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UNIVERSAL FAMILY OF ABELIAN VARIETIES

ZIYANG GAO

Abstract. The André-Pink-Zannier conjecture predicts that a subvariety of a mixed Shimura
variety is weakly special if its intersection with the generalized Hecke orbit of a given point is
Zariski dense. It is part of the Zilber-Pink conjecture. In this paper we focus on the universal
family of principally polarized abelian varieties. We explain the moduli interpretation of the
André-Pink-Zannier conjecture in this case and prove several different cases for this conjecture:
its overlap with the André-Oort conjecture; when the subvariety is contained in an abelian
scheme over a curve and the point is a torsion point on its fiber; when the subvariety is a curve.
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1. Introduction

Consider [π] : Ag(N)→ Ag(N), the universal family of principally polarized abelian varieties
of dimension g with level-N -structure over a fine moduli space. For simplicity we drop the
“(N)” in the notation. The variety Ag is an example of a mixed Shimura variety which is not
pure. For general theory of mixed Shimura varieties, we refer to [24]. An interesting Diophantine
problem related to mixed Shimura varieties is the Zilber-Pink conjecture, which concerns unlikely
intersections in mixed Shimura varieties. In order to study this conjecture, Pink defined in [25,
Definition 4.1] weakly special subvarieties of mixed Shimura varieties. In §3, we shall discuss
weakly special subvarieties of Ag. In particular we dispose of the following geometric description
for weakly special subvarieties of Ag: let Y be any irreducible subvariety of Ag, it is then a
subvariety of [π]−1([π]Y ) with the latter being an abelian scheme over [π]Y , whose isotrivial
part we denote by C. Then we have (for proof see §3.2)
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Proposition 1.1. An irreducible subvariety Y of Ag is weakly special iff the following holdspo-
larized:

(1) [π]Y is a totally geodesic subvariety of Ag;
(2) Y is the translate of an abelian subscheme of [π]−1([π]Y ) (over [π]Y ) by a torsion section

and then by a constant section of C → [π]Y .

Moreover, this holds for any connected Shimura variety of Kuga type S (i.e. mixed Shimura
varieties with trivial weight −2 part), in which case the “Ag” in (1) should be replaced by the
pure part of S. See the forthcoming dissertation [6, Section 2.2].

Let us define constant sections of C → [π]Y . By definition of isotriviality, there exists a finite
cover B′ → B such that C ×[π]Y B′ ' Cb0 × B′ for any b0 ∈ [π]Y . A constant section of
C → [π]Y is then defined to be the image of the graph of a constant morphism B′ → Cb0 in
C ×[π]Y B

′ under the projection C ×[π]Y B
′ → C.

A very important case of the Zilber-Pink conjecture is the André-Oort conjecture, which for Ag
is equivalent to the following statement: if a subvariety Y of Ag contains a Zariski dense subset
of special points (i.e. points of Ag corresponding to torsion points of CM abelian varieties), then
Y is a weakly special subvariety of Ag. By previous work of Pila-Tsimerman [23] and Gao [5],
the only obstacle to prove the André-Oort conjecture for Ag (or more generally, for any mixed
Shimura variety of abelian type) is the lower bound for the Galois-orbits of special points.

The goal of this article is to study another important case of the Zilber-Pink conjecture, which
we call the André-Pink-Zannier conjecture:

Conjecture 1.2. Let Y be a subvariety of Ag. Let s ∈ Ag and Σ be the generalized Hecke orbit

of s. If Y ∩ Σ
Zar

= Y , then Y is weakly special.

Several cases of this conjecture had been studied by André before its final form was made by
Pink [25, Conjecture 1.6]. It is also closely related to a problem (Conjecture 1.4) proposed by
Zannier. Pink has also proved [25, Theorem 5.4] that Conjecture 1.2 implies the Mordell-Lang
conjecture.

Conjecture 1.2 for Ag, the pure part of Ag, has been intensively studied by Orr in [19, 18],
generalizing the previous work of Habegger-Pila [8, Theorem 3] in the Pila-Zannier method.
This paper is based on the work of Orr [19, 18] and the author’s previous work on the mixed
André-Oort conjecture [5].

The set Σ has good moduli interpretation: by Corollary 4.5,
(1.1)
Σ = division points of the polarized isogeny orbit of s

= {t ∈ Ag| ∃n ∈ N and a polarized isogeny f : (Ag,[π]s, λ[π]s)→ (Ag,[π]t, λ[π]t) such that nt = f(s)}.

There are authors who consider isogenies instead of polarized isogenies. However this does
not essentially improve the result because of Zarhin’s trick (see [18, Proposition 4.4]): for any
isogeny f : A → A′ between polarized abelian varieties, there exists u ∈ End(A4) such that
f4 ◦ u : A4 → A′4 is a polarized isogeny. See §8 for more details.

Although Conjecture 1.2 and the André-Oort conjecture do not imply each other, they do
have some overlap. The overlap of these two conjectures is the same statement of Conjecture 1.2
with Σ replaced by the set of points of Ag corresponding to torsion points of CM abelian varieties
admitting a polarized isogeny to a given principally polarized CM abelian variety. A main result
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of this paper is to prove this overlap, partially generalizing existing result of Edixhoven-Yafaev
[30, 4] and Klingler-Ullmo-Yafaev [10, 29] for pure Shimura varieties (see Theorem 1.5.(2)).

We shall divide Conjecture 1.2 into two cases: when s is a torsion point of Ag,[π]s and when
s is not a torsion point of Ag,[π]s. The diophantine estimates for both cases are not quite the
same.

1.1. The torsion case. When s is a torsion point of Ag,[π]s, this conjecture is related to a
special-point problem proposed by Zannier. We define the following “special topology” proposed
by Zannier:

Definition 1.3. Fix a point a ∈ Ag. Then a corresponds to a principally polarized abelian
variety (Aa, λa) of dimension g.

(1) We say that a point t ∈ Ag is Aa-special (or a-special) if there exists an isogeny
Aa → Ag,[π]t and that t is a torsion point on the abelian variety Ag,[π]t. We shall denote
by Σ′a (or Σ′ when there is no confusion) the set of a-special points.

(2) We say that a point t ∈ Ag is (Aa, λa)- special if there exists a polarized isogeny
(Aa, λa) → (Ag,[π]t, λ[π]t) and that t is a torsion point on the abelian variety Ag,[π]t.
We shall denote by Σa (or Σ when there is no confusion) the set of a-strongly special
points.

(3) We say that a subvariety Z of Ag is a-special if Z contains an a-special point, [π]Z is
a totally geodesic subvariety of Ag and Z is an irreducible component of a subgroup of
[π]−1([π]Z).

In view of Proposition 1.1, every a-(strongly) special subvariety is weakly special. The fol-
lowing conjecture is proposed by Zannier.

Conjecture 1.4. Let Y be a subvariety of Ag and let a ∈ Ag. If Y ∩ Σ′a
Zar

= Y , then Y is
a-special.

By (1.1), Conjecture 1.2 when s is a torsion point of Ag,[π]s is equivalently to a weaker version
of Conjecture 1.4, i.e. replace Σ′a by Σa in Conjecture 1.4. However by [18, Proposition 4.4],
Conjecture 1.2 for A4g also implies Conjecture 1.4 for Ag. Our first main result is:

Theorem 1.5. Conjecture 1.4 holds if one of the following conditions holds:

(1) either dim([π](Y )) 6 1;
(2) or the point a is a special point of Ag (which is the overlap of Conjecture 1.2 and the

André-Oort conjecture for Ag).

The proof of this theorem will be presented in §5 and §6. Remark that by Corollary 4.6, the
case where dim([π]Y ) = 0 (i.e. [π](Y ) is a point) is nothing but the Manin-Mumford conjecture,
which is proved by many people (the first proof was given by Raynaud). On the other hand,
with a similar proof, Theorem 1.5.(2) holds for more general cases (more details will be given
in the forthcoming dissertation [6, Theorem 14.2]). In this paper we only present the proof for
the case Ag.

1.2. The non-torsion case. The situation becomes more complicated when s is not a torsion
point of Ag,[π]s. In this case we prove (in §7):

Theorem 1.6. Conjecture 1.2 holds if Y is a curve.
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Structure of the paper. In §2 we define the universal family of abelian varieties in the lan-
guage of mixed Shimura varieties of Pink [24]. In §3 we discuss weakly special subvarieties of
Ag. In particular we prove Proposition 1.1 and recall the Ax-Lindemann theorem in this section.
Then we shall lay the base of the study for Conjecture 1.2 in §4, where matrix expressions of
polarized isogenies are given and generalized Hecke orbits are computed. After these prelimi-
naries, we will start proving Theorem 1.5 and Theorem 1.6. The proof of Theorem 1.5 will be
executed in §5 and §6, with the former section devoted to the Diophantine estimate and the
latter section devoted to the rest of the proof. In §7 the proof for Theorem 1.6 will be presented.
In the last section §8, we discuss the following situation: replace the subset Σ (which is (1.1)) in
Conjecture 1.2 by the isogeny orbit of a finitely generated subgroup of one fiber. We will prove
that although this change a priori seems to generalize Conjecture 1.2, it can in fact be implied
by Conjecture 1.2. For more details see Corollary 8.2.

Achknowledgements. I am grateful to my supervisor Emmanuel Ullmo for regular discussions
during the preparation of this paper. I would like to thank Martin Orr a lot for answering my
questions related to his previous work [18, 19]. I would like to thank Nicolas Ratazzi for pointing
out the paper of David [3] to me. This article was merged into my PhD thesis [6]. I would like to
thank Yves André, Bas Edixhoven and Bruno Klingler for their careful reading and suggestions
to improve the presentation of the paper. I would also like to thank Daniel Bertrand, Marc
Hindry and David Holmes for relevant discussion. Finally I would like to thank the referee for
their reading of the manuscript and their helpful comments.

2. Universal family of abelian varieties

Let S := ResC/RGm,C. Let g ∈ N>0. Let V2g be a Q-vector space of dimension 2g and let

(2.1) Ψ: V2g × V2g → U2g := Ga,Q

be a non-degenerate alternating form. Define

GSp2g := {g ∈ GL(V2g)|Ψ(gv, gv′) = ν(g)Ψ(v, v′) for some ν(g) ∈ Gm},

and H+
g the set of all homomorphisms

S→ GSp2g,R

which induce a pure Hodge structure of type {(−1, 0), (0,−1)} on V2g and for which Ψ defines
a polarization. The action of GSp2g(R)+ on H+

g is given by the conjugation, i.e. for any

h ∈ GSp2g(R)+ and any x ∈ H+
g , h · x is the morphism

h · x : S→ GSp2g,R

y 7→ hx(y)h−1

It is well known that H+
g can be identified with the Siegel upper half space (of genus g)

{Z = X +
√
−1Y ∈Mg×g(C)| Z = Zt, Y > 0}

and the action of GSp2g(R)+ on H+
g is given by(

A B
C D

)
Z := (AZ +B)(CZ +D)−1.
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The action of GSp2g on V2g induces a Hodge structure of type {(−1, 0), (0,−1)} on V2g. Let

X+
2g,a := V2g(R) oH+

g ⊂ Hom(S, V2g,R o GSp2g,R)

denote the conjugacy class under (V2g o GSp2g)(R)+ generated by H+
g (recall that every point

of H+
g gives rise to a homomorphism S→ GSp2g,R ⊂ V2g,R oGSp2g,R). The notion V2g(R)oH+

g

is justified by the natural bijection

(2.2) V2g(R)×H+
g
∼−→ V2g(R) oH+

g , (v′, x) 7→ int(v′) ◦ x.

