trace, we can apply Theorem 4.18 to each
irreducible component of Wx as in the trivial trace case in Section 5.2. Thus
each Wx is a Zariski closed subset whose irreducible components are torsion
cosets of the abelian variety Ant

b . The abelian variety Ant
b has only countably

many Zariski closed subsets having the property that each of the finitely many
irreducible components is a torsion coset. By the theorem of Baire [25, Theo-
rems 1.3 and 9.1], there exists a Zariski dense subset Σ⊂ πt(Xb) such that Wx
is independent of x for all x ∈ Σ. Call this finite union of torsion cosets A′.

Thus the Zariski closure of
⋃

x∈Σ πt |−1
Ab
(x)∩Xb is πt(Xb)×A′ under the de-

composition Ab = A t
b×Ant

b . Hence πt(Xb)×A′ ⊂ Xb. Note that {x}×A′ is the
fiber of πt |−1

Xb
(x) for all x ∈ Σ. As Xb is irreducible we find πt(Xb)×A′ = Xb

by comparing dimensions. Then X o = πt(X o)×Bo πnt(X o), and this concludes
the proof of Theorems A’ and A for the general case.
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