Under this bijection the action of (v, h) ∈ (V2g o GSp2g)(R)+ is given by (v, h) · (v′, x) :=
(v + hv′, hx).

Denote by (P2g,a,X+
2g,a) := (V2g o GSp2g, V2g(R) × H+

g ). This is a connected mixed Shimura

datum ([24, 2.25]). There is a natural morphism

π : (P2g,a,X+
2g,a)→ (GSp2g,H+

g )

induced by P2g,a = V2g o GSp2g → GSp2g.
Let ΓV (N) := NV (Z) and ΓG(N) := {h ∈ GSp2g(Z)|h ≡ 1 (mod N)} for any integer N > 3.

Define Γ(N) := ΓV (N) o ΓG(N), then it is a neat subgroup of P2g(Q)+. Define

Ag(N) := Γ(N)\X+
2g,a

and

Ag(N) := ΓG(N)\H+
g .

Then Ag(N) is a connected mixed Shimura variety and Ag(N) is a connected pure Shimura
variety. The morphism π induces a Shimura morphism

(2.3) [π] : Ag(N)→ Ag(N).

Theorem 2.1. (1) The morphism (2.3) is the universal family of principally polarized abelian
varieties of dimension g over the fine moduli space Ag(N).

(2) Both Ag(N) and Ag(N) are both defined over Q.
(3) Let F := [0, N)2g × FG ⊂ V2g(R) × H+

g ' X+
2g,a, where FG is a fundamental Siegel set

for the action of ΓG(N) on H+
g . Then F is a fundamental set for the action of Γ(N) on

X+
2g,a such that unif|F is definable in the o-minimal theory Ran,exp.

Proof. See [24, 10.5, 10.9, 10.10, 11.16] for (1) and (2). (3) is the main result of [20] (see [5,
Remark 4.4]). �

Let N > 3 be even. Pink has also constructed an ample Gm-torsor over Ag(N) in terms of
mixed Shimura varieties in [24]. In our purpose we only need:

Theorem 2.2. There exists a Gm-torsor Lg(N) → Ag(N), which is totally symmetric and
relatively ample with respect to Ag(N)→ Ag(N). Furthermore, any point a ∈ Ag(N) corresponds
to the principally polarized abelian variety (Ag(N)a,Lg(N)a) with some level-N -structure.

Proof. See [24, 2.25, 3.21, 10.5, 10.10]. �

Notation 2.3. In the rest of the paper, we shall always take N to be even and larger than 3.
Furthurmoer we write Ag, Ag and Lg for Ag(N), Ag(N) and Lg(N) for simplicity.
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3. Weakly special subvarieties of Ag

In this section, we discuss weakly special subvarieties of Ag (or more generally, of mixed
Shimura varieties of Kuga type).

3.1. The following definition is not exactly the original one given by Pink [25, Definition 4.1(b)],
but it is not hard to verify their equivalence (see [25, Proposition 4.4(a)] and [5, Proposition 5.7]):

Definition 3.1. A subvariety Y of Ag is called weakly special if there exist a connected mixed
Shimura subdatum (Q,Y+) of (P2g,a,X+

2g,a), a connected normal subgroup N of Q possessing no

non-trivial torus quotient and a point ỹ ∈ Y+ such that Y = unif(N(R)+ỹ).

Remark 3.2. (1) Weakly special subvarieties of Ag defined as above are automatically irre-
ducible ([5, Remark 5.3]).

(2) For an arbitrary connected mixed Shimura variety S of Kuga type, its weakly special
subvarieties are defined in the same way with (P2g,a,X+

2g,a) replaced by the connected
mixed Shimura datum associated with S. For more general connected mixed Shimura
varieties, the “N(R)+” in the definition should be replaced by “N(R)+UN (C)” where UN
is the so-called weight −2 part of N . We shall not go into details on this.

3.2. The goal of this subsection is to prove Proposition 1.1. Recall that P2g,a is defined to
be V2g o GSp2g with the natural representation of GSp2g on V2g. Therefore this induces the

zero-section ε : (GSp2g,H+
g ) ↪→ (P2g,a,X+

2g,a) of π. Remark that ε corresponds to the zero-section

of [π] : Ag → Ag.

Proposition 3.3. Let B be an irreducible subvariety of Ag and X := [π]−1(B). Define C to be
the isotrivial part of X → B, i.e. the largest isotrivial abelian subscheme of X over B. Then

{translates of an abelian subscheme of X → B by a torsion section and then

by a constant section of C → B} = {X ∩ E| E weakly special in Ag}.

The constant sections of C → B are defined as follows: By definition of isotriviality, there
exists a finite cover B′ → B such that C ×B B′ ' Cb0 ×B′ for any b0 ∈ B. A constant section
of C → B is then defined to be the image of the graph of a constant morphism B′ → Cb0 in
C ×B B′ under the projection C ×B B′ → C.

It is clear that Proposition 1.1 follows immediately from Proposition 3.3 and [15, 4.3].
The following proposition is not hard to prove using Levi decomposition [26, Theorem 2.3].

Another (partial) proof can be found in [12, Section 5.1].

Proposition 3.4. To give a Shimura subdatum (Q,Y+) of (P2g,a,X+
2g,a) is equivalent to giving:

• a pure Shimura subdatum (GQ,Y+
GQ

) of (GSp2g,H+
g );

• a GQ-submodule VQ of V2g (V2g is a GSp2g-module, and therefore a GQ-module);
• an element v0 ∈ (V2g/VQ)(Q).

Proof. We only give the constructions here.

(1) Given (Q,Y+) ⊂ (P2g,a,X+
2g,a), we have VQ := Ru(Q) < Ru(P2g,a) = V2g. Therefore the

inclusion (Q,Y+) ⊂ (P2g,a,X+
2g,a) induces

(GQ,Y+
GQ

) := (Q,Y+)/VQ ⊂ (GSp2g,H+
g ) = (P2g,a,X+

2g,a)/V2g.
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The fact that VQ is a GQ-submodule of V2g is clear. Now it suffices to find v0 ∈
(V2g/VQ)(Q).

Consider the group Q\ := (V2g/VQ) oGQ, where the action is induced by the natural

one of GQ on V2g. By definition, Q\ = π−1(GQ)/VQ. Now the inclusion (Q,Y+) ⊂
(P2g,a,X+

2g,a) also induces an inclusion (which we call i′)

GQ = Q/VQ ⊂ π−1(GQ)/VQ = Q\.

We have the following diagram, whose solide arrows commute:

1 - 1 - GQ
=- GQ - 1

1 - V2g/VQ

?
- Q\

i′

?
-

sQ
�

GQ
?

- 1

where sQ is the homomorphism GQ = {0}oGQ < (V2g/VQ)oGQ = Q\. Now i′ and sQ
are two Levi-decompositions for Q\. By [26, Theorem 2.3], sQ equals the conjugation of
i′ by an element v0 ∈ (V2g/VQ)(Q). Moreover, the choice of v0 is unique.

(2) Conversely, given the three data as in the Proposition, the underlying group Q is the
conjugate of VQ o GQ < V2g o GSp2g (compatible Levi-decompositions) by (v0, 1) in
P2g,a. The space

Y+ =
(
v0 + VQ(R)

)
× Y+

GQ
⊂ V2g(R)×H+

g ' X+
2g,a

where v0 is any lift of v0 to V2g(Q).

�

Proposition 3.5. A subvariety Y of Ag is weakly special iff there exist

• a pure Shimura subdatum (GQ,Y+
GQ

) of (GSp2g,H+
g );

• a point v0 ∈ V2g(Q);
• a normal semi-simple connected subgroup GN of GQ and a point ỹG ∈ Y+

GQ
;

• a GQ-submodule VN of V2g;

• a GQ-submodule V ⊥N of V2g on which GN acts trivially, and a point v ∈ V ⊥N (R)

such that

Y = unif
((
v0 + v + VN (R)

)
×GN (R)+ỹG

)
.

Here
(
v0 + v + VN (R)

)
×GN (R)+ỹG ⊂ V2g(R)×H+

g ' X+
2g,a.

Proof. (1) Given a weakly special subvariety Y of Ag, let (Q,Y+), N and ỹ be as in Defini-
tion 3.1. By Proposition 3.4, (Q,Y+) corresponds to a Shimura subdatum (GQ,Y+

GQ
) of

(GSp2g,H+
g ), a GQ-submodule VQ of V2g and a point v0 ∈ (V2g/VQ)(Q). Let v0 be any

lift of v0 to V2g(Q). Let GN := N/(VQ ∩N), then GN is a connected normal subgroup
of GQ, and hence is reductive. Since N possesses no non-trivial torus quotient, GN is
semi-simple. Let ỹG := π(ỹ).

Let VN := VQ ∩N , then VN is a GQ-submodule of VQ since N is normal in Q. By [5,

Corollary 2.14], there exists a GQ-submodule V ⊥N of VQ such that VQ = VN ⊕ V ⊥N and



8 ZIYANG GAO

GN acts trivially on V ⊥N . Write ỹ = (ỹV , ỹG) ∈ (v0 + VQ(R))× Y+
GQ

= Y+ ⊂ X+
2g,a (here

we use the second part of the proof of Proposition 3.4).
To simplify the computation below, we introduce a new Shimura subdatum (Q′,Y ′)

of (P2g,a,X+
2g,a): (Q′,Y ′) is defined to be the conjugate of (Q,Y+) by (−v0, 1). By the

second part of the proof of Proposition 3.4, (Q′,Y ′) = (VQ o GQ, VQ(R) × Y+
GQ

) ⊂
(V2g o GSp2g,X+

2g,a). Let N ′ := VN oGN < V2g o GSp2g, then N ′ is the conjugate of N

by (−v0, 1). Let ỹ′ := (ỹV − v0, ỹG) ∈ Y ′+.
Let v be the V ⊥N (R)-factor of ỹV . Then since GN acts trivially on V ⊥N , we have

N ′(R)+ỹ′ =
(
v + VN (R)

)
×GN (R)+ỹG ⊂ Y ′+.

Hence N(R)+ỹ =
(
v0 + v + VN (R)

)
×GN (R)+ỹG. Now the conclusion follows.

(2) Conversely given all these data, let the Shimura subdatum (Q,Y+) be the one obtained
from (GQ,Y+

GQ
), VN ⊕V ⊥N and v0 by Proposition 3.4. Let N be the subgroup of Q which

is defined to be VN oGN conjugated by (v0, 1) in P2g,a. Then since GN acts trivially on

V ⊥N , N CQ. Let ỹ := (v0 + v, ỹG). Now we have(
v0 + v + VN (R)

)
×GN (R)+ỹG = N(R)+ỹ.

The group N is by definition connected and possessing no non-trivial torus quotient
since GN is semi-simple. Hence Y is weakly special by definition.

�

Now we can prove Proposition 3.3:

Proof of Proposition 3.3. (1) Prove “⊃”. For this it suffices to prove:
For any weakly special subvariety Y of Ag, Y is the translate of an abelian subscheme

of [π]−1([π]Y ) (over [π]Y ) by a torsion section and then by a section of the isotrivial
part of [π]−1[π]Y → [π]Y .

Let Y be a weakly special subvariety of Ag. Then associated to Y there are data as
in Proposition 3.5 and

Y = unif
((
v0 + v + VN (R)

)
×GN (R)+ỹG

)
.

Let B′ := [π]Y and X ′ := [π]−1(B′).
Now X ′ → B′ is an abelian scheme. Since VN is a GQ-submodule of V2g, unif

(
VN (R)×

GN (R)+ỹG
)

is an abelian subscheme of X ′ over B′. Therefore,

unif
((
v0 + VN (R)

)
×GN (R)+ỹG

)
is the translate of B′ by a torsion section of X ′ → B′. But v ∈ V ⊥N (R) and GN acts

trivially on V ⊥N , so unif
(
V ⊥N (R) × GN (R)+ỹG

)
is an isotrivial abelian scheme over B′.

Therefore Y is the translate of an abelian subscheme of X ′ → B′ by a torsion section
and then by a section of the isotrivial part of X ′ → B′.

(2) Prove “⊂”. Let Y be a subvariety of X such that Y is the translate of an abelian
subscheme of X → B translated by a torsion section and then by a section of C → B,
where C → B is the isotrivial part of X → B. Let us find a weakly special subvariety E
of Ag associated with the data in Proposition 3.5 such that Y = E ∩X.
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Let B′ be the smallest weakly special subvariety of Ag containing B. Then by defini-
tion there exist a Shimura subdatum (GQ,Y+

GQ
), a connected semi-simple normal sub-

group GN of GQ and a point ỹG ∈ Y+
GQ

such that B′ = unifG
(
GN (R)+ỹG

)
. Moreover by

[15, 3.6, 3.7], GN is the connected algebraic monodromy group of (B′)sm, i.e. the neutral
component of the Zariski closure of ΓB′sm :=the image of π1((B′)sm)→ π1(Ag) = ΓG.

Let X ′ := [π]−1(B′). Then the isotrivial part C′ of X ′ → B′ is

unif
(
V ′(R)×GN (R)+ỹG

)
,

where V ′ is the largest GQ-submodule of V2g on which GN acts trivially. This V ′ is the

V ⊥N we want in Proposition 3.5.
A key step is to prove that as subvarieties of Ag, we have

(3.1) C = C′ ∩X
It is clear that C′ ∩ X ⊂ C. For the other inclusion, suppose that C is defined by the

GQ-submodule V ′′ of V2g (i.e. C = unif(V ′′(R) × B̃) for B̃ := unif−1
G (B)), then ΓB′sm

acts trivially on V ′′. However the action of G on V2g is algebraic, therefore ΓB′sm
Zar

acts
trivially on V ′′. So GN acts trivially on V ′′. By the maximality of V ′, V ′′ ⊂ V ′. So
C ⊂ C′. Now (3.1) follows.

Now since Y is the translate of an abelian subscheme by a torsion section and then
by a section of C → B, there exists, by (3.1), a GQ-submodule VN of V2g such that

Y = unif
((
v0 + v + VN (R)

)
× B̃

)
where v0 ∈ V2g(Q) corresponds to the torsion section and v ∈ V ′(R) corresponds to the
section of C → B. In other words,

Y = E ∩X, where E = unif
((
v0 + v + VN (R)

)
×GN (R)+ỹG

)
and E is the weakly special subvariety of Ag we desire.

�

3.3. Ax-Lindemann. In this subsection, we summarize some results regarding the mixed Ax-
Lindemann theorem. All the results stated in this subsection hold for arbitrary connected mixed
Shimura varieties, and in particular for Ag.

In this subsection, let S be a connected mixed Shimura variety associated with (P,X+) and
let unif : X+ → S be the uniformization. An example for this is Ag and (P2g,a,X+

2g,a). As is

explained in [5, Proposition 4.1], there exists a complex algebraic variety X∨, which is the total
space of a holomorphic vector bundle (of rank g in the case of (P2g,a,X+

2g,a)) over a complex

projective variety, such that X+ ↪→ X∨ makes X+ a semi-algebraic1 and open (in the usual
topology) subset of X∨.

Definition 3.6. Let Ỹ be an analytic subvariety of X+, then

(1) Ỹ is called an irreducible algebraic subset of X+ if it is an analytically irreducible com-
ponent of the intersection of its Zariski closure in X∨ and X+;

1For any positive integer N , a semi-algebraic set of RN is a subset defined by a finite sequence of R-polynomial
equations and inequalities, or any finite union of such sets.
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(2) Ỹ is called algebraic if it is a finite union of irreducible algebraic subsets of X+.

The following Ax-Lindemann theorem is due to Gao [5]:

Theorem 3.7. Let Z̃ be a semi-algebraic subset of X+. Then any irreducible component of

unif(Z̃)
Zar

is a weakly special subvariety of S.

Proof. (see the forthcoming thesis [6, Theorem 7.4]) Recall that a connected semi-algebraic
subset of X+ is called irreducible if its R-Zariski closure in X∨ is an irreducible real algebraic
variety. Note that any semi-algebraic subset of X+ has only finitely many connected irreducible

components. Let Z̃ ′ be any connected irreducible component of Z̃. It suffices to prove that

every irreducible component of unif(Z̃)′
Zar

is weakly special.

Let Y := unif(Z̃ ′)
Zar

and let W̃ be a connected irreducible semi-algebraic subset of X+ which

contains Z̃ ′ and is contained in unif−1(Y ), maximal for these properties. Then

Y = unif(W̃ )
Zar

.

Now [22, Lemma 4.1] claims that W̃ is algebraic in the sense of Definition 3.6. Then any

complex analytic irreducible component W̃ ′ of W̃ is an irreducible algebraic subset of X+ which
is contained in unif−1(Y ), maximal for these properties. But then [5, Theorem 1.2] tells us that

unif(W̃ ′) is a weakly special subvariety of S, and in particular a closed irreducible algebraic

subvariety of S. Now Y is the Zariski closure of unif(W̃ ′) for W̃ ′ running over the complex

analytic irreducible components of W̃ . Hence any irreducible component of Y equals unif(W̃ ′)

for some W̃ ′, and hence is a weakly special subvariety of S. �

4. Generalized Hecke orbit

In this section, we discuss the matrix expression of a polarized isogeny and then compute the
generalized Hecke orbit of a point of Ag.

4.1. Polarized isogenies and their matrix expressions. Let b ∈ Ag. Denote by Ab = Ag,b
and denote by λb : Ab

∼−→ A∨b the principal polarization induced by Lg,b. Then the point b
corresponds to the polarized abelian variety (Ab, λb). Let B be a symplectic basis of H1(Ab,Z)

with respect to the polarization λb. Let b̃ ∈ H+
g be the period matrix of Ab with respect to the

basis B. In this subsection, we fix B to be the Q-basis of V2g.
Consider all points b′ ∈ Ag such that there exists a polarized isogeny

f : (Ab, λb)→ (Ab′ , λb′)

where (Ab′ , λb′) = (Ag,b′ , Ab′
∼−→ A∨b′ induced by Lg,b′). Let B′ be a symplectic basis of H1(Ab′ ,Z)

with respect to the polarization λb′ and let b̃′ ∈ H+
g be the period matrix of Ab′ with respect to

the basis B′.

Definition 4.1. The matrix α ∈ GSp2g(Q)+ ∩M2g×2g(Z) associated to

f∗ : H1(Ab,Z)→ H1(Ab′ ,Z)

in terms of B and B′ is called the rational representation of f with respect to B and B′.
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The periods b̃ and b̃′ are related by α in the following way:

b̃ = αt · b̃′ = (Ab̃′ +B)(Cb̃′ +D)−1, where αt =

(
A B
C D

)
and b̃, b̃′ ∈ H+

g ⊂Mg×g(C).

Under the Q-basis B of V2g, the matrix αt corresponds to the dual isogeny of f , i.e. the following
diagram commutes:

(4.1)

(X+
2g,a)

b̃′
αt·- (X+

2g,a)
b̃
, (v, b̃′) 7→

(
αtv, αtb̃′

)
=
(
αtv, b̃

)

Ab′

unif

?
Ab

unif

?

A∨b′

λb o
?

f∨ - A∨b

λb′ o
?

.

However, since f is a polarized isogeny, f∗Lg,b′ = L
⊗(deg f)1/g

g,b . So the following diagram
commutes:

(4.2)

Ab
f- Ab′

A∨b

[(deg f)1/g ]◦λb
?
� f∨

A∨b′

λb′ o
?
.

Therefore by (4.1) and (4.2), we get the following commutative diagram:

(4.3)

(X+
2g,a)

b̃

(deg f)1/g(αt)−1·- (X+
2g,a)

b̃′

Ab

unif

?
f - Ab′

unif

?
.

Definition 4.2. The matrix (deg f)1/g(αt)−1 is called the matrix expression of f in coordi-
nates B with respect to B′.

Remark 4.3. It is good to give the matrix (deg f)1/g(αt)−1 a name because we will use it several
times in the proof of Theorem 1.6. The name “matrix expression” is given by the author. Remark
that this definition only works for polarized isogenies because (4.2) fails for general non-polarized
isogenies.

4.2. Generalized Hecke orbit.

Lemma 4.4. Let ϕ ∈ Aut
(

(P2g,a,X+
2g,a)

)
. Then there exist g′ ∈ GSp2g(Q)+ and v0 ∈ V2g(Q)

such that the action of ϕ on X+
2g,a is given by

ϕ ((v, x)) = (g′v + v0, g
′x).

Proof. We have ϕ(V2g) = ϕ(Ru(P2g,a)) ⊂ Ru(P2g,a) = V2g. Since every two Levi decompositions
of P2g,a differs by the conjugation of an element v0 ∈ V2g(Q), there exists a v0 ∈ V2g(Q) such that
ψ := int(v0)−1 ◦ϕ maps (GSp2g,H+

g ) to itself. Now ψ maps V2g and (GSp2g,H+
g ) to themselves.
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So ψ can be written as (A,B), where A ∈ GL2g(Q) and B ∈ Aut
(
(GSp2g,H+

g )
)

= GSp2g(Q)+.
Remark that ψ ∈ Aut(P2g,a), so we can do the following computation:

For any v ∈ V2g(Q) and h ∈ GSp2g(Q)+,

(Ahv,BhB−1) = ψ((hv, h)) = ψ((0, h)(v, 1)) = ψ(0, h)ψ(v, 1)

= (0, BhB−1)(Av, 1) = (BhB−1Av,BhB−1).

Because v is an arbitrary element of V2g(Q), this implies that Ah = BhB−1A for any h ∈
GSp2g(Q)+. But this tells us that A−1B commutes with any element of GSp2g(Q)+, and hence

A−1B ∈ Gm(Q). So ψ acts on the group P2g,a as ψ((v, h)) = (cBv,BhB−1) where c ∈ Q∗ and
B ∈ GSp2g(Q)+. Therefore ψ acts on X+

2g,a as ψ((v, x)) = (cBv,Bx) = (cBv, cBx). Denote by

g′ := cB ∈ GSp2g(Q)+, then the action of ϕ on X+
2g,a is given by

ϕ ((v, x)) = (g′v + v0, g
′x).

�

Let s ∈ Ag, then [π]s ∈ Ag corresponds to a polarized abelian variety (Ag,[π]s, λ[π]s).

Corollary 4.5. Let s ∈ Ag. Then a point t is in the generalized Hecke orbit of s iff there exist
a polarized isogeny f : (Ag,[π]s, λ[π]s)→ (Ag,[π]t, λ[π]t) and n′ ∈ N such that f(s) = n′t.

Proof. Let (v, x) ∈ X+
2g,a (resp. (vt, xt) ∈ X+

2g,a) be such that s = unif ((v, x)) (resp. t =

unif ((vt, xt))). Then by Lemma 4.4, t is in the generalized Hecke orbit of s iff

(4.4) (vt, xt) = (g′v + v0, g
′x)

for some g′ ∈ GSp2g(Q)+ and v0 ∈ V2g(Q).

If (4.4) is satisfied, then there exists c ∈ Gm(Q) = Q∗ s.t h := c−1g′ ∈ GSp2g(Q)+ is a Z-
coefficient matrix. Hence h corresponds to a polarized isogeny f : (Ag,[π]s, λ[π]s)→ (Ag,[π]t, λ[π]t).
By (4.4), we have t = unif ((chv + v0, xt)), and therefore

n′t = m′f(s) + unif ((v0, xt))

where c = m′/n′. But unif ((v0, xt)) is a torsion point of Ag,[π]t since v0 ∈ V2g(Q), and therefore
can be removed by replacing m′ and n′ by sufficient large multiples. On the other hand m′f is
still a polarized isogeny, and hnce replacing f by m′f , we may assume m′ = 1. Finally we may
assume n′ ∈ N by possibly replacing f by −f .

On the other hand, suppose there exist a polarized isogeny f : (Ag,[π]s, λ[π]s)→ (Ag,[π]t, λ[π]t)
and n′ ∈ N such that f(s) = n′t. Let Bs (resp. Bt) be a symplectic basis of H1(Ag,[π]s,Z) (resp.
H1(Ag,[π]t,Z)) and let h be the matrix expression of f in coordiante Bs with respect to Bt. Then

h ∈ GSp2g(Q)+ and there exists (γV , γG) ∈ Γ such that

(n′vt, xt) = (γV , γG)(hv, hx) = (γV + γGhv, γGhx).

Now g′ := γGh/n
′ ∈ GSp2g(Q)+ and v0 := γV /n

′ ∈ V2g(Q) satisfy (4.4). �

Corollary 4.6. Let s ∈ Ag and t be a point in the generalized Hecke orbit of s. Let ft : (Ag,[π]s, λ[π]s)→
(Ag,[π]t, λ[π]t) be a polarized isogeny of minimal degree. Then there exist

• a point s0 ∈ Ag,[π]s;

• ϕ ∈ End
(
(Ag,[π]s, λ[π]s)

)
;
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• n0 ∈ N
such that s = n0s0 and

ft(ϕ(s0) + p) = t

for some torsion point p ∈ Ag,[π]s.

Proof. By Corollary 4.5, there exist a polarized isogeny f : (Ag,[π]s, λ[π]s) → (Ag,[π]t, λ[π]t) and

m′, n′ ∈ N such that p1 := m′f(s)−n′t is a torsion point of Ag,[π]t. Now f−1
t ◦f ∈ End

(
(Ag,[π]s, λ[π]s)

)
⊗

Q, i.e. there exist ϕ′ ∈ End
(
(Ag,[π]s, λ[π]s)

)
and n′0 ∈ N such that f−1

t ◦ f = ϕ′ ⊗ (1/n0). So
n′0 ◦ f = ft ◦ ϕ′ and hence

m′ft(ϕ
′(s)) = m′n′0f(s) = n′0(n′t+ p1) = n′0n

′t+ n0p1.

Let ϕ := m′ ◦ ϕ′ ∈ End
(
(Ag,[π]s, λ[π]s)

)
and n0 := n′0n

′ ∈ N, then there exists a torsion point
p2 ∈ Ag,[π]t such that

ft(ϕ(s)) = n0t+ p2.

Hence the conclusion follows. �

5. Diophantine estimate for the torsion case

5.1. Preliminary. In this subsection, we fix some definitions and notation used inminimal
degree the proof of Theorem 1.5.

Let a ∈ Ag. We use Σ instead of Σa to denote the set of all a-strongly special points of Ag.
Let unif : X+

2g,a → Ag be the uniformization map and let F be the fundamental set in X+
2g,a

defined as in Theorem 2.1.(3). Let

Ỹ := unif−1(Y ) ∩ F and Σ̃ := unif−1(Σ) ∩ F .
The point a ∈ Ag corresponds to the polarized abelian variety (Aa, λa) := (Ag,a, λa). Let B be a
symplectic basis for H1(Aa,Z) with respect to the polarization λa. Let ã be the period matrix
of Aa with respect to the chosen basis B. In the rest of the paper, we shall sometimes identify
ã ∈ H+

g and (0, ã) ∈ {0} ×H+
g ⊂ V2g(R)×H+

g ' X+
2g,a.

For any t ∈ Σ, there exists by definition of Σa a polarized isogeny (Aa, λa) → (Ag,[π]t, λ[π]t).
Besides, t is a torsion point of A[π]t := Ag,[π]t, whose order we denote by N(t).

Definition 5.1. For any t ∈ Σ, define its complexity to be

max
(
minimal degree of polarized isogenies (Aa, λa)→ (A[π]t, λ[π]t), N(t)

)
.

In addition, define the complexity of any point of Σ̃ to be the complexity of its image in Σ.

5.2. Application of Pila-Wilkie. The goal of this subsection is to prove the following propo-
sition:

Proposition 5.2. Let Y , ã be as in the last subsection. Let ε > 0. There exists a constant
c = c(Y, ã, ε) > 0 with the following property:

For every n > 1, there exist at most cnε definable blocks Bi ⊂ Ỹ such that ∪Bi contains all

points of complexity at most n in Ỹ ∩ Σ̃.

Lemma 5.3. There exist constants c′, κ depending only on g and ã such that

For any t̃ ∈ Ỹ ∩ Σ̃ of complexity n, there exists a (v, h) ∈ P2g(Q)+ such that (v, h)ã = t̃ and
H((v, h)) 6 c′nκ.
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Proof. Let t = unif(t̃). By [19, Proposition 4.1], there exist

• a polarized isogeny f : Ag,[π]t → Aa;
• a symplectic basis B′ for H1(Ag,[π]t,Z) with respect to the polarization λ[π]t

such that the rational representation h1 of f with respect to the chosen bases satisfies that
H(h1) is polynomially bounded in deg(f).

But unifG(ht1ã) = [π]t by (4.3). Hence there exists a h2 ∈ ΓG such that h2h
t
1ã = π(t̃) ∈ FG.

By [22, Lemma 3.2], H(h2) is polynomially bounded in the norm of ht1 · ã.

Now define h := h2h
t
1. We have then hã = π(t̃) and

H(h) 6 c0 deg(f)κ0

where c0 > 0 and κ0 > 0 depend only on g and ã.
Next write t̃ = (t̃V , π(t̃)) ∈ F . Let v := t̃V , then v ∈ V2g(Q) since t is a torsion point of

Ag,[π]t. Besides, the denominator of v is precisely the order of the torsion point t. But by choice,

F ' [0, N)2g × FG ⊂ V2g(R) × H+
g ' X+

2g,a (see Theorem 2.1.(3)). Therefore up to a constant

depending on nothing, H(v) is bounded by its denominator, i.e. the order of the torsion point
t of Ag,[π]t.

To sum it up, (v, h) is the element of P2g(Q)+ which we dezire. �

Now we can prove Proposition 5.2 with the help of Lemma 5.3.

Proof of Proposition 5.2. Let

σ : P2g(R)+ → X+
2g,a

(v, h) 7→ (v, h)ã

The set R := σ−1(Ỹ ) = σ−1(unif−1(Y ) ∩ F) is definable because σ is semi-algebraic and
unif|F is definable. Hence we can apply the family version of the Pila-Wilkie theorem ([21, 3.6])
to the definable set R: for every ε > 0, there are only finitely many definable block families
B(j)(ε) ⊂ R × Rm and a constant C1(R, ε) such that for every T > 1, the rational points of R
of height at most T are contained in the union of at most C1T

ε definable blocks Bi(T, ε), taken

(as fibers) from the families B(j)(ε). Since σ is semi-algebraic, the image under σ of a definable

block in R is a finite union of definable blocks in Ỹ . Furthermore the number of blocks in the
image is uniformly bounded in each definable block family B(j)(ε). Hence σ(Bi(T, ε)) is the

union of at most C2T
ε blocks in Ỹ , for some new constant C2(Y, ã, ε) > 0.

By Lemma 5.3, for any point t̃ ∈ Ỹ ∩ Σ̃ of complexity n, there exists a rational element γ ∈ R
such that σ(γ) = t̃ and H(γ) 6 c′nκ. By the discussion in the last paragraph, all such γ’s are

contained in the union of at most C1(c′nκ)ε definable blocks. Therefore all points of Ỹ ∩ Σ̃ of

complexity n are contained in the union of at most C1C2c
′εnκε blocks in Ỹ . �

5.3. Galois orbit. In this section we shall deal with the Galois orbit. We handle the case
of Q-points at first and then use the standard specialization argument to prove the result for
general points of Σ ∩ Y .

Proposition 5.4. Suppose a ∈ Ag(Q). There exist positive constants c′1 = c′1(g), c′2 =
c′2(g, k(a)) and c′3 = c′3(g) satisfying the following property:
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For any point t ∈ Σ ∩ Y ∩ Ag(Q) of complexity n,

[k(t) : Q] > c′1
nc
′
2

hF (Aa)c
′
3

where k(t) is the definition field of t.

Proof. Define (as Gaudron-Rémond [7])

κ(Ag,[π]t) := ((14g)64g2 [k([π]t) : Q] max(hF (Ag,[π]t), log[k([π]t) : Q], 1)2)1024g3 .

Take a point t ∈ Σ ∩ Y ∩ Ag(Q) of complexity n. Denote by k([π]t)) the definition field of [π]t.
Denote by N(t) the order of t as a torsion point of A[π]t := Ag,[π]t. There are two cases.

Case i n = minimal degree of polarized isogenies (Aa, λa) → (A[π]t, λ[π]t). Then by [7,
Théorème 1.4] and [18, Theorem 5.6],

n 6 κ(Ag,[π]t).

On the other hand, by a result of Faltings [2, Chapter II, §4, Lemma 5],

hF (Ag,[π]t) 6 hF (Aa) + (1/2) log n.

Now the conclusion for this case follows from the two inequalities above and the easy fact
[k(t) : Q] > [k([π]t) : Q].

Case ii n = N(t). By [7, Théorème 1.2], there exist positive natural numbers l, simple
abelian varieties A1,...,Al over a finite extension k′ of k([π]t) (Ai and Aj can be isogenous to

each other over Q for i 6= j) and an isogeny

(5.1) ϕ : Ag,[π]t →
l∏

i=1

Ai

such that ϕ is defined over k′, degϕ 6 κ(Ag,[π]t) and [k′ : k([π]t)] 6 κ(Ag,[π]t)
g. Call pi : A→ Ai

the composite of ϕ and the i-th projection
∏l
i=1Ai → Ai (∀i = 1, ..., l).

Now t ∈ A is a torsion point of order Ag,[π]t. Without any loss of generality we have

N(p1(t)) > N(pi(t))

where N(pi(t)) is the order of pi(t) as a torsion point of Ai.

Lemma 5.5.

N(t) 6 κ(Ag,[π]t)N(p1(t))g and [k(t) : Q] > [k(p1(t)) : Q]/κ(Ag,[π]t)
2g.

where k(p1(t)) is the definition field of p1(t).

Proof. Denote by N(ϕ(t)) the order of ϕ(t) as a torsion point of
∏l
i=1Ai. It is clear that

N(ϕ(t)) > N(t)/ degϕ > N(t)/κ(Ag,[π]t).

On the other hand, N(ϕ(t)) = lcd(N(p1(t)), ..., N(pl(t))) 6 N(p1(t))g. Now the first inequality
follows.

For the second inequality, first of all since ϕ and
∏l
i=1Ai are both defined over k′, we have

[k(ϕ(t)) : Q] 6 [k(t)k′ : Q] = [k(t) : Q][k(t)k′ : k(t)] 6 [k(t) : Q][k′ : k] 6 [k(t) : Q]κ(Ag,[π]t)
g.
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Next since all abelian varieties A1,...,Al are defined over k′, we have then

[k(ϕ(t))k′ : Q] > [k(p1(t)) : Q].

But

[k(ϕ(t))k′ : Q] = [k(ϕ(t))k′ : k′][k′ : k][k : Q]

6 [k(ϕ(t)) : k][k′ : k][k : Q]

= [k(ϕ(t)) : Q][k′ : k]

6 [k(ϕ(t)) : Q]κ(Ag,[π]t)
g.

Now the second inequality follows from the three inequalities above. �

By [3, Corollaire 1.5],

(5.2) [k(p1(t)) : Q] > c′0(g)
N(p1(t))1/(2g)

logN(p1(t))(hF (A1) + logN(p1(t)))
.

By the comment below [7, Corollaire 1.5], we may assume

(5.3) hF (A1) 6 hF (Ag,[π]t) +
1

2
log κ(Ag,[π]t).

By assumption of this case, there exists an isogeny Aa → Ag,[π]t of degree 6 n. So by Faltings
[2, Chapter II, §4, Lemma 5],

(5.4) hF (Ag,[π]t) 6 hF (Aa) + (1/2) log n.

Now because [k(t) : Q] > [k([π]t) : Q], the conclusion of Case ii now follows from Lemma 5.5,
(5.2), (5.3) and (5.4). �

Corollary 5.6. Suppose a is defined over a finitely generated field k. There exist positive
constants c1 = c1(Aa, k) and c2 = c2(Aa, k) satisfying the following property:

For any point t ∈ Σ ∩ Y of complexity n defined over a finitely extension k(t) of k,

[k(t) : k] > c1n
c2 .

Proof. This follows from Proposition 5.4 and a specialization argument. The case where n =
minimal degree of polarized isogenies (Aa, λa)→ (A[π]t, λ[π]t) is proved by Orr [19, Theorem 5.1]
(possibly combined with [18, Theorem 5.6]). The case where n = N(t), the order of t as a torsion
point of Ag,[π]t, follows from the standard specialization argument introduced by Raynaud (see
[19, Section 5] or [27, Section 7]). �

6. End of the proof in the torsion case

In this section, Y is always an irreducible subvariety of Ag, a ∈ Ag and Σ is the set of all
a-strongly special points of Ag.

Theorem 6.1. If Y ∩ Σ
Zar

= Y , then the union of all positive-dimensional weakly special sub-
varieties contained in Y is Zariski dense in Y .
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Proof. Let Σ1 be the set of points t ∈ Y ∩ Σ such that there is a positive-dimensional block

B ⊂ Ỹ with t ∈ unif(B). Let Y1 be the Zariski closure of Σ1. Let k be the finitely generated
field k(a). Enlarge k if necessary such that both Y and Y1 are defined over k.

Let t be a point in Y ∩Σ of complexity n. By Corollary 5.6, there exist positive constants c1

and c2 depending only on g, Aa and k such that

[k(t) : k] > c1n
c2/2.

But all Gal(k/k)-conjugates of t are contained in Y ∩ Σ and have complexity n. By Propo-

sition 5.2, the preimages in F of these points are contained in the union of c(Y, ã, c2/4)nc2/4

definable blocks, each of these blocks being contained in Ỹ .

For n large enough, c1n
c2/2 > cnc2/4. Hence for n� 0, there exists a definable block B ⊂ Ỹ

such that unif(B) contains at least two Galois conjugates of t, and therefore dimB > 0 since
blocks are connected. So being in unif(B), those conjugates of t are in Σ1. But Y1 is defined
over k, so t ∈ Y1.

In summary, all points of Y ∩ Σ of large enough complexity are in Σ1. This excludes only
finitely many points of Y ∩ Σ. So Y1 = Y .

Let Σ2 be the set of points t ∈ Y ∩ Σ such that there is a positive-dimensional connected

semi-algebraic set B′ ⊂ Ỹ with t ∈ unif(B′). Let Y2 be the Zariski closure of Σ2. By definition
of blocks, Σ2 = Σ1, and hence Y2 = Y1 = Y . But the Ax-Lindemann theorem (in the form of

Theorem 3.7) implies that the irreducible component Z of unif(B′)
Zar

containing t is weakly
special. Moreover dim(Z) > 0 since dim(B′) > 0. Therefore every point t ∈ Σ2 is contained in
some positive-dimensional weakly special subvariety of Ag. Now the conclusion follows. �

Proof of Theorem 1.5. Let S be the smallest connected mixed Shimura subvariety containing
Y . Assume S is associated with the connected mixed Shimura datum (P,X+). Let (G,X+

G ) :=
(P,X+)/Ru(P ). By Theorem 6.1 and [5, Theorem 12.2], such a non-trivial group N exists: N
is the maximal normal subgroup of P such that the followings hold:

• there exists a diagram of Shimura morphisms

(P,X+)
ρ- (P ′,X ′+) := (P,X+)/N

π′- (G′,X ′+G ) := (P ′,X ′+)/Ru(P ′)

S

unif

?
[ρ] - S′

unif′

?
[π′] - S′G

unif′G
?

(then S′ is by definition a connected Shimura variety of Kuga type)

• the union of positive-dimensional weakly special subvarieties which are contained in
Y ′ := [ρ](Y ) is not Zariski dense in Y ′;

• Y = [ρ]−1(Y ′).

(1) We prove the theorem by induction on g. When g = 1, the only non-trivial case is when
Y is a curve. But then Y must be weakly special by Theorem 6.1. Remark that this case
has also been proved by André [1, Lecture 4] when he proposed the mixed André-Oort
conjecture.
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When dim([π](Y )) = 0, this is the Manin-Mumford conjecture by Corollary 4.6. Hence
we only have to deal with the case dim([π](Y )) = 1. Remark that in this case [π](Y )
is weakly special by the main result of [19], and hence equals unifG (G′′(R)+ỹ) for some
G′′ < GSp2g of positive dimension and ỹ ∈ H+

g . Now there are two cases:
If dim([π′](Y ′)) = 0, then [π′](Y ′) is a point. In this case Y ′ is a subvariety of an

abelian variety. The hypothesis Y ∩ Σ = Y implies that Y ′ contains a Zariski dense
subset of torsion points. Therefore by the result of the Manin-Mumford conjecture, Y ′

is a special subvariety, i.e. the translate of an abelian subvariety by a torsion point.
But the union of positive-dimensional weakly special subvarieties which are contained
in Y ′ := [ρ](Y ) is not Zariski dense, so Y ′ is a point. Therefore Y is weakly special by
definition.

If dim([π′](Y ′)) = 1, then N/Ru(N) is trivial because the dimension of [π](Y ) =
unifG (G′′(R)+ỹ)) is 1. Therefore VN := Ru(N) < V2g is non-trivial since N is non-
trivial.

Denote for simplicity by B := [π′](Y ′) = unif ′G(G′′(R)+ρ(ỹ)) and X := [π′]−1(B).
Then X → B is a family of abelian varieties of dimension g′. We have g′ < g since
VN is non-trivial. Besides, X → B is non-isotrivial because otherwise G′′ acts trivially
on V2g/VN , and therefore G′′ C P ′. This contradicts the maximality of N . Hence there
exists, up to taking finite covers of X → B, a cartesian diagram

X
i- Ag′

B
?

iB- Ag′
?

such that both i and iB are finite. Apply induction hypothesis to i(Y ′) ⊂ Ag′ , we get that
i(Y ′) is weakly special. By the geometric interpretation of weakly special subvarieties
(Proposition 1.1), i−1(i(Y ′)) is irreducible. Therefore Y ′ = i−1(i(Y ′)) since they are of
the same dimension. So Y ′ is a weakly special subvariety of S′ (again by Proposition 1.1).
But then Y ′ must be a point by definition of Y ′. Hence Y is weakly special by definition.

(2) This part of the theorem is the intersection of the André-Oort conjecture and Con-
jecture 1.2. It holds in a more general situation (see the forthcoming thesis [6, Theo-
rem 4.3.2]). The proof, which requires more background knowledge about mixed Shimura
varieties, is similar to [5, Theorem 13.6], except that the lower bound used in that article
is replaced by a result similar to (but weaker than) Corollary 5.6. More explicitly:

Since a ∈ Ag is a special point, every a-strongly special point is a special point of Ag.
Therefore Y ′ contains a Zariski dense subset of special points. Besides, Y is a-special iff
Y is a special subvariety of Ag by Proposition 1.1.

Suppose that Y is not a-special. Then Y ′ is not a special subvariety of S′. On the
other hand, Y ′ is defined over a number field since every point in Σ′a is.

Define VN := Ru(N) < V2g and GN := N/VN C G < GSp2g. The reductive group
G decomposes as an almost direct product Z(G)H1...Hr with all Hi’s simple. Without
any loss of generality, we may assume that H1,...,Hl are the simple factors of G which
appear in the decomposition of GN . Define G⊥N := Hl+1...Hr. Define T := MT(a), then
T is a torus since a is a special point of Ag.
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Let G1 := G⊥NT . This is a subgroup of G (and therefore a subgroup of GSp2g).

Moreover, it defines a connected Shimura subdatum (G1,X+
G1

) of (GSp2g,H+
g ) and hence

its associated connected Shimura subvariety SG1 of Ag such that a ∈ SG1 . Recall that
(P ′,X ′+) = (P,X+)/N and (G′,X ′+G ) = (G,X+

G )/GN . Therefore the natural Shimura
morphisms

(G1,X+
G1

) ↪→ (G,X+
G )� (G′,X ′+G )

identify X+
G1

and X ′+G .

Recall that P = V oG gives rises to a connected mixed Shimura datum (P,X+). So
V := Ru(P ) is a G1-module such that the action of G1 on V induces a Hodge-structure
of type {(−1, 0), (0,−1)} on V . Therefore by [24, 2.17], there exists a connected mixed
Shimura datum (P1,X+

1 ) such that P1 = V oG1 and (G1,XG1) = (P1,X+
1 )/V . (P1,X+

1 )
is a connected mixed Shimura subdatum of (P,X+). Since N C P , we have VN C P1.
Now we have the following diagram of Shimura morphisms:

(P2,X+
2 ) := (P1,X+

1 )/VN ��
ρ′

(P1,X+
1 ) ⊂

j- (P,X+)
ρ- (P ′,X ′+)

S2

unif2
?
�� [ρ′]

S1

?
[j] - S

?
[ρ] - S′

unif′

?
.

Then the map ρ ◦ j ◦ ρ′−1 : (P2,X+
2 ) → (P ′,X ′+) is well-defined and is a Shimura mor-

phism. Hence Y ′ is a special subvariety of S′ iff Y2 := ([ρ] ◦ [j] ◦ [ρ′]−1)−1(Y ′) is a
special subvariety of S2. Hence it suffices to prove that Y2 is special. But X+

2 and X ′+
are identified under ρ ◦ j ◦ ρ′−1 by the discussion in the last paragraph, so the union of
positive-dimensional weakly special subvarieties of Y2 is not Zariski dense in Y2 by choice
of Y ′. Therefore we are left to prove that the set of special points of Y2 which do not lie
in any positive-dimensional special subvariety is finite. Remark that Y2 is defined over
a number field (which we call k) since Y ′ is.

Take the pure part of the diagram above, we get the following diagram of Shimura
morphisms between pure Shimura data and pure Shimura varieties:

(G2,X+
G2

) �
ρ′G

∼
(G1,X+

G1
) ⊂

jG- (G,X+
G )

ρG- (S′,X ′+G )

SG2

?
�

[ρ′G]

∼
SG1

?
[jG] - SG

?
[ρG] - S′G

?
.

Therefore X+
G2

can be seen as a subset of X+
G , and hence of H+

g . Since Y ∩ Σ′a = Y ,

we have Y ′ ∩ [ρ](Σ′a) = Y ′. But then by the identification of X+
2 and X ′+, we get that

in S2, the subset of torsion points over a′, where Aa′ is isogenous to Aa, is
Zariski dense in Y2.

For any torsion point t over a′ such that Aa′ is isogenous to Aa, take a representative
t̃ ∈ unif−1

2 (t) in the fundamental set F as in [5, Section 10.1] (this fundamental set is
similar to the one defined in Theorem 2.1.(3)). Denote by V2 := Ru(P2), which is a
Q-vector group. Then t̃ = (t̃V , t̃G) ∈ V2(Q)× (H+

g ∩M2g(Q)) and hence we can define its

height. By choice of F , H(t̃V ) is bounded by N(t), the order of t as a torsion point of
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Aa′ . But up to constants depending only on a (or more explicitely, only on H(ã)), H(t̃G)
is polynomially bounded from above by the minimal degree of the isogenies Aa′ → Aa.
This follows from [19, Proposition 4.1, Section 4.2]. But the minimal degree of the
isogenies Aa′ → Aa is polynomially bounded from above by the Galois orbit of a′. This
follows from [19, Theorem 5.1]. Hence by [5, Proposition 13.3],

|Gal(Q/k)t| �g,ã H(t̃)µ(g,ã)

for some µ(g, ã) > 0. Hence for H(t̃) � 0, Pila-Wilkie [21, 3.2] implies that ∃σ ∈
Gal(Q/k) such that σ̃(t) is contained in a connected semi-algebraic subset of unif−1

2 (Y2)∩
F of positive dimension. Now the Ax-Lindemann theorem (Theorem 3.7) implies that
σ(t) is then contained in some weakly special subvariety Z of S2 such that dimZ > 0.
Hence σ−1(Z) is weakly special containing a special point t, and therefore σ−1(Z) is
special of positive dimension. To sum it up, the heights of the elements of

{t̃ ∈ unif−1
2 (Y2) ∩ F special and unif2(t̃) is not contained in

a positive-dimensional special subvariety of S2}
is uniformly bounded from above. Therefore this set is finite by Northcott’s theorem.

�

7. Proof of the non-torsion case

We prove Theorem 1.6 in this section. Let Y be a curve in Ag, let s ∈ Ag(C) and let Σ be
the generalized Hecke orbit of s. For simplicity, we will denote by (A, λ) := (Ag,[π]s, λ[π]s) the
polarized abelian variety attached to [π](s) in this section. Assume that s is not a torsion point
of A. Throughout this section, we assume that Y is not contained in a fiber of [π] : Ag → Ag
(otherwise this is a special case of the Mordell-Lang conjecture, which is proved in a series of
works of Vojta, Faltings and Hindry).

We fix some notation here. Let B be a symplectic basis of H1(A,Z) with respect to the
polarization λ. Let s̃G ∈ H+

g be the period matrix of (A, λ) with respect to the basis B, then

unifG(s̃G) = [π]s. Now let s̃ = (s̃V , s̃G) ∈ V2g(R)×H+
g ' X+

2g,a be a point in π−1(s̃G)∩unif−1(s).
In the whole section, we will fix B to be the Q-basis of V2g as in §4.1.

Denote by k the definition field of s. Then A is defined over the finitely generated field k.

7.1. Complexity of points in a generalized Hecke orbit. Let unif : X+
2g,a → Ag be the

uniformization map and let F be the fundamental set in X+
2g,a defined in Theorem 2.1.(3). Let

Ỹ := unif−1(Y ) ∩ F and Σ̃ := unif−1(Σ) ∩ F .
Let t ∈ Σ. Let ft be as in Corollary 4.6 (i.e. a polarized isogeny (A, λ) → (Ag,[π]t, λ[π]t) of

minimal degree). Define

nt := min{n ∈ N| ∃ϕ ∈
(

End(A, λ)
)

such that nt ∈ ft
(
ϕ(s) +A(C)tor

)
}.

The existence of such an nt is guaranteed by Corollary 4.6. Furthermore, let st := unif ((s̃V /nt, s̃G)) ∈
Ag,[π]s = A. Then there exist by definition of nt

• ϕt ∈ End ((A, λ));
• δt a torsion point of A



THE ANDRÉ-PINK-ZANNIER CONJECTURE 21

such that

(7.1) ft (ϕt(st) + δt) = t.

The notation nt, ft, ϕt, st and δt will be used throughout this section.

Definition 7.1. Define the complexity of t ∈ Σ to be

max (nt, N(δt))

where N(δt) is the order of δt. In addition, define the complexity of any point of Σ̃ to be the
complexity of its image in Σ.

The fact that this complexity is a “good enough” parameter will be proved in §7.3.

7.2. Galois orbit. In contrast to the torsion case, we deal with the Galois orbit at first for the
non-torsion case. Keep the notation of the beginning of this section and §7.1.

Proposition 7.2. Let t ∈ Σ be of complexity n, then

[k(t) : k] > c3n
c4

where c3 = c3(A, λ, s) and c4 = c4(A, λ, s) are two positive constants.

Proof. By [19, Theorem 5.1] and [18, Theorem 5.6], there exist positive constants c5 = c5(A, λ)
and c6 = c6(A, λ) such that

(7.2) deg(ft) 6 c5[k(t) : k]c6

The abelian variety A is defined over k. By the main result of [13] and the standard special-
ization argument introduced by Raynaud (see [19, Section 5] or [27, Section 7]), there exist two
positive constants c9 and c10 depending only on A and k such that for any torsion point q ∈ A
of order N(q), we have

(7.3) [k(q) : k] > c9N(q)c10 .

Case i N(δt)
c10/2 > n2g2+4g+1

t . By [9, Proposition 1] or [14, Theorem 2.1.2] and the standard
specialization argument introduced by Raynaud (see [19, Section 5] or [27, Section 7]), there
exists a positive constant c11 = c11(A, s, k) such that

Gal (k(ϕt(st), A[nt])/k(A[nt])) 6 c11n
2g
t .

Hence

(7.4) [k(ϕt(st)) : k] = |Gal (k(ϕt(st), A[nt])/k(A[nt])) |[k(A[nt]) : k] 6 c′11n
2g2+4g+1
t

for another positive constant c′11 depending only on A, s and k. Now by (7.4), (7.3) and the
assumption for this case,

(7.5) [k(ϕt(st), δt) : k(ϕt(st))] > c12
N(δt)

c10

n2g2+4g+1
t

> c12N(δt)
c10/2

for a positive constant c12 = c12(A, s, k).
Since A is defined over the finitely generated field k, every element of Aut(C/k) induces a

homomorphism A(C)→ A(C). It is not hard to prove the following claim:

Claim. For any σ1, σ2 ∈ Aut (C/k(ϕt(st))), σ1(ϕt(st) + δt) = σ2(ϕt(st) + δt) iff σ−1
2 σ1 ∈

Aut (C/k(ϕt(st), δt)).
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This claim implies [k(ϕt(st) + δt) : k] > [k(ϕt(st), δt) : k(ϕt(st))]. Hence by (7.5),

[k(ϕt(st) + δt) : k] > c12N(δt)
c10/2.

Since t = ft(ϕt(st) + δt), we have therefore

(7.6) [k(t) : k] > c12
N(δt)

c10/2

deg(ft)
.

Now the conclusion for this case follows from (7.2), (7.6) and the definition of complexity (recall
that k is the definition field of s, and therefore depends only on s).

Case ii N(δt)
c10/2 6 n2g2+4g+1

t . Roughly speaking, this case follows from the Kummer
theory [9, Appendix 2]. Here are the details of the proof:

Let ∆ := End ((A, λ)) s and let ∆ := End(A)s ⊂ A. Then ∆ is a finitely generated subgroup
of A. Let k′ be the smallest field over which all points of ∆ are defined, then k′ depends only

on A and s. Then ∆ ⊂ A(k′). Let ∆′ := Q∆ ∩ A(k′) and let ∆
′

:= Q∆ ∩ A(k′). Then ∆
′

contains ∆. By the Lang-Néron theorem, the group A(k′) is finitely generated (because k′ is

finitely generated over Q). Therefore ∆
′

is finitely generated and rank∆
′

= rank∆. Hence

[∆
′
: ∆] is a finite number depending only on k′, and hence only on A and s. On the other hand,

∆ ⊂ ∆∩∆′ ⊂ ∆ +A(k′)tor. So [∆∩∆′ : ∆] is a finite number depending only on k′, and hence
only on A and s. Therefore by

[∆′ : ∆] = [∆′ : ∆ ∩∆′][∆ ∩∆′ : ∆] 6 [∆
′
: ∆][∆ ∩∆′ : ∆],

there exists c13 > 0 depending only on A and s such that [∆′ : ∆] = c13.
For each t ∈ Σ, define another number n′t := min{n ∈ N| nt ∈ ft

(
A(k′) + A(C)tor

)
}. Let

s′ ∈ A(k′) be such that n′tt = ft(s
′ +A(C)tor). Then because t = ft(ϕt(st) + δt), we have

s† := s′ − n′tϕt(st) ∈ A(C)tor.

But n′tϕt(st) + s† ∈ ∆′, so

(7.7) n′t = min{n ∈ N| nt ∈ ft(∆′ +A(C)tor)}.

However by definition,

(7.8) nt = min{n ∈ N| nt ∈ ft(∆ +A(C)tor).

Compare (7.7) and (7.8), we get

(7.9) nt/n
′
t 6 [∆′ : ∆] 6 c13.

By [9, Lemma 14] or [14, Corollary 2.1.5] and the standard specialization argument introduced
by Raynaud (see [19, Section 5] or [27, Section 7]), there exists a positive constant c14 = c14(A, k′)
such that

Gal
(
k′
(
ϕt(st), A[n′tN(δt)]

)
/k′
(
A[n′tN(δt)]

))
> c14n

′
t.

But t = ft(ϕt(st) + δt), so

(7.10) [k(t) : k] > [k′(t) : k′] >
[k′(ϕt(st) + δt) : k′]

deg(ft)
>

c14n
′
t

deg(ft)
.

Now the conclusion follows from (7.2), (7.9) and (7.10). �
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7.3. Néron-Tate height in family. Next we prove that the complexity defined in Defini-
tion 7.1 is a good parameter. More explicitly we dispose of the following proposition:

Proposition 7.3. Let Y , s and Σ be as in the beginning of this section. Let t ∈ Σ. Let ft, nt,
st, ϕt and δt be as in §7.1. Then

deg(ϕt) 6 c7n
c8
t and deg(ft) 6 c

′
7n

c′8
t

for some positive constants c7 = c7(g, Y, s), c′7 = c′7(g, Y, s) and c8 = c8(g, Y, s), c′8 = c′8(g, Y, s).

We shall prove this proposition with the help of a well-chosen family of Néron-Tate heights,
i.e. the one related to the symmetric and relatively ample Gm-torsor Lg → Ag with respect to
Ag → Ag defined in Theorem 2.2. We shall use the Moriwaki height (see [16]), which is defined
for points over finitely generated fields. Then we shall use a theorem of Silverman-Tate [28,
Theorem A].

Pink explained in [24, Chapter 8 and 9] that Lg extends over Q to a relative ample Gm-torsor

Lg → Ag over Ag → Ag, where Ag (resp. Ag) is a compactification of Ag (resp. Ag).2 By abuse
of notation we denote also by Lg the relative ample line bundle associated to the Gm-torsor.

Let M be an ample line bundle over Q over Ag which extends over Q to an ample line bundle

M over Ag. For a� 0, the line bundle L := Lg ⊗ [π]∗M⊗a over Ag is ample.

Let t ∈ Σ be as in Proposition 7.3. Recall that k is the definition field of s. Hence t ∈ Ag(k).

Let d be the transcendence degree of k and let B = (B;H1, ...,Hd) be a big polarization of k,
namely, a collection of a normal projective arithmetic variety B whose function field is k and
nef smooth hermitian line bundles H1, ...,Hd on B satisfying the bigness condition of Moriwaki
[16, pp 103, above Theorem A]. Consider the arithmetic Moriwaki height associated to B

hBAg ,L : Ag(k)→ R

defined in [16, pp 103].
For any point b ∈ Ag(k), Lg,b is an ample line bundle over the abelian variety Ag,b defined over

k. Now consider the Néron-Tate height ĥBLg,b on Ab as in [16, §3.4]. For any point P ∈ Ag(k),

we shall denote by

ĥBLg(P ) := ĥBLg,[π]P (P ).

Lemma 7.4. Let s1 and s2 be two points of Ag(k). Assume that there exists a polarized isogeny

f : (Ag,[π]s1 , λ[π]s1)→ (Ag,[π]s2 , λ[π]s2)

such that s1 = f(s2). Then ĥBLg(s2) = (deg f)1/gĥBLg(s1).

2For experts of mixed Shimura varieties, we are in the situation of [24, 9.2] since we are considering (following
Pink’s notation) (P2g,X+

2g) → (P2g,a,X+
2g,a), so this follows from [24, 6.25, 8.6, 8.13, 9.13, 9.16, 9.24, 12.4].
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Proof. By the moduli interpretation of Lg (Theorem 2.2), f∗Lg,[π]s2 = L
⊗(deg f)1/g

g,[π]s1
. So we have

ĥBLg(s2) = ĥBLg,[π]s2
(f(s1))

= ĥB
L
⊗(deg f)1/g

g,[π]s1

(s1)

= (deg f)1/gĥBLg,[π]s1
(s1)

= (deg f)1/gĥBLg(s1).

�

Now we start proving Proposition 7.3.

Proof of Proposition 7.3. Denote by ε : Ag → Ag the zero section.

Following Silverman [28, §2, pp 200], we define the canonical height ĥBL by

ĥBL(P ) := limn→∞ n
−2hBAg ,L(nP ), ∀P ∈ Ag(k).

Then

ĥBL = ĥBLg .

Apply [28, Theorem A]: there exist constants c15 = c15(g) > 0 and c16 = c16(g) such that

(7.11) |ĥBLg(t)− h
B
Ag ,L(t)| < c15h

B
Ag ,ε∗L([π]t) + c16

for any t ∈ Ag(k). Remark that the original theorem of Silverman is a statement for points over
global fields, but his proof easily extends to points over finitely generated fields for the Moriwaki
height [16].

We need the following lemma, which uses the fact that Y is a curve in an essential way:

Lemma 7.5. There exist two constants c17 > 0 and c18 depending only on Y such that

hBAg ,L(t) 6 c17h
B
Ag ,ε∗L([π]t) + c18

Proof. The idea is due to Lin-Wang [11, Proof of Proposition 2.1]. The following notation will
be used only in this proof: denote by B = [π](Y ) and X = [π]−1(B). By abuse of notation,
we will not distinguish [π] and [π]|X . Remark that X → B is a non-isotrivial family of abelian
varieties.

Let Y ′ be a smooth resolution of Y ⊂ Ag, then X ×B Y ′ → Y ′ is also a non-isotrivial family
of abelian varieties of dimension g and we write εY ′ : Y

′ → X ×B Y ′ to be the zero-section. Let
f : Y ′ → Ag be the natural morphism. Consider the following commutative diagram

X ×B Y ′
p2
-

εY ′
�

Y ′

X

p1
?

[π]- B

[π]◦f
?

.
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Now let t′ ∈ Y ′(k) be such that f(t′) = t. Then up to bounded functions,

hBAg ,L(t) = hBX,Lg |X (t) hBAg ,ε∗L([π]t) = hBB,ε∗L|X ([π]t)

= hBX,L|X (f(t′)) = hBB,ε∗L|X (f ◦ [π](t′))

= hBY ′,f∗L|X (t′) = hBY ′,(f◦[π])∗ε∗L|X (t′)

= hBY ′,ε∗
Y ′p
∗
1L|X

(t′).

Since Y is a curve, the morphism [π] ◦ f : Y ′ → B is finite. Therefore p∗1L|X is ample. So
ε∗Y ′p

∗
1L|X is ample. Hence there exist two constants c17 > 0 and c18 depending only on Y ′ (and

hence only on Y ) such that

(7.12) hBY ′,f∗L|X (t′) 6 c17h
B
Y ′,ε∗

Y ′p
∗
1L|X

(t′) + c18

for any t′ ∈ Y ′. Now the conclusion follows. �

Now for any t ∈ Y ∩ Σ, by (7.1) and Lemma 7.4,

(7.13) ĥBLg(t) =
deg(ft)

1/g deg(ϕt)
1/g

n2
t

ĥBLg(s).

But for any t ∈ Σ, we have the following result of Moriwaki ([17, Proposition 3.2 and Lemma 1.6.3]):

(7.14) |hBF (A[π]t)− hBF (A)| 6 c19 log deg(ft)

where c19 depends only on B, and hence k. Here hF is the Faltings’ modular height defined by

Moriwaki in [17, Proposition 3.4(1)] (which he denotes by hBmod). This is the generalization of

the stable Faltings height for abelian varieties over Q.
Moreover Moriwaki proved ([17, Proposition 4.1]) that there exists a positive constant c20 and

c21 depnding only on g, M and B such that

(7.15) |c20h
B
F (A[π]t)− hBAg ,ε∗L([π]t)| 6 c21

for any t ∈ Ag(k).
Now (7.11), Lemma 7.5, (7.13), (7.14) and (7.15) together imply

deg(ϕt)
1/g

n2
t

deg(ft)
1/gĥBLg(s) 6 (c15 + c17)c20

(
c19 log deg(ft) +hBF (A)

)
+ (c15 + c17)c21 + c16 + c18.

Since deg(ϕt) > 1, we get that deg(ft) is polynomially bounded in nt.
On the other hand, letting deg(ft) → ∞, we see that there exist two positive constants M0

and c22 depending on nothing such that deg(ϕt)
1/g 6 c22n

2
t for any t ∈ Y ∩Σ with deg(ft) > M0.

But if deg(ft) 6M0, then deg(ft) takes values in a finite set {1, ...,M0}. So deg(ϕt) is bounded
polynomially in nt from above. �

7.4. Application of the Pila-Wilkie theorem. Keep the notation of the beginning of this
section and §7.1.
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Proposition 7.6. Let Y and s̃ be as in the beginning of this section. Let ε > 0. There exists a
constant C = C(Y, s, ε) > 0 with the following property:

For every n > 1, there exist at most Cnε definable blocks Bi ⊂ Ỹ such that ∪Bi contains all

points of complexity n of Ỹ ∩ Σ̃.

Proof. The proof starts with the following lemma:

Lemma 7.7. There exist constants C ′ and κ′ depending only on g and s̃ such that

For any t̃ ∈ Ỹ ∩ Σ̃ of complexity n, there exists a (v, h) ∈ P2g(Q)+ such that (v, h) · s̃ = t̃ and

H ((v, h)) 6 C ′nκ
′
.

Proof. Let t := unif(t̃). Then t ∈ Σ and therefore we dispose of a relation as (7.1). Let
f ′t := ft ◦ ϕt, then f ′t : (A, λ) → (Ag,[π]t, λ[π]t) is a polarized isogeny. Moreover, there exists a

δ′t ∈ A(Q)tor such that N(δ′t) 6 N(δt) deg(ϕt) and

(7.16) t = f ′t(st + δ′t).

Claim. There exists a symplectic basis B′ for H1(A[π]t,Z) with respect to the polarization λ[π]t

such that the height of γf ′ ∈ GSp2g(Q)+ (the matrix expression of f ′t in coordinates B with respect
to B′) is polynomially bounded in deg(f ′t) = deg(ϕt) deg(ft) from above (see the beginning of this
section for B).

This claim follows from [19, Proposition 4.1]: remark that f ′t is a polarized isogeny instead

of an arbitrary isogeny, hence the endomorphism q ∈ End(A) in [19, 4.3] equals [degϕt]
1/g, and

therefore the u ∈ (EndA)∗ in [19, 4.6] can be taken to be 1A.

Then unifG(γf ′ · s̃G) = [π]s. Besides let δ̃′t = (δ̃′t,V , s̃G) ∈ F be such that unif(δ̃′t) = δ′t. Then

δ̃′t,V ∈ V2g(Q) and, by (7.16) and (4.3),

unif
(
γf ′
( s̃V
nt

+ δ̃′t,V , s̃G
))

= t.

So there exists an element γ = (γV , γG) ∈ Γ such that

γγf ′
( s̃V
nt

+ δ̃′t,V , s̃G
)

= t̃,

i.e.

t̃ =
(
γV + γGγf ′

( s̃V
nt

+ δ̃′t,V
)
, γGγf ′ s̃G

)
=
(
γV + γGγf ′ δ̃

′
t,V ,

γGγf ′

nt

)
· s̃.

Denote by

(v, h) :=
(
γV + γGγf ′ δ̃

′
t,V ,

γGγf ′

nt

)
,

then (v, h) is an element of P2g(Q)+ such that (v, h)s̃ = t̃. Now we prove that H ((v, h)) is

polynomially bounded in the complexity n of t̃. To prove this, it suffices to prove that nt,

H(δ̃′t,V ), H(γf ′), H(γG) and H(γV ) are all polynomially bounded in n.
The fact that nt is bounded by n follows directly from the definition of complexity.

For H(δ̃′t,V ): because δ̃′t ∈ F ' [0, N)2g × FG (where N is the level structure, and hence

depend on nothing), we have δ̃′t,V ∈ [0, N)2g. Therefore H(δ̃′t,V ) is bounded up to a constant

by the denominator of δ̃′t,V , which equals N(δ′t). But N(δ′t) 6 deg(ϕt)N(δt), hence it suffices to
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bound both deg(ϕt) and N(δt) by n. Now deg(ϕt) is polynomially bounded in nt, and hence by
n, by Proposition 7.3. By definition of complexity, N(δt) 6 n.

For H(γf ′): by choice, H(γf ′) is polynomially bounded in deg(ft) deg(ϕt), which is polynomi-
ally bounded in nt by Proposition 7.3. Hence H(γf ′) is polynomially bounded in n by definition
of complexity.

For H(γG): remark γGγf ′ s̃G = π(t̃) ∈ FG. By [22, Lemma 3.2], H(γG) is polynomially
bounded in ||γf ′ s̃G||. Therefore H(γG) is polynomially bounded, with constants depending on
||s̃G||, by n.

For H(γV ): remark γV + γGγf ′ δ̃
′
t,V + γGγf ′ s̃V /nt = t̃V ∈ [0, N)2g (where N is the level struc-

ture, and hence depend on nothing). Therefore H(γV ) is polynomially bounded in ||γGγf ′ δ̃t,V +
γGγf ′ s̃V /nt||. Therefore H(γV ) is polynomially bounded, with constants depending on ||s̃V ||,
by n. �

Let σ : P2g(R)+ → X+
2g,a be the map (v, h) 7→ (v, h) · s̃.

The set R = σ−1(Ỹ ) = σ−1(unif−1(Y ) ∩ F) is definable because σ is semi-algebraic and
unif|F is definable. Hence we can apply the family version of the Pila-Wilkie theorem ([21, 3.6])
to the definable set R: for every ε > 0, there are only finitely many definable block families
B(j)(ε) ⊂ R × Rm and a constant C ′1(R, ε) such that for every T > 1, the rational points of R
of height at most T are contained in the union of at most C ′1T

ε definable blocks Bi(T, ε), taken

(as fibers) from the families B(j)(ε). Since σ is semi-algebraic, the image under σ of a definable

block in R is a finite union of definable blocks in Ỹ . Furthermore the number of blocks in the
image is uniformly bounded in each definable block family B(j)(ε). Hence σ(Bi(T, ε)) is the

union of at most C ′2T
ε blocks in Ỹ , for some new constant C ′2(Y, ã, ε) > 0.

By Lemma 7.7, for any point t̃ ∈ Ỹ ∩ Σ̃ of complexity n, there exists a rational element γ ∈ R
such that σ(γ) = t̃ and H(γ) 6 C ′nκ

′
. By the discussion in the last paragraph, all such γ’s are

contained in the union of at most C ′1(C ′nκ
′
)ε definable blocks. Therefore all points of Ỹ ∩ Σ̃ of

complexity n are contained in the union of at most C ′1C
′
2C
′εnκ

′ε blocks in Ỹ . �

7.5. End of proof of Theorem 1.6. Now we are ready to finish the proof of Theorem 1.6.

Let Σ1 be the set of points t ∈ Y ∩ Σ such that there is a positive-dimensional block B ⊂ Ỹ
with t ∈ unif(B). Let Y1 be the Zariski closure of Σ1. Let k be a number field such that both
Y and Y1 are defined over k.

Let t be a point in Y ∩Σ of complexity n. By Proposition 7.2, there exist positive constants
c5 and c6 depending only on (A, λ) and s such that

[k(t) : k] > c5n
c6 .

All Gal(k/k)-conjugates of t are contained in Y ∩Σ and have complexity n. By Proposition 7.6,

the preimages in F of these points are contained in the union of C(Y, s, c6/2)nc6/2 definable

blocks, each of these blocks being contained in Ỹ .

For n large enough, c5n
c6 > Cnc6/2. Hence for n � 0, there exists a definable block B ⊂ Ỹ

such that unif(B) contains at least two Galois conjugates of t, and therefore dimB > 0 since
blocks are connected. So being in unif(B), those conjugates of t are in Σ1. But Y1 is defined
over k, so t ∈ Y1.

In summary, all points of Y ∩ Σ of large enough complexity are in Σ1. This excludes only
finitely many points of Y ∩ Σ. So Y1 = Y .
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Let Σ2 be the set of points t ∈ Y ∩ Σ such that there is a connected positive-dimensional

semi-algebraic set B′ ⊂ Ỹ with t ∈ unif(B′). Let Y2 be the Zariski closure of Σ2. By definition
of blocks, Σ2 = Σ1, and hence Y2 = Y1 = Y .

Now since dim(Y ) = 1, the conclusion follows from Theorem 3.7.

8. Variants of the main conjecture

In the previous sections we have discussed the intersection of a subvariety of Ag with the set
of division points of the polarized isogeny orbit of a given point (1.1). The goal of this section
is twofold: one is to replace the given point by a finitely generated subgroup of one fiber of
Ag → Ag (remark that the fiber is an abelian variety), the other is to replace the polarized
isogeny orbit by the isogeny orbit. In particular we will prove that although these changes
to Conjecture 1.2 a priori seem to generalize the conjecture, both can actually be implied by
Conjecture 1.2 itself.

In the rest of the section, fix a point b ∈ Ag, which corresponds to a polarized abelian variety
(A, λ) := (Ag,b, λb). Let Λ be any finitely generated subgroup of A.

Theorem 8.1. Let Y be an irreducible subvariety of Ag. Let Σ0 be the set of division points of
the polarized isogeny orbit of Λ, i.e.

Σ0 = {t ∈ Ag| ∃n ∈ N and a polarized isogeny f : (A, λ)→ (Ag,[π]t, λ[π]t) such that nt ∈ f(Λ)}.

Assume that Conjecture 1.2 holds for all g. If Y ∩ Σ0
Zar

= Y , then Y is weakly special.

Proof. The proof is basically the same as Pink [25, Theorem 5.4] (how Conjecture 1.2 implies
the Mordell-Lang conjecture).

Suppose rank Λ = r − 1. Let V r
2g be the direct sum of r copies of V2g as a representation of

GSp2g. Then the connected mixed Shimura variety associated with V r
2g o GSp2g is the r-fold

fiber product of Ag over Ag, and so its fiber over b is Ar. Denote by

σ : Ag ×Ag ...×Ag Ag → Ag

the summation map (remark that both varieties are abelian schemes over Ag).
Now the homomorphisms

P2g,a = V2g o GSp2g ↪→ V r
2g o GSp2g ↪→ V2gr o GSp2gr

(v, h) 7→ ((v, ..., v), h)) 7→ ((v, ..., v), (h, ..., h))

induce Shimura immersions
Ag - Ag ×Ag ...×Ag Ag - Agr

Ag

[π]

?
= - Ag

?
⊂ - Agr

?

For simplicity we shall not distinguish a point in Ag (resp. Ag) and its image in Agr (resp. Agr).
Then Agr,b = Ar.

Fix generators a1,...,ar−1 of Λ and set ar := −a1 − ...− ar−1. Let Λ′ be the division group of
Λ, i.e. Λ′ = {s| ∃n ∈ N such that ns ∈ Λ} ⊂ A. Then [25, Lemma 5.3] asserts that

(8.1) Λ′ = Λ∗a1 + ...+ Λ∗ar = σ(Λ∗a1 × ...× Λ∗ar)

where (as Pink defined) Λ∗ai := {s ∈ A| ∃m,n ∈ Z \ {0} such that ns = mai}.
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Now consider

Λ† := σ−1(Y ) ∩ {f r(Λ∗a1 × ...× Λ∗ar)| f : (A, λ)→ (Ag,b′ , λb′) a polarized isogeny}.
We have

σ(Λ†) = Y ∩ σ({f r(Λ∗a1 × ...× Λ∗ar)| f : (A, λ)→ (Ag,b′ , λb′) a polarized isogeny})
= Y ∩ {f r

(
σ(Λ∗a1 × ...× Λ∗ar)

)
| f : (A, λ)→ (Ag,b′ , λb′) a polarized isogeny}

= Y ∩ {f r(Λ′)| f : (A, λ)→ (Ag,b′ , λb′) a polarized isogeny} (8.1).

Because Y ∩ Σ0
Zar

= Y , Y ∩ {f(Λ′)| f : (A, λ) → (Ag,b′ , λb′) a polarized isogeny} is Zariski

dense in Y (as subsets of Ag). Therefore σ(Λ†) is Zariski dense in Y (as subsets of Ag×Ag ...×Ag
Ag, and hence as subsets of Agr). Let Y † be the Zariski closure of Λ† in Ag×Ag ...×Ag Ag. Then

Y † is also a subvariety of Agr. Since taking Zariski closures commutes with taking images under

proper morphisms, we deduce that σ(Y †) = Y . So there exists an irreducible component Y ′ of
Y † such that σ(Y ′) = Y .

For any polarized isogeny f : (A, λ)→ (Ag,b′ , λb′), the generalized Hecke orbit of (a1, ..., ar) ∈
Ar as a point on Agr contains f r(Λ∗a1 × ...×Λ∗ar) by Corollary 4.5. Therefore the intersection of
Y ′ with generalized Hecke orbit of (a1, ..., ar) in Agr is Zariski dense in Y ′. Hence Conjecture 1.2
for Agr implies that Y ′ is weakly special. Therefore Y = σ(Y ′) is also weakly special by the
geometric interpretation of weakly special subvarieties of Ag and of Agr (Proposition 1.1). �

Corollary 8.2. Let Y be an irreducible subvariety of Ag. Let Σ′0 be the set of division points of
the isogeny orbit of Λ, i.e.

Σ′0 = {t ∈ Ag| ∃n ∈ N and an isogeny f : A→ Ag,[π]t such that nt ∈ f(Λ)}.

Assume that Conjecture 1.2 holds for all g. If Y ∩ Σ′0
Zar

= Y , then Y is weakly special.

Proof. Recall Zarhin’s trick (see [18, Proposition 4.4]): for any isogeny f : A → A′ between
polarized abelian varieties, there exists u ∈ End(A4) such that f4 ◦u : A4 → (A′)4 is a polarized
isogeny.

Now let i : Ag ↪→ A4g be the natural embedding. Then Λ4 := End(A4)i(Λ) is a finitely
generated subgroup of A4 = A4g,i(b) and hence

Σ′0 ⊂ {t ∈ A4g| ∃n ∈ N and a polarized isogeny f : (A4, λ�4)→ (A4g,[π]t, λ[π]t) such that nt ∈ f(Λ4)}.
Now the conclusion follows from Theorem 8.1. �
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